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Maintenance scheduling of fighter aircraft fleet

Available aircraft

« Extensive periodic maintenance

— Ensuring
 Flight safety
» Performance

— Normal conditions Maintenance

— Several maintenance levels schedule

e Durations
Daily missions

* Feasible time window of maintenance
Elapsed flight hours of an aircraft

* Maintenance scheduling

— Aircraft availability guaranteed
— Maintenance resources guaranteed { —

o =
— Planning period = 1 year g
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Challenges 1n maintenance scheduling

* Maintenance and usage coupled through complex nonlinear
interactions — feedbacks

e Maintenance and usage entail uncertainties

[] Traditional scheduling formulations not suitable

Our multi-objective simulation-optimization approach

e Discrete-event sitmulation model for aircraft maintenance and usage
(Mattila, Virtanen, and Raivio 2008)

* Optimization algorithm: Simulated annealing using probability of dominance
[J Non-dominated solutions

* Multi-attribute decision analysis model [1 Preferred solution
— Preference programming (Salo and Himéldinen 1992, 2001)
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Manual planning

/Resources In \ /Periodic N /Given flight A /Initialstatus of\

maintenance maintenance plan aircraft

units program  Number and » Elapsed flight

* Number of « Feasible time durations of daily hours since
aircraft windows missions previous
maintained » Durations maintenance

\simultaneously / \ / \ / \ /

Maintenance schedule
» Planned starting dates of periodic maintenance

» Maximize aircraft availability
= Number of mission-capable aircraft /
fotal size of the fleet
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Implementation of the schedule

Flight plan

Maintenance schedule

Status of aircraft
* Elapsed flight hours

Periodic maintenance program

Maintenance resources

Actual starting dates of

maintenance

..................................

Available aircraft

Flight time allocation
policy

« Selection of aircraft to
daily missions

L

"'\\
Daily missions
Uncertainties:
* Mission durations
e S

L]

Decision to start
maintenance

Y
Maintenance

Uncertainties:
« Maintenance durations
\_* Unplanned maintenance

4 ™
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The multi-objective simulation-optimization approach

a I
Simulation Discrete-event
Maintenance parameters simulation model
decision-maker (DM) == Aircraft maintenance
and usage
( N S/
o il val ‘ ' a Estimates of objective
verja vaiues o Preference Candidate function values
solutions = ot - solutions « Aircraft availability
Preferred solution stalements (=schedules) « Deviation between planned
and actual starting dates of
[ / maintenance
/ " /_- L \\
: : Non-dominated C L
Multi-attribute : Multi-objective
. . solutions . :
decision analysis 2 , sSimulated annealing
model (SA) algorithm
N\ S . e
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Generation of non-dominated solutions

» Existing algorithms for multi-objective simulation-optimization

— Multi-objective evolutionary algorithms (EAs) (e.g., Lee et al. 2008; Goh and Tan 2009)
» E.g. ranking of solutions based on probability of dominance (Hughes 2001)
— Population-based simulated annealing (SA), weighted objectives (Gutjahr 2005)

 Justification for using SA

— Outperformed EAs in single-objective versions of the scheduling problem
(Mattila and Virtanen 2006)

— Success of multi-objective SA algorithms in deterministic settings
(Smith et al. 2008; Bandyobadhyay et al. 2008)

* The multi-objective SA algorithm for maintenance scheduling

— Performance of a solution based on probability of dominance
— Outperformed population-based SA (Gutjahr 2005)
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The multi-objective SA algorithm

e Structure similar to basic SA

« Modifications for multi-objective simulation-optimization
— Performance of solution x
Probability: Solution x dominates members y of non-dominated set S

* Probability wrt objective i: P(x dom y wrt objective i)

* Probability wrt solution y: P(x dom y)=] | P(x dom y wrt objective i)
0 Performance of x= ) P(x dom y)

veS
— Maintaining non-dominated set §

» Fixed number of solutions with highest performance included
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Selection of the preferred non-dominated solution

» Use of preference information in multi-objective simulation-optimization

— Transformation into a single objective

o Utility function & a ranking and selection method
(Butler, Morrice, and Mullarkey 2001)

» Value function & a response surface method
(Rosen, Harmonosky, and Traband 2007)

* QOur decision analysis approach
— Post-optimization analysis
— Preference programming and interval techniques (Salo and Hamaéldinen 1992, 2001)

[ Considers uncertainty both in objective function values and DM's
preference statements

* Quan et al. (2007): Use of intervals in an EA [ Preferred subsets of non-
dominated solutions in a deterministic setting
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The multi-attribute decision analysis model

Simulation model [ DM [
Additive presentation of DM's Confidence intervals of Incomplete preference
preference for solution x objective function values statements
/V( x)=w, v, (x)+w,v,(x) \ /—> Single attribute \ /—> Weight intervals
v,,v, Objective function values value intervals: (w,,w,]
for Availability and Deviation [v,(x),v,(x)] (w,, W,
—single attribute values (v, (x),v,(x)]
QVA, w, Weights / k / K /
r .
Overall value V(x)=minw,v,(x)+w,v,(x)
interval of a ¢ et B
solution Vix)=maxw v ,(x)+w,v,(x)
L W, Wp
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Comparison of non-dominated solutions

* Dominance concepts

— Absolute dominance:
Value intervals do not overlap

— Pairwise dominance:
Value intervals do not overlap for any feasible combinations of weights

 [f single dominating (=preferred) solution does not exist
— More precise preference information [ narrows weight intervals

— Additional simulation [] narrows single attribute value intervals

— Decision rules, e.g., maximin, maximax, central values
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A case example - | N
Use of probabilistic dominance

* Non-dominated set can contain

15

* 16 aircraft solutions dominated wrt point estimates
* Time period of 1 year 5,
e 64 scheduled 4
maintenance activities 1ar "
= %
i 1.4 &
E LS I AT
= 941 + 1314
& e F
11,0 -+ 15, lga
5F 16,0 4
Ve < 1?5#1345:‘ 20
Reference non-dominated set _ _ _
- Weighted aggregation of Non-dominated solutions using the
objectives functions multi-objective SA algorithm
* Several optimization runs . . . .
\ P 1 082 0.81 08 0.79
-Aireraft availability
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Overall value intervals

1

* 13 solutions absolutely 03¢
dominated aal/A .
7 solutions remain, AAG/
. . - D?’ A .
» Use of decision rules g
— Maximax: r er
. I
A has highest upper bound 5|
— Maximin:
: 04
B has highest lower bound
03f
DE | | | | | | | | | | | | | | | | | | | |
123 456 7 8 910111213 1415 16 17 18 19 20
Mon-dominated solution
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Conclusions

« The multi-objective simulation-optimization approach

— The multi-objective simulated annealing algorithm utilizing probability of
dominance

— The multi-criteria decision analysis model utilizing preference programming

« Application in a complex maintenance scheduling problem

— Being implemented as a decision-support tool

* Future research on multi-objective simulation-optimization algorithms
— Use of preference information

— Efficient allocation of computational effort
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