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Abstract 

 
This thesis aims to produce insight into the price and demand relationship in a fashion retail set-

ting. The research goals are to create cross-price elasticity values for product groups and to use 

these values in price optimization. The obtained results will be used as suggestions when making 

product pricing decisions. Any results obtained are estimates, not exact due to the nature of elas-

ticity estimations.  

This research is based on a thesis work by another student, in which it was found that many of the 

products offered by the Company X have elastic demand. That notion motivated this research 

project, which extends the scope of the previous work and builds upon it. The data processing and 

modeling practices were determined in the early stages of the thesis project and stayed somewhat 

unaltered throughout the work. The extension from single products to product groups required 

changing from linear to multiple regression which produced the cross-price elasticity coefficients. 

The price optimization was run on several optimization methods and the results were compared 

and reflected on reality. The optimization methods are covered briefly in the mathematical section 

of the thesis. The thesis provides a brief look into the retail business and market theory as well as 

the mathematical aspects of the project. The most interesting concept for this thesis is price elasti-

city of demand, which describes how changing products' prices affects their demand. This concept 

and its interpretations are covered in the theoretical section of the thesis. 

Unfortunately, the results obtained from the computations were not of very good quality when sta-

tistical significance and the level of explained variation is considered. The values computed for 

single products were of better quality, which would encourage further research on individual pro-

ducts. However, the results provide the desired insight into pricing. Furthermore, it was noted that 

more development is needed to reach an even higher level of quality and more usable results es-

pecially with product groups. 
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Tiivistelmä 

 
Tämän diplomityön tarkoituksena on tuottaa laskennallisia tuloksia, joiden perusteella voidaan 

saavuttaa syvempää ymmärrystä myyntihinnan ja tuotteiden kysynnän välisestä suhteesta. Tutki-

mus on tehty yhteistyössä muotialan vähittäiskauppaa harjoittavan Yritys X:n kanssa. Tavoitteena 

on luoda tuoteryhmäkohtaiset kysynnän ristielastisuusarvot, joita käytettäisiin myös hintaoptimoin-

nissa. Laskennan tuloksena saatuja arvoja käsitellään suuntaa antavina lukuina hinnoittelupäätök-

siä tehtäessä. Kaikki tulokset ovat arvioita, koska elastisuuksia ei voida määrittää riittävällä tark-

kuudella. 

Tässä työssä tehtävä tutkimus pohjautuu toisen opiskelijan opinnäytetyöhön ja siinä saavutettuihin 

tuloksiin, joiden mukaan monien Yritys X:n tarjoamien tuotteiden kysynnässä on havaittavissa 

elastisuutta. Kyseisen tutkimuksen tulokset johtivat tähän projektiin, jossa edellistä tutkimusta laa-

jennetaan yksittäisen tuotteen käsittelemisestä tuoteryhmiin. Laajentaminen tuoteryhmiin vaati 

siirtymistä lineaarisesta regressiosta usean selittäjän regressioon (multiple regression), jonka tuot-

teena ristielastisuusarvot saadaan laskettua. Hintaoptimoinnissa hyödynnetään useampaa opti-

mointimenetelmää, joiden tuottamia tuloksia vertaillaan ja peilataan todellisuuteen. Eri menetelmät 

esitellään työn teoriaosiossa. Datan käsittelyyn ja mallintamiseen liittyvistä menetelmistä sovittiin 

projektin alussa ja ne pidettiin lähes muuttumattomina loppuun saakka. Työn teoriaosio tarjoaa 

näkökulmaa muotialan vähittäiskauppaan ja yleisesti markkinateoriaan, sekä työn matemaattisiin 

käsitteisiin. Tämän diplomityön kannalta tärkein ja mielenkiintoisin käsite on kysynnän elastisuus, 

joka kuvaa tuotteen kysynnän muutosta myyntihinnan muuttuessa. Kyseinen ilmiö käsitellään tar-

kasti työn teoriaosiossa. 

Työssä saavutetut tulokset jäivät valitettavasti laadultaan heikoiksi etenkin tilastolliselta merkit-

sevyydeltään. Käytetyt mallintamismenetelmät eivät pystyneet selittämään datassa esiintynyttä 

variaatiota riittävän hyvin tuoteryhmiä käsiteltäessä. Yksittäisiä tuotteita tarkasteltaessa laatua 

saatiin parannettua huomattavasti, mistä johtuen tulevaisuudessa voitaisiin keskittyä tuoteryhmien 

sijaan laajempaan yksittäisen tuotteen tarkasteluun. Tuloksista saadaan toivottua näkemystä hin-

noitteluun, vaikkei toivotussa määrin. Lisäksi, tätä tutkimusta tulisi kehittää edelleen, esimerkiksi 

kohti dynaamista hinnoittelumallia, jotta voitaisiin siirtyä tuoteryhmien käsittelyyn ja saavuttaa laa-

dukkaampia tuloksia niiden hinnoittelua varten. 
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1 Introduction

This thesis is based on a project, conducted in collaboration with a fashion
retail company. The project was initiated by this fashion retail company
(from here on referred to as Company X), due to high competition on the
�eld and the desire to set some statistical basis on pricing. We have access to
real transactional data, as well as other deliberately selected tables of infor-
mation that are used to re�ne the raw data and develop our model further.
Most of the data, graphs and exact results have to be left out of this thesis
due to con�dentiality issues, but we will do our best to describe them in order
to provide the reader a good picture of what was accomplished. The goal
of this thesis is to compute elasticity of demand values to both individual
products and product groups, as well as look for optimal pricing suggestions
to presented product groups.

The retail market is a highly competitive �eld, with numerous companies,
retail chains, online retailers and other wholesalers all competing with each
other for the same consumers. Each �eld under the concept of retail has
its' own characteristics and unique aspects. One of such interesting �elds
is fashion retail. Namely, seasonality and ever changing trends have a sig-
ni�cant e�ect on fashion retail among other variables, such as brand and
store preferences. The latter ones might be rooted deeper in the individual,
whereas the �rst ones are more universal, quickly changing and a�ecting all
potential consumers. Nowadays, the development of Internet provides new
information outlets to consumers and thus increases the consumer awareness
and cost consciousness, since there are increasingly large amounts of infor-
mation available. The fashion retail companies must be able to handle quick
seasonal and trend changes, answer the consumers' demand and recognize
the consumer's awareness while upholding their own image in order to gain
an upper hand over the competition. This thesis addresses one of the issues,
that retail companies can do to achieve advantage through more e�ective
pricing.

Often, retail companies follow some "rules" when pricing their products and
deciding on markdowns (Levy et al. 2004). Such practice may work since it
is based on past experiences of successful decisions. Even though such easy
way is lucrative, it might be more e�cient to utilize the collected data to
more extent. Especially nowadays, there are huge amounts of data available
that can be analyzed. The transactional data that retail companies have, can
be regarded as one of the most valuable assets in their disposal. It might be
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rather e�ortless to lower a price for one product and observe the increase in
demand, whereas on the other hand it could be far more di�cult to observe
the e�ect that same price adjustment has on other items. The data analysis
could provide insight to that dimension as well. Recently, such ideas have
been embraced by some companies using customized dynamic pricing mod-
els for their own markets, utilizing, among other factors, the historical data
available to them (Grewal et al. 2011).

Levy and his colleagues (2004) list some aspects that need to be taken into
account when creating a pricing model in retail. Some of these factors are
explicitly related to elasticity of demand, which is the main point of interest
for this thesis. The elasticities are a product of statistical analysis of the
data available to us. They depict the e�ect a price adjustment has on the
demand of the items. This is called the price elasticity of demand, and we
will observe both the items' own-price elasticities and cross-price elasticities
in a fashion retail setting. Similar research has been conducted for exam-
ple in the electricity market (Kirschen et al. 2000). More extensive list of
other elasticity of demand research is provided by Dawit Mulugeta and his
colleagues in their presentation from the SAS Global forum in 2013.

As always, the Company X strives to ful�ll the customers' needs and to
provide as good a customer experience as possible. Similar motivation is be-
hind this project as well. We want to use the analysis conducted in this thesis
to �nd elasticity of demand values for products and product groups. Further,
we venture an optimization problem based on the computed elasticities, with
a goal of �nding optimal prices for some product groups. Additionally, we are
interested in understanding and interpreting the elasticity values, especially
in the sense of �nding potential substitute and complementary products. The
obtained results and possible future research suggestions are discussed in de-
tail in the �nal sections of this thesis.

The statistical analysis, as well as the later computations are run with a
program called Rstudio. The software enables R-programming, which is a
well documented open source programming language, developed especially
for statistics and data analytics. The R environment is easily extended by
installing packages that can be downloaded from speci�c sites. All code writ-
ten for this thesis is considered con�dential and thus will not be presented.
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2 Background and Theory

In a traditional sense, retail is understood as a system where retailers function
as intermediaries between the producers and consumers (Niemeier, Zocchi &
Catena 2013). They create additional value to both and take a pro�t o�
of the transaction for themselves. In essence, retailers help producers �nd
the market for their goods by introducing them to consumers through their
stores and online sites. Recently, many retailers have started to pay even
more attention to creating additional value to the customer by enhancing
the customer experience (Grewal et al. 2009; Verhoef et al. 2009). This is a
mindset present in the Company X as well. Thus it might be more appropri-
ate to view current retailers as agents creating and co-creating value to the
customers through customer experience in addition to the plain transactions
and ful�lling demand (Sorescu et al. 2011).

Some date the evolution of retail back to the historic time when people ex-
changed goods with each other, while others consider retail to have been born
with the traveling salesmen of the Middle Ages (Niemeier et al. 2013). Fol-
lowing the latter interpretation, retail has evolved from a single salesman to
multinational, internationally signi�cant retail companies through industrial
development and globalization. At present, consumers are provided with
countless opportunities to research di�erent products and compare prices
from several retailers with little e�ort. Thus, setting competitive prices is
one of the ways to stand out from the competition. However, baring in mind
the nature of retailing, retailers must also strive to maintain their pro�tabil-
ity in order to survive in the highly competitive market, which a�ects their
pricing decisions greatly.

Since retailers are in essence service providers, bringing supply and demand
together, they need to listen to and observe their customers to make good
management and market decisions. Following the law of demand, pricing
decisions are among the critical ones. Lower prices are expected to increase
demand while pro�tability might decrease. On the other hand high prices
would lead to a decrease in demand and might even steer consumers toward
competition in hopes of lower prices. An important concept in this thesis,
following similar logic, is that of price elasticity of demand, originally devel-
oped from marginal utility theory (Marshall 2009, referenced in Owen 2012 &
Mulugeta et al. 2013). Price elasticity describes how changing the price of a
product a�ects the demand for the same product, or others. The concepts of
own-price and cross-price elasticities respectively, will be explained in more
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detail in this section of the thesis.

This section introduces a basis for our research. We start with a brief review
of literature on retail, supply and demand as well as price elasticities. That is
followed up by an introduction of a preceding research project, the results of
which motivated our research. Finally, we bring in the mathematical expres-
sions for the relevant concepts and give a brief explanation of the relevant
optimization methods used in this project.

2.1 Market and Retail

As stated in the previous section, retail can be viewed as a system, where
retailers function as intermediaries between producers and consumers. In a
sense, retailers are agents connecting the market by bringing the demand
to the suppliers. On the other hand they also facilitate a platform through
which supply can reach the customers. Figure 1 illustrates this in a simple
case of one retailer, three producers, a store network of �ve stores and a
pool of consumers respective to each store. The alternative view on retailers
can be explained with the same graph, with the addition of the services and
additional value that retailers create and co-create for the customers in the
processes linking di�erent levels of the system.

Figure 1: A �ow chart depicting how a retailer works between the producer
and a pool of consumers.

In a simple case as in �gure 1, the retailer buys the products from a manufac-
turer and distributes the items to the local stores, from where the consumers
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can purchase a product �tting their needs. The challenge for fashion retail-
ers is to determine a proper distribution of di�erent product lines to stores
in di�ering demographic and geographic areas to maximize the local sales.
Furthermore, they need to be able to move the existing inventory to make
room for new products in a fast changing fashion retail market. In order to
win the consumer over, the retailers have the possibility to o�er their cus-
tomers promotional and other discounts and o�ers. An increasing amount
of retailers have started to provide an online store option in order to reach
the customers who prefer to search for information and make their purchases
online instead of visiting an actual bricks-and-mortar store. Additionally, the
present retail market has welcomed a signi�cant amount of online retailers
who are utilizing the power of Internet and computing to take the demand
and supply online (Niemeier et al. 2013). With these recently introduced re-
tail business models, the same retailer can provide the customer with several
options to utilize for di�erent purposes (Sorescu et al. 2011). We concentrate
our e�ort on the more traditional retailers in this phase of the project and
leave the online options to future research topics.

The retailers make their pro�t by taking a piece of the transaction between
the consumer and the producer. In essence they subtract a commission from
the ultimate sales price that the consumers pay for any given product. The
challenge is to manage the transactions and win the consumers from compe-
tition. The more information is available to the consumers, the more they
know and learn and thus become more aware of di�erent options and prices
available. The consumer behavior is a�ected by a great deal of other factors
as well, but this thesis will not address them directly. We are more inter-
ested in the way prices a�ect the demand for goods. Furthermore, the level
of quantity demanded, or ultimately the quantity sold, a�ects the retailer's
revenue which is related to another point of interest in this thesis, �nding
optimal price suggestions for product groups.

2.1.1 Pricing

The demand created by consumers is the guiding force in the retail market.
Customers determine the pool of products that sell. Of course this pool
includes similar products, some of which are considered inferior while some
are considered luxurious items. The demand for these products depends on
several variables, such as the wealth and income level of the consumer demo-
graphic. Producers and retailers can try to a�ect the demand by pricing and
moderating the supply. Additionally, since customers are exposed to di�er-
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ent fashion trends through media, magazines and various public �gures, the
producers and retailers can a�ect such trend setting outlets through collab-
oration. Although the producer and retailer both aim to ful�ll the demand
created by the consumers, they also have a goal of selling their respective
top line products which usually create more revenue and likely more pro�t
in the sense of higher gross marginal. Consequently, the collaborations with
trend setters and other fashion and style media exist. In the end however,
the consumer is the force that creates and determines which products are of
higher demand and both producers and retailers need to listen to and react
to their wishes.

