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Modern portfolio theory is a widely used framework in the financial industry. It
has a solid theoretical background, and has been successfully employed by the
practitioners for decades. Traditional models based on Harry Markowitz’s port-
folio theory, and its further improved versions, have one significant shortcoming:
they are single-period models by definition, and are not able to accommodate
multi-period considerations.

In this thesis, instead of modern portfolio theory and mean-variance optimisation,
we use stochastic programming. To employ stochastic programming as a tech-
nique to find the optimal allocations, we need to develop scenarios, or scenario
trees that describe the stochastic variables and their distributions.

To generate the scenarios, we employ a methodology called moment matching,
where the relevant properties of stochastic variables in our generated scenarios are
fitted to counterparts estimated by means of time series analysis and economet-
ric modelling. These stochastic factors are also called market invariants in this
context. Market invariants are then translated into asset returns, which make it
possible to find optimal asset allocations in each stage of the scenario tree.

An illustrative asset allocation example is presented in this thesis to demonstrate
how the dynamic allocation strategy performs compared to a fixed allocation
decision. The results are rather intuitive, and as expected, the dynamic allocation
strategy outperforms the fixed strategy in the scenarios generated. A comparison
to traditional mean-variance framework is conducted, and it is seen that the
resulting allocations for both dynamic and fixed strategy are close to being mean-
variance efficient.

Further research topics include changing the scenario generation methodology,
and more sophisticated modelling of interest bearing instruments. An interesting
direction for further development would be constructing the entire term structure
of a yield curve, which would allow flexible valuation of assets and liabilities based
on their present values.
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Moderni portfolioteoria on rahoitusalalla yleisesti kiytetty. Silla on vahva teoreet-
tinen pohja, ja sen sovelluksia on kiytetty onnistuneesti vuosikymmenien ajan.
Harry Markowitzin kehittdmén portfolioteorian, ja siité kehitettyjen parannettu-
jen versioiden yksi ilmeinen heikkous on kuitenkin se, etté ne ovat rakenteeltaan
yksiperiodisia malleja. Ne eivit nain ollen sovellu moniperiodiseen tarkasteluun.

Tassa diplomityosséd portfolioteorian perinteisten mallien sijaan sovelletaan sto-
kastista ohjelmointia optimaalisten omaisuuslajiallokaatioiden loytdmiseen. Jotta
stokastista ohjelmointia voisi hyodyntéad, on ensin kehitettava skenaariot, jotka
kuvaavat satunnaismuuttujat ja niiden jakaumat, joiden perusteella optimointi
voidaan tehda.

Skenaarioiden luomiseksi kidytdmme momenttien sovittamiseksi kutsuttua me-
netelmééd, jossa ongelman kannalta relevantit satunnaismuuttujien ominaisuudet
sovitetaan skenaarioissa aikasarja-analyysin ja muiden ekonometristen menetel-
mien avulla estimoituihin vastineisiin. Stokastisia muuttujia kutsutaan téssé yh-
teydessa markkinainvarianteiksi, ja ne voidaan muuntaa omaisuuslajien tuotoiksi,
joiden perusteella voidaan laskea optimaalinen omaisuuslajiallokaatio skenaario-
puun jokaisessa haarassa.

Tyossa esitelladn havainnollistava esimerkki dynaamisen allokaatiostrategian ja
kiintedn allokaatiostrategian vertailua varten. Tulokset ovat intuitiivisia ja kuten
odotettua, dynaaminen strategia parjaa kiintedd paremmin. Tehty vertailu perin-
teiseen Markowitzin mallin mukaiseen optimointiin osoitti, ettd sekd dynaaminen
ettd kiinted stokastisen optimoinnin strategia ovat lahelld Markowitzin mallin
mukaista tehokasta rintamaa.

Jatkotutkimuskohteita ovat skenaarioiden generointiin kiytetyt menetelméat ja
korkoperustaisten sijoituslajien tarkempi mallintaminen. Kiinnostava tutkimus-
suunta olisi koko korkokédyrdn mallintaminen, joka mahdollistaisi mielivaltaisten
tase-erien markkina-arvostamisen nykyarvoonsa.

Asiasanat: stokastinen ohjelmointi, skenaariopuu, skenaarioiden gene-
rointi, omaisuuslajiallokaatio, portfiolion optimointi, korko-
malli

Kieli: Englanti

il



Acknowledgements

This master’s thesis was written as a by-product of development of a multi-
stage financial planning tool for OP Financial Group’s Wealth Management
department. The work was instructed by a colleague Jari Mikkonen, to whom
[ am very grateful for sharing his expertise, and sacrificing his time and effort.
Regular follow-ups and coaching sessions with Jari were the key to push the
sometimes so sluggishly advancing project until the very end.

I am thankful for being supervised by professor Ahti Salo, who provided valu-
able feedback along the way, even at short notice, and with flexible means.

Lastly I wish to thank everyone who participated in the process of proofread-

ing, and providing encouragement. In addition, many thanks to Unisport for
providing meaningful activities while procrastinating.

Helsinki, May 1, 2016

Henri Tuovila

v



Contents

1 Introduction
1.1 Background and motivation . . . . . ... ... ... ... ..
1.2 Context and research objectives . . . . . . . . ... ... ...
1.3 Structure of the thesis . . . . . ... .. ... ... ... ...

Background and literature review

2.1 Modern portfolio theory . . . . . ... ... ...
2.2 Multi-period investing . . . . . .. ..o
2.3 Asset allocation strategies . . . . .. ... ... ...
2.4 Utility functions . . . . . . . .. ..o
2.5 Scenarios for stochastic programming . . . . . . .. .. .. ..

2.5.1
2.5.2
2.5.3
2.54
2.5.5
2.5.6

Scenario generation . . . . . . .. ... .. ... L.
Clustering . . . . . . . . ... ... ... ...
Sequential simulation with k-means clustering . . . . .
Moment matching . . . . . .. .. ..o
Property matching . . . ... ... ... ... .. ...
Integration quadratures . . . .. . ... ... ... ..

Theoretical model description

3.1 Stochastic programming models . . . . .. .. ... ... ...

3.1.1

Portfolio optimisation by stochastic programming . . .

3.2 Scenarios for stochastic programming . . . . . . .. ... ...

3.2.1
3.2.2

Scenario trees . . . . ... Lo
Moment matching . . . . . .. .. ..o

3.3 Interest rate models . . . . . . . . ...
3.4 Objective function . . . . . . . .. ... L.

Implementation and numerical results

4.1 Data for model calibration . . . . . . . . .. .. ... ... ..

4.1.1
4.1.2

Market invariants . . . . . . . ... L.
Money markets . . . . .. ..o

18
18
19
19
20
24
26
28



=]

o aQa w »

4.1.3 Government bonds and bond rate . . . . . .. ... ..
4.1.4 Investment grade bonds and credit spread . . . . . ..
4.1.5 Propertyindex . . . ... ... ... ..
4.1.6 Matching moments . . . . . .. ... ... ... ...
4.1.7 Annualising moments . . . . . . ... ...
4.1.8 Parameters for short-rate model . . . . . . . . .. ...
4.2 Generated scenario trees . . . . . .. .. ...
4.3 Optimised allocations . . . . . . ... ... ... ... .....
4.3.1 Dynamic second stage decisions . . . . . ... .. ...
4.3.2 Comparison with fixed-mix strategy . . . . . . . . . ..
4.3.3 Comparison with mean-variance optimisation . . . . .

Evaluation and discussion

5.1 Stability of the optimal solution . . . . . . ... .. ... ...
5.2 Potential issues in model specification . . . . . . . ... ...
5.3 Solver selection and computational issues . . . . . . . . .. ..
5.4  Further research topics . . . . . . . .. ...

Conclusions

Data characteristics

Estimated short-rate model parameters
Optimal allocations

Parameters for mean-variance optimisation

vi

56
56
58
60
61

63

70

74

76

80



Chapter 1

Introduction

1.1 Background and motivation

Defining the asset allocation between major asset classes in an investment
portfolio is the biggest decision investors make. At the highest level this
means choosing the proportions in which to invest in interest bearing invest-
ments, and in equities. This high level allocation decision is the strategic
asset allocation, and it determines for most part the expected rate of return
and risk in the portfolio. (Zenios and Ziemba, 2007)

Portfolio analysis and portfolio optimisation are well known and widely
applied topics. The models in this context are often referred to as the mod-
ern portfolio theory, and they are an important tool in today’s financial
industry. However, these models have a shortcoming: they are by definition
single-period models, and are optimal in a multi-period setting only under
certain assumptions. These single-period models do not explicitly allow ad-
justing decisions along the planning horizon when new information becomes
available.

Anticipating the development of the state of the economy and an in-
vestment portfolio in a longer horizon is in the interest of all investors, and
especially such as insurance companies, pension funds and other institutions
facing the asset and liability management problematics.

This thesis explores the models for analysing and optimising an invest-
ment portfolio in a multi-period setting exploiting scenario based stochastic
optimisation methods.

In order to develop a reasonable model for stochastic optimisation prob-
lem to be solved, various modelling issues have to be encountered. These
topics include detailed return modelling of fixed income investments, whose
distributions are thought to differ significantly from the usual normality as-
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sumption.

Modelling the market invariants properly finally leads to scenario gener-
ation, which is a broad field with various different models to choose from.
Scenario generation leads to scenario trees, which can finally be fed to an
optimiser. The results and resulting decisions will be only as good as are the
scenarios used, hence the importance of setting them carefully.

One of the key elements of the decision making process is defining the
investor’s preferences, which is not at all trivial. Every investor has their
individual attitude towards risk, and many investors measure risk in different
ways. For institutional investors such as insurance companies the risk might
be measured relative to a regulatory solvency capital requirement. On the
other hand, private individuals may be willing to avoid big changes in the
value of their portfolio.

Similar scenario based optimisation models are in use in other than fi-
nancial industries as well, because they provide a rigid way to account for
uncertainty in a multi-period setting. These models are not included here,

but one example of an application from the field of chemical engineering can
be found in Calfa et al. (2014).

1.2 Context and research objectives

In this thesis we study the problem from a viewpoint of an institution with
assets and a return target. This could be seen as an arbitrary target set
by managers of the company, or an external target set by the liabilities the
institution has. Institutions like this include pension funds and life insurers.
The approach will not be more specific, however this thesis is written having
a pension insurance company in mind. The needs such a company may have
are taken as a motivational starting point.

The approach we intend to use involves setting an annual return target,
which could be seen set by the liabilities the institution has. The liabilities
can have an estimated annual growth rate, which needs to be covered by
the asset side of the balance sheet. A typical growth rate for liabilities
would be the inflation, which the central banks typically try to maintain
at about 2%. (European Central Bank, 2016) In a real asset and liability
management problem (shorthand: ALM) the liabilities should be modelled
separately, which would result in interesting objectives for the optimisation,
like remaining solvent, and holding a buffer to ensure the solvency of the
institution.

Some investors face an optimisation problem, where the absolute returns
of an asset portfolio matter only little, but the main point of interest is
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Table 1.1: An example of the contents of a simplified balance sheet.

Assets Liabilities

Cash Cash flow stream
Government bonds
Corporate bonds
Equity

Real estate

actually the net wealth. In this case the liabilities have to be taken into
account as well.

