
 
1 

  

Inferring Trichoderma reesei Gene 
Regulatory Network 
Bachelor’s thesis 

Oskari Vinko 
 

 

27.10.2013 

Aalto University 
School of Science 
Department of Mathematics and Systems Analysis 
Degree Programme in Engineering Physics and Mathematics 

The document can be stored and made available to the public on the open internet 
pages of Aalto University. All other rights are reserved. 



 
2 

 

  

AALTO-UNIVERSITY  
SCHOOL OF SCIENCE  
PL 11000, 00076 Aalto  
http://www.aalto.fi  

ABSTRACT OF BACHELOR'S DEGREE THESIS 

Author: Oskari Vinko 
Title: Inferring Trichoderma reesei Gene Regulatory Network 
Degree programme: Engineering Physics and Mathematics 
Major: Systems Sciences Major code: F3010 
Supervisor: Harri Ehtamo, Director: Merja Oja 
Significant fraction of cellulosic biofuel production costs are caused by expensive enzyme 
production. Researchers have been able to develop super-producing strains of Trichoderma reesei, 
the most widely used industrial cellulase and hemicellulase producer.  The purpose of this thesis 
was to apply a module networks approach to this organism to form new, testable hypotheses for 
genes regulating cellulases and other carbohydrate active enzymes. A type of module networks 
algorithm was used to infer regulation programs for co-regulated clusters. This algorithm was run 
repeatedly and the outputs were scored and summarized to identify regulators that the algorithm 
consistently inferred to regulate cellulases. This resaulted to 95 cellulase regulator candidates that 
can be tested in laboratory. The module networks approach is able to predict potential regulators 
genome-wide although the quality of the hypotheses needs to be evaluated. Discovering new 
regulators and understanding their mechanisms would enable further improvement of cellulase 
production in T. reesei and lowering biofuel costs. 
Date: 27.10.2013 Language: English Number of pages: 23 

Keywords: gene regulatory network, module networks, Trichoderma reesei, cellulases, gene 
regulation, biofuels, expectation maximization 

Aalto University 



 
3 

 

Contents 
Introduction ....................................................................................................................................................... 4 

Materials and Methods ..................................................................................................................................... 6 

Results ............................................................................................................................................................. 11 

Discussion ........................................................................................................................................................ 13 

Conclusions ...................................................................................................................................................... 17 

Further research .............................................................................................................................................. 17 

Acknowledgements ......................................................................................................................................... 18 

Appendix .......................................................................................................................................................... 18 

References ....................................................................................................................................................... 19 

 

  



 4 

Introduction 
One of the main reasons for the slow adaptation 
to the use of renewable fuels is the production 
cost compared to the refining costs of the fossil 
alternatives. Second generation biofuels, such as 
bioethanol, can be produced from sugars 
hydrolysed from cellulose and hemicellulose of 
lignocellulosic materials. The hydrolysis, however, 
is a very costly process because the required 
cellulase enzymes are responsible for 
approximately 0.35 €/L of current bioethanol 
production costs (Klein-Marcuschamer et al. 
2012). Trichoderma reesei (teleomorph of 
Sordariomycete Hypocrea jecorina) is the most 
commonly used industrial producer of these 
enzymes due to its superior ability to produce 
cellulose and hemicellulose degrading enzymes. 
Classical mutagenesis has led to super-producing 
strains, however, the causes of the enhanced 
production are just beginning to unveil (Portnoy 
et al. 2011; Karimi-Aghcheh et al. 2013; Derntl & 
Gudynaite-Savitch 2013; Seiboth et al. 2012). 
Understanding the regulation mechanisms of the 
cellulase production is crucial to be able to make 
controlled and focused improvements to current 
super-producing strains. 

Carbohydrate Active Enzymes (CAZymes) consist 
of glycoside hydrolases, glycosyltransferases, 
carbohydrate esterases, polysaccharide lyases 
and carbohydrate-binding proteins (Cantarel et 
al. 2009) including the aforementioned cellulases 
used in the hydrolysis of biomass. This thesis 
examines the Trichoderma reesei gene regulatory 
network and attempts to form new testable 
hypotheses for CAZyme regulating genes based 
on transcriptome data and a set of genes with 
predicted regulatory abilities. The effect of the 
predicted regulatory genes can be verified in the 
laboratory by knocking out or overexpressing the 
candidate regulators. 

Regulation of cellulase production 
The previous research of T. reesei can be divided 
in two categories: the earlier studies focused in 
improving the cellulase production by classical 
mutagenesis (Peterson & Nevalainen 2012). More 
recent studies examine the beneficial mutations 
(Le Crom et al. 2009) and enhance the effect of 
key regulators on cellulase production. (Kubicek 
et al. 2009) summarizes the five key transcription 
factors of the cellulase genes: the transcriptional 
activators include xylanase regulator 1 (XYR1), 
HAP complex of three proteins and ACE2 and the 
reported repressing factors are ACE1 and CRE1. 

T. reesei cellulase genes are subject to carbon 
catabolite repression (CCR), that is, they are not 
expressed in the presence of more favourable 
energy source such as glucose. CRE1 was found to 
mediate the effect of CCR on cellulases as 
mutation in CRE1 binding site leads to a 
constitutive expression of the corresponding 
gene (Mach et al. 1996). Moreover, cellulase 
overproducing strain RUT-C30, which is released 
from CCR, has a truncated cre1 (Ilmén et al. 
1996). 

XYR1 regulates the xylose metabolism and it is 
one of the main factors in cellulase gene 
activation (Stricker et al. 2006) and a specific 
point mutation in this gene causes glucose blind 
expression of cellulases (Derntl & Gudynaite-
Savitch 2013). Although xyr1 transcription is not 
induced by cellulose, deletion of xyr1 causes 
depletion of all cellulases. It is unclear whether 
enhanced expression of xyr1 would lead to 
increase in cellulases (Kubicek et al. 2009). ACE2’s 
binding site is similar to that of XYR1 and it has 
been found in multiple cellulase genes. Deletion 
of ACE2 led to reduced cellulase activity (Stricker 
et al. 2008). 