In addition to price, there are other underlying reasons that can cause �uc-
tuations in products' demand, which include for example aforementioned
changing fashion trends, brand preferences and seasonality. The �rst of these
is something that the retailers and manufacturers could try to a�ect as men-
tioned previously. Opposite can be said of the seasonal demand �uctuations
that can be caused by the environmental changes due to the time of year. For
instance, the demand for snow boots increases after the �rst snowfall while
the demand for skateboards might drop simultaneously. On the other hand
some products, such as T-shirts, are not a�ected as strongly by such changes.
Furthermore, seasonal e�ects can be seen for instance around Christmas and
Valentine's day. The retail industry has many international companies that
need to take into account the global di�erences in addition to the seasonal
ones. For instance, the demand for some product groups is probably di�erent
in the northern Finland when compared to that in Spain due to very di�erent
environmental and seasonal aspects.

There are such factors a�ecting demand, that are not necessarily depen-
dent on pricing or seasonality. One such factor is the consumer's brand
preference. For instance, the demand in a product group of speci�c type
of trousers can be signi�cantly emphasized on one option regardless of the
pricing in that product group, due to that speci�c model or brand being
the more preferred one. Additionally, some brands might launch exclusive
and highly limited product collections that, for example, have been designed
in collaboration with some famous fashion designer or a well known public
�gure. Such special collections might experience high demand regardless of
their price being signi�cantly higher than any similar product from the basic
collections. These kinds of preferences are individual to the customer and
thus di�cult to model and will be left outside the scope in this thesis.

When the demand and supply are in balance, in mathematical sense when
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their functions intersect, we have reached a market equilibrium. In the equi-
librium the supply equals the demand exactly. The market sets some level
of demand and the suppliers need to react to that demand by providing
products for some price. When the supply and demand meet, we have an
equilibrium price. This relation is presented in �gure 2. Deviating from this
price might give a boost to a retailers sales due to consumers choosing the
lower price. This kind of consumer behavior will motivate a quick reaction
from the competing retailers and they will more than likely give the same or
a substitute product a markdown to neutralize that competitive advantage.
Thus the equilibrium will shift accordingly. However, some retailers use per-
manent markdowns in order to tempt consumers with lowered prices and thus
increase the sell-through on respective products. With an unlimited supply,
this habit would not be pro�table, but retailers rarely have a supplier with
endless inventory to o�er them more products. Thus the permanent mark-
downs usually last until the products in question are sold out of stock. These
permanent markdowns could be a consequence of a trade deal o�ered to the
retailer by a manufacturer (Hall, Kopalle & Krishna 2010). In such a deal
the retailer could have an opportunity to purchase a large quantity of some
product for a lower than normal price. Consequently, the sales price could
be subject to a permanent markdown.

D
S

Equilibrium

Quantity

Price

Figure 2: An illustration of the market equilibrium with demand and supply
functions.

As �gure 2 shows, the market equilibrium and the respective equilibrium price
is found when the demand and supply functions intersect. Deviating from
this price causes instability on the market since one retailer has shifted their
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supply function toward right in the graph. The shift is due to the retailer
o�ering the similar quantity of products for a lower price. Said deviation
would also shift the intersect to lower equilibrium price, which would yield
higher quantity demanded. This could be, for example, due to consumers
choosing this retailer instead of the competition or attracting the more cost
conscious buyers with the lowered prices. At a price lower than equilibrium,
the demand exceeds supply, which leads to products selling out. On the
other hand prices higher than equilibrium cause a supply surplus due to low
demand.

The market equilibrium can shift for several reasons, one of which was ex-
plained above. Any changes in consumer behavior and price sensitivity, as
well as supplier or retailer driven changes can cause the equilibrium to shift.
The retailers could gain valuable insight to the market from research and
utilizing data available to them. Especially in a competitive market, such as
fashion retail, it is important for retailers to give thought to pricing. Through
pricing it could be possible for retailers to increase their sales as well as gain
consumers from the competition. However, pricing too low could eat away
the pro�tability and lead the retailer to problems in the market. On the other
hand, pricing lower in order to gain market share and increase future tra�c
on the expense of current pro�ts could be a good strategy since consumers
are becoming ever more sensitive to price (Fox, Postrel & Semple 2009). This
approach would require the retailer to be in such an economic state that it
can sacri�ce short term pro�ts for long term gains. As the market theory and
the equilibrium suggest, the market is interesting for new entrepreneurs and
companies when prices are forecast to increase, while many are tempted to
leave the market when prices are decreasing. Thus driving the prices lower
could motivate some of the competition to abandon the market (Levy et al.
2004) and in doing so to increase the retailers market share and future tra�c.

Pricing does have an e�ect on consumer behavior and thus a�ects the buying
decisions. Lower prices are often connected with a perception of low quality,
while higher prices usually re�ect higher quality (Dodds, Monroe & Grewal
1991; Levy et al. 2004) in the minds of consumers. On the other hand,
prices lower than customers' preferred price range would yield an increasing
net value for the product while prices higher than the preferred price range
would yield a decreasing net value. Therefore, in consumers mind the per-
ceived quality and the gained value form a tradeo� which a�ects their buying
behavior. For example if the price is too high, the customer feels that there
is no net value available by purchasing the product, since the sacri�ce would
be too great, albeit for a quality product (Dodds et al. 1991). Finding the
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acceptable price range and creating additional value through customer ex-
perience have the potential to a�ect such tradeo� situations to the mutual
bene�t of the customer and retailer alike.

The market in retail is a fast-changing competitive environment and retailers
need to be able to react quickly to changes in the market and competition.
Some companies have come up with specialized dynamic pricing models, that
utilize market data and their own transactional data to set optimal prices
more frequently according to the present or forecast demand (Grewal et al.
2011; Hall et al. 2010). These pricing models have become more frequently
used since the amount of data available has grown signi�cantly and the sense
of urgency in the market has increased. Additionally, dynamic pricing models
enable small scale price discrimination, which could even mean price person-
alization to individual customers (Grewal et al. 2011). Such opportunities
are interesting to retailers since �nding the optimal price in the market could
maximize their revenue. Which in turn could facilitate larger pro�ts. Cross,
Higbie and Cross (2011) wrote that revenue maximization, rather than cost
minimization has lead to promising results on various �elds, such as avia-
tion, travel, delivery and retail. They talk about revenue management and
price optimization using demand forecasts, price elasticities and competitive
rates. Their examples of historically signi�cant companies surviving severe
di�culties in large part due to revenue management, is further motivation
to the importance of analytical pricing.

Now that we have accomplished an idea of the importance and e�ects of
pricing, we will introduce the concepts of price elasticity of demand in more
detail. These concepts carry a signi�cant meaning for our research, the main
point of which is to �nd own-price and cross-price elasticity values and inter-
pret the relationships between products within a speci�c product group. The
following section will include some interpretation models of these elasticities
as well.

2.1.2 Elasticities of demand

The concept of elasticity has been mentioned on several occasions in this the-
sis. This section gives a rather economist style explanation to the two types
of elasticities this thesis addresses: own-price elasticity of demand and cross-
price elasticity of demand. We begin with own-price elasticity and extend
that into cross-price elasticity. In this section, we give the basic explanation
to the concepts with easy to read equations, the better mathematical expres-
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sions of which will be introduced later on in the following sections.

Basically, these elasticity values measure the extent to which the demand
for a product is a�ected by the change in it's price. The concept was orig-
inally derived from Marshall's (2009) work, the �rst edition of which was
published in 1890. The applications have since been developed further and
for instance, many dynamic pricing models (Grewal et al. 2011) and market
analysts use (Cross et al. 2011) and should use (Levy et al. 2004) these con-
cepts when determining proper pricing for their products. The elasticities
have been applied in various �elds of study, including groceries (Genchev &
Yankova 2010; Andreyeva, Long & Brownell 2010), water (Espey, Espey &
Shaw 1997; Schoengold, Sunding & Moreno 2006), oil (Cooper 2003), gaso-
line (Hughes, Knittel & Sperling 2006), electricity markets (Kirschen et al.
2000; Thimmapuram & Kim 2013), housing (Hanushek & Quigley 1980; Er-
misch, Findlay & Gibb 1996), and aviation and travel (Cross et al. 2011).

The own-price elasticity value is calculated by comparing the percentage
change in the product's demand with the percentage change in the product's
price. The relation is presented in the following equation (1). The sign of the
elasticity value indicates the direction in which the changes occur. In case we
want to only observe the extent of elasticity, it is enough to look at the ab-
solute value of elasticity. An absolute elasticity value below 1 indicates that
the product's demand is inelastic for that price change. For example, having
an elasticity value of 0.2 would indicate that for a 10% change in price, the
response in quantity demanded would be a change of 2%. Elasticity values
above 1 indicate elastic demand, meaning that the change in price causes a
larger change in quantity demanded. For example an elasticity value of 1.5
would lead to 15% change in quantity demanded when the price is changed
by 10%. Elasticity value of exactly 1 is called unitary elasticity, which means
that the percentage changes in price lead to equal percentage change in de-
manded quantity.

Own− price elasticity =
% Change in quantity demanded

% Change in price
(1)

An extension to the concept presented in the equation (1) is that of cross-
price elasticity of demand. This elasticity value measures the extent to which
the demand for product A is a�ected by the change in price of product B.
The magnitude of the cross-price elasticity value has a similar interpretation
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to that of own-price elasticity. The relation that yields the cross-price elas-
ticity values is presented in equation (2) below.

Cross−price elasticity (BA) =
% Change in quantity demanded (A)

% Change in price (B)
(2)

The above relation is best understood through examples. Let's assume we
have two relatively similar pairs of jeans in price, looks and material. The
choice between the two is assumed to not be a�ected by brand or other pref-
erence. Now, if we were to lower the price on one pair of jeans (B), the
rational consumer would choose to purchase that pair of jeans (B) due to
lower price. This could possibly mean that the increased demand for the dis-
counted jeans (B) leads to a decrease in demand for the other pair of jeans
(A). In essence, lowering the price a�ected the preference of the consumer.
Such a dynamic could be described with a positive cross-price elasticity, due
to the changes in price for jeans (B) and demand for jeans (A) being both
decreasing. A positive cross-price elasticity would also imply that the two
products are substitutes, whereas a negative cross-price elasticity would sug-
gest the products to be complements. For example, lowering the price of run-
ning shoes could lead to an increase of demand for running socks in addition
to the shoes themselves. Finding such relationships is important to retailers,
since that could provide more insight into consumer preferences, facilitate
more accurate forecasting of demand in the presence of discounts and pro-
vide help with product bundling. Additionally, uncovering some unexpected
complements could assist retailers in upselling, which means recommending
additional products to those a customer has decided to purchase and thus
increasing the level of customer experience.

Pricing in general is important for retailers as mentioned earlier. Under-
standing the e�ect prices and price adjustments have on demand is equally
important in order to gain maximum revenue in a highly competitive market.
The advantages range from optimal pricing strategies to discounting, prod-
uct bundling and marketing (Mulugeta et al. 2013). Levy and his colleagues
(2004) noted that di�erent price optimization systems have a common as-
pect of analyzing price elasticities while being otherwise very di�erent. Due
to having access to large amounts of data and highly sophisticated software
tools, it is important for retailers to take advantage of these opportunities
and to enhance their functions and thus pro�tability. This project is one of
the �rst steps for Company X to take advantage of the transactional data

12



through price analytics. Company X is hoping to gain additional insight into
pricing and the relationships between products across various product lines
and groups.

It needs to be noted that the elasticity value depends on the price change
and is not a universal value for the respective product across all prices. Fur-
thermore, the elasticity values vary over time, since there are other factors
a�ecting demand in addition to price. Thus changing the observation period
might alter the resulting elasticity values signi�cantly. This notion is taken
into account in the following analysis by determining the interesting time
periods for each product analyzed. Due to price and time sensitivity, the
elasticity values are only regarded as estimates. In our case, we will be using
weighted means of products' prices to calculate the elasticity estimates. We
will also compute the values using di�erent levels of aggregation in the data.
The results are described and discussed in the later sections.

2.2 Basis

This thesis is based on an existing research conducted by another Master's
student in collaboration with the Company X. That research was a case study
that includes a group of stores and a large selection of test products. The aim
was to investigate if the demand for the selected products was a�ected by
changes in their respective prices. During the test period, the participating
stores were divided into groups that made price adjustments according to the
directions provided by the project team. The transactional data was then
collected and re�ned in order to analyze it further. The analysis suggested
that most of the test products, regardless of the product group, demonstrated
elastic demand behavior. Our project is an extension to the previous research
and aims to investigate similar relationships and interactions within product
groups instead of individual items.

The previous research is based on the assumption that the price - demand
relationship can be modeled with a linear regression model. This assumption
has some theoretical basis, since linear regression gives a good approxima-
tion on a small price range and it is easier to extend to a longer time as
well. This approach was used for example by Owen (2012), Hall, Kopalle
and Krishna (2010) and Mulugeta and his colleagues (2013). Furthermore,
it is quite easy to add variables to a linear regression model. In this sense
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linear regression is more e�cient than for example mid-point formula when
estimating elasticities, as pointed out by for example Dawit Mulugeta and
his colleagues in their presentation in SAS Global Forum (2013). However,
we realize that the price - demand model is rarely linear, which means the
results are suggestive at best. Furthermore, elasticity values obtained from
the analysis are approximations, not exact values. Consequently any results
and pricing solutions yielded by our analysis are not absolute truths but only
give suggestions on possibly better pricing decisions.