Liabilities are typically modelled as cash flows in time. They are typically
independent of the assets, except from the interest rates. Measuring the
market values of a cash flow stream is relatively straight forward given the
yield curve for discounting, which enables us to deduce the market values of
liabilities in each stage of the scenario tree. An illustrative example of a very
simple balance sheet is presented in table 1.1.

Having the simplified balance sheet defined we can further define the
optimised variables in an asset and liability management terms.

Depending on the modelled company, liabilities can be market valued,
which would make it compliant with the regulation implemented in Europe.
Alternatively in a more simple case, fixed forecasts could be given by an
actuary used as such, and the goal would be simply to remain solvent.

For the model to be entirely compliant with the legislative requirements,
it needs to take into account the additional solvency capital requirement,
namely the amount by which the assets need to exceed the liabilities in
value.

Extending the model to comply with more complex regulatory require-
ments, but also for more complex estimates for the liabilities would provide
reasonable areas for further research. Similar models have been employed
earlier for both pension funds and life insurance companies. These earlier
models would need, however, updating to be still valid today due to a very
different economic environment than in the past when the models were built.
One such important factor is the low level of interest rates, which makes it
hard to come up with reasonable parameter estimates for the models, but
also makes it hard to employ models that assume implicitly that interest
rates never go below zero.

For now, we omit, however, the complex regulatory requirements set by
the authorities, and adopt a simplified approach with no explicitly modelled
liabilities. We do so to avoid delving too deep into the regulatory pecu-
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liarities, and to concentrate on the basics of multi-period asset allocation
modelling.
The research objectives for this thesis are consequently:

e Asset allocation model in a multi-period setting covering major asset
classes of pension fund’s portfolio

e Estimate up-to-date parameters and develop scenarios for multi-period
optimisation

e Optimise a dynamic strategy in a two-stage problem and compare dy-
namic strategy to fixed strategy

e Study the stability of the optimal solution and discuss the parameter
choices.

1.3 Structure of the thesis

The structure of this thesis is as follows: we start by introducing the subject
and mentioning some of the most important literature in chapter 1. In the
next chapter 2 we will have a detailed literature review and a look on the
background of the problem. The next chapter 3 will be the theoretical part of
this thesis covering the models we are interested in. In the last part (chapter
4) we demonstrate the theoretical framework in an empirical asset allocation
example mimicking a real-life decision making situation. In chapter 5 we
evaluate the performance of the model, and present a broader discussion on
the topic. Further research topics are also presenter in chapter 5. In the last
chapter 6 we conclude the thesis.



Chapter 2

Background and literature review

2.1 Modern portfolio theory

Modern Portfolio Theory (MPT) began with the work of the Nobel prize win-
ner economist Harry Markowitz who developed the fundamental framework
of portfolio theory and portfolio optimisation.

The Markowitz’s model in its most basic formulation is

n
minZwiwjam,
2Y)
S.6) wiT =T, (2.1)
n
i

In (2.1) w; is the amount invested in asset ¢, o, ; is the covariance of assets
1 and 7, 7; is the expected return of asset ¢ and 7 is the expected return of
the portfolio. In (2.1) the minimisation is done so that the expected return
of the portfolio is the weighted average of the constituents of the portfolio,
and all the available resources are invested. (Markowitz, 1952; Luenberger,
1998)

Markowitz’s work was further extended by Tobin by inclusion of the risk-
free asset, in which the investor can invest. The work was further advanced
by Sharpe by assuming that the same risk-free rate can be used for borrowing
as well. The finings of Sharpe are more generally known as the capital- asset
pricing model (CAPM). In the CAPM it is assumed that the expected return
of an investable security is related only to its beta, a factor formalised by
Sharpe and the CAPM. (Markowitz, 1999)

5
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In the heart of the CAPM lies the capital market line given by
i —rp = Bi(Fm —1y), (2.2)

where 7; is the expected return of asset i, ry is the risk-free rate, 3; is the
beta coefficient of asset 7, and 7, is the expected market return. Equation
(2.2) holds if the market portfolio M is efficient. The factor f; is defined

g;
Bi= = (2.3)
Om

where ;) is the covariance of excess asset returns and excess market returns,
and o3, is the variance of excess market returns. In other words the factor 3;
is the sensitivity of excess asset returns on the excess market returns. This
factor is thought to capture the degree of non-diversifiable risk the asset is
exposed to.

Another direction in which the models were developed was that of combin-
ing investors’ market views on the supposedly neutral parameters typically
estimated from the historical time series of market returns. The first model
to succeed in doing this was called the Black-Litterman -model, named af-
ter the inventors. The BL-model managed to blend subjective market views
on the neutral estimated market parameters in a coherent way. (Black and
Litterman, 1992) More advances towards this direction were taken to elimi-
nate the restrictive assumption of normality, Attilio Meucci proposed a way
to use copula functions to blend investor views on the non-normal market
distributions. (Meucci, 2005)

The mentioned developments above sought to broaden the model to a
certain direction: making the estimates more accurate and more credible.
However, these models are all single period models, hence they do not ex-
plicitly allow dynamic decision making and updating. It is easy to see some
of the limitations these one-period models can have. By definition, these
models do not account for the possibility of having to adjust the portfolio
during the planning period. In addition, it is not clear what would be an
optimal planning horizon for a one-period model.

For these reasons we resort to stochastic optimisation, which is a theoret-
ical framework that allows multi-period considerations in portfolio optimisa-
tion problems. In the literature, it is even stated that applying a single-period
model repeatedly for more than one period result to sub-optimal dynamic
decisions. (Dupacova et al., 2003) The need for another approach, which
allows adjustments to portfolios during the planning period is the starting
point and motivation for this thesis.
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2.2  Multi-period investing

The earliest dynamic models were developed soon after Markowitz’s ground-
breaking research. Merton, another Nobel laureate, published in the late 60’s
with his doctoral advisor Samuelson articles treating the multi-periodicity of
the underlying problem.

The developments started by the Merton and Samuelson are not among
their most notable findings, but the two are more famous for the Merton
model, and Samuelson on the other hand has been titled the Father of Modern
Economics.

The rationale for studying dynamic multi-period models more is that
according to experts in the field they lead to superior results compared to
myopic or static techniques. (Zenios and Ziemba, 2007) Instead of making
long term fixed decisions an investment portfolio for example may be updated
daily, weekly and so forth depending on the investment management problem
in hand. In this kind of setting it is interesting to study models that allow a
type of an updating scheme. The results tend to predict better performance
for models that allow and take into account the possibility of updating the
portfolio structure along the way.

A notable finding by Samuelson (1969) and Merton (1969) was that if the
investor’s utility function is iso-elastic, then the portfolio-selection is an in-
dependent decision on the consumption decision. Iso-elastic utility functions
are also referred to as power utility functions.

Another popular belief Samuelson (1969) debunked was that an investor
should invest differently according to their age and prospective future income
streams. What Samuelson (1969) proved was that this is not the case, as-
suming the risk-tolerance and utility function remaining intact the investor’s
entire life. However, if the utility function changes, the previous reasoning
does not hold.

2.3 Asset allocation strategies

In this section we make a quick overlook on different allocation strategies
studied in the literature.

Buy and hold

First and simplest possible allocation strategy is the "buy-and-hold" strategy,
where the decision maker makes a decision in the beginning of time, and holds
the decision until the end of investment horizon. Such a decision could be
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made based on single-period optimisation models described in the previous
section. Best known and most widely used allocation model being probably
the model by Harry Markowitz. (Markowitz, 1952)

Fixed mix

Slightly more sophisticated strategy would be so called "fixed-mix" strategy,
where the investment decision is made in the beginning, and held constant
through the investment period until the end of horizon. This strategy already
assumes a multi-period setting, where asset allocations in the portfolio need
to be updated every now and then.

Fixed-mix strategies play an important role in the asset allocation indus-
try, because portfolio managers are often compared to performance of such
strategies.

The theoretical justification for fixed-mix strategy exists as well, at least
as long as asset returns are assumed to be i.i.d., the utility function is CRRA
(constant relative risk aversion), only investment income is taken into ac-
count, and transaction costs are not included.

However, these assumptions listed above are some of the reasons why a
more sophisticated multi-period framework is of interest at the first place.
Transaction costs are in some cases significant, so they can not be ignored. In
addition, asset returns may not be i.i.d. Moreover, incorporating future cash-
flows due to a more complex balance sheet is one of the reasons to consider
a more sophisticated multi-period model.

Constant-proportion strategies

Constant-proportion strategies are defined by Perold and Sharpe (1988) as a
strategy, where the investor sets a floor for size of the portfolio below which
it should not fall at any point. The floor is set to grow according to a riskless
rate.

Formally the constant-proportion strategy is given by
Invested amount in stocks = m(Assets — Floor). (2.4)

In Perold and Sharpe (1988) the authors explain the difference in parenthesis
to form a "cushion", and according to the CPPI decision rule the investor
should simply keep their exposure to equities a prefixed constant multiple of
this "cushion".
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Option-based portfolio insurance

In an option-based portfolio insurance strategy the definition begins by fixing
the investment horizon, and a floor level in for value of assets in that given
planning horizon. Although it is not said explicitly, the floor set to the end
of the horizon defines implicitly floors for each time step until the end of
planning horizon. This is done by discounting the floor from the end of
planning horizon using the riskless interest rate. (Perold and Sharpe, 1988)

An important drawback of the OPBI strategy is that it is calendar depen-
dent. Typically long-term investors have in real life an investment horizon
much longer than their planning horizon, and it causes problems when the
current OPBI strategy expires. A new set of investing rules is needed, when
the previous one expires. (Perold and Sharpe, 1988)

Stochastic programming

One method to solve problem of generating dynamic allocation strategies is
called stochastic programming. In stochastic programming, the optimisation
problems are probabilistic. This means that instead of optimising a certain
utility function, we are optimising the expected value of such a function.

Stochastic programming has proved to be an method to deal with the
most general models, and there taking the transaction costs into account is
easy. Moreover, the serial dependency of the return distributions of asset
classes can be modelled. (Zenios and Ziemba, 2007)

Another advantage the stochastic programming (SP) has is that it can
be directly expanded from an asset only analysis into an asset and liability
management (ALM) problem. Including the liability side of the balance
sheet is an essential requirement for a financial planning model by most
institutional investors: pension funds and insurance companies. (Zenios and

Ziemba, 2007; Ziemba, 2003)

In stochastic programming the uncertainty involved in investment deci-
sions is modelled by scenario trees. Different techniques for estimating a
scenario tree are discussed later in this thesis.

When a stochastic program in a multi-period setting is solved, the solution
typically contains the optimal values of decision variables in each stage of
the scenarios. Still, even though the solution contains the values for latter
decisions in the program, the most interesting part of the solution is of course
the first period decision, since that decision is done first, and the others can
be considered later.
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Stochastic dynamic programming

In the book Handbook of Asset and Liability Managemen (Zenios and Ziemba,
2007) stochastic dynamic programming is provided as another method to
come up with decision policies for dynamic asset allocation strategies.

A major drawback of stochastic dynamic programming is the number of
state variables it can cope with, the state variables being the decisions made
in each time step. This is a widely recognised issue and often called as the
"curse of dimensionality".

The main difference between stochastic programming models, and stochas-
tic dynamic programming is the solution concept. In stochastic programming
most of the emphasis is put to the first period decision, whereas in stochastic
dynamic programming the aim is to establish decision rules, which could be
applied be the system in which ever state. (Dupacova et al., 2003)

2.4 Utility functions

In order to optimise, we need to define what is the property to either max-
imise or minimise depending on the problem setting. This is an important
issue at the heart of the problematics of portfolio selection, and in this sec-
tion we show different types of typical utility functions available to describe
the preferences of the decision maker.

