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Professor Salo has worked extensively on the development of
decision analytic methods and their uses in resource allocation,
innovation management, risk management, technology foresight,
and efficiency analysis. He has published widely in leading
international journals {including Management Science and
Operations Research) and recelved awards for his research from
the Decision Analysis Society of the Institute for Operations
Research and the Management Sciences (INFORMS). He serves
on the Editorial Boards of several refereed journals.

Professor Salo has directed a broad range of basic and applied research projects funded by
leading industrial firms, industrial federations, and funding agencies. He has been visiting
professor at the London Business School, Université Paris-Dauphine and the University of
Wienna. He has been the President of the Finnish Operations Research Society (FORS) for two
biennial terms. In 2010-11, he served as the European and Middle East representative of the
International Activities Committee of INFORMS. In 2010-16, he was jury member of the EDDA
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Members and Researchers (Tutkas) since 1999.
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Ongoing research projects

Platform Value Now
(Strategic Research Council of the Academy of Finland)

Adversarial risk analysis in the assessment of weapons systems,
(Scientific Advisory Board for Defense)

Probabilistic risk assessment method development and applications

Systematization of methodologies for safety justification
(Finnish Research Programmes on Nuclear Power Plant Safety and Nuclear Waste)

Earlier ones
— First technology assessment study for the Finnish Parliament

— Evaluation of national RTD programmes in electronics and
telecommunication

— National foresight study ‘FinnSight 2015’
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“By Portfolio Decision Analysis (PDA)
we mean a body of theory, methods,
and practice

which seeks to help decision makers
make informed multiple selections
from a discrete set of alternatives

through mathematical modeling that
accounts for relevant constraints,
preferences, and uncertainties.”

Winner of the 2013 Publication Award
of the Decision Analysis Society of the
Institute for Operations Research and

the Management Sciences (INFORMS)
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Influence diagrams

Graphical representations of
chance, decision and value nodes
arcs which indicate dependencies between these

Common solution approaches (Howard & Matheson, 2005; Bielza et al 2010)
Form the decision tree and it solve with dynamic programming
Eliminate nodes (after arc reversals, if needed)

Assumptions and limitations
— Earlier decisions must be recalled (‘no forgetting’)
— Risk constraints cannot be easily handled
— Problems of portfolio decision analysis become unwieldy
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Limited information influence diagrams (LIMID)

Pigs are grown for four months and then sold

Diagnosing t; and treating pigs dj through injections
(Lauritzen and Nilsson, 2001)
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Pig farm problem

Pigs sold after 4 months,
diseased ones for 300 DKK, healthy for 1000 DKK

A pig has the disease after the first month with 10 % probability

Montly tests: diseased pigs indicated with 80% probability
and healthy 90% probability

Based on tests, pigs can be injected at for 100 DKK

If injected, a healthy pig develops the disease in the following
month with 10% probability; and without injection, with 20%

If injected, a diseased pig remains diseased in the following month
with 50% probability%; without injection, with 90% probability
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Contingent Portfolio Programming for
the Management of Risky Projects

Janne Gustafsson, Ahti Salo

Systems Analysis Laboratory, Helsinki University of Technology, Otakaari 1M, P.O. Box 1100, 02015 HUT, Finland
[janne.gustafsson @tkk. fi, ahti.salo@tkk.fi)

Methods for selecting a research and development (R&D) project portfolio have attracted considerable interest among
practitioners and academics. This notwithstanding, the industrial uptake of these methods has remained limited, partly
because of the difficulties of capturing relevant concerns in R&D portfolio management. Motivated by these difficulties,
we develop contingent portfolio programming (CPP), which extends earlier approaches in that it (i) uses states of nature
to capture exogenous uncertainties, (ii) models resources through dynamic state variables, and (iii) provides guidance for
the selection of an optimal project portfolio that is compatible with the decision maker’s risk attitude. Although CPP is
presented here in the context of R&D project portfolios, it is applicable to a variety of investment problems where the
dynamics and interactions of investment opportunities must be accounted for.

