

APPLICATIONS OF MULTI-CRITERIA DECISION ANALYSIS AT THE FINNISH ROAD ADMINISTRATION

Paper ID number: 7.5.6

Pekka Mild

Pöyry Infra Ltd.

Helsinki University of Technology (TKK)

Ahti Salo

Helsinki University of Technology (TKK)

Part A: Network-level budget allocation between road keeping products

Introduction

- Integrated allocation framework
 - Includes all major products
- Multi-criteria analysis and optimization
- Existing data and subjective knowledge
 - Technically simplified product models
 - Overall analysis and guideline results
- Interactive managerial workshops
 - Discussion and systemic understanding

Products and model coverage

Integrated evaluation and computation

- Quality distributions as units of analysis
 - Standardized and *ad hoc* classifications

Multiple objectives / criteria

- Road safety
 - Accident risk from poor asset condition
- Asset value preservation
 - Maintenance backlog
- Customer satisfaction
 - Comfort, speed, confidence, feedback
- Environmental concerns
 - Noise, chemicals, dusting, nature, tidiness

Relative benefit evaluation

- Based on Multi-Attribute Value Theory
 - Qualitative → alternative to user cost approach

1 Shape of the value function for each product

– Difference between classes

2 Level of the value function, i.e. maximum scores

– Difference between products' swings from class 1 to class 5

Related references

Golabi, K., Kulkarni, R.B., Way, G.B., (1982). A Statewide Pavement Management System, *Interfaces* 12(6) 5-21.
 Golabi, K., Shepard, R., (1997). Pontis: A System for Maintenance Optimization and Improvement of US Bridge Networks, *Interfaces* 27(1) 71-88.
 Keeney, R., Raiffa, H., (1976). Decisions with Multiple Objectives: Preferences and Value Trade-Offs, John Wiley & Sons, New York.
 Kulkarni, R.B., Miller, D., Ingram, R.M., Wong, C-W., Lorenz, J., (2004). Need-based Project Prioritization: Alternative to Cost-benefit Analysis, *J. of Transportation Engineering*, Vol. 130, No. 2, pp. 150-158.
 Liesiö, J., Mild, P., Salo, A., (2007). Preference Programming for Robust Portfolio Modeling and Project Selection, *European Journal of Operational Research*, Vol. 181, pp. 1488-1505. See also <http://www.rpm.tkk.fi> for applications and the RPM-Decisions © software.
 Liesiö, J., Mild, P., Salo, A., (2008). Robust Portfolio Modeling with Incomplete Cost Information and Project Interdependences, *European Journal of Operational Research*, in press.
 Mild, P., (2006). Monitoiveoptimointi siltojen korjaushojelmaan laittimiseen - RPM-menetelmän soveltaminen (in Finnish), Tiedhallinnon selvityksiä 5/2006, ISBN 951-803-668-3.
 Mild, P., (2007). Monitoiveoptimointi tielipoidon tuotteen väliessä rahajärossa (in Finnish), Tiedhallinnon selvityksiä 11/2007, ISBN 978-951-803-775-3.
 NRHRP, (2005). *NCHRP report 545: Analytical Tools for Asset Management*, Transportation Research Board, Washington D.C.

Aggregate value of products

- Transparent linear-additive model

Example of main results

- Annual allocation of given total budget

Model details

- Linear programming
- Simplified repair and deterioration dynamics
- Funding allocated at product & quality level
- Objective function: sum of the aggregate values of all products' annual quality discounted over 30 years
- Product specific budget constraints
- Quality targets and other constraints also possible
- Monte-Carlo sampling of the feasible weight set → average results from using different weights

Key modes of interactive analysis

- Computed vs. current allocation
 - Which products gain or lose and why?
 - Facilitate structured discussion
- Impacts of alternative preferences
 - Which products are most sensitive/robust?
 - Contributions to customer satisfaction
- Prioritization of products
 - Which products gain or lose, first or later, if total budget is increased/decreased?

Conclusions

- Workable pilot of integrated analysis
 - Reflects key needs and preferences
 - Exhaustive life-cycle models not necessary
- Interactive process
 - Evaluations and computations provide a structured and transparent framework for facilitated communication and analysis
 - Strategic impact evaluation and results analysis workshops, not routine operations management system

Acknowledgements

Finnish Road Administration,
Asset management research program (VOH, 2003-2007),
South-East Finland road district
Academy of Finland

Awards for part A research

Finnra asset management research program (VOH, 2003-2007)
Award as one of the program's best projects
Institute for Operations Research and the Management Sciences (INFORMS) Decision Analysis Society (DAS)
Finalist for the 2007 DAS Practice Award

Part B: Bridge repair programming

Introduction

- Project screening for repair programs
- Large multi-criteria portfolio problem
 - Hundreds of bridges per district
 - Budget and other constraints
 - Several prioritization indexes and data
 - Different criteria suggest different programs → how to aggregate?
- Robust Portfolio Modeling methodology
 - Incomplete weight information

Robust Portfolio Modeling (RPM)

- Multi-criteria project portfolio selection methodology developed at TKK

Core index as aggregate measure

- Relative measure of project's fit into the portfolio → accounts for:
 - Project performance on multiple criteria
 - Incomplete information on criterion weights
 - Estimated cost and competing projects
 - Budget and portfolio feasibility constraints
- Tentative prioritization → helps focus
 - Transparent → detailed project data shown
 - Does not suggest optimal portfolios

Conclusions

- Run repeatedly with several districts
 - Matches programming managers' plans better than single criterion systems → works well for screening purposes
- Portfolio support for programming
 - Extended tool with core index values and functionalities for project selection
 - Portfolio-level information, e.g., total and average performance or cost of projects, balance among functional classes

Contact details

Pekka Mild
Consultant / Transportation Consulting
Pöyry Infra Ltd.
Jaakonkatu 3, P.O. Box 500, FI-01621 Vantaa, Finland
pekka.mild@poyry.com

Doctoral student
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Mathematics and Systems Analysis
Otakaari 1 M, P.O. Box 1100, 02015 TKK, Espoo, Finland
Ahti Salo
Professor
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Mathematics and Systems Analysis
hti.salo@tkk.fi