Utility function is an individual trait of each investor. They are typically
noted as U(x), and in most cases we are interested in the expectation of the
utility function: E[U(z)]. The argument z inside the utility function denotes
the wealth level at which the utility is considered. In many cases wealth is
also denoted as w. In some other contexts the argument could be measured
in other units as well, like as the number of desirable outcomes, or an amount
of a good or commodity in broader terms.

The most obvious and simple utility function is the linear risk neutral
utility function: U(x) = x. For this utility function the investor ranks the
obtained wealth levels linearly and does not account the risk, hence it is
called the risk neutral utility function. (Luenberger, 1998)

Utility functions are increasing and continuous functions. If > y then
U(z) > U(y). The utility functions are used to rank different outcomes, so
their cardinal value has little or no interpretation at all.

Table 2.1 lists well-known utility functions, see e.g. Luenberger (1998).
A more profound look at the utility functions in portfolio selection problems
can be found in an article by Kallberg and Ziemba (1983).

Now that we have the investor’s utility function defined, we can study
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Table 2.1: Widely used utility functions. (Luenberger, 1998)

Function name Expression

Linear Ulx) ==
Exponential Ulx) = —e*
Logarithmic Ux)=Inzx
Power U(z) = ba®
Quadratic U(x) =z — bx?

the investor’s attitude towards risk via the risk tolerance. The Arrow-Pratt
absolute risk aversion coefficient (ARA) is defined (Luenberger, 1998)

U’ (x)
ARA(z) = — . 2.
Respective relative risk aversion coefficient (RRA) is
U"(x)
A(z) = — . 2.
RRA(x) T 0(2) (2.6)

Risk tolerance is then defined as the reciprocal of risk aversion. From previous
equations (2.5) and (2.6) we can define the following risk tolerance coefficients

1

ART(@) = s, (2.7)
RRT(z) — m. (2.8)

In a typical case, risk aversion is thought to decrease when wealth increases.
This feature is incorporated in the class of utility functions called hyperbolic
absolute risk aversion (shorthand: HARA). In general case HARA functions

can be written as . sC ,
-7
UlC)= —~ — + ) ) 2.9
=2 (s (2.9

The class of so called HARA utility functions can obtain numerous forms by
varying the parameters in the definition (2.9). Luenberger (1998) gives an
exercise to show how the general form HARA yields all the different utility
functions seen in the table 2.1 by just altering the parameters.

The utility maximisation problem leads to the formulation of von Neu-
mann and Morgenstern, and the utility maximisation, so called von Neumann-
Morgenstern function is

max Y p, - U(Wyy), (2.10)
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where p; is the probability of a scenario, Wy ; the wealth in period ¢ in scenario
s, and U the utility function of an individual investor.

There exists a whole array of problem specific utility functions derived
for different purposes and different types of asset allocation problems. A
very general formulation is seen in the publication by the CFA institute The
stochastic programming approach to asset, liability, and wealth management
written by Ziemba (2003).

The general formulation of Ziemba is shown in equation (2.11). In this
objective function the model maximises the expected value of wealth in the
final period, penalised with the shortfall cost taking into account the risk
tolerance the investor has

max E |Wp — Accumulated penalised shortfalls

2.11
Risk tolerance ( )

Here the risk tolerance is the reciprocal of the Arrow-Pratt or absolute risk
aversion (ARA) coefficient seen earlier in the equation (2.7). (Ziemba, 2003)
In previous equation (2.11) Wy stands for the wealth at time 7.

In Ziemba’s definition of objective function the accumulated penalised
shortfalls are defined via an annual return goal, and falling short of this goal
is then something penalised for. In a problem specific case, this shortfall
variable could be defined as for example different levels of solvency capital.

Institutional investors like pension or life insurers face various types of
legally imposed solvency constraints, which aim at keeping the companies
away from going bankrupt. These legal restrictions are typically defined as
the minimum amount for the net wealth, the positive difference between
the value of assets and liabilities. In the European Solvency 2 regulation
the solvency capital to cover the market risk is calculated based on the risk
factor exposures of the asset portfolio and liabilities. Different asset classes
face different capital requirements. For example, equities face higher capital
requirement, and if the asset portfolio is considered very risky, the authority
requires higher amount of net assets. The local regulation the Finnish pension
funds face is qualitatively similar, and its properties are explained in the
article by Hilli et al. (2007).

Similarly as the Ziemba’s objective function in (2.11) is a construction of
a risk neutral, but also a risk accounting part. The shortfall part accounting
for the risk in the objective function could be defined as falling short of the
solvency capital requirement.

Hpyland and Wallace (2001a) construct the utility function for their in-
surance fund as the value in the end of planning horizon penalised by the
discounted accumulated shortfall of certain regulative objective. The max-
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imisation problem proposed by Hgyland and Wallace (2001a) for a Norwegian
life insurance company is

max Z Ps Z Myal,i, T,s — Z Z ps,t'Cj(Sfj,t,s) . (212>

8€Sscen 1€Sassets jesz tesper

Here P, stands for the probability of scenario s, where as scenario refers to
an entire path from the beginning until the end of planning horizon. my,y is
the market value of the investments in asset class ¢ at time 7" in scenario s.
The risk is incorporated in the objective function in the form of accumulated
compounded shortfall costs, which are summated through time periods S,
The compounding factor in scenario s at time ¢ is ps,, and it is used to scale
shortfalls occurring at different times to the same future value at the end
of the planning horizon. The shortfall cost function is noted as C;(-) and
sfjts is the shortfall of type j in scenario s at time ¢. The shortfalls of
types j are different kinds of shortfalls, first of which is defined as shortfall
relative to the target capital adequacy, and another shortfall relative to the
target solvency. The definition of the model is fully described in Hgyland
and Wallace (2001a).

Another definition for the objective function is found in an article by Hilli
et al. (2007), where a similar procedure is exploited. Here the authors have
constructed an overall objective function

T—1
max E | Y (dyu(Cy, By, Hy, Ly)) + drur(Cr, Ly) | (2.13)

t=1

where d; is a time-variant discount factor, C; capital, B; solvency border,
H; transfer to bonus reserve, L, the technical reserves (liabilities), and u
and ur respective utility functions constructed by penalising the violation of
solvency constraints.

Overall, the selection of the objective function in the optimisation is a
process that requires many considerations to capture the of the investor pref-
erences. We will construct our own objective function later in this thesis
following the same principles discussed in this section.

Later in their article Hgyland and Wallace (2001a) propose two alterna-
tives for utility functions to test the derived results in the regulatory frame-
work.

First of their proposals is the power utility function given by

AW —1

UAw) = = —, (2.14)
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where AW refers to change in wealth. Here in the power utility function the
wealth argument is defined to be the return of the portfolio to the end of the
planning horizon.

And the other alternative for the utility is given by

UAW) =AW — B-e 8", (2.15)

where AW is the change in wealth, B and C' parameters that determine the
level of risk aversion. In this latter formulation the terminal wealth is taken
as the difference of the terminal portfolio value and the current portfolio
value.

2.5 Scenarios for stochastic programming

Stochastic programming models need rigorous scenarios as an input to per-
form the optimisation and to come up with decision policies. The optimisa-
tion results depend entirely on the scenarios they are optimised on.

2.5.1 Scenario generation

In order to employ stochastic programming methods one has to develop sce-
narios under which the optimisation is carried out. Scenario generation is
an important and integral part of the modelling process, and if done poorly
the results will have little relevance to the real life. Hence, the process for
generating scenarios should not be overlooked.

Methods for generating scenarios are numerous. Some different scenario
tree generation methods are listed below:

e Clustering or path-based methods (Dupacova et al., 2000; Kaut and
Wallace, 2003)

Conditional sampling method (Kaut and Wallace, 2003)

Sequential importance sampling (Dupacova et al., 2000)

Moment matching (Hgyland and Wallace, 2001b)

Optimal discretisation (Pflug, 2001; Kaut and Wallace, 2003)

Integration quadratures (Hilli et al.; 2007)
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Many of these methods require additional assumptions about the tree:
the number of time steps, and the branching structure. Some of the meth-
ods mentioned are parametric, like the sampling methods, where we assume
distributions, for which we have estimated parameters. Others are non-
parametric, like moment matching, where the practitioner does not need
to provide explicit assumptions for the distribution.

One important issue that is raised in the case of each of these scenario
generation methods is the dimensionality. Each asset class can be seen to
consist of multiple stochastic factors that need to be modelled independent
from one another. On the other hand some assets may share some of the
factors, which may allow dimension reduction by the means of factor analysis.
(Dupacova et al., 2000)

During the process of building the model for this thesis we tried and ap-
plied clustering method with no success, hence the results from those studies
are not included here. The scenarios in this thesis are based on the moment
matching methodology as suggested and described by Hgyland and Wallace
(2001b). The method of integration quadratures as applied in an article by
Hilli et al. (2007) seemed an interesting possibility, but it is not used due
to the complexity of the model. Some aspect of the modelling in the article
Hilli et al. (2007) are taken to supplement the proposed method by Hgyland
and Wallace (2001b).

Next we describe briefly each of the mentioned scenario generation meth-
ods found in the literature.

2.5.2 Clustering

In the clustering approach we take a simulated sample of data paths as
a starting point for the discretisation process. In sequential clustering we
cluster first according to w;, after which we continue the clustering in w
sequentially to the subvector ws and so forth. In a book by Dupacova et al.
(2003) the authors refer to this method as a multi-level clustering scheme.

The simulated data path is noted as (wy, ...,wr). The clustering is done
based on a dissimilarity measure. In (Dupacové et al., 2003) this measure is
defined

T
d(w*,w”) =Y wllw] - w|l. (2.16)
t=1

In (2.16) the dissimilarity measure can be chosen accordingly, and weights w,
can be set so that earlier observations are given more importance in the esti-
mation procedure. The original data path is noted by w;, and the clustered
path is w;’.
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In multi-level clustering the first clustering results in a number of clusters,
noted as C?, ..., C{*. The clustering scheme continues for each defined cluster
C% separately. For this second round of clustering the simulations w, will be
used.

Xu et al. (2012) describe a k-means clustering algorithm accounting for
interstage dependencies. The model they describe does not, however, take
into account the problem of having multiple variables, each of which having
their own properties and respective scenario trees.

Clustering as such may not be a sufficient method for scenario generation,
and ways to improve its performance are discussed in Pflug (2001). The
technique they have developed is called "optimal discretisation".

Drawbacks of clustering methods include the generated tree may not be
statistically close to the original distribution, and running into problems in
clustering when the sequentially clustered group becomes very small in a
prescribed scenario tree generation, and the clustering can no longer be done
according to the specification.

2.5.3 Sequential simulation with k-means clustering

One way to overcome the evident drawbacks of clustering methods is to
use sequential simulation combined with k-means clustering algorithm. This
method is described in an article by Xu et al. (2012), and is called by the
authors "The Hybrid Sequential Generation Method for Multi-stage Scenario
Tree".

Essentially what happens in this algorithm is that the data path is simu-
lated using a time-series model for each time step. In Xu et al. (2012) it is a
combined VAR-MGARCH model. For this simulated path k-means cluster-
ing is utilised to select a representative arch from each node. It is noteworthy
that the number of possible outcomes grows exponentially with the number
of variables.