Subject classifications: research and development: project selection; decision analysis: theory; programming: linear,
applications.

Area of review: Decision Analysis.

History: Received November 2002; revision received November 2003: accepted July 2004.
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Characteristics of PDA in R&D project selection

Projects

— Can be started in different ways (not only ‘go/no-go’ decisions)
— Can offer opportunities for follow-up investments

— Caninvolve interdependencies (synergies, cannibalization)

Uncertainties
— Exogenous — do not depend on project decisions (e.g., total market size)
— Endogenous — are influenced by project decisions (e.g., time-to-market)

16
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An example of Contingent Portfolio Programming (CPP)

A portfolio of two projects: Aand B
— One or both can be started at t=0
— Continued investments possible at t=1
— If completed, projects yield cash flows at =2

Cash flows from projects are contingent on scenarios

Money as the only resource
— Initial budget b = S100m
— Leftover budget invested at the risk free interest rate r = 8%

17
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Scenario tree and decisions

Scenarios

2 Period

Projects

B

Start? Continue?
Yes Yes
NoO No
Start? Continue?
Yes Yes
No No
>
0 1 2 Period

18
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Parallel deC|5|on trees

PrOJeCtA Continue? Project B i continue?
! Yes:-$30m_: Yes:-$20m :

() () $25m
$10m
$0
$0
$250m
$100m
$0
$0

> >
0 1 2 0 1 2

19
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Scenarios

Cash flows for the portfolio of two projects

Portfolio
'30 XACYl

) ' @
'ZO*X ch

25*Xpcy1

Maximize NPV certainty equivalent
— Approximated by the linear model
EINPV] -k-absdev[NPV]

— absdev = mean absolute deviation
(model remains linear)

Subject to

— Consistency constraints
— Resource constraints

— Deviation constraints

Note: Project cash flows are
negatively correlated
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Constraints

Consistency constraints:

Resource constraints:

asy T Xasny =1

acvr T Xacni = Xasy

BSY XBSN =1

X
X
Xacy2 + Xacnz = Xasy
X
Xacy1 + Xeent = Xesy
X

sey2 T Xeene = Xgsy

-10-X gy - 20-Xggy + 100 — RS, = 0
-30-X,cyq - 20-Xgoyy + 1.08:RS_,— RS, = 0
-30-X5cys - 20-Xgey, + 1.08:RS,, — RS, = 0
200-X oy + 25-Xgoy; + 1.08: RS, — RS, = 0
100-X oy, + 10-Xgoyg + 1.08:RS,, — RS, = 0
50-X ey, + 250-Xgey, + 1.08- RS, — RS_,;, = 0
100-Xgey, + 1.08:RS,, — RS, = 0

Resource surplus variables RS indicate how much resources
there are after each scenario
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Deviation constraints

NPV_ [(X) — ENPV/(X) — ANPV_ ™ + ANPV_ " =0
sp sp sp

First deviation constraint:

NPV (X) { +1/1.082 - (200-Xcyy + 25-Xgoyy)
(—[-10-X,gy - 20-Xggy
+50% - 1/1.08 - (-30-Xpcy1 - 20-Xpcyg)
+50% - 1/1.08 - (-30-Xpcy2 - 20-Xpcyo)
ENPV(X) < +50%30% - 1/1.08 - (200-Xxcy; + 25-Xgcyy)
+ 50%:-70% - 1/1.082 - (100-X,cyq + 10-Xgeyq)
+ 50%:-40% - 1/1.082 - (50-Xcys + 250-Xgeys)

\ + 50%-60% - 1/1.082 - (100-Xgcy,)]
— ANPV ;" + ANPV ;"= 0

-10-Xpgy - 20-Xggy + 1/1.08 - (-30-Xzcy1 - 20-Xpcy1)

Deviation variables
ANPV’s indicate by how
much the present value In
each scenario path
deviates from the
expected NPV
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Objective function

