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Option Basics

* European option: right to buy (call) or sell (put) a specific amount of an
underlying asset at a specific time and (strike) price

* Variables affecting the option price:
* underlying asset price S,
* maturity (time to expiration) T

* strike price K S, NN I N N N O — o
S = Call (price: 5
e risk-free rater \\ - et
» dividends (here, dividend yield q) of the '
underlying asset 50 0 0 10 20

e distribution parameters of the ST-K

underlying asset price (e.g., volatility o) Option payoff example
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Option Pricing

* General principle: assume parameterized price process for the underlying asset price,
and then derive a fair (arbitrage-free) price for the option
* Fair price can be derived in two ways:

1. By constructing a replicating portfolio of the option from the underlying asset
and the risk-free asset, and then solving the resulting stochastic PDE with
suitable boundary conditions

2. By calculating the expected payoff of the option under a risk-neutral probability
measure (risk-neutral valuation)

» Corresponding European put/call price can be determined using the put-call parity

c+Ke ™ =p+ Spe”?"
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The Black-Scholes Model

e Assumption: asset price follows a geometric Brownian motion

dsS
t P
L = udt + odW,
St N -~ _J/
'real’ 1.5
= rdt + odW2 >
\ -, »n 1.0- 520
-~ % - 5=0.
risk-neutral © - o=0.
0.5-
* One unobservable parameter: o
* Limitations: 0.0 | , ,
. 0 1 2
e Gaussian log-returns rate of return
N =10°

. .
constant VOlatIllty Asset rate of returns with different volatilities

AOWN
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The Corrado-Su Model

* Density Gram-Charlier expansion to allow nonzero skewness and excess kurtosis:

-3
9(2) = n(2) [1 1+ ey (z) + 1 He4(z)]
3! 41 N
L In(S;/Sy) — (r +q — 0%/2)T "
oT _
@ uz=0,us=3
%20 = ‘u3=—§,‘u4=4

= M3=—1a¥l4=5

* Additional parameters:
skewness |13 and kurtosis |,
* Asset volatility remains 0

-0.050 -0.025 0.000 0.025 0.050

constant logarithmic return

N =10°
Log-returns with different p; and py
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The Heston Model

* Asset volatility as a separate stochastic process:

dS = pSdt + VvVSdw®
dV = k(0 — V)dt + wVVdW®@
dWWHAW @ = pdt

* 5 parameters:
* mean variance 0
* mean reversion coefficient
* initial variance V
 volatility of volatility w
* correlation between the asset
price and volatility p

15-

p=0,0=1
- p=-07,0=1
= p=-0.7, =15

-0.10 -0.05 0.00 0.05
logarithmic return
N =10°

Log-returns with different p and w
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The Bates Model

 Stochastic volatility + jumps:

49
< = (= Agps)dt + VVAW WY 4 kdQ
15-

dV = k(0 — V)dt + wVVdWw®

>
= 10-
dWOdW @ = pdt PR At
o - p=-07,0=15Mx1=5
P(dQ = 1) = \,dt :
* 8 parameters: Heston parameters 0
. . -0.10 -0.05 0.00 0.05
+ Uy (Jump mean), Oy (Jump logarithmic return
. - N =10°
Standard deV|at|on.), }\] (average Log-returns with different p, w and 7\] (with
number of annual jumps) negative o))
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Model Calibration

* Goal: select model parameters 0 by
minimizing some error between the market
prices y; and the model prices f(x;;0) given

by the parametric pricing function f
Model parameters

Model 0
Black-Scholes | o
Corrado-Su O, 143, Ha

. . e . Heston K, 0, Vo, w, p
9 — alg meln ;] wzg(yz, f(x“ 0)) Bates K, 87 %7 W, P, AJ? Ky, 0J
AV L}

* x; is a set of other variables
(So, K, T, 1, g, put-call flag)

 Problem formulation:
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“Inverse map” Approach

* Goalis to learn a mapping g from option prices y; and other market variables x;
to the model parameters 0

* The inverse map g is parameterized by weights w, and its outputs are used as
inputs to the parametric pricing function f

* Formulation:

L
W= argm“i,n Z wil(yi, f(2i; 9(zi, Yi; W))) l l

i€[n]
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Inverse Map Approach using Neural Networks

* Model the inverse map g as a multilayer perceptron
(dense feedforward neural network)
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Data

e European SPX (S&P 500) index
options
* Market price: mid price between the bid
and ask prices

e Risk-free rate: US Treasury bond
yields interpolated at the option’s
maturity

* Dividend yield: last yearly dividends
of companies in the S&P 500 index,
normalized by stock price and
weighted by market capitalization
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(moneyness = relative difference between the
underlying price and the strike price)
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Model Evaluation

e 10 different train-validation-test splits between 2015 and
2022
* Each split consists of a 2-year train interval, followed by a

5-month validation interval, followed by a 6-month test
interval (with 2-week gap between the intervals)

Number of unique data

points for the time splits

Train | Valid. Test
 Validation intervals are used for selecting the best model | Min. | 15750 | 2688 | 3276
hyperparameters: Avg. | 17686 | 3713 | 4423
* The number of hidden network layers: 1 or 2 Max. | 18774 | 4326 | 5124
* The number of units per hidden layer: 6, 8 or 10 Total | 56322 | 37128 | 44226
* The stochastic training process is repeated for each
model, time split and set of hyperparameters 5 times
using different random seeds
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Model Evaluation Metrics

e Absolute (dollar) error: * Metrics related to the bid-ask spread:
RMSE = v MSE

errSpread := — Z v = Gl

* Percentage error: = 6~ b
MAPE = 100% - lf: — b pSpread := 100% - —ZI (i <9; < ay)
nizl Y i—1
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Pricing Results

