APPLICATIONS OF MULTI-CRITERIA DECISION ANALYSIS AT THE FINNISH ROAD ADMINISTRATION

Paper ID number: 7.5.6

Pekka Mild
Pöyry Infra Ltd.
Helsinki University of Technology (TKK)

Ahti Salo
Helsinki University of Technology (TKK)

Part A: Network-level budget allocation between road keeping products

Introduction
- Integrated allocation framework
- Includes all major products
-Multi-criteria analysis and optimization
-Existing data and subjective knowledge
-Technically simplified product models
-Overall analysis and guideline results
-Interactive managerial workshops
-Discussion and systemic understanding

Aggregate value of products
- Transparent linear-additive model
- Critical specific value of different asset classes
- Incremental weight information
- Investment improves distribution
- Optimization systems distribution
- Decremental value

Example of main results
- Annual allocation of given total budget

Key modes of interactive analysis
- Computed vs. current allocation
- Which products gain or lose and why?
- Facilitate structured discussion
- Impacts of alternative preferences
- Which products are most sensitive/robust?
- Contributions to customer satisfaction
- Prioritization of products
- Which products gain or lose, first or later, if total budget is increased/decreased?

Conclusions
- Workable pilot of integrated analysis
- Reflects key needs and preferences
- Exhaustive life-cycle models not necessary
- Interactive process
- Evaluations and computations provide a structured and transparent framework for facilitated communication and analysis
- Strategic impact evaluation and results analyses workshops, not routine operations management system

Part B: Bridge repair programming

Introduction
- Project screening for repair programs
- Large multi-criteria portfolio problem
- Hundreds of bridges per district
- Budget and other constraints
- Several prioritization indexes and data
- Different criteria suggest different programs → how to aggregate?
- Robust Portfolio Modeling methodology
- Incomplete weight information

Robust Portfolio Modeling (RPM)
- Multi-criteria project portfolio selection methodology developed at TKK

Core index as aggregate measure
- Relative measure of project’s fit into the portfolio → accounts for:
 - Project performance on multiple criteria
 - Incomplete information on criterion weights
 - Estimated cost and competing projects
 - Budget and portfolio feasibility constraints
 - Tentative prioritization → helps focus
 - Transparent → detailed project data shown
 - Does not suggest optimal portfolios

Conclusions
- Run repeatedly with several districts
- Matches programming managers’ plans better than single criterion systems → works well for screening purposes
- Portfolio support for programming
- Extended tool with core index values and functionalities for project selection
- Portfolio-level information, e.g., total and average performance or cost of projects, balance among functional classes

Related references

Acknowledgements

- Finnish Road Administration, Asset management research program (VÖH, 2003-2007), South-East Finland road district
- Academy of Finland

Awards for part A research

- Finna asset management research program (VÖH, 2003-2007)
- Award for one of the program’s best projects
- Institute for Operations Research and the Management Sciences (INFORMS) Decision Analysis Society (DAS)
- Finalist for the 2007 DAS Practice Award

Contact details

Pekka Mild
Transportation Consulting
Pöyry Infra Ltd.
Siltasaarentie 3b, 00260 Espoo, Finland
pekkam.mild@poyry.com

Ahti Salo
Transportation Consulting
Pöyry Infra Ltd.
Siltasaarentie 3b, 00260 Espoo, Finland
Ahti.Salo@poyry.com

Table

<table>
<thead>
<tr>
<th>Portf. value of criterion</th>
<th>Portfolio value</th>
<th>Maximize portfolio value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.39</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.67</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Diagram

- Road district’s annual maintenance budget
- Integrated evaluation and computation

Figure

- Quality classes
- Integrated evaluation and computation
- Quality distributions as units of analysis –Standardized and ad hoc classifications

Figures

- Road district’s annual maintenance budget
- Integrated evaluation and computation

Graphs

- Quality distribution
- Critical specific value of different asset classes
- Incremental weight information
- Investment improves distribution
- Optimization systems distribution
- Decremental value

Tables

- Name
- Traffic
- Deficit
- Core
- Sum of
- Signific.
- Project
- Project value
- Maximize
- Portfolio value
- Constraint
- Weight

Definitions

- Core index: as aggregate measure
- Multi-criteria project portfolio selection methodology
- Portfolio value: as a function of project’s core index
- Portfolio value: as a function of project’s core index
- Multi-criteria project portfolio selection methodology
- Portfolio value: as a function of project’s core index

Additional notes

- Robust Portfolio Modeling (RPM)
- Multi-criteria project portfolio selection methodology developed at TKK
- Core index: as aggregate measure
- Portfolio value: as a function of project’s core index
- Portfolio value: as a function of project’s core index
- Multi-criteria project portfolio selection methodology
- Portfolio value: as a function of project’s core index