Maximize

ENPV <

[ -10-Xpsy - 20-Xgsy +
50% - 1/1.08 - (-30-Xpcyq - 20-Xgeyp) +
50% - 1/1.08 - (-30-Xpcys - 20-Xgeys) +
50%:-30% - 1/1.082 - (200-X v + 25-Xgeyy) +
50%-70% - 1/1.082 - (100-X,cyq + 10-Xgeyy) +

50%-40% - 1/1.082 - (50-X pcy, + 250-Xgeys) +
\- 50%:60% - 1/1.082 - (100-Xgcy-)

K * —0.25]
h
50%-30% - (ANPV,,* + ANPV,,,,-) +
absdey < 50%:70% - (ANPV,,* + ANPV,;,7) +

50%-40% - (ANPV 5, + ANPV517) +
~ 50%-60% - (ANPV 0" + ANPV5,7)]

24
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Solution in deC|5|on trees

PrOJectA : Continue? Project B | Continue?
: Yes:-$30m i

$200m $25m
$100m $10m
$0 $0
$0 $0
$50m $250m
$0 $100m
$0 $0
$0 $0

> >
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Solution in deC|5|on trees

PrOJeCtA i Continue? Project B Continue?
! Yes:-$30m _:

$200m $25m
$100m $10m
$0 %0
$0 %0
$50m $250m
$0 $100m
$0 $0
$0 $0

> >
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Influence diagram for this CPP example
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Decision Support

Scenario-based portfolio model for building robust and proactive @CmsMark
strategies

Eeva Vilkkumaa®* Juuso Liesio?, Ahti Salo”, Leena I[Imola-Sheppard®

2 Department of Information and Service Economy, Aalto University School of Business, PO. Box 21220, Aalto 00076, Finland
b Department of Mathematics and Systems Analysis, Aalto University School of Science, P.O. Box 11100, Aalto 00076, Finland
CInternational Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg A-2361, Austria

ARTICLE INFO ABSTRACT

Amf{ﬁ' history: In order to address major changes in the operational environment, companies can (i) define scenarios
Received 28 November 2016 that characterize different alternatives for this environment, (ii) assign probabilities to these scenarios,
Accepted 10 September 2017 (iii) evaluate the performance of strategic actions across the scenarios, and (iv) choose those actions that
Available online 18 September 2017 . . . . et i .

are expected to perform best. In this paper, we develop a portfolio model to support the selection of such

Keywords: strategic actions when the information about scenario probabilities is possibly incomplete and may de-
Decision support systems pend on the selected actions. This model helps build a strategy that is robust in that it performs relatively
Portfolio selection well in view of all available probability information, and proactive in that it can help steer the future as
Scenarios reflected by the scenarios toward the desired direction. We also report a case study in which the model

Incomplete probabilities helped a group of Nordic, globally operating steel and engineering companies build a platform ecosystem

strategy that accounts for uncertainties related to markets, politics, and technological development.
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The CPP example with endogenous uncertainties
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Decision analysis + mathematical programming

A framework for modelling endogenous uncertainties in CPP and
stochastic optimization

... but more generally, an approach for using mixed integer linear
programming (MILP) to solve multi-stage decision problems which
can be represented as influence diagrams with limited information

Extensions
— The ‘no-forgetting’ assumption can be forgotten
— Many kinds of logical, resource and risk constraints can be handled

Does not depend on dynamic programming as a solution approach

Problems of realistic size can be solved thanks to the MILP
formulation
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Definitions (1/3)

Decision problem represented as an acyclic network G=(V,A)

V consists of chance ¢ € C, decision d € D and value nodes u € U
There are n = |C| + |D| chance and decision nodes

Chance and decision nodes | € CuUD have a finite set of states s; € S;
Arcs (1,]) € A represent dependencies between nodes

Information set I(j) consists of nodes from which there is an arc to |

Information state s,; € 5,;= I S; is a combination of states §;
for nodes in the information set of predecessors | € I(])
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Definitions (2/3)
G is acyclic = nodes labelled so that (I,])) e A= 1<]
Each node | eCu D is associated with a variable X;

At chance nodes c € C, the states of X, occur based on conditional
probabilities
P(X =S, | X;=s, i € 1(C))