Using linear regression to model the alterations in products demand when
facing changes in price, yielded results where most test products showed a
downward slope, which would suggest the products to have negative own-
price elasticity. An example of such graphs is presented in the �gure 3. A
negative slope is resulted in by increasing demand for a respective product,
when the sales price is lowered. The changes are of opposite direction, which
causes the slope to be negative and follows the theoretical model of the law of
demand. In the �gure 3, the vertical axis represents average daily demanded
quantities while the horizontal axis has the di�erent sales prices.

Figure 3 presents a product with negative own-price elasticity. Many ordi-
nary products have a negative elasticity value, indicating that demand for
such product decreases when the price increases. If the elasticity value is
strongly negative (< −1) the product is likely to have substitute products
(Genchev & Yarkova, 2010). Although, the substitute products are better
revealed through cross-elasticity research. Products that have an inelastic
demand would have a horizontal line instead of a slope. That would indicate
that the product is sold with similar quantities regardless of the price. Such
products can be considered absolute necessity products that do not have
signi�cant substitutes. Additionally, the slope can also be positive, which
would suggest that the respective product experiences higher demand when
the price is increased. There are several reasons why and examples of such
goods that do not follow the law of demand, such as Gi�en (Nachbar, 1998)
goods.

The previously obtained results hold a strong suggestion about the own-price
elasticity of the observed products. The results have motivated an extension
from individual products to entire product groups. It was chosen that we
would form product groups instead of for example observing di�erent brands
separately, due to intuition and proof of better e�ciency of such practice
(Hall et al. 2010) as well as better indication of the relationship between
competing products (Levy et al. 2004). Within this thesis, we are interested
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Figure 3: An example of the original graphs suggesting own-price elasticities.

in enhancing the previous computations to �x some issues with the data
analytics, as well as extending the elasticity research to product groups. Ad-
ditionally, we use the cross-price elasticity values in price optimization. This
�nal phase is interesting, since any advantage or extra insight is welcome in
the highly competitive retail business.

2.3 Mathematics

In order to understand the process of �nding answers to our research ques-
tions, the following chapter introduces the relevant mathematical expressions
used in this research. We assume the reader to be familiar with the mathe-
matical concept of linear regression and the basic applications thereof. The
general presentations of simple and multiple regression models are presented
in the appendices in case revision is needed. We will have a brief look at
correlation analysis and implications thereof, followed by the mathematical
expression of the concept of elasticity, both own-price elasticity and cross-
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price elasticity. Finally, we will present the relevant optimization methods
utilized in this project.

Since the reader has been assumed to be familiar with the concept of lin-
ear regression, we will start with correlation analysis, which is related to
linear regression. By computing a sample correlation coe�cient for two vari-
ables, we can �nd out the level of linear association between the two. The
correlation coe�cient r gets values −1 ≤ r ≤ 1. The absolute values of r
approaching 1 indicate stronger association, whereas those closer to 0 suggest
low levels of association. In essence, regression analysis is similar in the sense
of observing variables association by �tting a model into a sample of obser-
vations. The correlation analysis is not the main focus in this thesis, but it
will be used when choosing the proper product groups and speci�cally when
excluding some items from a product group due to low correlation between
it's price and the demand of others. The calculation formula for correlation
between two variables, dubbed "x" and "y", is

r =
Cov(x, y)√
s2x ∗ s2y

, (3)

where s2x and s
2
y are the respective sample variances for x and y. The sample

covariance is

Cov(x, y) =
Σ(x − x̄)(y − ȳ)

n − 1
, (4)

where x̄ and ȳ indicate sample means, and n stands for sample size. The
sum in the numerator includes a product of the di�erences between each pair
of observations and the respective sample means. Applying the equations (3)
and (4) in the later phases of this project allowed us to choose the relevant
products into the same product group for computations.

Own-price elasticity of demand is similar to correlation between the prod-
ucts price and it's demand. The stronger resemblance and our chosen path
to compute the own-price elasticity values is through regression analysis. We
�tted a linear regression model to our sample and determined the slope of
the obtained model. The slope in turn is needed to determine the own-price
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elasticity value for the product in question. The following equation presents
the formula for own-price elasticity,

εA =
%∆QA

%∆PA

=
∆QA

∆PA

∗ PA

QA

. (5)

The latter form of the above equation (5) includes a familiar notation from
regression analysis. The term ∆QA/∆PA, is the formula to calculate a slope
of a linear regression model. Since price PA and quantity QA are always
positive values in our case, the slope determines whether the elasticity value
is positive or negative. By using the slope and choosing proper prices and
demand levels for the computation, we are able to obtain the own-price elas-
ticity values respective to those prices and quantities. As noted earlier, the
elasticity values are price and time sensitive and thus choosing the price and
quantity levels carefully is important and the elasticity values will change
with the price and quantity levels chosen to the calculation. The elasticity
values describe how the demand is a�ected by price changes on that exact
price point.

Extending the own-price elasticity to span an entire product group yields
the concept of cross-price elasticity. Now we observe other products' prices'
e�ect on the demand of another. We need to use multiple regression instead
of simple linear regression. Multiple regression model is explained brie�y in
the appendices. Now the slope is replaced by the variable speci�c coe�cients
from the multiple regression model (denoted by bi in the appendix) when
determining the cross-price elasticity values. The calculation formula for the
cross-price elasticity values is,

εBx =
%∆QA

%∆PB

=
∆QA

∆PB

∗ PB

QA

. (6)

The main di�erence between the computation of own-price and cross-price
elasticities lies in the inclusion of other products in the regression model for
cross-price elasticity. The computation becomes more complex with more
products and the regression model is more di�cult to �t on the data. The
di�erence can be seen from the calculation formulas as well. The formula
for cross-price elasticity in equation (6) has price change %∆PB instead of
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%∆PA, which indicates that the price change a�ecting the value of cross-
price elasticity of product A is of the price of product B. The notation on
the equation (6) is by design εBx , which means that the value is the cross-
price e�ect of product B on the demand of product A.

We are interested in the cross-price elasticity values of entire product groups
and want to have these values available for interpretation in a form that is
easy to read. Consequently, we store the values in a matrix, each row of
which includes the cross-price elasticity values for the respective item pairs.
The diagonal of the matrix represents the own-price elasticity values yielded
by the multiple regression model. For the optimization phase this matrix is
�lled with the multiple regression coe�cients instead of cross-price elasticity
values and needs to be transposed. The matrix was deemed easier to read
and understand when the elasticity values were stored this way.

The matrix that is �lled with the multiple regression coe�cients is carried
on to the optimization phase. This part of the computations is explained in
more detail in the following section.

2.3.1 Optimization

The cross-price elasticities, and more precisely the multiple regression models
are utilized in the optimization phase of the project. While the elasticity
values are extracted by utilizing the coe�cients in the regression model, the
coe�cients themselves are used in the objective functions in the optimization.
This section presents the optimization methods used in this project. We
used several di�erent methods in the optimization phase to test multiple
approaches and algorithms in order to compare the results. The optimization
methods were then applied in Rstudio environment and proper options were
selected for the in-built optimization tools to make the algorithms work as
wanted. The following will introduce the methods one by one.

Nonlinear conjugate gradient method

The conjugate gradient method is usually used when solving large problems
that would otherwise require large amounts of storage memory. Such prob-
lems could prove problematic for example when implementing quasi-Newton
methods (Kelley 1999). The conjugate gradient methods have, however,
demonstrated some reliability issues when the initial conditions and the ini-
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tial guess are not carefully speci�ed.

For a quadratic optimization problem, the conjugate gradient method uti-
lizes a linear combination of the residual r, which is not to be confused with
the correlation coe�cient from the previous section, and the search direction
d in the iteration update. Since the search direction is itself a linear combi-
nation of the previous residuals, the only storage needed is for the residuals
and search directions. The nonlinear method is an extension to the linear
conjugate gradient method. The linear method minimizes

f(x) =
xTHx

2
− xT b, (7)

with the residual being simply the negative of the gradient:

r = b − Hx = −∇f(x). (8)

The extension to nonlinear problems becomes such that the initial state is
r0 = d0 = ∇f(x0), and the iteration steps

rk = ∇f(xk), (9)

dk = rk + βkdk−1. (10)

The update of the decision variable x can be done by an analytic mini-
mization in a quadratic problem, while a nonlinear problem requires a line
search. The update for the decision variable x becomes

xk+1 = xk + αkdk. (11)

In equation (11), the αk denotes the step size in the iteration, which will

19



terminate when the change in the function value decreases below a set ter-
mination parameter t. The �nal part of the initial speci�cations is to choose
a proper value for the constant βk. There are a few common choices which
will not be discussed here. For example, Kelley (1999) presents two of those
common options.

We will implement the conjugate gradient method on our quadratic problem
and compare the results with other methods that utilize a di�erent approach
on �nding an optimum.

Nelder-Mead method

The following method of �nding an optimum is called the Nelder-Mead
method. This is usually a reliable option, although it might be slower than
other, more developed methods. Nelder-Mead simplex algorithm does not
need any gradients, but evaluates the function itself. In order to �nd a min-
imum for a function of n variables, we need to construct a simplex of n + 1
vertices. The function is evaluated in each vertex and the function values are
sorted accordingly,

f(x1) ≤ f(x2) ≤ · · · ≤ f(xN+1). (12)

The vertex x1 gives the "best" objective function value and xN+1 gives the
"worst" one. The algorithm replaces the "worst" vertex with a new one,
which is of the form:

x(µ) = (1 µ)x − µxN+1, (13)

where x is the centroid of a convex hull of {xi}Ni=1,

x =
1

N

N∑
i=1

xi. (14)
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Thus, the simplex is updated by replacing the vertex that yields the "worst"
function value with a new one. The new vertex should yield a function value
at least better than the previously removed vertex. For simplicity, we give an
example for a case with two variables, which would have a simplex of three
vertices. The �rst step of such simple case is presented in �gure 4 below.
Further and more accurate information on the Nelder-Mead algorithm can
be found from Kelley's (1999) work on iterative optimization methods.

A

B
D

C

D1

D2

D3

D4

Figure 4: An illustration on the �rst step of a Nelder-Mead simplex algorithm
for two variables.

Figure 4 presents a simplex with three vertices. The objective function would
thus be of two variables. The algorithm evaluates the objective function in
each of the original vertices A, B and C. The vertix that yields the "worst"
value needs to be removed and replaced. Lets assume vertix A yields the
worst value. The candidates for a new vertix lie on the dashed line drawn
from A through the centroid of B and C, which is denoted by D. Now the
function value is evaluated in vertix D1. If the value here is better than the
best value from A, B and C, then this line is deemed a good direction of
descent. Next the function value is estimated in D2. If this vertix provides
an even better value than D1, then A is replaced with D2, otherwise with
D1. On the other hand, if D1 gives a better function value than A, but not
the best, then A should be replaced by D4. In case D1 is worse than A, we
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choose D3 to replace A. We end up with a new simplex, which will be sub-
ject to a similar procedure. This iteration is continued until we have found a
good enough approximation of an optimum. This method was chosen to be
used as a reference for it's reliability and simplicity, even though it does not
necessarily converge in every case.

Quasi-Newton methods

The more important group of optimization methods for our purposes is
that of quasi-Newton optimization methods. These methods use the sec-
ond derivatives of the objective function, namely ∇2f(x∗), by updating it's
approximation during the iteration. Generally, the algorithms determine the
updated approximations by �rst �nding a feasible direction for a line search
procedure to �nd an updated decision variable. This is then used to update
the Hessian matrix. The general update iteration for the approximates is
presented below. Di�erent quasi-Newton methods are set apart by the man-
ner in which the Hessian is updated (Step 3 in equation group (15)):

1 : Determine feasible direction d = −H−1
− ∇2f(x−);

2 : Update the decision variable x+ = x− + λd by line search;

3 : Update the Hessian to H+ by using x−, x+, and H−.

(15)

The method we introduce is called the BFGS method. The abbreviation
stands for Broyden, Fletcher, Goldfarb and Shanno method (Kelley 1999).
This method, among others grouped in quasi-Newton methods, satis�es the
secant equation and can thus be characterized as a secant method. The
BFGS method requires a more complex Hessian update, than that of a stan-
dard nonlinear equation which only requires rank-one update. The BFGS
method needs a rank-two update, which is an extended version of the stan-
dard Broyden's method. This update method is,

H+ = H− +
yyT

yT s
− (H−s)(H−s)

T

sTH−s
, (16)

where s = x+ − x−, and y = ∇f(x+) − ∇f(x−). In order to reach the
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best performance from this algorithm, some strong assumptions need to be
made of the objective function and the initial iterate value. Given that the
set D = {x| f(x) ≤ f(x0)} is convex, the objective function f is Lipschitz
twice continuously di�erentiable inD and that there are λ+ ≥ λ− > 0, that
satisfy σ(∇2f(x)) ⊂ [λ−, λ+], ∀x ∈ D, we can reach superlinear convergence
to x∗. These assumptions would also imply x∗ to be a unique minimizer to
f . (Kelley 1999)

Our research requires constraints on the decision variables xi. For this reason
we need to extend the standard BFGS method to allow bound constraints.
The resulting method, with an addition of limited memory usage, becomes
the L-BFGS-B method, which stands for limited memory BFGS method with
box (bound) constraints. The constraints can be of form li ≤ xi ≤ ui. This
algorithm utilizes a simple gradient method to determine free variables on
each iteration and then performs the limited memory BFGS method on those
variables to increase the accuracy of the result. Limited memory BFGS dif-
fers from the standard BFGS in that it does not store all iteration steps, but
"forgets" the oldest step on each iteration. That does not necessarily lead to
better e�ciency however.
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3 Research

This section introduces the project, which has lead to this thesis. We start
by explaining in detail the data available and where it is from. Then we
introduce the model we have created and go through it step by step to give
the reader a good understanding on each part of the model.