Furthermore, the putative protein 
methyltransferase LAE1 is recently reported to 
have a major effect on cellulase production 
(Seiboth et al. 2012) along with the effects on 
secondary metabolism and sporulation. However, 
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its regulation mechanisms are not yet understood 
(Karimi-Aghcheh et al. 2013). In addition, a recent 
study (Jun et al. 2013) suggests that XYL1P, a D-
xylose reductase involved in xylose and lactose 
catabolism, is a positive factor in cellulase gene 
transcription on lactose although xyl1p 
overexpression impairs cellulase expression on 
xylose. The study predicts xyl1p to be potential 
target for metabolic engineering in cellulase 
production. 

To express cellulases, T. reesei requires an 
inducer as it would be ineffective to produce 
them without presence of cellulose in its natural 
habitat. However, as cellulose is not soluble in 
water, cellulase production is induced by sugars 
cleaved from cellulose and hemicellulose by 
specific cellulases expressed at low basal level 
(Kubicek et al. 2009). Interestingly, lactose is 
most widely used industrial inducer although it is 
only found in mammal milk. Enzymatic cleavage 
of lactose in T. reesei leads to β-d-galactose 
epimer that is involved in cellulase induction. 
Presumably, the same compound is acquired 
naturally in hydrolysis of hemicellulose, which 
contains different galactose compounds. As 
lactose metabolism is slow in T. reesei, the yields 
could be increased by enhancing lactose 
catabolism pathways (Kubicek et al. 2009). 

Hypothesis 
If majority of the genes can be organized into co-
regulated clusters and we are able to estimate 
their regulation programs, there should be 
enough information to predict CAZyme regulating 
genes. However, as this thesis is based on 
transcriptome data, only the genes whose effect 
correlates with their transcription level can be 
evaluated.  Thus, we cannot detect transcription 
factors with post-translational activation nor non-
protein factors.  

Basic Concepts 
Genes are expressed at a certain level depending 
on transcription factors and many other factors 
involved in the regulation of the genes. Altering 

the expression of a transcription factor can lead 
to a cascade of responses in other genes. These 
genes are called regulators as they regulate 
several other genes, gene clusters and even 
organism-wide functions (see appendix A for 
basic biological concepts). 

The regulators can together form switches and 
logical ports that control the expression of the 
target genes very accurately as a response to 
change in environment, life cycle and other 
factors. Related genes are often co-regulated, 
that is, their expression is increased or decreased 
at the same rate as they may be needed in the 
same set of reactions. The co-regulation is often a 
result of the genes having several mutual 
transcription factors or belonging to same co-
regulated cluster where the genes are physically 
close to each other. 

Purpose of this Thesis 
In addition to understanding the mechanism of 
currently identified regulators, we need to 
explore other possible regulatory genes that 
affect to cellulase production as well as the 
factors that limit the production capabilities. 
Functionally related genes form groups that are 
co-regulated, that is, the genes’ expression is 
depended on the same regulators as they often 
have similar set of binding motifs for 
transcription factors. Thus, it is reasonable to 
study the gene regulatory network as a system of 
regulators and modules (group of co-regulated 
genes). 

Segal et al. (2003) used a type of module 
networks approach for Saccharomyces cerevisiae 
to successfully identify regulators for modules 
with distinct functions. This thesis focuses in 
applying the module networks approach to find 
new cellulase regulator candidates in T. reesei 
and test the method’s ability to recognize already 
identified regulators. It is not reported that the 
module networks approach would have been 
applied on this problem previously. 
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Module networks algorithm by Segal et al. (2003) 
has been implemented in a computer program 
Genomica. It is used in this thesis to cluster the 
genes into modules and infer regulation 
programs for each module. As Genomica uses a 
probabilistic algorithm that can only find a local 
maximum in the state space, the output varies 
significantly between runs. To tackle this 
problem, the algorithm was run repeatedly and 
the results were summarized using a scoring 
method designed for this purpose. The genes 
were clustered again based on the scoring 
information collected from multiple algorithm 
runs (i.e. Genomica runs). Thus, this score based 
clustering should provide more general 
information about the gene regulation. In 
addition, Genomica is able to construct 
regulatory programs that may provide valuable 
qualitative information in modelling the 
regulatory roles for potential regulators.  

As the method is used to examine the whole 
genome, it is capable of identifying co-regulated 
clusters and their regulators regardless of their 
functions. Thus, our methods and results can be 
used in identifying the regulatory patterns for 
other functions related to metabolism, cellulose 
production and excretion. 

Impact 
Examining the regulatory roles and effects of 
random genes with known regulatory capabilities 
is time consuming and difficult. Thus, well-
grounded hypotheses for cellulase regulating 
genes provide excellent starting point for further 
experiments as the hypotheses can be tested in 
laboratory and their actual effects on cellulase 
production can be identified.  In the most 
fortunate case, new cellulase regulators may 
emerge in the laboratory experiments. 
Discovering new regulators and understanding 
their mechanisms would enable further 
improvement of cellulase production in T. reesei 
and lowering biofuel costs. 

Materials and Methods 

Transcriptome and Data 
The information about the transcription levels of 
all the genes in the organism’s genome is called a 
transcriptome. To get the transcriptome data, the 
RNA is isolated and the complementary DNA 
(cDNA) is synthesized and marked with 
fluorescent dye. The information about the 
transcription level of the gene (i.e. gene activity) 
can be retrieved by using a cDNA microarray. It is 
a solid surface with thousands of spots that can 
identify a specific cDNA sequence based on DNA 
hybridization. The amount of cDNA attached with 
the spot can be detected by fluorescence of the 
attached to the cDNA and it is proportional to the 
activity of the corresponding gene at the moment 
of measurement. The methods used in retrieving 
the transcriptome data used in this thesis are 
described in detail in (Häkkinen et al. 2012). 

Module Networks Approach 
We are applying a module networks approach by 
(Segal et al. 2003) that simplifies the gene 
regulatory network compared to methods using 
Bayesian network (Pe’er et al. 2001). The 
fundamental idea is to cluster similar genes into 
modules according to their expression profiles 
using a Bayesian scoring function and finding the 
common regulatory elements, that is, the 
regulation program, for each module separately.  