At decision nodes d € D, local decision strategies map information

states to decisions Z : 5,4 — Sy
P(Xg=Sq | Xi=s;, 1 € 1(d), Zy) =1 Zy(S4) = Sq

A (decision) strategy Z =11,_pZ,is a combination of local decision
strategies for all decision nodes d €D
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Definitions (3/3)

At the value node U € U, the consequences of decisions and chance
events are given by function X:S,—» €

Utility function U: € — 3R gives the real-valued utility of consequences

A path of length k <n is a sequence of states (S, S, ..., S})
such thats; € S;,1=1,..k

Paths of length nare denoted by s € S=1I, _ - p S

Ifs € S, thens; € S, is the state of node I along this path s

34
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Path probabilities
For strategy Z, the probability of paths € Sis

X
P(XIZSI, i:].,...,k'l | Z),

where for chance nodes k € C the first term is
P(Xi=s| Xi=s;, 1 € 1(K))

and for decision nodesk € D it is

P(X =sXi=s;, i € 1(K),Z) =1 < Z(s;, i €l(K)) =5,
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Towards an optimization formulation

Fix any decision strategy Z and scenario path S € S

Define binary variables z(s, | s,q)) € {0,1} so that

Zy(Sia)) =Sqg < Sy |Si) =1 (1)

Put my(s) = 1 and define path probabilities 7, (S) recursively so that
for chance nodesk € C

1 (S) = P(X=s, | X;=s;, 1 €l(K)) m4(S) (2)
and for decision nodes k € D

T(S) = T1(S), if Z(Sy | Syy) =1
m(S) =0, otherwise
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Towards a MILP formulation

Theorem: Let Z be a decision strategy and choose a path s €S.
If the constraints (1), (2) and

0<my(S) < my.4(S) (3)
m4(S) < 2(Sq | Sia), (4)
m4(S) 2 1y.1(S) + 2(Sq | Sya)) — 1 (5)

hold for z(Sy | ), d €D, S4 € Sy, Sy € Sy(g) and m(S), k=1,...,n, then

TCk(S) — P(X|=SI, i:].,...klZ), k:].,...,l’l
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Optimal decision strategies

Corollary: The strategy Z* which maximizes the decision maker’s
expected utility is the solution to the optimization problem

max 2, 7;,(s) ULX(s;, 1 € 1(u))],

where the summation is taken over all paths s € Ssubject to
constraints (1)-(5).

Notes:

- Path probabilities needed for paths of full length n only

- Utilities for consequences can be pre-evaluated

- The chance component p(s) =Il.. P(X,=s.| Xj=s;, 1 € I(C))
of 7(S) can be pre-evaluated, too
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Constraints on full paths only

Proposition: Let Z be a decision strategy and choose a path s €S.
If the constraints (1), (2) and

0<n(s) < p(s), (3')
(S) < Z(Sq | Sia) (4)
n(s) 2 p(S) + 2 cp Z(Sq | Si)) — [DI (5%)

hold for s € S, then

n(s) = P(X:=s;, i=1,..k|2).

39
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Endogenous uncertainties in CPP

Decision and chance nodes in sequence (A¢,B¢,S,,5,,A¢,Bc)
Scenario paths are sequences of states (ag,bs,5;,5,,ac,0¢)

Probabilities Pr(s,|as,bs,s;) needed in defining m,(s)
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Forgetting the “no forgetting” assumption

An uncertain load L on a structure which may fail F

The structure can be fortified through actions A and B,
informed by conditionally independent measurements L, and Lg

Decision A is not known when making decision B and vice versa
= There is no decision tree formulation for this problem

4 local strategies at Aand B £ A
4x4 = 16 strategies @ @ LT }




A
N S
B
Priors Conditionals for A Conditionals for B Utilities Costs
L L LA+ LA- L LB+ LB- F U(F) Costs
+ 0,6 + 0,8 0,2 + 0,9 0,1 ok 100 CA 60
- 0,4 - 0,1 0,9 - 0,05 0,95 | notok 0 CB 40
P{F I L}A}B) {+r+l+} {+r+:'} {+:'r+} ('r+r+) {+r'l'} ('r+r') {';';'l'} {';';')
ok 0,90 0,80 0,75 0,96 0,02 0,90 0,95 0,70
not ok 0,10 0,20 0,25 0,04 0,98 0,10 0,05 0,30