The project was started together with the Company X's business develop-
ment department. It is an extension to a previous research that yielded
some promising results. This project however, was originally aimed at creat-
ing large tables �lled with cross-price elasticity coe�cients. The plan was to
then use these coe�cients to calculate optimal prices for the items through
maximization of, for example, revenue or pro�t. During the project, it was
noticed that such large tables were not a proper way to store the elasticity
coe�cients. Rather, the coe�cients are easier and, more importantly, more
accurately stored in smaller tables. These tables would include only one
product group respectively.

The model we created is a simple multivariate model that is dependent on
items' prices. The multivariate elasticity factor is built in the model as a
matrix coe�cient. The other factors are product speci�c coe�cients derived
from the raw data extracted for the purposes of this research. The following
subsections will explain these constant factors in more detail.

In order to conduct realistic optimizations, we need to form constraints to
our model, that is in fact the objective function we want to optimize. This
section is concluded with the explanation of the di�erent constraints and why
they are needed to obtain realistic results. The constraints were built in the
model as the testing progressed, since changing the data input unveiled new
issues rather frequently. Many of these issues required further analysis of the
results in order to �gure out how to develop our scripts.

3.1 Data

We started out this project with similar data to that of the earlier research.
The transactional data was gathered with similar variables. Instead of creat-
ing an identical test scenario, we mined the transactional data from a span of
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several years, including dozens of store locations and thousands of products.
Additionally, we extracted several tables which were helpful in re�ning the
transactional data further and when creating the model variables and con-
straints. The �nal addition to our data came from the cross-price elasticity
computations, since the cross-price coe�cients were used as a factor in the
objective function in the optimization phase. These cross-price coe�cients
will be covered in more detail in the later sections.

3.1.1 Transactional data

The most important data for this research is the transactional data collected
from the stores. This data includes every sold item and service from the
chosen time span. In essence, this data shows us each sales transaction and
includes information about di�erent prices, promotions and product cate-
gories. The transactional data is in its' raw form, meaning that it is com-
pletely unre�ned and unusable as it is.

The transactional data is stored in large tables with which it is possible
to select the included variables. Some of these tables were extracted by tar-
geted SQL-queries from the database and saved as tab delimited text �les,
while others were extracted as power pivot tables. These tables include many
variables that are not used in this phase of the project, but carry an interest
for the future analyses. The largest of the transactional data tables includes
more than �ve million rows of observations.

The most important variables for this project are di�erent sales prices, dates,
quantities and product IDs. We need the product IDs (including article num-
bers and names) to single out di�erent products for analysis. Further, the
product IDs are used on the visual presentation of the results, not however
in this thesis due to con�dentiality issues. The dates determine time peri-
ods, during which the products have been sold and with them it is possible
to calculate how frequently di�erent products have been sold. Finally, the
sales prices and quantities are needed for our analysis of own- and cross-price
elasticities. They are essential in the regression model that was created to
compute the elasticity coe�cients.

The transactional data includes other variables as well. These variables
include for example product category, store numbers, receipt ID and pro-
motion category. These variables can be used in more detailed analyses,
such as product category or store speci�c elasticities and frequent product
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combinations to reveal complementary products. Additionally, buy-in prices
were included for optimization purposes. These variables are needed to form
some of the constraints and product speci�c factors for our model and op-
timization problem. The meaning of some of these variables is explained in
more detail in the following section.

For the purposes of this project, it was deemed necessary to re�ne the trans-
actional data further to ease the computations. This of course causes the
results to di�er from reality to some extent. The more accurate modeling
was left for the next phase of this project, which would include the addi-
tion of new tools and software, and most importantly, more computational
power. Thus we would be better equipped to handle the unre�ned transac-
tional data. The re�nement was deemed necessary, since some items were
found to have been sold for a large amount of di�erent prices during a short
time span. This is due to overlapping promotions and the manner in which
the prices are stored in the transactional data tables.

To conclude, the transactional data is the most important and the most
leveraged set of input for our analysis. The data cannot be used as it is
though. Instead it was necessary to re�ne it further. For that purpose, sev-
eral other tables were extracted, the function of which is explained in the
following chapters.

3.1.2 Additional data dimensions

This section introduces the remaining data tables used in our analyses and
data re�nement. These tables include di�erent product and organization
speci�c dimensional data and data regarding prices and promotions. Some
of the data is left to the following phases in the project and thus not regarded
in the following calculations.

Firstly, the price dimension table includes de�nitions for di�erent price codes.
These price codes can be speci�c to, for example, a single organization, pro-
motion or loyalty program. This table was referenced when re�ning the
transactional data. This dimension was used to account for some of the odd
prices. It provides us the valid price categories which can be cross referenced
with other dimensions to obtain a table of valid prices with the respective
dates. This table is then used when re�ning the transactional data.

The additional dimensions include organization, period and product dimen-
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sions as well. The �rst of which lists di�erent organizational departments and
store numbers among other information. This table is not relevant in this re-
search but could be interesting for comparison between di�erent units within
the Company X, in the fashion of the research conducted by Stephen J. Hoch
and his colleagues (1995). Similarly, the periodic data includes information
about di�erent sales periods, quarters and their actual date intervals. These
tables carry an interest for seasonal analyses, but they are not our main in-
terest in this research. These tables are referenced to determine some date
intervals and for instance, the termination of sales for some products due to
seasonality.

The largest dimensional table is of the product dimension. This table in-
cludes product speci�c information, such as di�erent prices, item groups,
size and weight. Some of these attributes are irrelevant for our research.
However, this table is referenced to determine interesting product groups
and to extract additional information on products' pricing. Although, most
of the needed price data is extracted from price adjustment tables. These
tables show the product speci�c prices, validity dates and price categories.
Each row represents an individual price adjustment for one product. This
data was utilized together with the price dimension table when re�ning the
transactional data and to recognize some of the so called odd prices that do
not belong to the valid price categories.

Finally, a table with information of the product stock levels was extracted.
This table was referenced to determine the date when a product ran out of
stock. We use this information to cut the observation dates when the item
is no longer available. Thus we are able to avoid some distortion in the
computations, best visible in the own-price elasticity graphs. In addition,
the e�ects of this re�nement will carry on to the later cross-price elasticity
computations and thus the optimization as well.

3.2 Model

The collected data is utilized to create a model of quantity demanded. In
order to keep this phase of the project simple and easy to build upon, a linear
regression model based on the transactional data was chosen as the basis for
our model. Further motivation on this choice is given in the preceding sec-
tions. For the optimization phase, we build on the multiple regression model
in order to get the desired objective function. These objective functions and
their constraints are presented later in this section. We will cover the most
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common constraints that apply to most product groups.

Before we can start creating the regression model though, we need to re-
�ne the data as mentioned. First of all, it was decided to exclude all items
with less than 20 units of sales during the time span of observation. This
decision was made to avoid having too few data points for our regression
to work properly. Similar decision was made, when excluding products that
had only been sold for one price. Having only one price would mean that the
product is irrelevant to other products demand in the cross-price elasticity
computations, since it has no price adjustments. Additionally, it was noticed
that some products and services have a default price of 0. These items and
services were excluded as well, since their pricing follows di�erent methods
than the regular products.

Having re�ned the data, we can start computing the model for quantity
demanded, which is presented below. The quantity demanded of a single
item is:

qi(pi) = pi ∗ wi + ci, (17)

where the demanded quantity qi, is a function of the price pi. The slope
of the linear regression model is denoted with wi, which can be used further
to compute the own-price elasticity value for the respective item. The equa-
tion (5) shows how we calculate these own-price elasticity values. The �nal
value ci denotes a constant that represents an intersection with the y-axis. In
essence, it tells us how high the demand would theoretically be if the items
were given out for free, which of course does not happen.

The own-price elasticity values are calculated by using the slope wi to re-
place the �rst fraction term on the �nal form of equation (5). The remaining
terms are the means of price and quantity sold per day, calculated for the
chosen time period. The issue with these values is, that they are only com-
puted for a single product and the model does not include prices of other
products or their demand. Including these factors in the model requires a
more complex model, in which we include the prices of other products as
well. This gives us a new model for the demand, dependent on the prices of
several products. The new model looks similar to that in equation (17), but
all the factors are vectors instead of scalars. The presented model is given
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by:

qi(P ) = W ∗ P + ci. (18)

The multivariate model can be used to compute cross-price elasticity val-
ues in a similar fashion to the previous example of own-price elasticity. Now
we extract the weight vectorW of dimension [1×n] of model coe�cients and
enter it to the equation (6) to replace the �rst term in the �nal form of the
equation. The corresponding factor from W needs to be selected to go into
the equation (6) in order to get the desired cross-price elasticity value. For
our purposes, it was more suitable to form a vector valued function, which
includes a matrix coe�cient. This extension means that for equation (18),
qi becomes a vector of demanded quantities Q for all interesting products,
P is still the price vector, ci becomes an intersection vector c that includes
all respective intersects from individual regression models, and W becomes
an [n × n] matrix coe�cient. Now the W -matrix includes the weights that
describe how the demand for one product is a�ected by the prices of others.
The equation (19) below takes into account the dimensional rules of matrix
calculus and returns a [n× 1] vector of demanded quantities:

Q(P ) = W ∗ P + c. (19)

The created multiple regression model is then used in the objective func-
tions for our optimization problem. Furthermore, we can compute the de-
sired cross-price elasticity values from the created regression models. The
values are stored in matrices, where a cell [i, j] would represent the relation
between the demanded quantity for product i and the price of product j.
The obtained results will be addressed in the following section.

We can choose between several di�erent objective functions, depending on
the value we want to optimize. The two most interesting values are pro�t
and revenue. The objective functions become very simple when using the
previously computed demand model. The equation for revenue is:

R = P T ∗ Q(P ), (20)
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where Q(P ) is the demand model from equation (19). The pro�t function
needs an additional constant factor, that includes the buy-in prices for the
products in question. Including the buy-in prices requires us to take into ac-
count the taxation of sold products. The tax is added into the pro�t function
as a product speci�c constant variable. Some products and services have a
di�erent tax included in their price, thus we need to form a variable that gets
a di�erent value depending on the product and product group in question.
The tax coe�cient is formed as a constant 0 ≤ ti ≤ 1, where ti = 1 − tax%

100%
.

The objective function, in the simplest case, is that of equation (20). We
want to maximize the revenue, which means maximizing the �ow of money
into the stores. In essence, we want to �nd prices, that maximize the quantity
demanded, but still satisfy the constraints de�ned for the objective function.
Unconstrained optimization is deemed unacceptable in our setting, since the
optimum could converge on prices that are not pro�table nor realistic.

Some constraining factors were already covered in the "Data" section. Prod-
ucts with few transactions during the chosen time period were �ltered out.
Additionally, the products with only one active price during that span were
excluded from the analysis. Still, the optimization phase requires further
constraints to return feasible prices as the optimum.

The constraints that apply to most product groups regardless of the prod-
uct type or price are the buy-in price and a price that is signi�cantly higher
than the base price with an assumption of the demand converging toward
zero when approaching this price. The latter one could be substituted to
that of the price level o�ered by the competition, but that is left out of the
scope of this research. It was originally planned that the initial linear mod-
els for individual products would produce a maximum price level from the
Price-axis intersection, but that was later abandoned. Instead, an arbitrary
maximum price level was chosen so that this level was signi�cantly higher
than the original base price for each product. Thus reaching this maximum
price would give a clear suggestion on the pricing of the respective product
while avoiding any inaccuracies that may have resulted from the own-price
elasticity computations. Probably the more intuitive constraint is the buy-in
price, which means the price that the Company X has to pay to acquire the
products from respective manufacturers, producers and wholesalers. Said
prices can be extracted from the raw data in the product dimension. These
buy-in prices represent the lowest possible post-tax price in the optimization

30



model, whereas the maximum price is that where the demand equals zero.

In addition to these constraints, we include some constraints that force the
values of di�erent variables to either real numbers, integers or binary values.
We need to constrain the number of iterations as well. The script includes a
constraint that breaks the optimization after a certain number of iterations
have been performed or the change between consecutive iteration steps is
small enough to be insigni�cant. In the latter scenario, we interpret that an
optimum is found.

The revenue optimization problem can be written as:

Objective function : max R = P T ∗ Q(P ) (21)

Subject to : P = [p1, p2, ..., pn];

pbuy−in
i > 0;

pmax
i > 0;

pi ≤ pmax
i ;

pi ∗ ti ≥ pbuy−in
i ;

pmax
i > pbuy−in

i , ∀i;
ti ∈ [0, 1];

n ≥ 2;

P = [n× 1];

W = [n× n];

c = [n× 1];

Q = [n× 1].

(22)

The equation (21) shows the short version of the objective function and
de�nes price P as a vector of the individual prices in the product group. The
group of equations (22) shows the most common constraints that apply to
our objective function. In order of presentation, the constraining factors of
a buy-in price pbuy−in

i and the maximum allowed price pmax
i , are de�ned as

positive prices. The relation of the price pi is then de�ned in relation to the
former price levels. The included constant ti stands for the value added tax,
which is constrained between [0, 1]. Finally, in order to be able to utilize any
cross-price elasticities, we need at least two products included in the prob-
lem and thus n ≥ 2. The remaining constraints de�ne the required matrix
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dimensions in the problem.

The objective function becomes more complex when optimizing pro�t. Namely
because we need to take into account the products buy-in prices and value
added tax. Additionally, these factors require further constraints to be added
to the optimization problem. For pro�t optimization, it was decided to add
an optional constraint depicting the level of gross margin that the Company
X was hoping to maintain. For con�dentiality reasons any explicit levels are
not disclosed. The optimization problem for pro�t maximization is presented
below:

Objective function : max Pr = [(P ∗ T )− P buy−in]T ∗ Q(P ) (23)

Subject to : P = [p1, p2, ..., pn];

T = [t1, t2, ..., tn];

P buy−in = [pbuy−in
1 , pbuy−in

2 , ..., pbuy−in
n ];

ti ∈ [0, 1];

pbuy−in
i > 0;

pmax
i > 0;

pi ≤ pmax
i ;

pi ∗ ti ≥ pbuy−in
i ;

pmax
i > pbuy−in

i ,∀i;
ti ∈ [0, 1];

n ≥ 2;

P = [n× 1];

T = [n× 1];

W = [n× n];

c = [n× 1];

Q = [n× 1];

GM% ≥ X%.