2.5.4 Moment matching

Because the clustering approach may be seen as a crude ad-hoc solution for
generating scenario trees, we studied some more suited methods as well. A
method called moment matching (or moment fitting) means estimating the
scenario tree so that the properties of the discretised distribution match as
well as possible the properties of the theoretical, or observed distribution
from node to node in the scenario tree.

The notation used in this thesis for moment matching method follows the
one used in Hoyland and Wallace (2001b). Their model is described in more
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detail in the next chapter 3.

2.5.5 Property matching

Moment matching method is relatively straightforward and intuitive, but so is
its slightly more sophisticated counterpart which is called property matching,
or distribution matching. In property matching all the available information
concerning the underlying distribution is used, and no information is wasted,
as in moment matching, when only certain moments are fitted.

The methodology is described more thoroughly in Calfa et al. (2014).
In property matching the cumulative distribution function of the prescribed
scenario tree is compared and matched to the actual cumulative distribution
function, which can be empirical, or fitted to observed data.

2.5.6 Integration quadratures

The most sophisticated model mentioned here is the integration quadratures
method applied by Hilli et al. (2007) and explained in Pennanen and Koivu
(2002). The method is actually a modification and improvement to the con-
ditional sampling methods used to generate scenario trees.

The approach in Hilli et al. (2007) is based on so called vector equilib-
rium correction model, which is a type of an econometric model taking into
account the long term equilibria of certain econometric factors. The short
term dynamics of these economic factors is taken into account as well.

The discretisation scheme built atop of the vector equilibrium model is
based on earlier work by Pennanen and Koivu (2002). These together form an
integrated model, which employs sophisticated econometric modelling, and
a reasonable discretisation, which ensures fast convergence of the optimal
solution when the number of scenarios grows.



Chapter 3

Theoretical model description

3.1 Stochastic programming models

Stochastic programming models described here are extensively covered by for
example Jitka Dupacova in her article. (Dupacové, 1995)

The notation used in this chapter follows Dupacova’s notation. In the
general formulation of a T-stage stochastic program following we need to
define a stochastic data process

w:{wl,...,wT } (31)

The realisations of w are trajectories or paths in a probability space (2, F, P).
We define a decision process © = {x1, ..., zr }, which is a measurable function
of w. We will have a sequence of decisions and observations

T, Wi, To(T1, w1 ), Way ey (T, ooy Tr—1, W1, vy W—1), (3.2)

where every decision made depends on the data and decision path so far. In
a sophisticated model the function would account also for the overall costs
related to the problem. In addition an important requirement is that the
decision process is nonanticipative, which means the current decision does
not depend on future realisations. The T'-stage stochastic program can then
be written in general case

Hlmin E [fO(wi)]v

subject to

Elfi(z,w)] <0, i =1,...k, (3.3)
Elfi(z,w)] =0, i=k+1,.... k+r,

T e X-

18



3.2. SCENARIOS FOR STOCHASTIC PROGRAMMING 19

In this notation by Dupacova (1995) w is a random parameter in a prob-
ability space (£, F, P), x is a nonempty closed set. The objective function
to be minimised is fp : R" x Q2 — R'U {400}, and the constraint functions
fi: R" x Q — R'. fy and f; are given functions. The decision variable in
this stochastic program is x and w is a random parameter as shown in (3.2).
Indices ¢ = 1, ..., k note the inequality constraints if the program, and the
remaining ¢ = k + 1,...,k + r stand for the equality constraints. Different
decision stages t = 1,...,T" are embedded in the decision variable z and in
the stochastic variable w as seen in (3.2).

Solving the stochastic programming problems has been extensively cov-
ered in an article by Dupacova (1995). They have concentrated mostly on
solving stochastic linear programming models, but these are no longer rel-
evant to us because the objective functions we intend to use are nonlinear.
This results in more complicated solving, but fortunately the capacity mod-
elling such problems has developed much since the earliest stochastic linear
programs.

One important element in defining stochastic programs is to ensure the
nonanticipativity property holds. This means simply that decisions are made
before events occur. In the scenario tree formulation it implies that in each
node independent of the actual scenario the decisions have to be equal.

3.1.1 Portfolio optimisation by stochastic programming

So far the model we have explained has been the general case, but now we
will show more detailed version of the model intended for asset allocation.
Now the problem can be written as a deterministic program

mngpsu(xS),
S

subject to (3.4)
Asxs = bs;
s=1,..,85.

In (3.4), function w is the utility function. Decision variables are x and A and
b are the constraint matrices and vectors. Probability of each scenario s is
ps. Formulation is the so called Von Neumann-Morgenstern utility function.

3.2 Scenarios for stochastic programming

In this section we first introduce the basic requirements for scenarios for
stochastic programs. We then cover some of the models used for generating
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Figure 3.1: Illustrative graph represented by its adjacency matrix in (3.5)

scenarios and scenario trees. Some of those methods are based on expert
opinion, cutting and pasting, and manual combining of intuitive scenarios,
but others have more solid theoretical background.

In this thesis we use moment matching as the scenario generation algo-
rithm as mentioned in chapter 2.5.4 and explained in depth in chapter 3.2.2.

3.2.1 Scenario trees

Many calculations in the tree are carried out using the graph theoretical rep-
resentation of a directed graph, namely the adjacency matrix. The adjacency
matrix A of a directed graph of five elements N = 5 reads

BN

I
oS O O O O
S O O O
oS O o O
S O O = O
SO = = OO

—

w

(S

SN~—r

and the respective graph is shown in 3.1.

The graph in figure 3.1 is an example to illustrate the use of adjacency
matrices. In the matrix (3.5) the rows and columns represent a node in the
graph. Non-zero elements in a row represent an arc pointing at the node,
and the columns with non-zero elements the arcs leaving the node. Each
element in (3.5) represents an arc of the graph. Elements that are one exist,
and zeros do not exist. For example, the fifth node has two arcs pointing at
it, but none leaving. Hence, the fifth column has two non-zero elements, but
the fifth row is all zeros.

The graph theoretical representation of a scenario tree has some advan-
tages, for example calculating the probabilities for each state reduces to a
matrix multiplication

C=B-A, (3.6)

where A is the adjacency matrix, B is a matrix with all elements zeros except
the one representing the initial node, typically {7, j} = {1,1}. The resulting
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matrix C' contains on the first row the final nodes that were accessible though
the graph by t time steps in the graph from the initial state.

Other useful properties are that if ones in the adjacency matrix are re-
placed by the probabilities of its arcs, the resulting matrix C' in multiplica-
tion (3.6) contains on the first row the probabilities of being in the respective
state after ¢ transitions from the initial state represented by matrix B. This
modified adjaceny matrix is usually called transition matrix.

Moreover, instead of probabilities, the adjacency matrix can be populated
with arch values, and in this thesis these values represent the asset returns
occurring in transition. In this case the multiplication (3.6) allows us to
calculate the final value of an asset portfolio.

The above formulation is practical and easy to use, but it has one very
severe shortcoming: matrix operations and especially matrix power opera-
tions are computationally very costly. Hence, this method is not suited for
optimisation, where the final values need to be calculated iteratively many
times.

Another way to express a scenario tree is matrix notation

11
12
13
14
15
16
1717
18
19
20
21
22

© © 00 00 J ~J O O Ot Ot

Il
T T e T e S G e G e S e S e e
—
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where each node is indexed similarly as in figure 3.2. This matrix has one row
assigned for each individual scenario. This type of a matrix can accomodate
any tree shape, be it regular or irregular. In a book by Dupacova et al. (2003)
the matrix in (3.7) is called a scenario tree nodal partition matrix.

This compact matrix formulation allows simple and effective scenariowise
calculations in a tool like MATLAB, which can then be aggregated by the
scenario probabilities.

In this thesis for simplicity we assume that the scenario trees have regular
shapes. This means that for each node in a specific time step the branching
is identical. In different times branching does not need to be identical, for
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Figure 3.2: Larger scenario tree of branching structure {3,2,2}, and T' = 3.
First transition probabilities from root node 1 — j are noted as p; ;.

example at the earlier stages more branching can occur, whereas in the later
stages tree may be sparse.

As uncertainty grows in time it could be a good idea to allow more branch-
ing in the early stages and less in the later ones. An illustrative example is
seen in figure 3.2. This tree has N =1+ 3 + 3 x 2 + 3 x 22 = 22 nodes, and
N —1 arcs. The tree is a directed graph from left to right, so it is unnecessary
to draw the arrows to indicate the direction. After T' = 3 transitions we end
up to the final node, which are found on the right edge of the graph.

The transition matrix for the scenario tree in figure 3.2 is written in (3.8).
This matrix A, is of the size n x n, where n is the number of nodes in the
tree. In this case n = 22. Only the first 10 rows of A7 contain non-zero
elements.
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An important property of transition matrix is that the sums of its rows are
ones for all the parent nodes (10 first nodes), and zeros to all final nodes
(nodes 11-22).

Probability of each node in the final stage can then be calculated by

C,=B-Al (3.9)

where C), is the matrix of final probabilities, B a matrix indicating the first
node, A, the transition matrix as in (3.8) and 7" the length. Probabilities of
the final stages can be read from the first row of C), in columns 11-22.

Dimensions of scenario trees

By the depth of the tree we mean the number of time steps modelled. There
are numerous factors to consider when choosing the planning horizon. In
this thesis we settle for planning period length T" = 2. We chose this length,
because it is short enough to keep the problems of manageable size, but long
enough to demonstrate the effects of multi-periodicity. In our example one
time step will be one year, and the planning horizon two years. Any other
period length would be equally suited for the model, and the steps are not
required to be of equal length. As an example, in the model by Hilli et al.
(2007), the model consists of three time steps, each of which is of different
length.

Another dimension in which the tree structure needs to be considered is
the width, in other words, the number of branches from each node in each
state. This relates back to level of accuracy required of the model. For
example, if the number of branches from a certain node is large enough, one
will be able to match the moments of the distribution perfectly. But when the
number of branches is small, there is no perfect fit. In this case it is important
to give relative weights for each moment so that the matching algorithm will
not form a tree based on the less important higher moments instead of the
most important ones, such as mean an standard deviation. Moreover, if the
branching reduces to only two branches leaving the node, higher moments like
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skewness and kurtosis are no longer defined, and matching those moments
will not yield anything.

3.2.2 Moment matching

To measure the similarity of the moments, we use the square norm as the
measure as suggested by Hgyland and Wallace (2001b)

min Z w; - (fi(z,p) — Vwari)?,
icS
subject to (3.10)

p=0.

The optimised variables are vectors  and p, where x is the value of the ran-
dom variable, and p its probability. Function f(z,p) stands for the statistical
property of index 7 in scenario S. M is a matrix of zeros and ones, and it
has equally many rows as p has elements, and equally many columns as the
scenario tree has nodes. Ones in a column of M indicate the conditional dis-
tribution in the node. Lastly w; is the weight, hence the importance, of the
statistical property ¢ in .S. In this thesis the highest weights were given to the
lower order moments, and weight decrease when the moment order grows.
In the model used in this thesis we treat p as a variable that is optimised in
the previous eqution 3.10. It could also be treated as a parameter

In the tree generation process we follow Hgyland and Wallace (2001b)
in the methodology. The authors suggest keeping certain moments constant
through the scenario tree and the time horizon, where as some are state
dependent. Kurtosis and skewness are held constant the entire period, but
standard deviation and expected value are state dependent. The authors
Hoyland and Wallace (2001b) provide formulas for calculating the dependent
moment value.

