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Option Basics
• European option: right to buy (call) or sell (put) a specific amount of an 

underlying asset at a specific time and (strike) price
• Variables affecting the option price:

• underlying asset price 𝑆!
• maturity (time to expiration) T
• strike price K
• risk-free rate r
• dividends (here, dividend yield q) of the 

underlying asset
• distribution parameters of the 

underlying asset price (e.g., volatility σ) Option payoff example
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Option Pricing
• General principle: assume parameterized price process for the underlying asset price, 

and then derive a fair (arbitrage-free) price for the option
• Fair price can be derived in two ways:

1. By constructing a replicating portfolio of the option from the underlying asset 
and the risk-free asset, and then solving the resulting stochastic PDE with 
suitable boundary conditions

2. By calculating the expected payoff of the option under a risk-neutral probability 
measure (risk-neutral valuation)

• Corresponding European put/call price can be determined using the put-call parity
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The Black-Scholes Model
• Assumption: asset price follows a geometric Brownian motion

• One unobservable parameter: σ
• Limitations:

• Gaussian log-returns
• constant volatility Asset rate of returns with different volatilities
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The Corrado-Su Model
• Density Gram-Charlier expansion to allow nonzero skewness and excess kurtosis:

• Additional parameters: 
skewness µ! and kurtosis µ"

• Asset volatility remains 
constant

Log-returns with different µ! and µ"
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The Heston Model
• Asset volatility as a separate stochastic process:

• 5 parameters:
• mean variance θ
• mean reversion coefficient κ
• initial variance 𝑉!
• volatility of volatility ω
• correlation between the asset 

price and volatility ρ
Log-returns with different ρ and ω
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The Bates Model
• Stochastic volatility + jumps:

• 8 parameters: Heston parameters 
+ µ# (jump mean), σ# (jump 
standard deviation), λ# (average 
number of annual jumps)

Log-returns with different ρ,ω and λ# (with 
negative σ#)
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Model Calibration
• Goal: select model parameters θ by 

minimizing some error between the market 
prices 𝑦$ and the model prices f(𝑥$;θ) given 
by the parametric pricing function f
• 𝑥$ is a set of other variables                       

(𝑆%, K, T, r, q, put-call flag) 
• Problem formulation:

Model parameters
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“Inverse map” Approach
• Goal is to learn a mapping g from option prices 𝑦$ and other market variables 𝑥$

to the model parameters θ
• The inverse map g is parameterized by weights w, and its outputs are used as 

inputs to the parametric pricing function f
• Formulation:
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Inverse Map Approach using Neural Networks
• Model the inverse map g as a multilayer perceptron 

(dense feedforward neural network)
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Data
• European SPX (S&P 500) index 

options
• Market price: mid price between the bid 

and ask prices

• Risk-free rate: US Treasury bond 
yields interpolated at the option’s 
maturity
• Dividend yield: last yearly dividends 

of companies in the S&P 500 index, 
normalized by stock price and 
weighted by market capitalization

data points in maturity-moneyness dimension

(moneyness = relative difference between the
underlying price and the strike price)
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Model Evaluation
• 10 different train-validation-test splits between 2015 and 

2022
• Each split consists of a 2-year train interval, followed by a 

5-month validation interval, followed by a 6-month test 
interval (with 2-week gap between the intervals)

• Validation intervals are used for selecting the best model 
hyperparameters:
• The number of hidden network layers: 1 or 2
• The number of units per hidden layer: 6, 8 or 10

• The stochastic training process is repeated for each 
model, time split and set of hyperparameters 5 times 
using different random seeds

Number of unique data 
points for the time splits
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Model Evaluation Metrics
• Absolute (dollar) error:

• Percentage error:

• Metrics related to the bid-ask spread:
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Pricing Results
• The results presented next have been obtained by fitting the models 

to only call options
• Overall, the results for calls and puts are similar, but slightly better 

for puts
• When fitting the models to calls and puts simultaneously, the results 

are noticeable worse than in the case where calls and puts are fitted 
separately
• In the case of all models, and both calls and puts, the largest 

allowed network (2 hidden layers, 10 units per hidden layer) gives 
the best validation performance (measured in errSpread)
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Pricing Results
• More complex models have better train results 

on average
• Overall, the average validation and test results 

are the best for the Bates and Corrado-Su 
models, and the worst for the Black-Scholes 
model

• The average validation and test results are worse 
than the train results, but the out-of-sample 
performance of all models is still relatively good:
• Average errSpread around one or lower 

(predictions are relatively close to the bid and ask 
prices)

• Over half of the out-of-sample predictions inside
the bid-ask spread

Average model metrics over all train, validation and 
test sets, and the random seeds. For each model, 
only the best version (set of hyperparameters) is 
considered, and the best version is trained with 12 
different seeds. For each metric, the best and worst 
test values are colored green and red, respectively.
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Pricing Results
• The model performance varies significantly 

between different years, maturities, strike prices 
and random seeds
• The average model performance is the weakest 

for short maturity and out of the money options, 
and 2020 is the worst out-of-sample year in the 
case of all models
• Correlations of the metrics over 12* random 

seeds are clearly positive on average

* the 5 seeds used in validation + 7 additional seeds

correlations of the metrics over the random seeds
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Model Parameters
• For models with multiple parameters (Corrado-Su, Heston, Bates), the average 

parameter values can vary significantly between different random seeds
• Not advisable to interpret parameters of a model separately

• The average parameter values also vary between different years, maturities and 
strike prices
• This type of behavior is well-known

• The average volatility parameters (σ for Black-Scholes and Corrado-Su, 𝑉! for 
Heston and Bates) are similar to each other, and to the VIX volatility index
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Model Parameters

Short maturity (1 month) implied volatilities of 
each model compared to the VIX index

Black-Scholes implied volatility as a function
of moneyness (M) and maturity (T)
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Computing Implied Distributions
• Simulate log-returns from the 

discretized stochastic process 
using the parameter values given 
by the inverse maps

• Corrado-Su, Heston and Bates 
models are able to produce 
samples similar to empirical log 
returns (with negative skewness 
and positive excess kurtosis)
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Hedging 
• Idea: reduce variance of returns by constructing a portfolio of options and 

shares of the underlying asset
• Common example: sell a call option, and hedge the position by buying shares of 

the underlying asset
• The amount of shares bought is determined by delta of the call option (partial 

derivative of the option price w.r.t. the underlying price)
• In the case of the Heston model, one should also consider the vega of the option 

(partial derivative w.r.t. the asset volatility)
• Theoretically perfect hedge not possible under the Bates model

• In neural network setting, computation of the partial derivatives (Greeks) is 
straightforward due to automatic differentiation
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Summary
• There exist many parametric pricing models for European options, and the parameters 

can be chosen by minimizing some error between the market and model prices
• When the parameters have been obtained, they can be used in different applications, 

such as hedging, or calculation of the implied asset distribution
• In the so-called inverse map approach, one not only obtains the model parameters, but 

also a mapping from the market variables to the model parameters
• Here, the inverse map is modeled as a simple feedforward neural network (MLP)
• When the models are fitted to SPX index options (calls and puts separately), the overall 

results are promising, but the model performance
• is weaker out-of-sample than in-sample
• varies between different time intervals, option maturities and strikes, and seeds that control the 

randomness of the training process