(24)

The di�erence in the objective functions for revenue and pro�t can be seen
in the �rst term of the function. In equation (23), the �rst term calculates
the post-tax prices for each product and subtracts the buy-in prices from
them. Thus ending up with the amount each sold product creates in pro�t.
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Of course things like employee salaries, other taxes in addition to the value
added tax, warehousing costs and rent payments a�ect the actual, ultimate
pro�t for the company. These factors are left to another research though.

In the equation group (24), the last constraint (GM) is the gross margin
constraint. Gross margin is the relation between the di�erence of total rev-
enue and the cost of goods sold, and the total revenue. This relation is
usually presented as a percentage of total revenue. The equation (25) shows
how gross margin is calculated:

GM% =
R− COGS

R
∗ 100%, (25)

where R stands for total revenue created from the sales of products under
observation, whereas COGS stands for cost of goods sold which in this case
means the buy-in prices of selected products. The gross margin constraint is
used as an optional constraint, meaning that it is left out on some computa-
tions to see how the prices are a�ected and if the constraint is even necessary.

In conclusion, we create two objective functions for the optimization phase.
These objective functions include results from the cross-price elasticity com-
putations, in the form of the regression model for quantity demanded. Ad-
ditionally, some of the most important constraining factors included in the
optimization were explained. The results from the di�erent phases of this
research are presented in the following section.
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4 Results

This section introduces the results obtained from our computations. We start
by illustrating the own-price elasticities using graphs and evaluating the �t
of the model by referencing the R2-values. We continue by presenting the
results for cross-price elasticities. The tables presented have only cross-price
elasticity values, but no product speci�c information due to con�dentiality.
Here we will show how the sample size might a�ect the accuracy of the re-
sults. These cross-price elasticity values are our primary research goal. They
will be subject to analysis in this section.

The conclusion to this section includes the results from the price optimiza-
tion. We compare results from di�erent objective functions, in essence we
compare the results when optimizing revenue and pro�t. We cannot give any
exact prices, but we will describe the theoretical implications obtained from
the optimization. We will use percentages and proportions to give the reader
some idea on the e�ect this research could have. The quality of these results
is the other point of interest for this research, and it will be addressed in this
section as well.

4.1 Elasticities

Our goal was to enhance the quality of the own-price elasticity computations
and to run these computations on as many products as possible. The con-
straining factors included low sales numbers and unchanging prices. In the
end, we were able to obtain thousands of individual elasticity values for prod-
ucts. The following section will introduce some of those results and provide
some interpretation to those as well.

More importantly, we aimed at creating cross-price elasticity tables for prod-
uct groups. We will present some of those tables without giving away any
product speci�c information. We will show the cross-price elasticity values
for di�erent sizes of product groups. The accuracy of the model is addressed
through statistical variables, such as the R2-value.

Finally, we will give the optimization results for the product groups that
were presented in the cross-price elasticity section. The optimization results
are derived from several di�erent optimization methods and the quality of
the results is addressed. We will analyze the obtained results and implica-
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tions derived from the optimization. Further discussion of the thesis is left
for the �nal section of the work.

4.1.1 Own-price elasticity

We had to develop the script from the base work further in order to be able
to handle more data from an uncontrolled sales setting. The di�culties arose
from the fact that the products are subject to a large scale of di�erent pro-
motions, discounts and special o�ers that are impossible to account for at
this stage and hardware. The base work obtained results from controlled
store level tests, which is not the case in our research. However, the results
we obtained for own-price elasticities are reasonable and now we will present
di�erent cases with graphs and analysis thereof.

Figure 5: An example from functional clothes with negative own-price elas-
ticity.

For fashion retail products, the assumption is that most of the products
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would be so called normal products with negative own-price elasticity. A
large portion of the items showed this kind behavior, namely the demand
for a product seemed to increase when the price decreased. This kind of
consumer behavior would seem rational. The �gure 5 presents a very simple
case, where a product has been for sale for two distinct prices and the aver-
age daily demand for that product has been higher when the price has been
lower.

Figure 6: An example from footwear items with several distinct prices and a
negative own-price elasticity.

The product in �gure 5 is from the group of functional clothing. The neg-
ative own-price elasticity value can be derived from the slope of the �tted
linear regression model that is also presented in the �gure 5. This product
was a simple example of the results we obtained in this phase. Similar results
were obtained for products with more discrete prices and from other product
groups, such as is presented in �gure 6. This product is from the fashion
footwear category and is a product that has been at the market for several
years. Thus it can be assumed that the consumers are somewhat familiar
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with the product and its' pricing. Consequently, it can also be assumed that
the consumers recognize the good, low prices and are encouraged to make
the purchase. The very high demand for the product in �gure 6 on low prices
would suggest this as well. The increase in the amount of discrete prices for
an individual product a�ects the model's goodness. Naturally, having more
prices causes the linear regression model to account for less of the variation
in the data. Thus the R2-value does not reach as high levels. For example
the product in �gure 6 has R2 ≈ 0, 98, which is still very high. Additionally,
all the statistical tests, such as the F -test for overall signi�cance, provide
good values. However, looking at the residual plot for this product in �gure
7, we can see how the residuals have a rather large variation even though
the model seems to �t well. Of course, the residual plot has to be read with
the scale in mind. The conclusion is that, even though the model seems to
�t quite well, there would be room for enhancement. The model could be
underspeci�ed and could thus bene�t from additional predictors or nonlinear
regression instead of linear. Such enhancements will be left for the future
development of this project.

Figure 7: Residual plot for the product in �gure 6.
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Apart from the "normal" products as described above, there were some prod-
ucts that, for some reason, showed a positive own-price elasticity. Usually
positive own-price elasticity means that the demand for the product increases
when the price increases. Such items are somewhat rare and were not ex-
pected to be included in the product pool of the Company X. The �gures
8 and 9 present two of such products from di�erent product categories and
signi�cantly di�erent demand volumes.

Figure 8: An example of positive own-price elasticity from training equip-
ment.

The sales data for the products in �gures 8 and 9 was run through a script
that removed the e�ect of running out of stock and long periods of no sales.
This procedure had no e�ect to their elasticity values however. While the
regression models �t the data very well (R2 ≈ 1), the reason for such phe-
nomenon is not clear. The most probable reason for this kind of anomaly is
that the products have been subject to a price change when their volumes
have been reduced signi�cantly. Such situations could arise for example in
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Figure 9: An example from fashion accessories with a positive own-price
elasticity.

end of season sales when the products running out of season get a discount
to increase their sell through. Furthermore, a release of an updated model of
the same product (with a new product ID) could a�ect the demand for these
"outdated" products. In relation to the updated model being released, the
older model, especially if low on volume, might not have the best location in
the store, which could lower the sell-through even further.

Additionally, there were a small number of products that showed odd de-
mand behavior. These products seem like they have characteristics from
both of the previously presented examples but as a result, the linear regres-
sion model does not �t the data at all. The common aspect for these products
is that there is no clear trend in the data and thus, the �tted model does
not represent the data well. The R2-values of these models are near zero as
a consequence. Two examples are given in the �gures 10 and 11.
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Figure 10: An example from training accessories presenting an odd demand
pro�le.

The products showing this kind of demand pro�les were run through the
script that removes the e�ect of running out of stock, but it had little e�ect
on most of them. The products kept showing similar demand pro�les and
the elasticity values were still unreliable. An example of a product that had
a moderate change in the demand pro�le when run through the additional
re�nement is presented in �gures 12 and 13.

As can be seen when comparing the �gures 12 and 13, the demand pro�le
changes after the re�nement. However, the graph 12 shows a clear trend
if the second lowest price was to be disregarded. This trend is lost in the
out-of-stock re�nement. The statistical tests give very poor results of statis-
tical signi�cance; the R2-value equals 0.50 and the p-values are rather large
(≥ 0.1) on every statistical test, suggesting poor statistical signi�cance, thus
it can be stated that the linear regression model fails to explain the variations
in the data. A con�rmation to that statement can be seen in the residual
plot of the data in �gure 14, which represents the residual plot of the model
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Figure 11: An example from fashion accessories presenting an odd demand
pro�le.

from �gure 12. This plot seems similar to that in �gure 7 but the scale of the
sold quantity must be taken into account. This latter example has residuals
that extend over the actual sales quantities, whereas the residuals in the �rst
example are signi�cantly smaller compared to the actual observed quantities.

As noted earlier, some of the items produced odd demand pro�les, to which
it is not possible to get a well �tting linear regression model. This notion is
supported by the R2-values derived from those regression models. These val-
ues, depicting how well the model �ts the data, range as low as 10−4, which
would suggest the model does not �t the data at all. The R2 value ranges
between [0, 1], where value 1 means complete �t. Another interpretation for
the R2-value is the regression models ability to explain the variations in the
data. However, only high R2-values are not enough to validate the model to
�t well. The residual plots need to be consulted to ensure the goodness of �t.
Additionally, adjusted and predicted R2-values provide additional insight to
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Figure 12: Badly �tting regression model from footwear category.

the goodness of �t. The latter ones are especially useful later in the multiple
regression analysis. The odd graphs produced by the simple linear regression
analysis in this section can be stated to have a poor �t, since the �tted line
does not follow the data points (or histogram bars) at all.

The poor �t could be a consequence of several issues. For example, the
model could be underspeci�ed, missing data for the predictors or some pre-
dictors altogether, which is called a selection bias (Dubin & Rivers, 1989).
This is likely at least partly the reason for our anomalies. Additionally, the
data could be of poor quality or too aggregated, which would cause some
information to be lost in the computation. The data re�nement could also
be to blame for some issues revealed by the results. If the data is re�ned
too eagerly, some relevant data points could be lost and thus result in distor-
tion in the �nal results. These results should and will be consulted during
the cross-price elasticity computations. If those computations produce un-
expected numbers, then the cause might be visible here.
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Figure 13: The same product from �gure 12 with an out of stock re�nement.
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Figure 14: Residual plot for the product in �gure 12.
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4.1.2 Cross-price elasticity

For computing cross-price elasticity values for product groups, we needed to
produce a completely new script, which would handle data re�nement and
relevant computations to form a multiple regression model from which the
elasticity values could be extracted. Such a script proved to be quite chal-
lenging due to the quality of data and the desired format of outputs. This
section will present some of the obtained cross-price elasticity results and
also address the computation settings, including the observation period and
the size of the product groups, as well as interpretation of the obtained values.

We started out testing small product groups and determined their cross-
price elasticity values before building up to larger groups. The �rst product
group is a small pool of functional footwear items. These items were consid-
ered substitutes and only the basic variants with highest volumes were chosen
to this computation. The elasticity values and corresponding R2-values are
presented below in the tables 1 and 2.

Table 1: A table of cross-price elasticity values for a group of footwear with
aggregated data.

Shoe 1 Shoe 2 Shoe 3 R2 Adj.R2

Shoe 1 -12.60 -0.72 4.10 0.99 0.93
Shoe 2 -1.06 -0.39 2.32 0.94 0.86
Shoe 3 -1.96 1.20 3.18 0.94 0.84

The table 1 includes cross-price elasticity values derived from three di�erent
regression models, the R2-values of which are presented in the table 1 as
well. Each model is �lled in the table on it's own row, as will be done from
here on. This means that the regression model for the demanded quantity
of Shoe 1 is presented by the row named "Shoe 1". The elasticity values
present the e�ect a change in the price of products in the columns has on
the quantity demanded of a product in the rows as demonstrated earlier in
equation (6). In this table, the aggregated values were used when �tting the
regression model. The values in table 2 were computed without aggregation
for the exact same items and time period.

Let's �rst compare the results in the tables 1 and 2. The elasticity values are
somewhat similar in both examples. The crucial di�erence can be found in
the R2-values. The aggregated data yields signi�cantly better R2-values and
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Table 2: A table of cross-price elasticity values for a group of footwear without
aggregation in the data.

Shoe 1 Shoe 2 Shoe 3 R2 Adj.R2

Shoe 1 -12.27 -0.78 3.96 0.23 0.22
Shoe 2 -0.86 -0.52 2.26 0.02 0.01
Shoe 3 -0.50 1.78 2.08 0.26 0.25

the adjusted R2-values remain rather high as well. On the other hand, the
latter table without aggregation shows very poor values. This is caused by
the deviations in the daily sales quantities, namely an item can experience a
demand of no items on one day, and dozens of items a day after without any
price change. The aggregation removes the e�ect of such deviations. On the
other hand, too much aggregation leads to loss of data points and thus can
make the results unreliable and distorted.

The values in the table 1 di�er in magnitude, the highest absolute value
being ≥ 12 and the smallest being close to zero. The surprising �nd is the
high own-price elasticity value for the Shoe 1. A value this high would suggest
that a 10% change in the price of Shoe 1 creates an opposite 126% change in
its' demand. Even though in this case we used average daily demand num-
bers, the change would be extremely high. Either the pricing for Shoe 1 is
far from the optimal level or the demand pro�le is very steep. Furthermore,
the own-price elasticity value (on the diagonal) for Shoe 3 is a positive value,
which is usually not the case. This would suggest that the demand for Shoe
3 increases when it's price is increased. This anomaly can be caused by si-
multaneous markdowns in the product group or some promotion that is only
applicable on Shoe 3 and could not be accounted for in the data re�nement.
Further, this phenomenon could be due to the Shoe 3 getting a price adjust-
ment only when the volumes were low, or when the observation period was
about to end.

Finally, it is interesting that the Shoe 2 has a rather small own-price elastic-
ity (= −0.39), whereas the respective cross-price elasticities are signi�cantly
higher in magnitude (−1.06; 2.32). This would suggest that the Shoe 2 has
a stable (inelastic) demand respective to it's own price, while it serves as a
substitute to the Shoe 3. Namely, decreasing the price of Shoe 3 leads to
a decrease in demand of Shoe 2 and vice versa. This interpretation follows
the cross-price elasticity values of the two items with respect to each other.
They are both positive and ≥ 1 in magnitude. Overall, the demand for Shoe
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2 seems to be less sensitive to price changes than that of the other two items.
Shoe 2 has a weak cross-price e�ect on the demand of items Shoe 1 and Shoe
3, but it also has a small own-price elasticity value.