For standard deviation they propose

SD(Z’@t) == VC’Z . |xi,t—1 - E(Ii’t_1)| + (1 - VC’z) . SDAV(Ii,t), (311)

where VC; € [0, 1] is the volatility clumping parameter, and SD 4y the aver-
age standard deviation for the specific asset class <.

For interest rate dependent asset classes the mean reversion effect needs
to be modelled. The mean reversion effect is

E(i4) = MRF; - MRL; + (1 — MRF}) - 2;,_1. (3.12)
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Table 3.1: Parameters for the moment matching model equations.

Symbol | Value | Explanation
|4 0.3 | Volatility clumping
MRF 0.2 | Mean reversion factor
MRL, | 4.0% | Mean reversion level for cash
MRL, | 5.8% | Mean reversion level for bonds
RP 0.3 | Risk premium

In (3.12) MRF; € [0,1] is the mean reversion factor, and M RL; the mean
reversion level.

For equity asset class similar mean reversion effect does not occur, but
there is assumed a risk premium. This means, that for additional risk taken
a higher return has to be in sight. In Hgyland and Wallace (2001b) the
expected return for equity asset class is given by

E(z;y) =ri—1 4+ RP; - SD (). (3.13)

In (3.13) 7—1 is the previous risk-free interest rate, SD(x;;) the standard
deviation for the respective equity asset class. RP, is the risk premium
constant.

The fixed parameters and their given values in the model in (Hgyland
and Wallace, 2001b) are listed in the following table 4.3.

Clearly, one can argue that the levels for mean reversion seen in table 4.3
are no longer relevant due to current level of interest rates. Hence, at least
the parameters for mean reversion need to be re-calibrated in order to use
the model today.

Calculating the individual moments has been explicitly described in the
literature, and the moment matching problem is stated as follows. (Calfa
et al., 2014)

Following the notation in Calfa et al. (2014) we write the L? moment
matching problem (shorthand: MMP)
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7=1
N
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In (3.14) the minimised measure of goodness of fit is the L?-norm zk;,p.
Weights of each moment are w;j, where ¢ is the index corresponding to
each asset class, and index £ corresponds to each moment order. My is
the moment value targeted, and m,j the current value in the scenario tree.
Similarly C;; is the ideal correlation, and ¢; ;s is the correlation in the tree.
Formulas for calculating m;; and ¢;; are given below and upper and lower
bound for optimised variable are given by :v B and 2V

A clear shortcoming of the model descrlbed by Calfa et al. (2014) is that
they have not incorporated a time dependent part to their model. This is,
however, taken into account by Hgyland and Wallace (2001b) and Xu et al.
(2012).

3.3 Interest rate models

In (3.12) interest rate is modelled to be mean reverting. This is a typical
assumption for interest rate models, and the model in (3.12) and proposed
in an article by Hgyland and Wallace (2001b) is compatible with the oldest
so called short rate model, The Vasicek model. (Vasicek, 1977) The Vasicek
model as its most common formulation is

dry = a(b — ry)dt + odWs, (3.15)
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where dr; is the rate change at time ¢, a is a mean reversion factor, b is a
long-term equilibrium rate, r; the rate at time ¢, o is standard deviation and
dW,; a Wiener process.

An important issue arising from the Vasicek model is that it allows rates
to go negative without any restrictions. During the historical periods of
relatively high interest rates this issue does not rise, or at least it does not
cause significant issues for modelling. However, during current extremely
low yield levels it is necessary to take into account the anomalities this may
cause.

This is a problem in the traditional economic sense, because it is usually
thought that negative interest rates do not occur. This is caused by the
assumption that the banks are not able to impose negative rates on their
clients. During current turmoil and economic environment in the developed
countries this assumption needs to be reconsidered.

One of the early contributions to tackle the issue with negative rates was
a model by Cox, Ingersoll and Ross, which is nowadays known as the CIR-
model. (Cox et al., 1985) The CIR-model is similar to Vasicek’s model, but
in the CIR-model it is assumed that the standard deviation of the underlying
process depends on the current yield level.

One formulation of the CIR-model is

dry = a(b—ry)dt + o/ridW;. (3.16)
A more general formulation of short-rate models can be written as
dry = a8 — ry)dt + o - r] dWy, (3.17)

where 7 is the model parameter determining the dampening of volatility.
The formulation shown in (3.17) as seen in an article by Chan et al. (1992).
Different models with slightly differing parameter specifications exist, but in
this thesis we use only the simplest models, the model by the Vasicek and
the CIR-model.

Such one factor short-rate models can be estimated by various means.
One of the most popular ones is generalised method of moments (GMM),
which is first used in this context in an article by Chan et al. (1992), and
was first described by Hansen (1982).

Following the econometric formulation in the article by Chan et al. (1992)
we define the discrete version of a short-rate model as follows in (3.18) and
(3.19)

Tev1 — Ty =a+b-1+ €41, (3.18)

where a = a, and b =1+ 3, and
E(e1) =0, E(el,)) = o™}, (3.19)
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Further, the error term in (3.18) can be written as
€yl =Tip1 —Tr —a—b-ry. (3.20)

The modification taking into account the dampening of volatility at lower
rate levels is easy to take into account in the scenario tree generation process.
In this thesis we replace the original formulation of standard deviation seen
in (3.11) for interest rate trees by

SD(TtJrl — Tt) = \/T_tO', (321)

where SD(ry1) is the standard deviation of the next branching, r; the current
rate, and o the estimated standard deviation parameter as in the CIR-model
(3.16).

An obvious issue arises when the yield level drops below zero. For rates
r¢ < 0 the square root in (3.16) can become non-real number containing an
imaginary part. This does not have any sensible interpretation, hence we
will modify the standard deviation for interest rates as

SD(rey1 — 1) = \/|ri|o, (3.22)

where we take the absolute value of the interest rate. This keeps the model
properly behaved even in the event of below zero rates without the need to
impose an artificial floor for interest rate values at zero level.

The inclusion of taking the absolute value of the argument in the square
root in the CIR-model is a rather ad-hoc solution proposed by practitioners.
We were unable to find any scientific articles proposing similar methodology.
Theoretically this problem does not arise, because the model is a continuous-
time model by definition. In practice, it is used as a discrete model, and the
original model assumptions no longer hold.

For the credit spreads, whose properties will be described in more detail
later in this thesis, we impose a lower bound at zero level. Here credit
spread means the difference between a risky corporate interest rate, and a
riskless or low-risk government interest rate. A negative spread would imply
the respective corporate bonds to be considered less risky than government
debt. Now it is in principle possible that even the interest rate for corporate
debt could go below zero, but this is very unlikely, because the positive
spread usually keeps the corporate rate higher than the potentially sub-zero
government rate.

3.4 Objective function

In this thesis we will not make a full balance sheet analysis, but our approach
concentrates on the asset side. There are numerous reasons for this choice,
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and one of the most important ones is to keep the model of manageable
complexity.
The objective function for our optimisation problem will be constructed
by taking inspiration from articles mentioned in the literature review section.
We will have an objective function consisting of two parts, and it is very
close to the one described by Ziemba (2003). The objective function of the
optimisation problem is

U(z) = Uz, w(z)) = wr(z) = Y pr - sfilx). (3.23)

Here x is the decision variable, namely the allocation in different asset classes.
The wealth in the end of the planning horizon is wr, p; is a compounding
factor at time ¢ to project the cost to the planning horizon. sf is the shortfall
cost function, formally given by

sfi(x) = sf(r(x),t) = (3.24)

a- e re@=ra®) 1 if <y (2),

0, if rp > ry(2).
In (3.24) r,(t) is the cumulative return goal. If the goal is set to 4% annually
then the cumulative return goal at the end of year two would be given by
(140.04)2 — 1. Wealth w; translates similarly into return by means of linear
return: r; = wy/wo — 1.
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Figure 3.3: The utility function in equation (3.23) in a one-period example
and its risk aversions as in equations (2.5) and (2.6).

The parameters of the shortfall function determine the level of risk aver-
sion. Parameter b in the exponent controls the aversiveness towards extreme
events, whereas the multiplier a controls a more general type of risk aversion.
The utility function as specified in (3.23) is shown in figure 3.3 with three
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different parameter combinations. Here the utility function is plotted in a
single-period case for simplicity, and no compounding of target returns or
shortfalls occur.

The utility function is linear above wealths corresponding to exceeding
the target return, which is in 3.3 set to 2%. Because linear utility function
is the risk neutral utility function, the risk aversion coefficients drop to zero
when the treshold is reached. Below the wealth level indicated by the target
return, we can see how the utility function starts to penalise for shortfalls.
Higher b means higher penalty for extreme events. (Hgyland and Wallace,
2001a) This behaviour can be seen in the plots of ARA and RRA in figure
3.3, where the risk aversions cross at certain point, and risk aversions for
utilities with high b are higher, even though the order was the other way
around for low shorfalls.

In the deterministic equivalent form the objective function for the opti-
misation problem is

U(z) = ZpswsﬂT(x) — Zps Z psit - Sfi(x). (3.25)

ses ses t=1

Here, p; is the probability of scenario s, and ps, is the compounding factor
defined by the risk-free money market rate, which we calculate by linear
interpolation from the two interest rates the model specifies. The discounting
for our model will be in this case for period lengths 3 and less, hence using
either of the two estimated stochastic rate parameters of terms 0.5 years and
5 years would flawed.

Only two low risk interest rates are estimated in each scenario, and it
caused that constructing a yield curve is not a solution without making addi-
tional assumptions. Therefore linear interpolation seems the most justifiable
way to have some sort of an estimate for the compounding factors.



Chapter 4

Implementation and numerical
results

In this chapter we describe the implementation results of our work. First the
results for estimating the model parameters are explained, and later these
are used to generate scenarios. Finally we end up with optimised allocation
decisions based on the scenarios.

4.1 Data for model calibration

In this thesis the implementation has been written in MATLAB. (MATLAB,
2015) The model has been built to employ four different risk factors, one
of which is an equity factor, two others interest rate linked factors, and the
fourth represents the investments for real estates.

To further justify our choice of modelled asset classes, we look as an il-
lustrative example the investments of Finnish pension funds. The Finnish
Pension Alliance (TELA) reports high level summaries of an average allo-
cation of the industry. In this review investments are divided into six asset
classes. With our simplified model of only four distinct asset classes we can
maybe get an idea of the allocation problem pension funds are facing. The
selected asset classes we selected can be seen to cover approximately 93% of
the portfolio of an average pension fund in Finland. (The Finnish Pension
Alliance TELA, 2016)

These asset classes and their relative weight in the average portfolio of
a pension fund is shown in figure 4.1. Same information is presented in the
table 4.1. The data is given by The Finnish Pension Alliance TELA publicly
on their website. (The Finnish Pension Alliance TELA, 2016)

Finnish pension funds have their assets split roughly to these six classes,

31
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I Vioney market
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[ Loans to policyholders
[——1Bonds and convertible bonds
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Figure 4.1: Finnish pension fund asset allocation, percentages.

Table 4.1: Pension fund asset allocation in percentage.