Each gene of the organism belongs to a single 
module (group of co-regulated genes). For each 
module the algorithm infers a regulation 
program, which may have several regulators (see 
figure 1 ). Each node divides the module in two 
parts according to the corresponding regulator’s 
expression. For example, if right child includes all 
the experiments where the regulator is 
upregulated, the left child includes all the rest. 
Thus, each path from root to leaf contains 
information of all the regulators’ levels. Each leaf 
of this regulatory program is called a regulatory 
context that explains the module’s expression in 
certain conditions. According to the probabilistic  
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Figure 1: Module structure 

Structure of a module can be divided in two parts: regulation program is the section in the figure separated by 
green rectangle and the below part includes all the genes and their expression. The regulation program 
includes the inferred regulators and their expression information. Each row in the expression view represents 
a single gene whereas columns represent different experiments and the cell colours are log2 ratios of 
comparisons between experiments. Red colour indicates elevated expression compared to control experiment 
and green colour stands for decreased expression. 

Each regulator’s expression is divided in two different parts that attempt to explain the variation in the genes. 
Each regulation level (separated by dashed lines on the left) brings more resolution but lower level regulators 
represent only small segment of experiments and thus their significance is lower. Hence, each regulator level 
is scored differently. Root level regulator is often able to explain the most of the variance and it governs all 
experiments and it has the highest score, 10 points. Second level regulators and lower level regulators get 4 
and 1 points, respectively. 

Each lead of the regulation program defines a context indicated by vertical, yellow, dashed lines in the picture. 
According to the module networks model, each expression value in same context is generated by 
approximately same normal distribution. The parameters for the normal distribution are context specific. 

Figure is modified from original figure in (Segal et al. 2003). The figure does not represent the actual experiments in this thesis. 
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model of module networks all the genes in a 
specific context are required to follow the same 
conditional probability distribution. That is, the 
gene expression levels are generated by the same 
probability distribution specified by the context 
itself. This probability distribution is modelled by 
normal distribution parameterized by context-
specific variance and mean (Segal et al. 2002). A 
detailed visual presentation of the module 
structure is presented in Figure 1. 

To construct the module network for given 
expression data, we use a probabilistic  algorithm 
that requires an initial clustering structure (i.e. 
starting point) and set of candidates for 
regulatory genes (Segal et al. 2002). This iterative 
Expectation Maximization (EM) algorithm 
consists of two steps that are repeated until the 
structure converges. 

The first step is the structure search part that 
attempts to find best possible regulatory program 
for every module. It searches the list of candidate 
regulators and chooses the genes that can 
explain the most of the variation in a given 
module (Segal et al. 2002). This also affects to the 
parameterization of the regulatory contexts 
within the cluster to better match the expression 
profile.  Whereas a gene can belong to only one 
module, the regulatory genes can regulate 
multiple modules as long as they do not contain 
the regulator itself. 

In the module assignment step the algorithm 
iterates through all the genes in every module 
and attempts to find another module with 
regulation program that matches better to the 
expression profile of the given gene. The 
matching is evaluated by Bayesian scoring 
function and any changes leading to higher score 
will be performed (Segal et al. 2002). In this way 
the iteration of these two steps continues until 
the scoring converges, that is, the process 
terminates when these reassignments do not 
improve the score. 

There are multiple local maxima in the Bayesian 
scoring function and there isn’t currently any 
reliable way to find the global maximum. 
However, to avoid converging to local lower 
maxima the algorithm takes a random step 
instead of highest scoring step with certain 
probability that decays exponentially as the 
algorithm proceeds (Segal et al. 2001). 

The module networks algorithm has been 
implemented in Genomica program developed by 
Y. Lubling and E. Segal from Weizmann Institute 
of Science. In this thesis, Genomica version 
3.040710 is used to infer the regulatory network 
based on provided T. reesei transcriptome data. 

Experiments 
The transcriptome data was transformed to log2 
ratios:  

𝑣 = log2
𝑎
𝑏

 

where a is the gene’s measured transcription 
level in given experiment and b is the gene’s 
transcription level in corresponding control 
experiment, which can be a certain time point, 
strain, pH, temperature, carbon source etc. 

For the purpose of running Genomica, the 
experiments in available T. reesei transcriptome 
data were divided in two datasets; data set A 
contains 66 experiments comparing different 
conditions such as pH, carbon source and 
temperature whereas data set B contains 49 
experiments comparing different time points 
during perturbation. The module network was 
constructed separately for both datasets. 

Genomica offers various options for creating the 
module network, such as maximum number of 
modules, maximum number of iterations, scoring 
prior options, such as maximum tree depth, 
minimum experiments per context, regulator split 
constrains etc. Generally, the default values were 
used with the following exceptions. 
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The regulation programs of different modules 
were compared and it was concluded that the 
first three levels of the regulation program are 
the most informative as lower level regulators are 
able to explain the variance only in a subset of 
experiments. Thus, the maximum regulation 
depth was set to 3. 

To find an appropriate parameter for the 
maximum number of runs, a sample of 23 scores 
was taken from separate Genomica runs for data 
set A after 70 iterations. The average value was 
761000 and standard deviation was 14000. The 
average score improvement per iteration 
between 50 and 70 iterations was approximately 
130 which is very low compared to the standard 
deviation between the runs with 70 iterations. 
The score improvement per iteration gradually 
decreases while the algorithm advances. This 
kind of characteristic was also observed for data 
set B. In conclusion, it was reasonable to set the 
maximum number of iterations to 70 in all 
experiments. 

In this thesis, maximum number of modules was 
set to 70 instead of default value 50. Minimum 
experiments per context was set to 3 so that the 
option wouldn’t often limit the formation of 
regulation program when the depth is set to 3. 
For smaller data set B this results in 7 conditions 
on average for the largest possible regulation 
program. Regulator split constrains were set to    
-0.4 and 0.4 because the values were deemed to 
be significant difference in the log2 ratio. 

The list of candidate regulators includes known 
Trichoderma reesei regulators and genes 
homologous to known transcription factors in 
other species as well as signalling proteins. 
Known regulator domains (INTEPRO) were used 
as a criterion. 

As the EM algorithm may converge to different 
local maxima when the procedure of inferring 
module network is repeated, the outcome of the 
procedure can be significantly different between 
the runs. To tackle this problem, we created a 

scoring method that rates individual algorithm 
runs and compiles this information into one table 
of scores. 