The table 1 tells us about the dynamics behind the price adjustments and
more precisely how the demand for products is a�ected by the change in
price. If we were to take a look at the �rst of the three rows in table 1, we
can see that the own price elasticity value is highest in magnitude. Namely, it
is higher than the two other elasticities combined. This suggests that, given
a simultaneous 10% reduction in price for all the products in the group,
the demand for Shoe 1 would still increase by about 90%, which is a very
large reaction on small price changes. The other two items do not behave as
radically though. With a similar example of simultaneous markdowns, the
demand for Shoe 2 would decrease by about 9% and the demand for Shoe
3 would decrease by about 24%. The decrease in demand for the Shoe 3 is
caused by the strong positive own-price elasticity.

The computations were run on the same product group, with the extension
of including all product variants, in essence all colors, in the same product
group. The resulting tables C.1 and C.2 can be found in the Appendices
section under Tables. The table C.1 has been derived by using aggregated
data, whereas table C.2 has no aggregation in the data. The addition of many
products causes the regression models from aggregated data to include singu-
larities, which shows on the table C.1 as the R2 = 1 while the adjusted R2 is
not applicable (NA). These singularities can be caused by too much aggrega-
tion, no price changes in the observation period or a simultaneous markdown.
Additionally, the problems could be caused by the method chosen to run the
multiple regression. Furthermore, the R2-values seem to decrease for those
items that were chosen for the previous computation presented in table 1.
For clarity, the corresponding rows and columns were named similarly to the
smaller tables. As we take a look at table C.2, we note that the R2 values
for items Shoe 1, Shoe 2 and Shoe 3 have increased compared to those in
the previous computation. Still, the values are very low for all the products.
However, the computation without aggregation seems to avoid any singular-
ities and returns a multiple regression model for all the items, although one
with poor R2-values. Alone, the R2-values are not enough to make a de�ni-
tive statement of the �t of the model, but values this poor suggest that the
model is unable to explain the variations in the data and should be devel-
oped further. Applying more extensive aggregation to the data could lead to
better �t while sacri�cing a portion of the data points. This sacri�ce means
less data points and thus a less reliable model. The next step could be to

47



try �nding the best predictor variables to each item individually, or trying
to develop the model further to account for more of the variations in the data.

Both the tables C.1 and C.2 include cross-price elasticity values that equal
0. This would mean that a price change in the corresponding item (in the
columns) has no e�ect on the demand of the item in the rows. For exam-
ple, Shoe 05 has a cross-price elasticity value of 0 for every other item in
the group (column Shoe 05). The last value on the column is the own-price
elasticity of Shoe 05. In essence, the price changes in Shoe 05 have no e�ect
on the demand of other products in the group, but some of the others have
a cross-price e�ect on the demand of Shoe 05. This phenomenon might be
due to Shoe 05 having no price changes during the observation periods for
the other items, or simply due to a price change in Shoe 05 having absolutely
no e�ect on the other items' demands. The same logic can be applied to
the other examples, where the cross-price elasticity value equals 0. If the
individual demand models were to be developed for each item, we would try
excluding the items with a cross-price elasticity value of 0 from the respective
models. Thus we could obtain better overall models for each item. It needs
to be noted that even if an item has a cross-price e�ect on another item,
that does not necessarily mean that the e�ect would work both ways. For
example, in table C.2, Shoe 01 has no cross-price e�ect on Shoe 0, but Shoe
0 has a cross-price e�ect of −22.06 on Shoe 01.

Another interesting notion was found when running pairwise comparisons
on similar footwear items. These items were not included in the previous
computations and they were considered direct substitutes in the sense of
their attributes and the pool of consumers who require these items. The re-
sult of the pairwise comparison is presented in the table 3 below. We see that
according to the �rst row, the assumption of the products being substitutes
is supported by the cross-price elasticity values. However, the values are
not necessarily the most reliable ones due to a very low adjusted R2-value.
Having a negative value could be considered a failure with the �tted model
even though the normal R2-value is signi�cantly better. On the other hand,
the second row suggests a very good model �t when the roles of the items
are changed. This model would also suggest the items not to be substitutes
due to both elasticity values being negative. This is not necessarily a wrong
interpretation, since Shoe 5 can be considered a substitute for Shoe 4 while
Shoe 4 might not be one for Shoe 5. As stated earlier, such values could
also be caused by simultaneous markdowns and the resulting distortion in
the data analysis. Simultaneous price changes would disturb the analysis in
the sense that we want to �nd an e�ect of a price change in one item on
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the demand of another when all other factors stay unchanged. Simultaneous
price changes cause inaccuracy since, with the resources at our disposal, it
cannot be determined how much a single price change a�ected the outcome
if there were more than one. Unfortunately, in fashion retail there are often
times, such as summer or Christmas sale periods, when items are subject to
simultaneous price adjustments.

Table 3: A table of two footwear items assumed to be substitutes with ag-
gregation used in the data.

Shoe 4 Shoe 5 R2 Adj.R2

Shoe 4 -1.98 4.12 0.61 -0.17
Shoe 5 -2.23 -0.32 0.999 0.997

The following item group includes three highly seasonal products that are
designed for the same purpose. These items are from two market leader
brands and considered similar in image. Two of the items belong to the same
collection, one being the "high quality" model while the other is the down-
graded and more a�ordable version. The elasticity values for these items are
presented in the table 4 below.

Table 4: Elasticity values for a small group of seasonal products with aggre-
gated data.

Item 1 Item 20 Item 21 R2 Adj.R2

Item 1 -3.50 -1.43 -1.59 0.58 0.16
Item 20 -4.25 -5.07 0.74 0.79 0.63
Item 21 1.40 1.23 3.55 0.86 0.73

Again, there are some di�erences in the R2-values between the models on
rows. Nonetheless, the �rst two own-price elasticity values seem rather nor-
mal. The third however, is a positive value which is not usual for these
products. The explanation behind this value could be found in the season-
ality of the product. The Item 21 is the downgraded version of Item 20 and
is sold for a lower price. Lowering the price of Item 21 could present lower
demand due to the end of the season or lower quantities of inventory. If
there are simply less items left to sell, the demand becomes lower with the
reduced price. Further, it could suggest that the lowered quantities in in-
ventory have actually motivated the price reduction to make room for newer
in-season items. The interpretation of lowering the price of Item 21 in the
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end of season is also supported by a notion of its' negative cross-price e�ect
on Item 1. Item 1 is a typical example of a product that has been on the
market for years and usually gets a price adjustment for the end of season
sales period if at all. Thus, the value can be caused by simultaneous price
adjustments, of which the price adjustment on Item 1 carries a stronger e�ect
on its' demand than the adjustment on Item 21. On the other hand, if the
Item 21 gets a price adjustment when the inventory is already low, it is easier
if not necessary for customers to choose the more expensive product instead
to �nd the right purchase for them. This would also facilitate the cross-price
elasticity value to become negative.

The products Item 1 and Item 20 belong to the category of more expensive
products in their respective group. They also have negative cross elasticity
values on each other's demands. This could be at least partly due to the
same reason as discussed above. Consumers could choose the more expen-
sive product instead of the basic model if they get a better price for it than
normally. This could lead to a situation where reducing a price of such an
expensive product could tempt consumers, who would otherwise buy the less
expensive basic model, into buying the "better" alternative. In essence, the
top line items would steal or cannibalize a part of the demand that would
otherwise be directed on the basic line products. A combination of these rea-
sons could present negative cross elasticity values for items that are assumed
to be substitutes. Thus also leaving a question if there was a selection bias
present when choosing the predictors to the model.

Further problems may occur from poor choice of items in the observation
group. Correlation analysis could help to identify the best suited product
groupings, although that approach works best when determining the model
predictors for the demand of a single item instead of a group of items. The
following table 5 presents a poorly chosen product group.

What indicates the bad choices for products is the amount of zeros in the
table. For instance, items Acc21, Acc31 and Acc32 yield only an own-price
elasticity value. This means that they have no cross-price e�ect on any other
item in the group. This could be due to, for example, these items having no
price adjustments during the respective sales periods. It could also be that
the price adjustments made to these three products simply had no e�ect on
the demand of the others. Such a situation could arise from the items being of
di�erent "tiers" or quality levels. Given that the three previously mentioned
items were of di�erent levels of quality, changing their prices might have no
e�ect on the items in higher tiers that would in turn keep demonstrating sta-
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Table 5: A table of cross-price elasticity values for a group of poorly chosen
accessory items.

Acc11 Acc21 Acc31 Acc32 Acc12 Acc13 R2 Adj.R2

Acc11 -2.99 0.00 0.00 0.00 -6.19 4.82 0.35 -0.63
Acc21 -1.90 -0.86 0.00 0.00 -1.66 2.46 0.85 0.62
Acc31 -0.91 0.00 -0.40 0.00 -2.62 2.74 0.29 -0.76
Acc32 -1.36 0.00 0.00 -0.59 -2.42 0.79 0.35 -0.63
Acc12 1.88 0.00 0.00 0.00 0.35 0.24 0.21 -0.97
Acc13 -4.26 0.00 0.00 0.00 0.00 -9.12 0.65 -0.05

ble demand levels. On the other hand, the demand for the three previously
mentioned items Acc21, Acc31 and Acc32 is a�ected by price changes for the
other three items, which would suggest simultaneous price changes or the top
tier items cannibalizing demand from the other products when subject to a
price adjustment. Furthermore, this item group has very low sales quantities,
averaging well below an item per day, which would mean that the demand
graph would present spikes on some days while being zero on others. Such
a demand curve would become distorted when being subject to aggregation.
Thus causing loss accuracy on the calculations. Even running the correla-
tion analysis on such a group of items could prove inadequate to avoid these
issues, since the cross-price e�ects may di�er when the roles of items are
reversed, or when the observed variable becomes a predictor instead.

All in all, the elasticity values in table 5 are not the most reliable ones due to
poor �t to the data, according to the R2-values. This group of items should
be run through a correlation analysis and their demand analyzed item by
item with the chosen predictors having the highest correlation between their
prices and the observed demand. As is, the modeling practice is inadequate
to produce accurate and reliable readings on such item groups, although per-
forming well on some individual items.

Similar observations were made of several product groups including clothes,
accessories and footwear. The poor values could be caused by simultaneous
price adjustments, or the lack thereof as in table C.3 in the appendices. The
lack of data points and simultaneous price changes produces singularities in
the calculations and leads to a failure in modeling the price-demand dynam-
ics. These poor values provide little information and the reliability of the
interpretation is questionable. Further development of the model and com-
putations is needed to obtain better quality results. It can be stated that at
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this stage, the project has failed in providing a high quality insight to pric-
ing on a universal level across product groups. Although, some individual
products seem to produce a well �tting model. Thus it would most likely be
best, to run correlation analysis on individual items and analyze each prod-
uct of interest separately. Running the computation for larger item groups
suggests that a correlation analysis on individual items would facilitate a
more e�cient choice of products to include in each model. Large groups pro-
duce cross-elasticity tables with many items having no cross-price e�ects on
others, or only on a few other products. Running the cross-elasticity compu-
tations on individual items would however, make it more di�cult to optimize
entire product groups simultaneously. The next phase provides some opti-
mization results while keeping in mind that the results are derived from the
poor quality cross-elasticity values.

4.2 Price optimization

Although the cross-price elasticity results were unreliable and poor in qual-
ity, we ran the optimization scripts to see if they could handle the desired
form of elasticity values. The regression model coe�cients were run through
several optimization routines and the following section presents the results
thereof. The positive notion is that the optimization routines seem to work
and the results are reasonable baring in mind that the cross-price elasticity
computations are the basis for the models entered in to the optimization
scripts.

We present optimization results for the same item groups that were observed
in the previous section in order to have some data that we can re�ect on
when analyzing these results. It needs to be noted that these results are only
to get some insight on pricing. For more accurate and actionable results, the
regression model should be developed further in order to produce more reli-
able and realistic cross-price elasticity values. Additionally, we used several
di�erent optimization methods as explained earlier in this work. This section
will address the di�erences between the results obtained from each of them as
well as the performance of the methods. The optimization methods utilized
in our research are a conjugate gradient method, Nelder-Mead algorithm and
a limited memory BFGS-method with bound constraints (L-BFGS-B). The
methods were brie�y introduced earlier in this work. Each product group was
run through each of these optimization methods and the obtained results are
now compared and analyzed.
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The �rst item group presented in the cross-price elasticity results (table 1) is
a footwear group with three individual products that were considered substi-
tutes and yielded a model with reasonably high statistical signi�cance. The
three optimization methods were run on the group for both maximization
of revenue and pro�t. Naturally, the objective function value for pro�t is
always lower than that of revenue since pro�t takes into account the cost
of the goods sold. The higher objective function values were obtained from
Nelder-Mead and L-BFGS-B methods. Those two methods yielded the exact
same objective function and decision variable values. The issue with these
results is that two of the items in the group (Shoe 2 and Shoe 3) were given
the highest possible price (160e) that acted as an upper bound in the op-
timization. That price is approximately 24% higher than the original base
price for the products (129e). The third item (Shoe 1) gets a price (100e)
that is approximately 24% lower than the original base price (132e). Still,
the price for Shoe 1 is rather realistic and the item has actually been sold for
that price during some special promotion periods. All in all, Nelder-Mead
and L-BFGS-B methods provide high objective function values but the deci-
sion variable values leave room for criticism. Having very high prices for the
items in question is not realistic due to high competition in the �eld, and such
high prices would steer consumers hoping for lower prices to the competition.