Asset class 2007 2008 2009 2010 2011 2012 2013 2014
Money market 55 69 59 49 81 6.4 6 4.4
Loans 2.7 3.9 3.4 2.8 2.7 2.4 1.9 1.9

Loans to policy- | 0.6 29 39 37 28 21 1.4 09
holders

Bonds 35.7 41.1 374 319 352 356 338 34.2
Real estate 91 12,5 11.1 103 11.2 10.8 105 99
Equity 46.4 32.8 384 464 40 426 464 489

some of which require a short explanation. Loans to policyholders are a his-
torically important, nowadays less important part of the investment portfolio.
These loans are issued to policyholders, and there the customers of a pension
fund can borrow back according to a fixed set of rules. The other class of
loans, on the other hand, are investment loans, where the company and the
borrower negotiate the terms, and no fixed set of rules exist for issuing them.

These two categories are omitted in this thesis due to their shrinking
importance, and a rather peculiar nature. Similar arrangements are not very
common elsewhere, and their weight in an average portfolio of a pension fund
is less than 3%.

In our model we include five asset classes: equities, money market invest-
ments, government bonds, investment grade bonds and real estate invest-

ments.
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The asset class of bonds makes a major stake of the asset portfolio of
the Finnish pension funds. This asset class divides further into government
bonds, and corporate bonds. Corporate bonds can be categorised even fur-
ther to investment grade, and high yield bonds according to the credit rating
of the bond. As the government bond yields are historically low at this time,
and pension funds are looking for higher returns to cover the expenses in
future, and investing in close to zero rates is unappealing. Furthermore, the
shift from government debt to corporate debt is due to shift in risk sentiment:
government debt is perhaps no longer regarded as a perfectly riskless asset
class, although very low risk depending on the government in question.

Real estate investments make roughly 10% of the asset portfolio of an av-
erage pension fund in Finland. Their nature is rather illiquid, and modelling
their return distributions based on historical data is difficult.

4.1.1 Market invariants

In order to model returns of asset classes listed earlier, we need to define
their respective market invariants.

For equity type of investments the invariant is usually defined to be the
compound return, see e.g. Meucci (2009). Market invariant for equity and
real estate investments, the compound returns are

X,, =1n(P,) — In(P,_,). (4.1)

For fixed income investments the respective market invariant is not the com-
pound return, but the difference of yields. This difference is

Xt,T - Y;f - Y;S—T- (42>

Selected asset classes and the respective indices used for modelling them
are shown in table 4.2. In table 4.2 and some other occasions later in this
thesis shorthand IG is used for investment grade bonds. Government bonds
are shortened as gov. bonds. Money markets are referred to by the shorthand
notation MM.

Development of equity index and calculated real estate index are shown in
figure 4.2. Development of fixed income investments, the yield of government
bonds and credit spread of investment grade bonds is shown in figure 4.3.

4.1.2 Money markets

Short term interest, the money market rate, is modelled with a short rate
model as shown earlier in section 3.3. The return generated by money market
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Table 4.2: Selected asset classes for the model, and the indices used to cal-
ibrate the model. Real estate data is based on Official Statistics of Fin-
land (OSF) (2016), and other indices downloaded from Bloomberg Terminal
(Bloomberg Finance L.P., 2016).

Asset class Data since | Index name
.. Deutsche Boerse AG German Stock In-
Equities 29/03/88 dex DAX
Money markets | 29/03/99 The BofA Merrill Lynch <1 Year Euro
Government Index
Gov. bonds 20/03/88 The BofA Merrill Lynch 1-10 Year Euro
Government Index
G bonds 27/12/96 The BofA Merrill Lynch 1-10 Year Euro
Corporate Index
Real estate 29/03/88 | Real estate prices in Finland
450 T T T T T T T T T T T T T
— — — Equity .
400 MM =
Gov bond 7
350 IG bond - 4
————— Real estate e
300 b L 29-Mar-1999 = 100 ',/ |

250

200
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0
1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Figure 4.2: Historical development of studied indices. 100 points in March
1999, but longer history included for equity and real estate indices.

investments will be modelled using the approximation given in Hilli et al.

(2007), which is

Ri=((14r—1)(1+m))

N

(4.3)
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Figure 4.3: Historical development of studied money market yield govern-
ment bond yield, and credit spread of investment grade bonds.

In other words, money market return is calculated as the geometric average
of preceding interest rates.

4.1.3 Government bonds and bond rate

The bond rate will be modelled according to the interest rate models ex-
plained in section 3.3. The model we assumed is the CIR-model, which has
the property of dampening volatility when rates fall near zero.

The total return of the government bonds and money market investmens
will be calculated using the approximation proposed in the book The FEcono-
metrics of Financial Markets, Campbell et al. (1997) and used in practice in
Pennanen and Hilli in their article (Hilli et al., 2007). The approximation is
given by

1+Y\"” 1

The previous equation (4.6) consists of the yield Y; and bond duration D.
Parameter 7 is the length of time step in years. The first part of the sum-
mation accounts for the change in the bond value, and the latter part is the
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Figure 4.4: Historical distributions of studied market invariants.
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average of the two most recent yield levels accounting for the cash component
of return. These components together make the total return of the bond.

According to our quick test, the approximation given by Pennanen and
Hilli works well and the correlation between the observed index returns and
the returns given by the approximation is high.

4.1.4 Investment grade bonds and credit spread

Riskier corporate bonds are modelled using their credit spread to the riskless
government bond rate. The spread is calculated as shown in equation (4.5),
where Yy is the credit spread, Yo the yield of a corporate bond, and Yy yield
of the government bond

Ye=Yc—Yg. (4.5)

Like the government bond yield, the credit spread is modelled according
to the interest rate models shown in subsection 3.3. Another alternative
could be treating the changes in corporate bond yield as the market invariant
similarly to government yields. In this thesis, however, we treat the spread
separately, and assume that in the end we can solve the corporate bond yield
according to the equation (4.5). Assuming a mean reverting process for credit
spread seems reasonable regarding the historical development seen in figure
4.3.

Price of the credit bond will be calculated using the same approximation
as in an article by Pennanen and Hilli shown in equation (4.6). (Hilli et al.,
2007) However, we make a small adjustment for the returns of investment
grade returns: the model assumes the return consisting of only change in
value, and cash component generating cash flow. It neglects the fact that
sometimes corporates do default, which generates losses. Omitting the loss
rate could make the scenarios for corporate bonds look too optimistic, and
they dominate optimised allocations in the cases of high risk aversion. Hence,
we adjust the return induced by investment grade bonds through

Rt = Rbond(t) ’ (1 - LR(Req(t)? t))? (46)

where Rponq(t) is the bond return as in (4.6), and the loss rate will be defined
through equity returns

0, Rey(t) >0,
LR(t) = %me . R, (t)-LGD, 0> R.(t) > —0.3, (4.7)
drpmaz - LGD, Re,(t) < —0.3.

In (4.7) value —0.3 is the worst case estimate for an annual equity return after
which even lower returns do not affect the loss rates. In this thesis we assumed
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a fixed parameter for loss given default (LG D = 0.57), which is based on long
term averages of recovery rates of corporate bonds given in The Oxford Hand-
book of Quantitative Asset Management. (Scherer and Kenneth, 2012) Max-
imum default rate is defined as dr,,q, = 0.0158, which is the highest annual
default rate occurred for investment grade bonds. These factors together de-
fine the loss rate, which is in our model at highest max LR(t) = 0.009. Even
at the highest levels the loss rate remains low, and for investment grade
bonds it could ignored. For higher risk speculative grade bonds these figures
are much higher, and if such an asset class was incorporated in the model,
loss rate modelling would become a much more important topic.

Even though loss rates are a matter of fact for the safer investment grade
bonds, they are perhaps not the most important property to look at, because
the loss rate has been modest even at its highest historical levels. If we were to
incorporate the even more risky debt as an investment alternative, modelling
the loss rate would become a more important issue, because the default rates
for speculative grade bonds are significantly higher, as expected.

4.1.5 Property index

In this thesis we calculate the total return index for the real estate index
applying the approximation of Koivu et al. (2005). Possibilities for modelling
the real estate returns are numerous. In a model developed specifically for
Finnish pension funds the real estate returns are modelled by two factors:
property price and rental yield. (Koivu et al., 2005)

The total return of property is given by

P, 1 (R4 R,
R, = — — ] —0.03. 4.8
* B_1+2(Pt_1+Pt) (48)

In the equation (4.8) the total return of real estate index at time ¢ is
R,... P, is the property price at time ¢, R, is the rental return at time ¢,
and the maintenance costs are assumed to be 3%. The total return of real
estate investments consists of two stochastic variables, and the data for them
is available from statistics of Finland (Official Statistics of Finland (OSF),
2016).

The approximation in (4.8) gives us the total return index, and the distri-
bution of quarterly compound returns. The modelling of total return index
for real estate investments follows the approach of equity investments as seen
in equation (4.1), and as suggested in Meucci (2009).

Young and Graff (1995) suggest that real estate return distributions are
non-normal. This makes our model assumption of moment matching seem
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more suited than for example simulating from conditional (fitted) distribu-
tions. (Meucci, 2010)

As seen in figure 4.4, the real estate index has numerous sub-zero obser-
vations. Most of these negative real estate returns are from the recession of
1990s in Finland. Estimating the moments of distributions from shorter time
frame would lead omitting this downturn, and potentially underestimate the
risk related to investing in property in Finland.

4.1.6 Matching moments

The moments taken into account when using the moment matching algorithm
are mean, standard deviation, skewness and kurtosis. Additionally to these
variable specific moments, correlation is taken account as a co-moment of
the variables.

The theoretical background for moment matching was described in section
3.2.2. Now we need to establish our own estimates for the model parameters.
This is important especially for the mean reversion levels of interest rate and
investment grade spread. We keep the other parameters unchanged from
the original article by Hgyland and Wallace (2001b), but redefine the mean
reversion levels. For government bonds we take the current level as the mean
reversion level. For investment grade spread we define the mean reversion
level as the long term average of the spread. Also the mean reversion level
for spread is close to current level.

Arguably other choices for mean reversion levels could be justified. An
obvious way to define the mean reversion levels would be basing it on an
expert opinion. An expert opinion would allow exploiting more sophisticated
view on the state of the economy. An expert opinion could be used for the
expected returns, replacing the estimated means of distributions.

4.1.7 Annualising moments

When we are estimating the model from quarterly data, but the natural
timeframe for calculations is annual, an obvious issue is annualising the pa-
rameters. Best practice would be to use annual observations, but this is not
possible due to short histories of studied indices. Estimating distribution
moments from less than 20 data points would definitely be not sufficient.
This is the reason why we resort to quarterly data, and then annualising the
moments.

For mean and variance, or standard deviation, this is a relatively straight-
forward process assuming the variables are independent and identically dis-
tributed. For the higher moments, however, the issue is more complex. We
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Table 4.3: Parameters used for moment matching algorithm in this thesis.
CL is the current level on 29/12/15, RP the risk premium, VC the volatility
clumping parameter. « is the mean reversion level, 8 is the mean reversion
factor, o is the volatility and ~ volatility dampening.

Symbol | Equity Money market Gov. yield Spread Real estate
CL - -0.18 0.31 1.30 -

RP 0.30 - - - 0.30
VC 0.30 - - - 0.30

« - 0.06 0.31 0.59 -

6] - -0.64 -0.42 -0.51 -

o - 0.45 0.48 0.70 -

v - 0.5 0.50 0.50 -

Table 4.4: Annualised first six moments of distributions of studied market
invariants. Quarterly moments before projection can be seen in table A.1.