As mentioned earlier in this section, the higher 
level regulators in a regulation program can 
generally explain the gene expression variance in 
the module more effectively compared to lower 
level regulators. Based on this fact, a scoring 
method was designed to compile the multiple 
module networks from repeated Genomica runs 
to a single table. For each gene, a score was given 
to each regulator based on the regulation 
program. If the regulator was on root level, the 
score was set to 3 whereas second and third level 
regulators were given 2 and 1 points. An 
alternative stronger method scored the root 
level, second level and third level regulators with 
10, 4 and 1 points, respectively (see figure 1). The 
scores for each Genomica run were summed up 
to single table of scores including all the genes as 
rows and the regulators as columns. 

Three regulation characteristics were identified 
based on the score data. Each gene was labelled 
with a regulation role based on two criteria: 
combined score of the five strongest regulators 
(top5 score) and the ratio of the strongest and 
the third strongest regulators (one-to-three ratio, 
𝑟1/3 ). The first category is named distinct and it 
includes all the genes with distinct regulator that 
stands out in comparison with the scores of the 
other regulators. The requirements for this 

category are:  𝑡𝑜𝑝5 > 1
2
𝑡𝑜𝑝5max  and   𝑟1/3 > 2. 

If 𝑡𝑜𝑝5 > 1
2
𝑡𝑜𝑝5max  and  𝑟1/3 < 2, the gene 

belongs to strong category (see figure 4). This 
category includes the genes with high score but 
low one-to-three ratio. This indicates that the 
gene has several strong regulator candidates. 
Weak category includes the rest of the genes, 
that is, the genes with many low scoring 
regulators. These genes do not have 
distinguishable regulators as the scores for their 
regulators are too low to make any conclusions. 
Low score indicates that these genes have 
different regulators in different Genomica runs. 
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The genes were clustered based on two different 
data sources. The first source was the Euclidean 
distance between the genes in N dimensional 
space where N was the number of candidate 
regulators and the corresponding scores 
represented the coordinates. The second 
measure was the co-occurrence of the genes, 
which was based on how often a pair of genes 
appeared in the same module. It was calculated 
using the following formula: 

1 −
𝑘
𝑛

 

Where k is the number of times two genes 
appeared in the same cluster and n is the total 
amount of Genomica runs in current data set. K-
means clustering and hierarchical agglomerative 
clustering methods were used to cluster the 
genes. The aforementioned distance measures 
were used in the clustering.  

Figure 2: Score heat map 

The heat map is generated for scored and summarized Genomica runs for data set A. 
Rows represent genes and columns represent regulators and grey colour stands for higher 
score. Distinct clusters of similarly regulated genes are clearly visible as grey boxes and 
vertical lines in the heat map. The figure is scaled to square although the number of genes 
is 10376 and number of regulators is 946. 
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Results 

General regulator results 
1224 Genomica runs were carried out for data set 
A containing 10376 genes and 1050 runs were 
carried out for data set B containing 10429 genes. 
The runs were summarized into table of scores 
where rows represent genes and column 
represent the regulator candidates provided for 
Genomica. Each cell tells the regulator’s score 

(i.e. importance) for the given gene. Figure 2 
presents a heat map for the score table of data 
set A with hierarchical clustering. The heat map 
shows multiple coherent clusters with varying 
sizes and clear vertical lines.  Figure 3 is a heat 
map for co-occurrence table (gene vs. gene) of 
data set B with hierarchical clustering. The figure 
shows clearly how the genes concentrate in 
distinct clusters, that is, gene groups that always 
appear together in the same module.

Figure 3: Co-occurrence heat map 

The heat map is generated for summarized co-occurrence data over all Genomica runs 
for data set B. Grey colour stands for more frequent occurrence. The heat map is 
symmetrical and thus the clusters of frequently occurring genes are concentrated on the 
diagonal. Noise is present but low. High density of dendrogram near the leaves confirms 
that the genes are remarkably close to each other within a cluster. 



Figure 4: Score distribution 

The diagrams here present the distribution of combined score of the five strongest regulators (top5 
score) and regulation categories for the genes in data sets A and B. The scores in data set A are 
slightly higher as more runs were conducted for that data set. 

If the combined score of the top 5 regulators is lower than ½ of the highest observed score, it is 
catecorized as weak (red color in the diagrams): it does not have high score and thus the regulators 
are somewhat unclear. If a gene’s score is high enough and the ratio of the best scoring regulator 
and third best scoring regulator is over 2.0, the gene is categorized as distinct (green color). Genes 
categorized as distinct have one clear high scoring regulator that stands out with its score 
compared to other top regulators. Blue color stands for strong: several high scoring nearly equal 
regulators. 
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Figure 4 shows score distributions with different 
gene regulation categories for both data sets. The 
tail is on the right for both distributions and a 
significant rise in the high-scoring genes is 
observed in both histograms. The scores are 
generally higher for data set A as the total score 
is directly proportional to the amount of runs. 
Both distributions resemble Gaussian 
distribution. In data set A, more genes have been 
categorized as weak gene compared to data set B 
because the tail for data set A is clearly longer 
and the decision value for weak genes is derived 
from the highest observed score. 

The genes were clustered into 120 gene clusters 
using k-means and hierarchical clustering 
algorithms. Both methods were able to construct 
coherent gene clusters in which the genes have 
very similar scores for mutual regulators. Clusters 
were ranked according to average score and 
number of CAZy genes included in the cluster. 
The clusters with high average score consisted 
mostly of genes with distinct category, that is, 
they have single strong regulator that has 
significantly higher score when compared with 
other top regulators. 

Identified CAZy regulator candidates 
The analysis revealed a number of gene clusters 
with a significant CAZy gene enrichment. 95 CAZy 
gene regulator candidates were found in the 
analysis including the following four genes that 
have been studied earlier: env1 (trire0081609), 
cre4 (trire0081690) and gene1 and gene2 
(personal communication with T. Pakula, 
manuscript submitted). Table 1 shows the 
number of CAZy genes potentially regulated by 
these four candidate regulators based on the 
implemented module networks approach. 