However, the conjugate gradient method provides rather realistic decision
variable values while the objective function values are signi�cantly lower
than with the other two methods. The obtained prices are 75e, 121e and
135e for products Shoe 1, Shoe 2 and Shoe 3 respectively. The price for
Shoe 1 clearly re�ects the high own-price elasticity value while the others
have only had a small adjustment due to lower elasticities. The cross-price
elasticity values explain why the price for Shoe 3 actually increases while the
other two are lowered. Shoe 3 has only positive cross-elasticity e�ects, which
means that increasing the price for Shoe 3 would increase the demand for
each of the products in the group. The opposite stands for Shoe 1. Since it
only has negative cross-elasticity values, lowering the price for Shoe 1 would
cause an increase in demand for all three products. This would also cancel
the loss of pro�ts caused by lowering the price of Shoe 1 with such proportion
(−43%) nearly to the lowest possible price. The objective function value for
pro�t maximization is approximately 35% lower than those obtained from
the other optimization methods. However, the prices given by the conjugate
gradient method are more realistic than those from the other two methods
even though the price for Shoe 1 is signi�cantly, and almost unrealistically,
lowered. In addition, even the conjugate gradient method that produced the
lowest objective function value for pro�t, yields a value that is 38% higher
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than that which would theoretically be obtained with the base prices.

Following the �rst group of footwear items, we presented a pair of assumed
substitute items, also from the footwear assortment (table 3). For this prod-
uct pair, we noted that the conjugate gradient method for pro�t maximiza-
tion did not converge on any optimum even though the initial conditions
were altered. For revenue maximization however, there is a result which
gives Shoe 4 the highest allowed price while Shoe 5 gets a signi�cant price
reduction taking the price only 2% above the lowest allowed price. The other
two optimization methods yield exactly similar results between them again.
Still, the decision variable values are not realistic since Shoe 4 is suggested to
be priced as high as possible regardless of the objective function. The highest
allowed price in this optimization run was 220e, which is 43% above the base
price 154e. As for the Shoe 5, pro�t maximization would suggest lowering
the price to 153e from the base price 209e. This seems rather realistic,
since Shoe 5 has a negative own-price elasticity and would thus experience
an increase in demand. If we were to follow the pricing suggestions derived
from L-BFGS-B method, the pro�t levels for this item pairing would theo-
retically increase from the base price driven pro�ts by approximately 18%.
Of course, it needs to be noted that these values are still computed with the
model we created earlier in this work. Thus the results cannot be considered
as accurate but merely estimates.

These price changes suggested by the optimization are not completely re-
alistic and the resulting changes in demand would be curious if re�ected on
reality. Having experience in retail, Shoe 4 would most likely have no de-
mand at all due to a very high price compared to the competition. Shoe 5
would sell signi�cantly better than with the base price until the competition
reacted to the price reduction with an adjustment of their own. In conclu-
sion, the optimization results for this product pair would suggest that the
price for Shoe 4 should be increased, while the price for Shoe 5 should be
decreased. The magnitude of the adjustments should be considered however,
since these results suggest very high alterations. Additionally, the model that
was used to compute the cross-price elasticity values, and thus resulted in the
regression model coe�cients for the optimization, was not a very reliable one
due to poor �t to the data. That is why the optimization phase would also
bene�t from further development of the regression model and data analytics
behind the obtained results.

The item group we observed after the footwear items was one that included
three highly seasonal products, two of which were from the same product

54



line. The price optimization returned prices that were quite di�erent with
the three optimization methods. We will not go through the revenue maxi-
mization since most prices were on the lowest possible price level on almost
every method and item. Only Item 1 had a price that was 41% higher than
the lowest price allowed from the Nelder-Mead and L-BFGS-B methods. For
pro�t maximization, L-BFGS-B method yields prices that are still on the
lowest allowed price, 79e and 36e for Item 20 and Item 21 respectively,
while the price for Item 1 is 121e. However, Nelder-Mead yields very di�er-
ent prices, since it suggests that Item 1 would be assigned a price of 62e,
which is just above the lowest allowed price. While L-BFGS-B gave Items
20 and Item 21 the lowest allowed prices, Nelder-Mead returns the highest
allowed price 150e for Item 21 and the price for Item 20 is 205e, which is
7% below the base price. Again, the conjugate gradient method for pro�t
optimization provides the most realistic price suggestions when re�ected on
reality. Item 1 receives a price 83e, Item 20 has a price 207e and Item 21
has a price 71e. The curious thing though, is that the highest pro�t would
be obtained by L-BFGS-B method, that gave lowest allowed prices to Item
20 and Item 21. That pro�t would be nearly twice as high as with the other
methods.

The only possible explanation to that result is that even though two of the
prices are signi�cantly lower than with the other two methods, the demand
quantities are high enough to produce higher pro�ts. Furthermore, the sug-
gested pricing would give most importance on the sales of Item 1 that would
actually bring in all the pro�t with this pricing choice. Unfortunately, this
example brings to light the shortcomings of our model, since the theoretical
pro�t with base prices becomes a negative �gure. This would mean that the
items would not sell at all and buying them from manufacturers would just
create losses to the retailer. The optimization with L-BFGS-B would turn
the pro�ts to a positive amount. To give the reader an idea about the magni-
tude of the di�erence, let's set the base price driven pro�ts as −100%. Then
the pricing suggested by L-BFGS-B method would yield a pro�t of +70%.
This di�erence is very signi�cant, but still the reality is that the prices that
the L-BFGS-B suggests would not be applicable. The most realistic price
suggestions were given by the conjugate gradient method, which would still
change the pro�t level to +35%.

We gave an example of an item group for which there were several items
that had no cross-price e�ects on other items in the group. The cross-price
elasticity values were presented in table C.3 in the appendices. The opti-
mization for this group tends to converge on the highest or lowest prices
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allowed depending on the initial conditions. The optimization results vary
a lot as well. Some pro�t levels drop below the theoretical level yielded by
the base prices, while at best the pro�t increases by 182%. However, again
the highest pro�ts yielded (L-BFGS-B) suggest prices that are not reason-
able. All those prices are on the highest possible level and thus would most
likely result in very low demand levels because the cost-conscious consumers
would �nd the same items for a lower price elsewhere. Namely, the high-
est allowed price levels are now chosen arbitrarily for optimization purposes.
In reality, we would need to take into account the price level available else-
where in the market. The poor quality results from the cross-price elasticity
computations are the cause for the optimization results being so inconsistent.

The �nal group we chose to present in the earlier section is a group of ac-
cessories in table 5. This group served as another example of poorly chosen
items with a few items that had no cross-price e�ects on other items in the
group. Quite similarly to the previous example, the optimization results
varied a lot depending on the initial conditions. Now the highest objective
function values were obtained from both Nelder-Mead and L-BFGS-B meth-
ods. They suggested the exact same decision variable values, which would
result in a theoretical increase in pro�t of 44% when compared to that from
the base prices. In reality though, the increase in pro�t would likely be a lot
lower since the underlying model was stated to be inadequate to account for
the variations in the data. Additionally, the highest pro�t levels were often
obtained by the highest allowed prices. Setting prices that high would not
be rational due to the nature of fashion retail market where consumers are
highly cost-conscious and have a low threshold to shift their alliance from
one retailer to another in hopes of better prices.

After running the optimization scripts on various product groups, it can
be stated that the highest and best pro�t values are obtained from the L-
BFGS-B method. Many times the Nelder-Mead method converges on the
same values as L-BFGS-B method but does not perform as consistently. The
poorest objective function values were obtained from the conjugate gradient
method, while on the other hand the prices suggested by this method were
on most cases more realistic when compared to the other methods. To make
any de�nitive statement of the goodness of the optimization methods, further
development of the model is required. To conclude the optimization chap-
ter, we note that the obtained results provide some insight into pricing and
can be referenced during pricing decisions. The potential for enhancement
in pro�ts is there but would require further development of the model to be
utilized. Namely, the objective function is based on the model that was used
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in the cross-price elasticity computations. Since the model was considered
inadequate, the results from the optimization are lacking in accuracy as well.
That notion is obvious in the pricing suggestions derived from the optimiza-
tion, since a large portion of the prices converge on either the highest or
lowest allowed level. Those levels were chosen to present prices that were not
rational, nor pro�table to use in reality. Either the gross margin would fall
to zero or the price would be higher than that of the competition and thus
would lead to decrease in demand. Unfortunately, the model does not act as
was expected and as would be rational. The reasons for the models short-
comings were already analyzed earlier. The following section will address the
project as a whole and discuss the future of the project.
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5 Discussion

This project aimed at computing cross-price elasticity values for product
groups and to use these values in price optimization with objective functions
in revenue and pro�t. The goal was not to obtain accurate prices since
the elasticity values are always estimates, but to gain additional insight to
product pricing and inter-product relationships. The results provide that
insight and the optimization phase yielded price suggestions that are more
or less reasonable and result in signi�cant enhancements in created pro�t.
However in many cases, especially with large product groups, the model fails
to account for the variations in the data. Consequently, the optimization
results are also poor in accuracy since they are based on the cross-price
elasticity estimates. The shortcomings and development ideas for the project
are discussed in the following section. The project could be continued by
developing the model further to obtain more accurate estimates from the
cross-price elasticity computations. The decision on the future of this project
will be made by the Company X.

5.1 Development ideas

As stated on several occasions throughout this thesis, the model that was
chosen to explain the data and produce the elasticity coe�cients was not
good enough to account for the variations in the data, especially when han-
dling larger product groups. For individual items, the model seemed to work
well enough to produce demand graphs and own-price elasticity values. This
section will include thoughts and development ideas, as well as discussion on
factors that had to be left out of scope in this project.

First of all, the choice of using linear regression in the �rst part of the project
worked well for individual items, whereas expanding to multiple regression
when handling product groups proved to work quite poorly. As a devel-
opment idea for the individual items, it could be bene�cial to trade linear
regression model into a more complex model to better �t the data. For in-
stance, developing a nonlinear demand function (e.g. utilizing cumulative
beta distribution function) that could account for several items as predictors
and had a better weight coe�cient structure could be bene�cial. That ap-
proach however might require tailoring the model coe�cients for each case
separately. Additionally, the model might bene�t from including other exter-
nal predictors, such as special promotions, marketing inclusion (e.g. digital
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and paper advertisement) or seasonality (e.g. Christmas). With these no-
tions, a time series approach could be tempting but would not work well
for items with very low and inconsistent demand. Thus, creating a dynamic
pricing model that includes the proper predictors and company speci�c con-
straints and constant factors should be considered. Tailoring a model for
speci�cally Company X's product pool is a challenging and complex task
and would require further resources and knowledge as well as sophisticated
mathematical programming. Although, such models are already utilized in
other markets. The dynamic pricing models could update the optimal prices
on the �y to react on fast and abrupt changes in the fashion retail market
and provide up to date elasticity estimates. The dynamic pricing models
have been discussed by for example Hall, Kopalle and Krishna (2010) as well
as Grewal and his colleagues (2011). Typically, such dynamic pricing mod-
els that are provided by specialized companies and tailored to the needs of
the company in question are extremely expensive and thus not the primary
option for Company X.

An interesting notion on the cross-price elasticity computations was that
it could be more bene�cial to observe the products one at a time, especially
if there was no investment on the development of a dynamic pricing model.
This practice would require more time, but allow us to �nd the items car-
rying most meaning across all item groups through for example correlation
analysis, thus providing further insight on product complementaries and sub-
stitute products. Such approach would also allow us to determine cross-price
elasticity estimates with potentially higher accuracy and statistical signi�-
cance than the approach of this research. As running the computations for
product groups proved to be challenging and inaccurate, it could be better
to take the items individually and determine an optimal price for them one
at a time instead of an entire product group at once.

In addition to developing the model further, more computational power is
needed to run the analyses e�ciently. In this work, the largest product
groups, that included approximately 20 items took more than two hours to
run the computations. Having more data and more complex models would
require updating the hardware to another level. Furthermore, the possibility
of transitioning to an R-SQL server environment would allow more random
access memory (RAM) and thus relieve some of the strain the computations
will cause.

Finally, due to a strict scope that we were forced to set on this project, some
interesting and rather meaningful factors had to be left outside the research
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or worked around in the data re�nement phase. Some products were sold for
dozens of di�erent prices during the observation periods, which was caused
by various di�erent promotions, special o�ers and coupons to name a few
reasons. We managed to take some of these into account in the data re�ne-
ment, but more work on this issue is required to provide a more realistic and
less aggregated data input. Additionally, we were unable to handle simul-
taneous price adjustments well enough. Such adjustments caused distortion
in our cross-price elasticity estimates and thus later in the optimization re-
sults. In the future research on this topic, it would be interesting to include
marketing inclusion in the modeling phase. Thus we would be able to gain
insight into the extent a product's demand is a�ected by that product being
shown in di�erent marketing media. Another related point of interest would
be to make a comparison between di�erent promotion and markdown types.
This would require further development in the data re�nement to be able
to recognize di�erent types of markdowns, such as loyalty program prices,
package prices (e.g. buy 3 pay for 2), percentage o�ers (e.g. -20% o� all
jackets) or normal markdowns. The di�erence between the loyalty program
o�ers and other markdowns carries a special interest for Company X, since
their loyalty program members are extremely active.

This thesis did not separate di�erent demographic (Hoch et al. 1995) or
geographic areas when running the computations. Doing so would provide
insight into market di�erences between di�erent areas of business. Combin-
ing this approach with the dynamic pricing model could provide Company X
with an opportunity to tailor prices (Levy et al. 2004) and product supply
according to the speci�c local market. Di�erent pricing in di�erent market
areas could prove problematic though, especially if market areas with close
proximity have signi�cant deviations in their prices. Maybe running the com-
putations on individual stores or market areas could provide some insight on
local demand pro�les and thus motivate special promotions or marketing de-
cisions as well as assortment management decisions.

