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Ongoing research projects
 Platform Value Now

(Strategic Research Council of the Academy of Finland) 

 Adversarial risk analysis in the assessment of weapons systems, 
(Scientific Advisory Board for Defense)

 Probabilistic risk assessment method development and applications
 Systematization of methodologies for safety justification

(Finnish Research Programmes on Nuclear Power Plant Safety and Nuclear Waste)

 Earlier ones

– First technology assessment study for the Finnish Parliament

– Evaluation of national RTD programmes in electronics and 
telecommunication

– National foresight study ‘FinnSight 2015’
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www.platformvaluenow.org

www.platformvaluenow.org
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“By Portfolio Decision Analysis (PDA) 
we mean a body of theory, methods, 
and practice 

which seeks to help decision makers 
make informed multiple selections 
from a discrete set of alternatives 

through mathematical modeling that 
accounts for relevant constraints, 
preferences, and uncertainties.”

Winner of the 2013 Publication Award 
of the Decision Analysis Society of the 
Institute for Operations Research and 
the Management Sciences (INFORMS)
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Influence diagrams

 Graphical representations of 
❶ chance, decision and value nodes 
❷ arcs which indicate dependencies between these

 Common solution approaches (Howard & Matheson, 2005; Bielza et al 2010)

❶ Form the decision tree and it solve with dynamic programming

❷ Eliminate nodes (after arc reversals, if needed)

 Assumptions and limitations

– Earlier decisions must be recalled (‘no forgetting’)

– Risk constraints cannot be easily handled

– Problems of portfolio decision analysis become unwieldy
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 Pigs are grown for four months and then sold

 Diagnosing ti and treating pigs dj through injections 
(Lauritzen and Nilsson, 2001)

Limited information influence diagrams (LIMID)
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Pig farm problem

 Pigs sold after 4 months, 
diseased ones for 300 DKK, healthy for 1000 DKK 

 A pig has the disease after the first month with 10 % probability  

 Montly tests: diseased pigs indicated with 80% probability 
and healthy 90% probability

 Based on tests, pigs can be injected at for 100 DKK

 If injected, a healthy pig develops the disease in the following 
month with 10% probability; and without injection, with 20%

 If injected, a diseased pig remains diseased in the following month 
with 50% probability%; without injection, with 90% probability  
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Characteristics of PDA in R&D project selection
 Projects 

– Can be started in different ways (not only ‘go/no-go’ decisions) 

– Can offer opportunities for follow-up investments

– Can involve interdependencies (synergies, cannibalization)

 Uncertainties 

– Exogenous – do not depend on project decisions (e.g., total market size)

– Endogenous – are influenced by project decisions (e.g., time-to-market)
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An example of Contingent Portfolio Programming (CPP)

 A portfolio of two projects: A and B

– One or both can be started at t=0 

– Continued investments possible at t=1

– If completed, projects yield cash flows at t=2

 Cash flows from projects are contingent on scenarios

 Money as the only resource

– Initial budget b = $100m

– Leftover budget invested at the risk free interest rate r = 8%
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Scenario tree and decisions
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Parallel decision trees
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Cash flows for the portfolio of two projects
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 Maximize NPV certainty equivalent

– Approximated by the linear model

E[NPV] -k·absdev[NPV]

– absdev = mean absolute deviation
(model remains linear)

 Subject to 

– Consistency constraints

– Resource constraints

– Deviation constraints

 Note: Project cash flows are 
negatively correlated

Portfolio
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Constraints

Consistency constraints:

XASY + XASN = 1

XACY1 + XACN1 = XASY

XACY2 + XACN2 = XASY

XBSY + XBSN = 1

XBCY1 + XBCN1 = XBSY

XBCY2 + XBCN2 = XBSY

Resource constraints:

-10XASY - 20XBSY + 100 – RSs0 = 0

-30XACY1 - 20XBCY1 + 1.08RSs0 – RSs1 = 0

-30XACY2 - 20XBCY2 + 1.08RSs0 – RSs2 = 0

200XACY1 + 25XBCY1 + 1.08RSs1 – RSs11 = 0

100XACY1 + 10XBCY1 + 1.08RSs1 – RSs12 = 0

50XACY2 + 250XBCY2 + 1.08 RSs2 – RSs21 = 0

100XBCY2 + 1.08RSs2 – RSs22 = 0

Resource surplus variables RS indicate how much resources

there are after each scenario
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Deviation constraints

First deviation constraint:

-10XASY - 20XBSY + 1/1.08  (-30XACY1 - 20XBCY1)

+ 1/1.082  (200XACY1 + 25XBCY1)