Discussion 

Interpreting the results 
Based on the heat maps in figure 2 and figure 3, 
hierarchical clustering of the genes was quite 
successful as distinct clusters are present in both 
heat maps. The dendrogram was cut at 
appropriate height so that the larger clusters 
remain intact but most of the clusters are still 
separate. The dendrogram for co-occurrence 
heat map (figure 3) is very dense near its leaves, 
which means that the genes are remarkably close 
to each other within the clusters. Because only 
little noise is present in the figure we can 
conclude that the genes were often located in the 
same clusters between the Genomica runs. 
Distinct clusters are present in the score heat 
map but significantly more noise is present 
compared to co-occurrence heat map. The 
clusters in score heat map cannot be identified as 
easily as in figure 3 because the clusters are 
dispersed. This dispersion is caused by common 
regulators shared by multiple clusters. Thus, the 
common regulators in the clusters may not be 
placed next to each other but rather spread out. 
However, clear vertical lines can be distinguished 
in figure 2, which stands for co-regulated clusters. 

Some vertical lines and clusters may result from 
duplications (caused presumably by overlapping 
spot sequences in the used microarrays). 
Duplication of some genes would also explain the 
exceptionally high frequency in the high scoring 
end of the score distributions for both data sets 
in figure 4. Indeed, this is the most logical 
explanation as the scores for the genes appeared 
to be identical or nearly identical. Multiple very 
similar gene expression profiles were observed in 
the initial expression data. If this expression 
profile matches well to any of the candidate 
regulators, these duplicates can form together 
very uniform clusters that have high score in the 
analysis as the same regulators will be inferred 
almost without exception. Thus, the duplicates 
would have very high score in the analysis. 
However, the amount of different duplicated 

Candidate 
regulator 

Env1 Cre4 Gene1 Gene2 

Regulated 
CAZy genes  

3 1 17 21 

Table 1: Identified known CAZy regulators 

The table shows four candidate regulators and 
the number of potentially regulated CAZy 
(Carbohydrate Active Enzyme) coding genes. 
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genes was low so that the results are generally 
reliable. 

Different clustering methods and clustering 
criteria (co-occurrence vs. score) resulted in 
slightly different cluster structures although the 
common cluster-specific regulators were often 
preserved. Thus, inferred co-regulation depended 
on the clustering method. For example, in score-
based clustering, genes X and Y were in the same 
cluster regulated by Z that had high score for 
both X and Y. In co-occurrence-based clustering 
the genes X and Y belonged to different clusters 
both regulated by Z. Thus gene Z regulates X and 
Y in both methods although they were co-
regulated only in the score-based clustering. 

The identified CAZy gene regulator candidates in 
data set A were nearly complementary to the 
candidates found in data set B. This underlines 
the importance of collecting logical set of 
experiment comparisons for the regulator 
analysis.  

Results compared to earlier research 
Surprisingly, none of the reported CAZy gene 
regulators discussed earlier in this thesis were 
found in this analysis. The regulation mechanisms 
of these genes are not yet fully understood and 
thus the function may not be depended on 
transcription level. Furthermore, if the changes in 
the transcription level of these regulators do not 
vary in the experiments, the regulators’ effect 
cannot be detected. In addition, overexpression 
of some of the regulators has not led to elevated 
cellulase production although their deletion 
would have an effect. This kind of genes may be 
necessary factors that are required in the 
cellulase synthesis but they might not actually 
regulate the rate of the cellulase gene 
transcription. 

However, it is known that cre1 and xyr1 regulate 
cellulase gene expression and the mechanism is 
strictly depended on their transcription level. The 
strains used in this analysis were derived from 
RUT-C30, which has a truncated version of cre1 

which is not functional. Thus the effect of this 
regulator cannot be detected. Xyr1 is reportedly a 
strong regulator that controls many genes 
(including CAZy genes) and this effect is highly 
correlated with its expression (Derntl & 
Gudynaite-Savitch 2013). Xyr1 might regulate 
other regulators that strictly correlate with xyr1’s 
transcription. If the changes in such mediating 
regulator’s expression are stronger than in xyr1, 
the mediating gene is detected by the module 
networks approach instead of the actual 
regulator. Lae1 is also reported to regulate CAZy 
genes with its expression (Seiboth et al. 2012) but 
in this study, the differences in lae1 expression 
were small and thus its regulatory capabilities 
could not be detected. 

It has been reported (Schmoll et al. 2005) that 
env1, which was detected in our analysis, is 
involved in light depended cellulase regulation in 
T. reesei and the gene is similar to Neurospora 
crassa light response modulator vvd. Env1 
responds to light and it is transcribed under 
cellulase inducing conditions. Cre4 is the 
homologue of N. crassa creD and (Denton & Kelly 
2011) suggests that its overexpression of this 
gene could have a positive effect on cellulase 
production. 

Gene1 and gene2 have been overexpressed in T. 
reesei in our laboratory without changes in 
cellulase gene expression. Although these genes 
may not be able to regulate cellulase expression 
alone, the genes may require additional factors to 
be able to influence cellulase production. It is 
possible, that these unknown co-regulators can 
be identified in further analyses of the data 
generated in this thesis. Examining the generated 
clusters and initial regulation programs could 
provide valuable hints. 

Evaluation of the approach 
Analysing large number of Genomica runs 
confirmed that the variation between single 
Genomica runs is remarkable. Figure 5 shows a 
heat map for a gene and its regulatory program in 
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every run. The heat map confirms that individual 
runs are not informative as such because they 
vary greatly. However, repetition of the algorithm 
enables discovery of significantly enriched 
regulator candidates that cannot be reliably 
identified from single Genomica runs. 

For some genes, the main regulators were not 
present simultaneously but they appeared one at 
a time in the regulation programs. Although 
these regulators were rarely present at the same 
time, all they may be inferred as main regulators. 
Presumably, this kind of competitive pattern is 
probably caused by very similar regulator 
expression profiles so that the algorithm 
randomly chooses one of the matching 
regulators. Thus, as one expression profile is 
already used to explain the variance in the 
module, the other similar regulators would not 
be able to explain the remaining variance. Thus, 
they would be excluded from the regulation 
program. This behaviour is also present in the 
figure 5 as regulators 2 and 4 from left do not 
appear when other common regulators are 
present. In addition, they appear only as root 
regulators. 

The module networks approach was able to 
predict regulators related to very different 
cellular functions. Even though the method was 
able to find very strong regulator candidates, the 
CAZy gene regulator candidates did not generally 
have high score in the analysis. In other words, 
this method was able to generate significantly 
stronger hypotheses for some non-CAZy gene 
regulators. 