In order to get more realistic and accurate numbers on the total pro�tabil-
ity, we would require more data on costs. The dynamic pricing model could
include factors such as warehousing costs for the store inventory and the
distribution centers as well as the cost of logistics both within and between
the Company X's establishments. These costs are usually a�ected by the
sell-through of items in inventory and thus could be included in the model.
However, many allocate those costs somewhere else, like with the costs of the
supply chain or logistics which is a totally di�erent cost account. A choice
would have to be made whether or not these costs were included in the pric-
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ing computations.

Another aspect that could be utilized in the optimization phase is further
research on the price level in the market. Including extensive intelligence
on competitors' prices could provide some additional constraining factors for
the price optimization. Gathering such intelligence could prove very time
consuming though. Furthermore, a related issue would be a manufacturer
speci�ed sales price. Some brands want to enhance their image in the mar-
ket by setting restrictions on the pricing of their products. Such restrictions
could be included in the pricing model as further constraints. These issues
would require additional data entries however, which means that even more
computational power is needed to reference all required data when running
the optimization.

The approach in this thesis was to gain insight on pricing decisions through
data analysis. It was a conscious decision to leave any aspects of psycholog-
ical origin outside the scope of this thesis. These issues were only addressed
in the analysis of the obtained results to some extent. The assumption when
observing price elasticity of demand is that the consumer behaves at least
with some rationality and that things like brand or store preferences, be it
the consumers' or the salesman's, do not have any e�ect on the purchase
decisions. In reality things are di�erent however. Many people choose to pay
a little more for their purchase if the customer service is better in another
store while some consumers as well as salesmen only support a speci�c brand.
These kinds of personal preferences and psychological aspects could not be
included in our research. Additionally, it was mentioned that consumers are
becoming increasingly aware of the prices in the market. This includes the
notion that consumers are learning the timing of various sales periods, such
as summer sale, Black Friday and Christmas sales, when a large pool of prod-
ucts will be given a markdown. We did not address the deviations that could
have been caused by consumers postponing their purchases due to their be-
lief of upcoming discounts. Such psychological and behavioral aspects could
even be included in an interesting thesis topic of their own.

5.2 Future

The future of this project is in the hands of the Company X. Provided that
an investment was made into more extensive data analytics, this tool could
be developed further and the quality of the computations could be enhanced.
Several issues could be resolved with additional resources, such as transition-
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ing to an R-SQL server for which the Company X has had plans in place.
The quality of the obtained results is rather disappointing, but the resources
needed to develop the model further were lacking at this stage. The project
was performed according to the project team's initial wishes and the mod-
eling practice was not altered during the work. In conclusion, continuing
this project is an interesting prospect with serious potential in pricing ana-
lytics due to the high value of all data that is available. The possibility of
future projects and development of a more complex pricing model needs to
be discussed further with the Company X.
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7 Appendices

A Linear regression

Linear regression is a common method in modeling the relationship between
two observed variables through �tting a linear equation to the acquired data.
One of the variables works as an explanatory variable, whereas the other is
dependent on the explanatory one. Before attempting to �t a linear model
to the observed data, it is bene�cial to run statistical tests to determine
whether or not there is any association between the variables to begin with.
Such tests could include generating a scatter plot showing all data point pair-
ings, or calculating a correlation coe�cient. In the sense of this thesis, �gure
3 shows two variables and linear regression model �tted to their observed
values. In this example, the dependent variable is "Qty.Per.Day" and the
explanatory variable is "Price".

The general formula of the linear regression model is presented below:

yi = b0 + b1xi, (A.1)

where yi is the dependent variable, xi is the explanatory variable, b0 is a
constant which can be calculated from the y-axis intersect by setting xi = 0,
and b1 is the slope of the �tted linear model.

This thesis uses one of the most common methods to �t a linear regression
model, which is called the least-squares regression. The name of the method
reveals a lot, since the best �tting line is determined by minimizing the sum
of squared vertical deviations from each data point to the �tted line. Given
that our data is of the form (x1, y1), ..., (xN , yN), the deviation is de�ned as:

E(b1, b0) =
N∑

n=1

(yn − (b1xn + b0))
2. (A.2)

In order to obtain the best �tting linear regression model, we need to min-
imize the deviation in equation (A.2). The deviation is minimized when b0
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and b1 satisfy

∂E

∂b1
= 0,

∂E

∂b0
= 0. (A.3)

Setting equation (A.3) as ∂E/∂b1 = ∂E/∂b0 = 0, and solving, yields
a linear system of equations. The solution for which is the pair of coe�cients
b1, b0, that produces the optimal linear equation for the data.

The data can include points that do not lie on or near the best �tting line.
These points are called outliers, and can be observed after the regression
model has been chosen. A residual plot shows the extent to which the ob-
served data points deviate from the �tted model. This is a further tool
to assess the linear relationship between the observations. Large deviations
could indicate a possibility of non-linear relationship instead of a linear one.
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B Multiple regression

Multiple regression is an advanced statistical tool, that depicts the relation-
ship between a dependent variable and multiple explanatory, or independent,
variables. Determining the relationships between the included variables will
facilitate making more powerful and accurate predictions about the observed
variables. The general presentation for multiple regression model with n in-
dependent variables is presented below:

yi = b0 + b1x1 + b2x2 + . . . + bnxn + ε. (B.1)

Here, yi is the dependent variable that is to be predicted with the dependent
variables x1, ..., xn. The coe�cients related to the dependent variables are
called partial regression coe�cients b1, ..., bn, whereas b0 is the intercept. The
�nal term ε is an error term which is usually assumed to be normally dis-
tributed with a 0-mean. The multiple regression model assumes that there
is no linear relationships between di�erent independent variables and that
no independent variable is constant. Furthermore, the partial regression co-
e�cients bn are assumed to be linear. With these assumptions, the model
coe�cients can be estimated with an ordinary least-squares method.

The goodness of the �tted model can be examined by running statistical
tests as with simple linear regression. We have a measure called R-squared
(R2) which equals to the squared correlation between the �tted prediction of
yi and the actual observed data. The R2-value can be computed from the
deviations of the �tted model and the observed values:

R2 =
SSE

SST
= 1 − SSR

SST
. (B.2)

In equation (B.2), the terms SSE, SST and SSR stand for di�erent sums
of squares. The following equations present how each of these values is com-
puted:
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SST ≡
n∑

i=1

(yi − ȳ)2; (B.3)

SSE ≡
n∑

i=1

(ŷi − ȳ)2; (B.4)

SSR ≡
n∑

i=1

ε̂2i . (B.5)

In equation (B.3), we compute the sum of squared di�erences between obser-
vations yi and the total mean of observations ȳ. This is called total sum of
squares. For equation (B.4), the squared di�erence is between the predictions
ŷi and the total mean of observations ȳ and is called the explained sum of
squares. The equation (B.5) simply computes a sum of squared di�erences
between the actual data and the values predicted with the �tted model. The
�nal equation (B.5) is called residual sum of squares, or sometimes the sum
of squared errors of prediction. Inserting these into equation (B.2) yields the
R2-value for the �tted regression model.

The R2-value does not decrease with the addition of new independent vari-
ables, which is why an adjusted R2 value is often used. The adjusted R2

value decreases if the added independent variable does not enhance the �t-
ted model. The R2-values are additional statistical coe�cients that can be
utilized when estimating the adequacy of the �tted model in explaining the
variations in the observed data. It does not however indicate whether or not
the chosen regression was the best alternative, whether or not the best com-
bination of independent variables was chosen or whether or not there were
enough data points for a reliable conclusion.
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C Tables

The tables C.1 and C.2 include a large group of footwear products, from
which the items in tables 1 and 2 are singled out. Table C.3 presents a
collection of clothing items that yield poor cross-price elasticity values and
the statistical tests suggest poor �t to the data. The model is not good
enough and singularities are formed when running the computations. These
tables are referenced and analyzed further in the Results section.

70



T
ab
le
C
.1
:
A
ta
b
le
w
it
h
a
la
rg
e
gr
ou
p
of

fo
ot
w
ea
r
it
em

s'
cr
os
s-
p
ri
ce

el
as
ti
ci
ti
es

fr
om

ag
gr
eg
at
ed

d
at
a.

S
h
o
e
0

S
h
o
e
1

S
h
o
e
2

S
h
o
e
3

S
h
o
e
01

S
h
o
e
02

S
h
o
e
03

S
h
o
e
04

S
h
o
e
05

R
2

A
d
j.
R

2

S
h
o
e
0

-7
.3
3

-8
.4
5

-6
.8
6

2.
79

0.
00

4.
77

9.
63

9.
89

0.
00

1.
00

N
A

S
h
o
e
1

0.
44

1.
48

-0
.5
0

3.
49

-1
.9
7

0.
80

1.
73

-9
.6
9

0.
00

0.
88

0.
34

S
h
o
e
2

0.
95

-6
.9
5

-9
.0
9

-1
.4
4

-0
.7
9

-4
.2
2

13
.6
8

10
.2
6

0.
00

0.
92

0.
60

S
h
o
e
3

-6
.3
0

-0
.3
6

1.
51

3.
64

0.
18

5.
14

0.
68

-0
.5
3

0.
00

0.
84

0.
40

S
h
o
e
01

-2
2.
06

-8
.2
1

-0
.5
1

-5
.6
3

17
.0
4

2.
46

6.
61

10
.8
8

0.
00

1.
00

N
A

S
h
o
e
02

0.
00

19
.9
5

-0
.5
8

4.
45

0.
00

-1
7.
36

0.
74

0.
00

0.
00

1.
00

N
A

S
h
o
e
03

-1
8.
59

-1
4.
73

1.
90

1.
36

0.
00

15
.1
2

-1
.4
0

17
.9
9

0.
00

1.
00

N
A

S
h
o
e
04

5.
99

-0
.3
1

0.
00

0.
00

-2
.4
8

0.
00

0.
05

-5
.9
6

0.
00

1.
00

N
A

S
h
o
e
05

10
.2
9

0.
33

0.
00

0.
00

-0
.9
2

0.
00

-0
.4
4

0.
00

-7
.9
9

1.
00

N
A

T
ab
le
C
.2
:
A
ta
b
le
w
it
h
a
la
rg
e
gr
ou
p
of

fo
ot
w
ea
r
it
em

s'
cr
os
s-
p
ri
ce

el
as
ti
ci
ty

va
lu
es

fr
om

u
n
ag
gr
eg
at
ed

d
at
a.

S
h
o
e
0

S
h
o
e
1

S
h
o
e
2

S
h
o
e
3

S
h
o
e
01

S
h
o
e
02

S
h
o
e
03

S
h
o
e
04

S
h
o
e
05

R
2

A
d
j.
R

2

S
h
o
e
0

-7
.3
3

-8
.4
5

-6
.8
6

2.
79

0.
00

4.
77

9.
63

9.
89

0.
00

0.
17

0.
15

S
h
o
e
1

0.
03

4.
27

-0
.9
4

2.
78

-2
.6
5

0.
86

3.
49

-9
.9
2

0.
00

0.
37

0.
36

S
h
o
e
2

1.
99

-8
.0
0

-1
0.
45

-1
.8
3

-0
.4
7

-2
.8
8

12
.7
6

11
.7
4

0.
00

0.
14

0.
11

S
h
o
e
3

-2
.9
4

-1
.2
5

-3
.3
4

3.
29

-0
.3
8

3.
27

4.
68

3.
54

0.
00

0.
32

0.
30

S
h
o
e
01

-2
2.
06

-8
.2
1

-0
.5
1

-5
.6
3

17
.0
4

2.
46

6.
61

10
.8
8

0.
00

0.
11

0.
08

S
h
o
e
02

0.
00

19
.9
5

-0
.5
8

4.
45

0.
00

-1
7.
36

0.
73

0.
00

0.
00

0.
05

0.
02

S
h
o
e
03

-1
8.
59

-1
4.
73

1.
90

1.
36

0.
00

15
.1
2

-1
.4
0

17
.9
9

0.
00

0.
24

0.
21

S
h
o
e
04

5.
99

-0
.3
1

0.
00

0.
00

-2
.4
8

0.
00

0.
05

-5
.9
6

0.
00

0.
42

0.
40

S
h
o
e
05

10
.2
9

0.
33

0.
00

0.
00

-0
.9
2

0.
00

-0
.4
4

0.
00

-7
.9
9

0.
33

0.
30

71



T
ab
le

C
.3
:
C
ro
ss
-p
ri
ce

el
as
ti
ci
ty

va
lu
es

fo
r
a
gr
ou
p
of

cl
ot
h
in
g.

N
ot
e
a
ve
ry

p
o
or

�
t
an
d
m
an
y
it
em

s
w
it
h
n
o

cr
os
s-
p
ri
ce

e�
ec
t
on

ot
h
er
s.

S
P
1

S
P
2

S
P
3

S
P
4

S
P
5

S
P
6

S
P
7

R
2

A
d
j.
R

2

S
P
1

4.
48

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
00

N
A

S
P
2

5.
26

0.
88

0.
00

0.
00

0.
00

0.
00

0.
00

0.
98

0.
93

S
P
3

1.
73

0.
00

1.
44

0.
00

0.
00

0.
00

0.
00

0.
92

0.
76

S
P
4

-0
.2
7

-0
.2
5

0.
00

-4
.0
8

0.
00

0.
00

0.
00

0.
99

0.
98

S
P
5

0.
00

0.
00

0.
00

0.
00

2.
04

0.
00

0.
00

1.
00

N
A

S
P
6

0.
00

0.
00

0.
00

-0
.5
0

0.
00

-0
.6
5

0.
00

1.
00

N
A

S
P
7

0.
00

0.
00

0.
00

-0
.9
0

0.
00

0.
00

-1
.1
8

1.
00

N
A

72


	Introduction
	Background and Theory
	Market and Retail
	Pricing
	Elasticities of demand

	Basis
	Mathematics
	Optimization


	Research
	Data
	Transactional data
	Additional data dimensions

	Model

	Results
	Elasticities
	Own-price elasticity
	Cross-price elasticity

	Price optimization

	Discussion
	Development ideas
	Future

	References
	Appendices
	Linear regression
	Multiple regression
	Tables