The optimum can be computed with linear programming

LA A LB F A?  B? | Decision P U(F)-CA-CB E[U(F)-CA-CB]] CA+CB
+ 06|LA + 08| A Yesi LB + 09 Yesi ok 000 o 1 0 0,39 60 0,00
notok 0,10| © 1 0 0,04 -40 0,00
No 0| ok 0,30 0 0 0 0,35 100 0,00
notok 020| © 0 0 0,09 0 0,00
- 01 ves Il ok 0,90 o 0 0 0,04 100 0,00
notok 0,10| © 0 0 0,00 0 0,00
No 1| ok 0,30/ 0 0 0 0,04 100 0,00
notok 020| 0 0 0 0,01 0 0,00
No 1 |LB + 09 Yes 1 | ok 0,75| 0 1 1 0,32 60 19,44 40
notok 025| 0 1 1 0,11 -40 -4,32 40
No 0| ok 0,02| 0 0 0 0,01 100 0,00
notok 098] 0 0 0 0,42 0 0,00
- 041 Yes O | ok 0,75 0 0 0 0,04 100 0,00
notok 025| 0 0 0 0,01 0 0,00
No 1| ok 0,02| 0 0 1 0,00 100 0,10
notok 098 0 0 1 0,05 0 0,00
- 02| A vYes|ll B + o9 Yes 1 | ok 0,90 1 1 1 0,10 0 0,00 100
notok 00| 1 1 1 0,01 -100 -1,08 100
No 0| ok 0,80 1 0 0 0,09 40 0,00
notok 020 1 0 0 0,02 60 0,00
- 01 Yes O | ok 0,90 1 0 0 0,01 40 0,00
notok 00| 1 0 0 0,00 -60 0,00
No 1| ok 0,80 1 0 1 0,01 40 0,38 60
notok 020 1 0 1 0,00 -60 -0,14 60
No 0 [LB + 09 Yes 1 | ok 0,75 0 1 0 0,08 60 0,00
notok 025| 0 1 0 0,03 40 0,00
No 0| ok 0,02| 0 0 0 0,00 100 0,00
notok 098 0 0 0 0,11 0 0,00
- 01 Yes 0 | ok 0,75| 0 0 0 0,01 100 0,00
notok 025 © 0 0 0,00 0 0,00
No 1| ok 0,02| 0 0 0 0,00 100 0,00
notok 098 0 0 0 0,01 0 0,00




0,40

The lower part for the less heavy load (L = -) Is similarec

LA LB F A?  B? | Decision p U(F)-CA-CB E[U(F)-CA-CB]| CA+CB
A + 0,10 Yes LB 0,05 Yes ok 0,96]| 0 1 0 0,00 60 0,00
notok 0,04 0 1 0 0,00 -40 0,00
No ok 0,9| o0 0 0 0,00 100 0,00
notok 0,10 0 0 0 0,00 0 0,00
0,95 Yes ok 0,96 0 0 0 0,04 100 0,00
notok 0,04 0 0 0 0,00 0 0,00
No ok 0,9| 0 0 0 0,03 100 0,00
notok 0,10 0 0 0 0,00 0 0,00
No LB 0,05 Yes ok 0,95| 0 1 1 0,00 60 0,11 a0
notok 0,05 0 1 1 0,00 40 0,00 40
No ok 0,70 © 0 0 0,00 100 0,00
notok 0,30 0 0 0 0,00 0 0,00
0,95 Yes ok 0,95| 0 0 0 0,04 100 0,00
notok 0,05 0 0 0 0,00 0 0,00
No ok 0,70 © 0 1 0,03 100 2,66
notok 0,30 0 0 1 0,01 0 0,00
- 0,90 Yes (B 0,05 Yes ok 0,96] 1 1 1 0,02 0 0,00 100
notok 0,04 1 1 1 0,00 -100 0,07 100
No ok 0,90/ 1 0 0 0,02 40 0,00
notok 0,10 1 0 0 0,00 60 0,00
0,95 Yes ok 0,96] 1 0 0 0,33 a0 0,00
notok 0,04 1 0 0 0,01 60 0,00
No ok 0,90/ 1 0 1 0,31 40 12,31 60
notok 0,10/ 1 0 1 0,03 60 -2,05 60
No (B 0,05 Yes ok 0,95| 0 1 0 0,02 60 0,00
notok 0,05 0 1 0 0,00 -40 0,00
No ok 0,70 0 0 0 0,01 100 0,00
notok 0,30 0 0 0 0,01 0 0,00
0,95 Yes ok 0,95| 0 0 0 0,32 100 0,00
notok 0,05 0 0 0 0,02 0 0,00
No ok 0,70 © 0 0 0,24 100 0,00
notok 0,30 0 0 0 0,10 0 0,00