This approach is useful in searching general 
genome-wide information about gene regulatory 
network and co-regulated clusters. It was capable 
of predicting regulators for CAZy genes and thus 
it was suitable for the purpose of this thesis. The 
capability of this approach and generated 
hypotheses can be evaluated when actual 
regulatory functions of the predicted regulators 
have been tested in the laboratory. 

Restrictions 
The analysis is based on transcriptome data and 
thus it is only capable of recognizing regulators 
whose function correlates with its transcription 
rate. Furthermore, it is required that the 
regulator expression correlates with target genes’ 
transcription. Hence, post-translational 
activation, non-protein transcription factors, 
chromatin structure and other levels of 
regulation are outside of this scope. We are able 
to examine only a subset of the complete gene 
regulatory network. As the different levels of 
regulation are interconnected, our method can 
make only constricted predictions. 

The module networks algorithm implemented in 
Genomica was not customizable although some 
parameters could be changed. Thus, the 
algorithm and its scoring method could not be 
improved or tailored for the purpose of this 
analysis. Furthermore, the algorithm is not 
capable of recognizing conditional expression of 
the regulators, that is, logical conditionals for the 
regulators that are required for the genes’ 
expression. For example, let’s say that regulator A 
and regulator B is required for a gene’s 
expression. The algorithm that was used in this 
expression might recognize only regulator B or 
even regulator C that is not even related to the 
gene but its expression profile matches better 
than regulators A or B individually. 

This approach is only able to identify regulators 
that are provided in the list of candidate 
regulators. Thus, it is essential that the list 
includes as many regulatory genes as possible. 
Having a false regulator in the list should not be a 
problem as long as it does not appear in the 
crucial results. However, if false regulators 
appear in the results they will can override the 
actual regulator. For example, if a cellulase gene 
ended up in the regulator list, it would most 
probably be the best scoring regulator for most of 
the other cellulase genes as its expression 
explains the cellulase genes’ variance very well. 



  

Figure 5: Gene regulation heat map 

This heat map is generated for a single gene and it presents the regulation programs in each 
Genomica runs. Each column represents a regulator (all regulators are not included) and each 
row represents the inferred regulation program for the gene in question. Red colour stands for 
root level regulator, orange colour stands for second level regulator and yellow colour stands for 
third level regulator. Regulation programs marked with blue colour are estimated to be the best 
representatives. 
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Conclusions 
The module networks approach is potential 
method for generating genome-wide hypotheses 
for gene regulators in T. reesei, but repetition is 
essential for the module networks algorithm to 
reach more reliable results. The used scoring 
method was sufficient and a number of distinct 
regulator candidates were identified. 

95 CAZy gene regulator candidates were found in 
our analysis and some of them are quite 
promising. Available annotation information 
about these genes was scarce and little is known 
about these genes. Majority of the regulator 
candidates were not previously reported to be 
connected with CAZy gene regulation which 
makes the generated hypotheses tempting. 
However, the novelty of these hypotheses may 
also indicate the method’s inability to find the 
actual regulators. The method was not able to 
identify the reported regulators and it supports 
this possibility. In order to evaluate the capability 
of this approach, the candidate regulators’ 
functions would have to be tested in laboratory. 

Further research 
As a number of the generated hypotheses were 
new, it is possible to discover novel cellulase 
regulating genes among the strongest and most 
interesting candidates. However, testing all 95 
candidates would be unnecessary as many of 
them had weak score or only few CAZy genes 
were predicted to be regulated by them. Some of 
the predicted CAZy regulators may also be co-
regulating factors that may function with other 
already hypothesized regulators.  

Identifying the most common Genomica run for a 
single gene could provide hypotheses for the 
regulatory network directly related to the gene 
without expensive laboratory experiments. This 
information would help to explore the gene 
regulatory network and plan the laboratory 
experiments, such as testing conditional co-

regulation of two regulator candidates identified 
in the regulation programs instead of 
overexpressing or knocking out a single gene at a 
time. 

Related genes are often enriched in co-regulated 
clusters. Thus, we might be able to identify genes 
that are co-regulated with cellulase genes and 
discover non-regulatory genes with important 
functions in cellulase production. Identifying 
these genes is essential for understanding how 
the cellulose degradation system works in T. 
reesei. Identifying central regulators in 
metabolism and other relevant functions might 
shed light to mechanisms supporting cellulase 
production. Enhancing these supporting 
mechanisms could increase the cellulase 
production capabilities and it will have great 
importance when cellulase regulation is 
understood well enough. 

Cluster analyses such as annotation enrichments 
and counting the related genes within the 
inferred clusters could shed light into genome-
wide gene regulatory network. In the earlier 
study applying module networks to  
Saccharomyces cerevisiae  (Segal et al. 2003) the 
clusters represented different mechanisms or 
responses in the organism. Similar distinct 
functions could be identified in the clusters 
generated in this analysis. 

As the expectation maximization algorithm 
implemented in Genomica has its own 
restrictions, implementing a new, more 
customizable algorithm could be useful. The 
necessary repetition step could be integrated in 
the algorithm and an ability to recognize simple 
conditional expression might lead to better 
hypotheses. However, these modifications would 
increase the computation time of single 
algorithm run significantly. 
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Appendix 

A: Basic Biological Concepts 

Gene regulation and the gene regulatory network 
Genes are stretches of deoxyribonucleic acid (DNA) located in cell nucleus in Eukaryotes. They contain the 
formulas for building all the organism’s proteins, the amino acid polymers, which are the basic building 
blocks of the cell and have many vital functions along with the enzymatic capabilities (Alberts et al. 2008 
chapter 3). 

Eukaryotic DNA is winded around histone proteins which are further organized into secondary chromatin 
structure. Tight structure (referred as heterochromatin) suppresses gene expression whereas loose 
structure (euchromatin) enables more efficient gene expression. This chromatin structure is regulated by 
methylation and acetylation of the tails of the proteins that form the histones. These changes are 
performed by methyl- and acetyltransferases, enzymes that attach the methyl and acetyl groups to 
proteins (Alberts et al. 2008 chapter 4). 

Each Eukaryote gene has a promoter region that regulates the gene expression rate. A gene is expressed 
when the coding sequence following the promoter region is transcribed into RNA. The promoter region 
itself does not pass information. Controlling the transcription initiation and  transcription rate happens in 
the promoter region, which contains sequences recognized by transcription factors, that is, activators, 
repressors and facilitating complexes (Alberts et al. 2008 chapter 6). 