Moment | Equity Money market Gov. yield Spread Real estate
Mean 0.08 -0.21 -0.20 0.07 0.08
Std 0.24 0.89 0.82 0.74 0.06
Skew -0.53 -0.54 0.07 -0.06 -0.19
Kurt 3.47 3.85 2.88 4.45 3.39
5th mom | -5.32 -6.70 0.62 -1.34 -1.69
6th mom | 23.94 31.63 13.25 37.23 20.56

do not delve deep into theory behind scaling these standardised moments,
but use the method of Meucci (2010). This methodology is in line with the
specifications we have made concerning the studied market invariants.

Moreover, Hgyland and Wallace (2001b) specify the distributions for in-
terest rates directly for the given interest rate level. This specification would
not be compatible with our need to project the moments from quarterly to
yearly time frame.

For correlations projecting for a longer horizon does not cause similar
difficulties. However, in practice, especially in the shorter horizon, some
issues may arise.

4.1.8 Parameters for short-rate model

The parameters for the short rate model are estimated for the three inter-
est rate factors we employ in this thesis. Estimated parameters and the
estimation method are described in this section.
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Table 4.5: Correlations of market invariants. Based on quarterly data since
29/03/99.

Equity Money market Gov. yield Spread Real estate
Equity 1.00 0.16 0.22 -0.78 0.40
Money market | 0.16 1.00 0.78 -0.03 0.39
Gov. yield 0.22 0.78 1.00 -0.17 0.41
Spread -0.78 -0.03 -0.17 1.00 -0.57
Real estate 0.40 0.39 0.41 -0.57 1.00
The GMM

We use the generalised method of moments (GMM) for estimating the pa-
rameters for our interest rate models. The GMM is not the only method
available for short-rate model parameter estimation, but it is widely used in
this context and has a solid theoretical background. (Hansen, 1982; Chan
et al., 1992)

The estimation process has, however, some complications: it fails to give
reasonable parameter estimates for the government bond yield, and for the
money market yield. One, and probably the most important reason for this
is that the historical time series for which we are trying to fit the model, nor
the government bond yield or money market yield has not been stationary,
but it has drifted towards zero the entire period. Of course such stationary
periods exist in the history, but selecting such a distant period for estimating
the model parameters today would seem unreasonable.

The reason the models are unable to be calibrated is that the short-rate
models are by construct based on an average equilibrium level. In recent
history such equilibrium levels have not existed, and the model calibration
would lead to heteroscedastic error terms. For a downwards drifting time
series the model would have underestimated the variable until crossing the
equilibrium level, after which it would have overestimated it. Hence, the
model calibration is not possible for European money market yields or gov-
ernment bond yields.

In contrast, for the spread of European investment grade bonds the model
does work and produce reasonable estimates. Even by looking at the time
series of the credit spread it seems justifiable to assume a model with a con-
stant equilibrium parameter. The model runs for estimating the parameters
for the spread model can be seen in table B.1. The selected parameters for
the spread model are shown in table 4.3.

Comparison of different estimation trials can be seen in table B.1. The
model is selected due to its high p-value, which means it is very close to
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the unrestricted model counterpart, where the parameter ~ is not prefixed.
Moreover, the model parameters seem reasonable, and other models have
rather low p-values, which suggests they are not properly set. The chosen
time interval changes the estimation outcome drastically.

Caused by the downward trend in the European government bond yields
during recent history we were unable to fit a short-rate model, and need to
consider other approaches.

The most obvious way would be to employ expert opinion for setting the
model parameters. Practitioners in the industry tend to have their own views
on future levels of interes rates, and such could be used directly instead of
estimating the model parameters.

For this thesis, however, such expert opinions are not available, hence
we use another approach. Also, setting the volatility level and the speed of
correction towards the long term equilibrium level would be very difficult to
base on experts judgement.

We consider now the historical interest rates from Japan as an alternative
for estimating the parameters for our model. Reasoning for this choice goes
that as the Japanese economy has already experienced a rather long period
of extremely low interest rates, maybe this could be used as a proxy for the
future development in Europe. Comparisons of historical yields of European
and Japanese bonds and money markets can be seen in table A.5.

Unfortunately, even the Japanese rates have been extremely low past
decade, they have not been below zero until very recently. This makes esti-
mating the models even more difficult than before, because the most common
assumption of interest rate modelling, namely flooring rates at zero level, is
no longer a valid assumption.

Comparison of the historical time series of European and Japanese yields
are shown in figures A.2b and A.2a. The distributions of rate changes of
respective time series are shown in figures A.3 and A.3.

The parameters for the estimated models are seen in table 4.3. The model
for the money market rate is set according to the model shown in table B.2.
The model for money market is estimated from semiannual data, and it
has a relatively high p-value, and parameter reasonable parameter values.
For money market we use the a given in B.2 as the mean reversion level.
Corresponding runs for the government bond yield are shown in B.1. For the
5 year bond yield we take again a model with high p-value, but we replace
the parameter o with the current level of European rate.

For spread the model estimated from semiannual data was selected, be-
cause it had very high p-value, and parameters close to the unrestricted
model. The mean reversion level for spread was set according to the o value
indicated by the semiannual model. Different spread model parameters are
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shown in table B.1.

4.2 Generated scenario trees

Scenario trees generated according to the specification in the previous section
are shown in figure 4.5. The planning horizon is now two time steps, and the
branching structure of the tree is set to {6,6}. The scenario tree definition
is shown in table form in C.2, where we have included the asset returns,
probabilities, and node indices.

Qualitatively the generated trees seem reasonable. They all include sce-
narios of high and low returns, and their shapes resemble the original param-
eters set in the estimation process. Fixed income asset classes are much less
risky, than equities or real estates. These scenario trees are generated by the
moment matching algorithm, using MATLAB fmincon optimisation routine.
The optimisation algorithm used was the interior-point algorithm.

Qualitatively the worst case scenarios in equities and real estates seem
justified. For equities this means losing approximately 60 % of the initial
value until the end of the planning horizon. Such drops have occurred in
the recent history, as we can see from figure 4.2. Similarly, the real estate
prices lose almost 15 % of their initial value in the horizon of three planning
periods.

The scenarios for money market investments are the least risky ones of all
asset classes. This is no surprise, and their historical time series in figure 4.2
does not include any drops. Indeed, in the recent history there exists only one
quarterly period, when the return generated by money market investments
has fallen below zero. Now as the current yield level is below zero, the return
formula (4.3) used for money market investments generates sub-zero returns
even from the beginning of the planning horizon.
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Figure 4.5: Scenario trees for all asset classes with branching structure {6,6}.

4.3 Optimised allocations

Next we show the optimisation results on the generates scenarios discussed

in the previous section and shown in figure 4.5.
In the optimisation runs we have varied the model parameters defining
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the level of risk aversion, namely parameters a and b in equation (3.24). This
gives us slightly different objective functions (3.25), which are then fed to the
optimiser.

Optimisation routine is carried out in MATLAB using function fmincon,
which is an optimiser for non-linear constrained optimisation problems. The
algorithm the solver uses is the interior-point algorithm, which is the same
algorithms many other optimisers suited for similar problems use.

Each optimisation run returns a slightly different set of optimal decisions
based on the risk aversiveness of the objective function. We compare the
results by fixing the risk measure to a shortfall cost function with parameters:
{a,b} = {1,10}. Fixing neutral parameters for the risk function allows us to
plot efficient frontiers according to these parameter choices.

Utility is measured by the expected return at the end of planning horizon,
and it is penalised by the shortfall of a return target. Three different target
returns were utilised. The target returns were in annual terms: 4%, 2%, 0%.
These translate to cumulative target returns according to compounding (1 +
r)t — 1. The efficient frontiers for each target returns are shown in figure 4.6.
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Figure 4.6: Efficient frontiers for all target returns in dynamic strategy and
fixed-mix strategy in scenario tree of branching structure {6,6}. Risk on a
log-scale.

In figure 4.6 we have plotted the risk in logarithmic scale, because the
shortfall cost rises sharply when we move to riskier portfolios and higher
expected returns. All frontiers for different target return sets are concave,
even though the leftmost panel for target return 0% annually does seem
convex. This illusion is due to the logarithmic horisontal axis, which is

distorted.
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We can observe that when target return is rising, the low-risk end of the
efficient frontier moves right, while the highest return points remain still.
This is an obvious effect, because when the target return rises, it becomes
increasingly difficult to obtain it, especially in the low-risk portfolios. The
reason why very low risk portfolios are still obtained in the higher target
return lies in the risk aversion: if the risk aversion is extreme, especially
towards extreme events, the penalty for missing the target slightly matters
much less than being very far off.

The resulting asset allocation in the first period of dynamic strategy is
shown in figure 4.7. In figure 4.7 we have split the allocations according to
the risk aversion parameter b, even though in the efficient frontiers in 4.6
moving along the frontier results from altering both parameters, a and b. In
figure 4.7 only the parameter a changes along the expected wealth at the end
of planning horizon. Having the effect of a and b plotted in the same figure
would lead to slightly unintuitive results, and we would have sudden shifts
in the optimal portfolio composition, because very different portfolios may
generate expected returns that are very close to each other.

The resulting allocations given by the optimisation procedure for the first
period allocation decision are rather intuitive, and in line what one would
expect from such an experiment. For higher risk aversion we obtain low-risk
portfolios with high weights in money market investments. When the risk
aversion changes, we shift from lower risk to slightly higher risk portfolios,
and finally the portfolio consists solely of equities, which is the asset class
inducing highest expected return, but is also the riskiest one.

In portfolios aiming at higher expected returns the problem simplifies
mostly to choosing the allocation between real estate and equities. When
the target return is increased, we see smaller and smaller allocations to the
lowest risk asset classes, especially money market investments. This is an
expected result: when we penalise for missing target return annually 4%, it
is obvious that high weights to a low-risk asset that generates almost certainly
returns lower than the target, are very low. Reasons why the lowest risk asset
is still included with small weights even in the case of high target return, is
the benefit of diversification, but also the aversion to extreme events. Money
market investments provide a safe investment opportunity, if we want to
avoid very extreme shortfalls at all costs.

One slightly surprising observation we make is the absence of allocation to
government bonds, one of the asset classes in the low-risk end of the spectrum.
This is simply due to the scenarios we have generated for government bonds,
and their very low expected return. From table D.1 we can see that in the
two-period model the expected return for government bonds our generated
scenarios is actually below zero, which makes it easy to understand why the
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first period allocations do not suggest government bonds in almost any case.
It is only included in the portfolios with low target return, high risk aversion,
but relatively low risk aversion towards extreme shortfalls.

Other three asset classes are present in all runs. Allocation to real estates
seems to be shrinking when the parameter b controlling risk aversion towards
extreme events is increasing. The allocation to real estate investments is sur-
prisingly large, and due to their illiquid nature it could be worth considering
to imposing a constraint on their maximum weight, or making their trans-
action costs very high. Another way to adjust the very high proportion of
real estate investments would be adjusting the annual maintenance costs in
(4.8).

In figure 4.8 we have the expected wealth at the end of the planning
horizon as a function of risk aversion parameter a. Each line represents a
combination of one of the target returns, and a risk aversion parameter b.