* The results presented next have been obtained by fitting the models
to only call options

* Overall, the results for calls and puts are similar, but slightly better
for puts

* When fitting the models to calls and puts simultaneously, the results
are noticeable worse than in the case where calls and puts are fitted
separately

* In the case of all models, and both calls and puts, the largest
allowed network (2 hidden layers, 10 units per hidden layer) gives
the best validation performance (measured in errSpread)
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Pricing Results

* More complex models have better train results Average model metrics over all train, validation and
on average test sets, and the random seeds. For each model,
only the best version (set of hyperparameters) is

* Overa”r the dverage validation and test results considered, and the best version is trained with 12

are the best for the Bates and Corrado-Su different seeds. For each metric, the best and worst

models, and the worst for the Black-Scholes test values are colored green and red, respectively.
mo d € | Model RMSE errSpread

* The ave rage Va||dat|0n and tESt rESUH:S are worse Black-Scholes ffiiﬁ ggg :::Eg ggi trﬁi:il ggg ::IE ggg;
than the train results, but the out-of-sample URPREN test: 174 test: 101 test : 50.24
performance of all models is still relatively good: R R |
° Average errSpread around one or |0Wer tes.t : 2.07 tes.t: 1.45 tet: 0.83 tes‘t : 55.11
. e . . ik 00660 train : 1.74 | train : 0.43 | train : 74.54
(predICtlonS are relatIVEIy Close to the bld and aSk Heston Venktess 2o valid ¢ 2.10 | valid : 0.81 | valid : 62.05
priceS) esin s Sl test @ 1.42 | test : 0.88 | test : 58.51

train : 0.63 [NoniisaNBN train : 0.40 ARl \0]
valid : 2.90 PREIGEECIN valid : 0.78 BNk SRGRHN6

* Over half of the out-of-sample predictions inside Bates 0.
test : 3.08 PRIEIIHNERYEN test : 0.85 R A1 R(()

the bid-ask spread
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Pricing Results

correlations of the metrics over the random seeds

* The model performance varies significantly (2) train-validation
. —_ . . Model | RMSE | MAPE | errSpread | pSpread | Avg.
between different years, maturities, strike prices BS [ 0203 | 0950 | 0766 | 0.963 |02
C-S 0.343 0.691 0.604 0.886 0.631
and random seeds i | o208 | 0805 | 0677 | 0960 | 0686
. B -0.214 | 0.840 0.618 0.951 0.549
* The average model performance is the weakest Avg_ | 0157 | 0822 | 0666 | 0940 | 0646
for short maturity and out of the money options, (b) train-test
. . Model | RMSE | MAPE | errSpread | pSpread | Avg.
and 2020 is the worst out-of-sample year in the BN B R 7 rov
C-S 0.340 0.545 0.579 0.883 0.587
Case Of a” mOdeIS H 0.132 0.495 0.551 0.944 0.531
. . * B -0.237 | 0.207 0.370 0.924 0.316
* Correlations of the metrics over 12* random Avg. | 0106 | 049 | 0533 | 0920 | 0516
seeds are clearly positive on average (c) validation-test

Model | RMSE | MAPE | errSpread | pSpread | Avg.
B-S 0.472 | 0.843 0.780 0.973 | 0.767

* the 5 seeds used in validation + 7 additional seeds C-S 0.808 | 0.712 0.841 0.875 | 0.809
H 0.885 | 0.839 0.942 0.964 | 0.907
B 0.921 0.447 0.848 0.965 0.795

Avg. 0.772 | 0.710 0.853 0.944 | 0.820
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Model Parameters

e For models with multiple parameters (Corrado-Su, Heston, Bates), the average
parameter values can vary significantly between different random seeds

* Not advisable to interpret parameters of a model separately

* The average parameter values also vary between different years, maturities and
strike prices

* This type of behavior is well-known

* The average volatility parameters (o for Black-Scholes and Corrado-Su, \/170 for
Heston and Bates) are similar to each other, and to the VIX volatility index
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Model Parameters
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Computing Implied Distributions

e Simulate log-returns from the
discretized stochastic process
using the parameter values given
by the inverse maps

e Corrado-Su, Heston and Bates
models are able to produce
samples similar to empirical log
returns (with negative skewness
and positive excess kurtosis)
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Hedging

* |dea: reduce variance of returns by constructing a portfolio of options and
shares of the underlying asset

« Common example: sell a call option, and hedge the position by buying shares of
the underlying asset

 The amount of shares bought is determined by delta of the call option (partial
derivative of the option price w.r.t. the underlying price)

* In the case of the Heston model, one should also consider the vega of the option
(partial derivative w.r.t. the asset volatility)

* Theoretically perfect hedge not possible under the Bates model

* In neural network setting, computation of the partial derivatives (Greeks) is
straightforward due to automatic differentiation
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Summary

* There exist many parametric pricing models for European options, and the parameters
can be chosen by minimizing some error between the market and model prices

 When the parameters have been obtained, they can be used in different applications,
such as hedging, or calculation of the implied asset distribution

* |In the so-called inverse map approach, one not only obtains the model parameters, but
also a mapping from the market variables to the model parameters

* Here, the inverse map is modeled as a simple feedforward neural network (MLP)

 When the models are fitted to SPX index options (calls and puts separately), the overall
results are promising, but the model performance

* is weaker out-of-sample than in-sample

* varies between different time intervals, option maturities and strikes, and seeds that control the
randomness of the training process
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