The synthesized RNA (transcript) is further translated into proteins in endoplasmic reticulum and cytosol. 
The amount of the protein depends often on the transcription rate as well as transcript degradation rate, 
which is controlled by various mechanisms. The protein might require activation by methylation, 
phosphorylation, glycosylation or other mechanisms. This post-translational modification is important 
factor in regulating the protein production along with the control of the chromatin structure, transcription, 
translation and protein recycling (Alberts et al. 2008 chapter 7). 
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Yhteenveto 
Korkeat tuotantokustannukset hidastavat uusiutuvien polttoaineiden yleistymistä, sillä 
kuluttajat sekä eri teollisuudenalat suosivat usein halvempia fossiilisia 
polttoainevaihtoehtoja. Fossiiliset polttoaineet vapauttavat kasvihuonekaasuihin kuuluvaa 
hiilidioksidia maaperän hiilinieluista ilmakehään, ja siksi niiden käyttö edistää 
ilmastonmuutosta. Biopolttoaineet sen sijaan valmistetaan biomassasta, jonka sisältämä 
hiili on peräisin ilmakehästä. Siksi biopolttoaineiden käyttö ei lisää ilmakehän 
kasvihuonekaasujen määrää. 

Biopolttoaineita, kuten bioetanolia ja biodieseliä, valmistetaan usein mikrobien avulla 
sokereista, joita tuotetaan pilkkomalla biomassan polysakkarideja, pääosin selluloosaa ja 
hemiselluloosaa. Polysakkaridit voidaan pilkkoa oikeanlaisilla entsyymeillä, mutta näiden 
valmistus on melko kallista. Arvioiden mukaan bioetanolin valmistuksessa 
entsyymikustannukset ovat noin 0,35€/l. Entsyymien tuotantokustannusten 
pienentämisellä olisi siten suuri vaikutus biopolttoaineiden hintaan ja käyttöasteeseen. 

Trichoderma reesei on home, jota käytetään yleisimmin selluloosaa hajottavien 
sellulaasientsyymien tuotannossa, sillä se kykenee tuottamaan huomattavan suuria 
määriä näitä hyödyllisiä entsyymejä muihin tunnettuihin organismeihin verrattuna. Siitä on 
lisäksi tehty geneettisesti muunneltuja kantoja, jotka kykenevät tuottamaan sellulaaseja 
huomattavasti alkuperäistä kantaa tehokkaammin. Nämä kannat on valmistettu klassisella 
mutageneesillä eli aiheuttamalla satunnaisia mutaatioita ja valitsemalla ne yksilöt, joiden 
sellulaasituotanto on tehostunut. Nykyinen tutkimus pyrkii ymmärtämään T. reesein 
säätelymekanismeja sekä ylituottajakannoissa tapahtuneita muutoksia. Tämän 
ymmärryksen myötä voidaan tehdä harkittuja sellulaasituotantoa tehostavia muutoksia. 

Geenien aktiivisuutta voidaan mitata mikrosiruilla, joissa on oma tunnistuskohtansa 
kullekin tutkittavalle geenille. Kustakin tunnistuskohdasta voidaan koneellisesti lukea 
geenin aktiivisuus mittaushetkellä. Transkriptomiksi kutsutaan koko genomin kattavaa 
dataa geenien aktiivisuudesta ja sitä tutkimalla voidaan saada arvokasta tietoa geenien 
toiminnasta eri olosuhteissa ja niiden vaikutuksista toisiinsa. Geenit vaikuttavat 
aktiivisuudellaan lukuisiin muihin geeneihin ja sitä kautta koko organismin toimintaan. Tätä 
monimutkaista vuorovaikutusten verkkoa kutsutaan geenisäätelyverkostoksi. 

Tämän tutkielman tarkoituksena on tutkia T. reesein transkriptomia sekä ehdottaa sen 
perusteella kandidaatteja sellulaasituotantoa sääteleville geeneille. Näiden 
ehdokasgeenien vaikutusta voidaan tutkia laboratoriossa ylituottamalla tai alituottamalla 
kutakin geeniä. On siis mahdollista, että ehdokassäätelijöiden joukosta löytyy 
entuudestaan tuntemattomia säätelygeenejä, jotka ohjaavat sellulaasituotantoa. 

T. reesein geenisäätelyverkostoa pyritään tässä tutkielmassa hahmottamaan Module 
Networks –menetelmällä. Tämän lähestymistavan pääperiaatteena on, että geenit voidaan 
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jakaa ryhmiin, joiden aktiivisuutta ohjaavat yhteiset säätelygeenit. Tähän tarkoitukseen 
käytettiin suurimman uskottavuuden algoritmia (eng. expectation maximization algorithm), 
joka koostuu kahdesta toistettavasta vaiheesta. Ensimmäinen vaihe tutkii muodostettuja 
geeniryhmiä ja pyrkii etsimään niille sopivimpia säätelygeenejä annetusta listasta geenejä, 
ja toinen vaihe tarkastelee jokaista geeniä erikseen ja sijoittaa kunkin tämän aktiivisuutta 
parhaiten vastaavaan geeniryhmään. 

Algoritmissa käytetty suurimman uskottavuuden algoritmi pyrkii maksimoimaan tietyn 
bayesiläisen kohdefunktion arvoa ohjaamalla sellaisiin muutoksiin, jotka kasvattavat 
kohdefunktion arvoa. Tällä kohdefunktiolla on kuitenkin lukuisia paikallisia ääriarvoja eikä 
tällä hetkellä tunneta menetelmää, jonka avulla voitaisiin löytää globaali ääriarvo. Siksi 
tässä työssä käytetty algoritmi ottaa joitakin satunnaisaskeleita välttääkseen 
suppenemisen pieniin paikallisiin ääriarvoihin. Näiden satunnaisaskelten vuoksi algoritmin 
tarjoama säätelyverkosto vaihtelee huomattavasti eri ajokertojen välillä. 