28,31
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Computation times (n =9 = 4° = 262 144 strategies)

Table 1

Results on the 10 randomly generated n-monitoring instances.

Number of variables

No probability cuts

With probability cuts

# Nodes Binary Real A SD A sSD
2 64 0.01 0.00 0.02 0.00
3 12 256 0.12 0.13 0.04 0.01
1 16 1024 2.73 1.64 0.09 0.01
5 20 4006 34.60 30.02 0.44 0.14
6 24 16384 540.95 277.34 3.39 0.75
7 28 65536 10337.94 4370.09 42.09 20.44
8 32 262144 - - 231.52 133.58
0 36 1048576 - - 2256.50 1951.08
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(Conditional) Value-at-Risk constraints
Value-at-Risk defined (see e-g. Artzner et al 1999)

VaR(Z2) = F'z(a) =sup {t|P({s| €(s) <t}) < o}

where F(t) = 205 <oy 7(S) 12%
8% N
5% I
3 5 8

Liesio & Salo (2012). Scenario-Based Portfolio Selection of Investment
Projects with Incomplete Probability and Utility Information,
European Journal of Operational Resesearch 217/1, 162-172.



ProrosITION 1. Let a € (0,1] and assume that Z is a decision strategy. If n° is the optimum to

the minimization problem
min 1
n—Cls) < MA(s),
n—C(s) = (M +€)A(s) — M,

n—C(s) < (M +eJX(s) — e,

n—C(s) > M(X(s)—1)

A(s) <A(s),
w(s) — (1—A(s)) < pls) < Als),
pls) <P(s) <m(s).

N Bls) =a.

pES

Als),A(s) e {0.1},
Pls). pls) €[0,1],
ne e, e,

then VaR,(Z ) =n* and CVaR,(Z) = %Zlfsﬁ{sjf{sj_

Wse S

WsE S

Yse 8§

Yse 8§

Vs 8§

Wse 8§

Wse 8§

Wse S

Yse S

(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)

(40)

(41)
(42)

(43)
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Revisiting the pig farm
What if the pigs should have the chance to live longer?

What if the farmer wishes to curtail risks in the lower part
of the profit distribution?
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Computational results without risk constraints

Table 2 Results for the pig farm problem for different numbers of decision periods.

# Months  Optimal value (DKK)  Solution time (s)

3 764 (.03
1 727 .09
5] 703 1.43
§ 686 43.83
7 674 920.48

Note: With 7 decision periods, there are 47 = 16 384 strategies
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Determining all non-dominated strategies

With many value nodes v € V, strategy Z is non-dominated iff there
is no Z’ such that

E[U,12’] = E[U1Z]

forall v € V with at least one strict inequality

Any multiple objective optimization algorithms for discrete
optimization problems can used (Holzmann Smith 2018)
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Alternative algorithm

Choose a single set of positive weightsw, >0, 2w, =1

Exclude previously generated non-dominated solutions Z’ through

> 2(silsiy)+ 3 [ 18— > 2(s: | s15) > 1

{(sisspeiy) 12" (silsp¢y)=0]} deDicl(d) {((sisspeiy) 12" (silsp¢y)=1])
(i) (1) (i) (1)