– [-10XASY - 20XBSY

+ 50%  1/1.08  (-30XACY1 - 20XBCY1)

+ 50%  1/1.08  (-30XACY2 - 20XBCY2)

+ 50%30%  1/1.082  (200XACY1 + 25XBCY1)

+ 50%70%  1/1.082  (100XACY1 + 10XBCY1)

+ 50%40%  1/1.082  (50XACY2 + 250XBCY2)

+ 50%60%  1/1.082  (100XBCY2)] 

– NPVsp11
+ + NPVsp11

– = 0

NPVsp
r(X) – ENPVr(X) – NPVsp

r+ + NPVsp
r– = 0

NPVs11 (X)

ENPV(X)

Deviation variables 

NPV’s indicate by how 

much the present value in 

each scenario path  

deviates from the 

expected NPV
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Objective function

-10XASY - 20XBSY +

50%  1/1.08  (-30XACY1 - 20XBCY1) +

50%  1/1.08  (-30XACY2 - 20XBCY2) +

50%30%  1/1.082  (200XACY1 + 25XBCY1) +

50%70%  1/1.082  (100XACY1 + 10XBCY1) +

50%40%  1/1.082  (50XACY2 + 250XBCY2) +

50%60%  1/1.082  (100XBCY2)

– 0.25  [
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Solution in decision trees
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Solution in decision trees
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Influence diagram for this CPP example
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The CPP example with endogenous uncertainties
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Decision analysis + mathematical programming
 A framework for modelling endogenous uncertainties in CPP and 

stochastic optimization

 … but more generally, an approach for using mixed integer linear 
programming (MILP) to solve multi-stage decision problems which 
can be represented as influence diagrams with limited information

 Extensions

– The ‘no-forgetting’ assumption can be forgotten

– Many kinds of logical, resource and risk constraints can be handled

 Does not depend on dynamic programming as a solution approach

 Problems of realistic size can be solved thanks to the MILP 
formulation
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Definitions (1/3)

 Decision problem represented as an acyclic network G=(V,A)

 V consists of chance c  C, decision d  D and value nodes u  U 

 There are n = |C| + |D| chance and decision nodes

 Chance and decision nodes i  CD have a finite set of states si  Si

 Arcs (i,j)  A represent dependencies between nodes

 Information set I(j) consists of nodes from which there is an arc to j

 Information state sI(j)  SI(j)= iI(j) Si is a combination of states si

for nodes in the information set of predecessors i  I(j) 
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Definitions (2/3) 

 G is acyclic  nodes labelled so that   (i,j)  A  i < j

 Each node i C D is associated with a variable Xi

 At chance nodes c  C, the states of Xc occur based on conditional 
probabilities

P(Xc = sc | Xi = si, i  I(c))

 At decision nodes d  D, local decision strategies map information 
states to decisions Zd : SI(d)  Sd

P(Xd=sd | Xi = si, i  I(d), Zd)  = 1  Zd(sI(d)) = sd

 A (decision) strategy Z = dD Zd is a combination of local decision 
strategies for all decision nodes d D
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Definitions (3/3)

 At the value node u  U, the consequences of decisions and chance 
events are given by function  Xu: Su C 

 Utility function U: C R gives the real-valued utility of consequences

 A path of length k  n is a sequence of states (s1, s2, …, sk)

such that si  Si, i = 1,…k

 Paths of length n are denoted by s  S = i  CD Si

 If s  S, then si  Si is the state of node i along this path s
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Path probabilities
 For strategy Z, the probability of path s  S is

P(Xi=si, i=1,…k | Z) = P(Xk=sk | Xi=si,  i=1,...,k-1, Z)



P(Xi=si, i=1,…,k-1 | Z), 

where for chance nodes k  C the first term is 

P(Xk=sk | Xi = si, i  I(k)) 

and for decision nodes k  D it is

P(Xk=sk|Xi=si, i  I(k), Z) = 1  Zk(si, i I(k)) = sk
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Towards an optimization formulation

 Fix any decision strategy Z and scenario path s  S

 Define binary variables z(sd | sI(d))  {0,1} so that 

Zd(sI(d)) = sd  z(sd | sI(d)) = 1 (1)

 Put 0(s) = 1 and define path probabilities k(s) recursively so that 
for chance nodes k  C

k(s) = P(Xk=sk | Xi = si, i I(k)) k-1(s) (2)

and for decision nodes k  D

k(s) = k-1(s), if z(sk | sI(k)) = 1

k(s) = 0,  otherwise
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Theorem: Let Z be a decision strategy and choose a path s S. 