Algoritmia ajettiin toistuvasti noin 2000 kertaa, tulokset pisteytettiin ja koottiin yhdeksi 
taulukoksi. Taulukkoon on merkitty kunkin säätelygeenin pistemäärä jokaiselle geenille. 
Tämä pistemäärä kertoo, kuinka tärkeä säätelijä on kyseiselle geenille keskimäärin 
kaikissa toistokerroissa. Tällä tavoin ajokerroista saatiin esille selkeät pääpiirteet 
satunnaisten yksityiskohtien sijaan. Tämän lisäksi geenit ryhmiteltiin uudelleen 
pistemäärien perusteella. Siten saadaan myös informaatiota siitä, mitkä geenit saattavat 
ohjautuvat samojen säätelijöiden vaikutuksesta. 

Kiinnostaviksi geeneiksi luokiteltiin kaikki sellaiset geenit, jotka liittyvät jollain tapaa 
polysakkaridien pilkkomiseen (CAZy-geenit). Tähän geeniluokkaan kuuluu lukuisia 
hydrolaaseja (mm. sellulaaseja, hemisellulaaseja) sekä muita hydrolyysiä katalysoivia 
entsyymejä. Saatujen tulosten perusteella löytyi 95 säätelygeeniä, jotka saattavat säädellä 
näitä CAZy-geenejä. Joukossa on joitakin hyvin mielenkiintoisia ehdokkaita, jotka 
säätelevät suurta joukkoa kiinnostavia entsyymejä, mutta osa säätelyehdokkaista liittyy 
tulosten perusteella vain yksittäisiin kiinnostaviin geeneihin. 

Näiden ehdokasgeenien joukosta etsittiin myös seitsemää säätelygeeniä, joiden on 
havaittu vaikuttavan T. reesein sellulaasituotantoon aikaisemmissa tutkimuksissa. 
Yhtäkään näistä geeneistä ei kuitenkaan löytynyt 95 ehdokasgeenin joukosta. Vaikka 
monen tunnetun säätelijän puuttuminen on perusteltavissa, on tulos melko yllättävä. Tämä 
kertoo osaltaan käytetyn menetelmän soveltumattomuudesta tietyntyyppisten 
säätelijägeenien etsimiseen. Käytetty data perustuu yksinomaan geenin transkriptiotasojen 
mittaukseen, vaikka geenien säätelyyn liittyy myös monia muita mekanismeja. Sen vuoksi 
organismin transkriptomiin keskittyvä tutkimus kykenee tavoittamaan vain pienen osan 
geenien säätelyverkostosta ja siksi monet säätelijägeenit ovat menetelmän 
ulottumattomissa. 

Suurin osa 95 ehdokasgeenistä on kuitenkin aiemmin huonosti tunnettuja, eikä niiden 
tiedetä liittyvän sellulaasien tuotannon säätelyyn. Tämän vuoksi potentiaalisten 
säätelijöiden joukosta voi hyvinkin löytyä entuudestaan tuntemattomia säätelygeenejä, 
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jotka puolestaan tarjoavat uusia mahdollisuuksia T. reesein entsyymituotannon 
tehostamiseen. 

Ehdokasgeenien joukosta löytyi kuitenkin muutama geeni, joiden on ajateltu liittyvän 
sellulaaseihin aikaisemmissa tutkimuksissa. Env1:n  on todettu reagoivan valoon ja 
aktivoituvan sellulaaseja indusoivissa olosuhteissa.  Cre4 on puolestaan Neurospora 
crassan geenin creD homologi ja sen on arveltu tehostavan sellulaasituotantoa. 

Saadut tulokset ovat koko genomin kattavia ja näin ollen niiden joukosta löytyy myös 
lukuisia muihin T. reesein toimintoihin liittyviä säätelyehdokkaita. Itse asiassa monien 
geenien osalta säätelijöitä vastaavat pistemäärät ovat huomattavasti korkeampia 
löydettyjen sellulaaseja säätelevien ehdokasgeenien pistemääriin verrattuna. Tämä 
tarkoittaa sitä, että joidenkin säätelygeenien havaittiin säätelevän tiettyjä geenejä lähes 
jokaisessa algoritmiajossa. Nämä hyvin vahvat ehdokkaat ovat erittäin kiinnostavia T. 
reesein muihin toimintoihin liittyvässä tutkimuksessa, mutta valitettavasti ne eivät ole yhtä 
kiinnostavia sellulaasituotannon kannalta. 

Sellulaasituotannon kasvattaminen edellyttää myös organismin valmiuksien kehittämistä 
niin aineenvaihdunnan, proteiinisynteesin kuin proteiininerityksenkin osalta. Kerätystä 
datasta voi löytyä hyödyllisiä ehdokassäätelijöitä, joista saattaa olla merkittävää hyötyä 
näiden toimintojen kehittämisessä. 

Koska tämän tutkielman analyysi perustui pitkälti samalla tavalla säädeltyjen geenien 
ryhmittelyyn, voi tämän rakenteen tarkempi tutkiminen paljastaa uusia johtolankoja. 
Jatkossa olisi siis syytä kiinnittää huomiota myös niihin geeneihin, joita sellulaaseja 
säätelevät geenit ohjaavat. Osa näistä geeneistä voi liittyä oleellisestikin polysakkaridien 
hajottamiseen tai sitä tukeviin toimintoihin. Tällaisten toimintojen tunteminen on hyvin 
tärkeää T. reesein arvokkaiden ominaisuuksien tehostamisessa. 

Tulosten perusteella Module Networks –menetelmä vaikuttaa soveltuvan hyvin T. reesein 
sellulaasituotantoa säätelevien geenien etsimiseen. Löydettyjen säätelyehdokkaiden 
todellisen roolin selvittämiseksi tarvitaan kuitenkin lukuisia laboratoriokokeita. 
Ehdokasgeenejä ylituottamalla tai poistamalla voidaan tutkia geenien vaikutusta 
sellulaasituotantoon sekä muihin toimintoihin. Tätä ennen ei hypoteeseja voida osoittaa 
oikeiksi. Toistaiseksi voidaan siis vain todeta, että menetelmä kykenee löytämään hyviä 
ehdokkaita, mutta niiden todellinen vaikutus jää myöhempien tutkimuksien arvioitavaksi. 
Toisaalta, mikäli lupaavimpien säätelyehdokkaiden joukossa on yksikin ennalta 
tuntematon sellulaasituotantoa tehostava geeni, osoittautuu menetelmä toimivaksi ja 
sovelluskelpoiseksi myös muihin samankaltaisin ongelmiin. 
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