Prune dominated solutions through the necessary conditions

}"El_f’.,t-'(z) T )\E’.ir(z) =1 '}".Elr",i,'(z)" '}"E",u(z) < {U" l}??’, cV

ElU,|Z] <E[U,| 2T+ M)}, (Z2) D Ay (Z)>1, Z'€Zyp

velV

E[U,| 2] < E[U,|Z]+ M), (%)



Cecision strategies at m = 20 % CVaR

i f— L —— ; o -
.t | P o
%__ | . . , . - *
3 * | * L o« . . .
g . . The strategy of not injecting in the
|- T first month is in all non-dominated
. o ) X ¢ strategies = It is a ‘core’ project in
ol ot . ’ Robust Portfolio Modeling
1. l* ‘ Liesi®, Mild and Salo (2007),
. o Eur J Oper Res 181/3, 1488-1505.

CVaR vale ala = 20 %

Figure &  Expected utilities and conditional expectations in the lower o = 0.20 tail for all 64 strategies of the

4-month pig problem. The four non-dominated strategies are connected and marked with orange circles.
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Decision programming

Leverages MILP to solve multi-stage optimization problems which can
be represented as extended influence diagrams

The ‘no-forgetting’ assumption can be forgotten

Many types of deterministic and probabilistic constraints can be
handled (resources, risks, logical dependencies)

Value-at-Risk / Conditional VaR measures can be accommodated
Computationally tractable (but problems can become large)

Paper available at https://arxiv.org/abs/1910.09196
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Ongoing and planned applications

Planning and operational implementation of state-dependent risk

management actions in safety critical systems (with Alessandro Mancuso,
Michele Compare, Enrico Zio)

Identification of most critical scenarios in the safety assessment of
nuclear repositories (with Edoardo Tosoni, Enrico Zio)

Multi-criteria evaluation of diagnostic strategies in healthcare
(with Ellie Dillon, Eeva Vilkkumaa)

Extensions to adversarial risk management
(with Juho Roponen, David Rios Insua)
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So={Wet,Dry} Sg={Wet,Dry,None}

Expert? Drill? | Sy={Yes,No}

v

P(Qil)
W 15 %
D 85 %
Payoff 200 P(Report|Oil) W D
Drilling 20 W 95 % 15 %
Expert 7 D 5% 85 %




Expert Y Report 27 % Drill(W) Y oil
16,1 16,1 78,6 78,6
N Oil
-7,0
D 73% | Drill{D) Y oil
7,0 -24,9
N Qil
-7,0
N Drill(None) Y oil
10,0 10,0 10,0
N Oil
0,0
P(Report=W) 27 %
P(Report=D) 73 %

P(W | W)=P(O=W&R=W)/P(R=W) 53 %
P(D|W)=P(0=D&R=W)/P(R=W) 47 %
P(W |D)=P(O=W&R=D)/P(R=D) 1%
P(D|D)=P(O=D&R=D)/P(R=D) 99 %
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Oil drilling with decision programming

oil Expert Report Drill Decisions 1] II Payoff Expert Drilling U EU
Wet ves [ERN Wet ves EDN 14% | 200 7 20 | 173 24,65
No 0 0% | 0 7 0 7 0,00

Dry Yes 0 0% | 200 7 20 | 173 0,00
No 1 1% | 0 7 0 7 0,05

No None ves I © 0% | 200 0 20 | 180 0,00

No 0 0% | 0 0 0 0 0,00
Dry Yes Wet Yes 1 13% | 0 7 20 | 27 34
No 0 0% | 0 7 0 7 0,00

Dry Yes 0 0% | 0 7 20 | 27 o000
No 1 2% | 0 7 0 7 506

No None Yes 0 0% 0 0 -20 -20 0,00

No 0 0% | 0 0 0 0 0,00

1,000

Decisions are in dark red cells

All other decisions are implied (in light orange)

Direct drilling is possible only if there is no consultation