If the constraints (1), (2) and 

0  d(s)  d-1(s) (3)

d(s)  z(sd | sI(d)), (4)

d(s)  d-1(s) +  z(sd | sI(d)) – 1 (5) 

hold for z(sd | sI(d)), d D,  sd  Sd,  sI(d) SI(d) and k(s), k=1,…,n, then

k(s) = P(Xi=si, i=1,…k|Z), k=1,…,n

Towards a MILP formulation
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Optimal decision strategies

Corollary: The strategy Z* which maximizes the decision maker’s 
expected utility is the solution to the optimization problem

max  n(s) U[Xu(si, i  I(u))], 

where the summation is taken over all paths s  S subject to 
constraints (1)-(5). 

Notes:
- Path probabilities needed for paths of full length n only
- Utilities for consequences can be pre-evaluated
- The chance component  p(s) = cC P(Xc = sc | Xi = si, i  I(c))    

of n(s) can be pre-evaluated, too
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Constraints on full paths only

Proposition: Let Z be a decision strategy and choose a path s S. 

If the constraints (1), (2) and 

0  (s)  p(s), (3’)

(s)  z(sd | sI(d)) (4’)

(s)  p(s) +  d D z(sd | sI(d)) – |D| (5’) 

hold for s  S, then 

(s) = P(Xi=si, i=1,…k|Z).
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Endogenous uncertainties in CPP

 Decision and chance nodes in sequence (AS,BS,S1,S2,AC,BC)

 Scenario paths are sequences of states (aS,bS,s1,s2,aC,bC)

 Probabilities Pr(s2|aS,bS,s1) needed in defining 4(s)
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 An uncertain load L on a structure which may fail F

 The structure can be fortified through actions A and B, 
informed by conditionally independent measurements LA and LB

 Decision A is not known when making decision B and vice versa 
 There is no decision tree formulation for this problem

 4 local strategies at A and B

 4x4 = 16 strategies

Forgetting the “no forgetting” assumption



42



43

 The optimum can be computed with linear programming
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 The lower part for the less heavy load (L = -) is similarec
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Computation times (n = 9  49 = 262 144 strategies)
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(Conditional) Value-at-Risk constraints
 Value-at-Risk defined (see e-g. Artzner et al 1999) 

VaR(Z) = F-1
Z() = sup {t | P({s | C (s)  t }) <  } 

where F(t) = {s|C (s)  t}  (s)

Liesiö & Salo (2012). Scenario-Based Portfolio Selection of Investment 
Projects with Incomplete Probability and Utility Information,
European Journal of Operational Resesearch 217/1, 162-172.

3 85

5%

12%

8%
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 What if the pigs should have the chance to live longer?

 What if the farmer wishes to curtail risks in the lower part 
of the profit distribution?

Revisiting the pig farm
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Computational results without risk constraints



Note: With 7 decision periods, there are 47 = 16 384 strategies
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Determining all non-dominated strategies

 With many value nodes v  V, strategy Z is non-dominated iff there
is no Z’ such that  

E[Uv|Z’]  E[Uv|Z]

for all  v  V with at least one strict inequality

 Any multiple objective optimization algorithms for discrete 
optimization problems can used (Holzmann Smith 2018)
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Alternative algorithm
 Choose a single set of positive weights wv > 0,  wv = 1

 Exclude previously generated non-dominated solutions Z’ through

 Prune dominated solutions through the necessary conditions  



The strategy of not injecting in the 
first month is in all non-dominated 
strategies  It is a ‘core’ project in 
Robust Portfolio Modeling 

Liesiö, Mild and Salo (2007), 
Eur J Oper Res 181/3, 1488-1505.
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Decision analysis + mathematical programming

 Leverages MILP to solve multi-stage optimization problems which can 
be represented as extended influence diagrams

 The ‘no-forgetting’ assumption can be forgotten

 Many types of deterministic and probabilistic constraints can be 
handled (resources, risks, logical dependencies) 

 Value-at-Risk / Conditional VaR measures can be accommodated

 Computationally tractable (but problems can become large)

 Paper available at https://arxiv.org/abs/1910.09196 
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Ongoing and planned applications

 Planning and operational implementation of state-dependent risk 
management actions in safety critical systems (with Alessandro Mancuso, 

Michele Compare, Enrico Zio) 

 Identification of most critical scenarios in the safety assessment of 
nuclear repositories (with Edoardo Tosoni, Enrico Zio)

 Multi-criteria evaluation of diagnostic strategies in healthcare 
(with Ellie Dillon, Eeva Vilkkumaa) 

 Extensions to adversarial risk management 
(with Juho Roponen, David Ríos Insua)
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SO={Wet,Dry}

SD={Yes,No}

SR={Wet,Dry,None}

SE={Yes,No}
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Oil drilling with decision programming