The interesting shifts in optimal allocation, and therefore in the expected
wealths, seem to happen in the region of @ = [0, 1], after which increasing risk
aversion factor a does not change the expected wealth at the end of planning
horizon. Lower values in factor b result to faster shifts from very high risk
portfolios to low risk portfolios. This is due to the fact that when b is higher,
we want to avoid the extreme allocation to equities for longer, where a low
value of b allows the optimiser to shift from low risk portfolios to extreme
allocation to equities with smaller changes in parameter a.

One interesting observation we make from figure 4.8 is that for target
returns of 0% all the lines converge to the same wealth level, when the risk
aversion coefficient a is increased. For target returns of 0% the factor b does
not change the final value where lines converge to.

For higher annual target returns the results are different. Expected final
wealth levels where the lines converge to when a increases seem to differ
according to the risk aversion coefficient b. For lower b the converging level
of expected wealth is significantly higher when a increases, than when b is
very high. This result can be observed from the allocations shown in figure
4.7. Even the low-risk portfolios for high target returns contain much higher
proportions of riskier assets, than in the case of lower target returns.
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4.3.1 Dynamic second stage decisions

To get an idea of the dynamic behaviour of the model we chose two risk aver-
sion levels, namely two combinations of risk aversion parameters: {a,b;} =
{1072,10} and {as, by} = {1072,50}. First combination leads to very high
risk portfolios, and the second somewhat lower risk portfolios. The param-
eter a, which controls the general risk aversion level, is kept constant, while
b, controlling the aversion towards extreme events, is altered.

Corresponding scenario tree for the risk aversion parameter values in the
first figure 4.9a are shown in figure C.1. Data in figure 4.9a can be seen in
numerical form in table C.1.

The observed decisions in the nodes of the tree given by the optimisation
are indicated with red circles along the horisontal axis in figure 4.9. Trees
are sparse, and some of the observed wealth levels are very far apart. On
the other hand, we can observe very sudden shifts in the optimal allocation
when wealth changes. In some cases for similar level of wealth the optimal
decision given by optimisation are very different. This is due to differences
in the scenarios thereafter.

To draw conclusions about the dynamic nature of the decision making,
it would be beneficial to implement larger scenario trees. Moreover, the
allocation given in between the observations is only suggestive, and should
not be taken as a result. With larger scenario trees we could be able to
shorten the gaps between observations. This comes, however, with a cost,
because the complexity and calculation times increase.

Even though the trees are sparse, we may be able to draw one conclusion
from resulting second stage allocations: when the obtained wealth level is
very high, it is beneficial to adjust the allocation to a riskier one. This may
be due to the fact that with higher wealth we are further away from the
penalty treshold, under which the penalising part of the objective function
would return non-zero costs. In other words, when the wealth is high, we
have more means for risk taking, and seeking even higher returns. This is
clearly visible in figure 4.9b, where the allocation is riskier among higher
wealth.

The behaviour of shifting to a riskier allocation after favourable outcome
from the first period is in line with the constant-proportion strategy men-
tioned earlier in section 2.3. In constant-proportion strategy the investor
adjust the amount of a risky asset class in the portfolio according to the
value of a "cushion", which is the difference between the value of the port-
folio, and a floor under which investor does not wish to fall. Moreover, as
demonstrated earlier in figure 3.3, the risk aversion decreases to zero when
the target return is obtained. This decreasing risk aversion may explain the
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marked with red circles along the horisontal axis. First stage decision shown

in far left of the figure.

shifts in high wealth end of figure 4.9b.

Still, as noted before, strong conclusions should be avoided from these
results, because the scenario trees are sparse, and the resulting second stage
allocations seem to differ significantly according to the risk aversion coeffi-

cients.
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4.3.2 Comparison with fixed-mix strategy

The dynamic strategy yields seemingly reasonable allocation results. Next
we will discuss what if we constraint the strategy to a fixed mix strategy,
where the proportions of each asset class is rebalanced to the original weight
in each period.

The optimisation is run similarly as in the previous section for the dy-
namic strategies. The only difference is now that the allocation is kept con-
stant in each period. This limits the decision maker, and does not allow for
corrective actions during the planning period.

The resulting efficient frontiers for fixed-mix strategies in the stochastic
scenario optimisation are shown in figure 4.6 along with the dynamic fron-
tiers. The result seems clear: dynamic strategy performs better than the
fixed-mix strategy. Performing better means that the efficient frontier of
dynamic strategy is above the frontier of fixed-mix strategy. This means,
in other words that in the dynamic strategy same expected wealth can be
obtained by lower shortfall cost.

Difference is clear in the midway along the efficient frontier, but in both
ends of the frontiers they seem to converge. This is due to the fact that for
very high risk aversion and low risk portfolio there is not that much space for
adjustment: the allocation is almost entirely to the lowest risk asset, namely
money market. Similar logic holds for the other end of the frontiers: when
risk aversion is low and investor is seeking for very high expected returns,
the allocation is solely on equities, which is the riskiest asset class.

Allocations given by the optimisation are shown in figure C.2. As in the
corresponding figure of dynamic first period allocations, the frontiers have
been split here according to the target return, and the risk aversion coefficient
b.

The first thing we notice in figure C.2 is that the optimisation suggests
very high weights for real estate investments in the midway of the frontier.
This is a consistent result for all target returns, and for all risk aversion
coefficients b.

Allocation to government bonds is even smaller than in the dynamic first
stage decision, and it is not visible to naked eye in figure C.2. When com-
paring figures 4.7 and C.2 it is very difficult to say any definitive differences
between the two strategies. It seems that in the dynamic strategy it is
possible to adjust the portfolio to slightly riskier composition, because the
possibility for adjustment exists.

Allocations to equities and on the other hand money markets remain rel-
atively intact compared to the first period allocation in the dynamic strategy
as seen in figure 4.7. This is in line what we observed already from the effi-
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cient frontiers: they converge at both ends of the spectrum. When the goal
is very high return, the only option is to allocate all to the riskiest asset,
and when risk aversion is very high, the allocation will be mainly to money
market investments, in both strategies.

Although the dynamic strategy seems superior when compared to the
fixed-mix strategy, one important consideration is missing from the model
used: the costs that occur when allocation is changed. These can be due to
transaction costs, or the asset class may be highly illiquid, which would make
adjusting its allocation nearly impossible. It is probable that the difference
in performance between dynamic and fixed-mix strategies would be smaller if
we accounted properly for the costs occurring from adjusting the allocation.

On the other hand, if we split the planning period to shorter intervals,
in theory we should see even better performance from the dynamic strategy,
because more opportunities for adjusting the portfolio exist.

4.3.3 Comparison with mean-variance optimisation

So far we have conducted optimisations and comparisons in the framework
of stochastic optimisation and generated scenario trees. Now we change
the framework to the classical mean-variance optimisation, and study how
efficient the generated portfolios from stochastic programming framework are
in this more traditional model.

To compare the results of both dynamic strategy and the fixed-mix strat-
egy we derived expected returns and standard deviations for the two-period
planning horizon, which are required in order to run a meaningful optimisa-
tion. Means and standard deviations are derived by calculating these values
from the scenario trees shown in figure 4.5 at the end of the planning horizon.

As a correlation matrix for this purpose we use the correlation matrix
shown in table A.4, which is calculated from the quarterly linear returns of
observed historical total returns of studied asset classes. Estimating param-
eters from historical data is a typical approach to get the parameters for
mean-variance optimisation.

For expected returns and standard deviations we can not use historical
data, because that would require us to make additional assumptions on how
to make projections of quarterly returns to annual, and to two-year scale. For
correlations this should not be a problem, because they should remain con-
stant for different time scales. If we projected a covariance matrix to another
horizon according to formulas given in Meucci (2009), the covariance indeed
changes for different horizons. But the normalised measure of dependence,
the correlation coefficients, remain constant.

Mean-variance optimisation is based on the theory developed by Harry
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Markowitz, and the precise formulation of the optimisation problem is given
in equation (2.1). In practice, the optimisation is carried out by using port-
folio optimisation tools in MATLAB. Results of this comparison can be seen
in figure 4.10. The efficient frontier given by the mean variance optimisation
is the blue line on the left panel. Individual asset classes, of which each
portfolio consists of, are plotter by blue stars according to their means and
standard deviations. Corresponding data is in table form in D.1.
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Figure 4.10: Mean variance efficient frontier and optimised allocation.

Results from earlier experiments, first period allocations in the dynamic
strategy, and the fixed allocations in the fixed-mix strategy, are included in
the figure 4.10. It seems that the fixed-mix strategy gives very similar results
that the mean-variance does, and the fixed-mix portfolios are very close to
the efficient frontier.

Also the first period allocations of the dynamic strategy are very close to
the efficient frontier. This is of course no surprise, because the allocations
consist of mainly assets found along the efficient frontier.

For individual asset classes it seems clear from figure 4.10 why certain
assets make a high proportion of the portfolio with certain risk levels. Gov-
ernment bonds are almost always omitted, which is not surprising given their
sub-zero expected return, but higher standard deviation than for money mar-
kets.

From the allocations given by the mean-variance optimisation seen in
figure 4.10 we can observe that real estate investments take smaller stake of
the portfolio in the midway along the efficient frontier. The explanation is
that in the sense of mean-variance optimisation investment grade bonds are
a more efficient asset class, as they are closer to the frontier.

In this comparison the results from fixed-mix strategy and mean-variance
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optimisation are quite similar. The key differences in the fixed-mix strategy,
and mean-variance strategy, are related to the risk measure. In stochastic
programming our risk measure is asymmetric: we penalise only the shortfalls,
but not high returns. Standard deviation as a risk measure is, however,
symmetric. In theory it penalises equally for big shifts both up and down,
even though outcomes with extremely good outcomes would be preferred.

Other factor explaining the differences seen in these two methods lie in
the differences seen in correlations of asset class returns. In mean-variance
framework we used the correlations calculated from historical returns, where
as the tree has its own correlation structure for the asset returns. These
differences can be observed from tables 4.5 and A.2 for the moments. The
correlations of historical asset returns can be seen in A.4 and their counter-
parts calculated from the tree D.2.

Most significantly the correlations seem to differ for money market re-
turns. The reason is that their return is calculated according to the geometric
average of current yield as seen in equation (4.3). The return of money mar-
ket investments goes to opposite direction than government bonds, because
the modelling of money market investments ignores the effect of bond value
changing when rates change. Modelling money market returns this way the
correlations are more or less the opposite sign than historical correlations,
and this is consistent across the correlations between money markets and all
other asset classes.

Apart from money market correlations, the correlations among other asset
class returns in the scenario tree seem to be in line with the ones calculated
from quarterly history. They are not exactly the same, which is not surpris-
ing, because our model has made numerous assumptions on how to calculate
the asset returns, some of which may need revision.



Chapter 5

Evaluation and discussion

5.1 Stability of the optimal solution

To study the stability of our model we performed two experiments. In the first
experiment we ran the scenario tree estimation procedure for four different
branching structures. The highest branching tried was 17 branches per node,
which makes a total of 289 scenarios in a two-period tree. No larger trees were
tried, because solving trees larger than this became a very slow procedure.

We ran the test for two sets of risk aversion parameters that were from
from the midway of the efficient frontier. The result can be seen in figure 5.1.
Stabilising of the final value of the objective function and utility measures
does not seem evident, but the decision variables are relatively stable for all
runs.

The two distinctive parts of the objective function are plotted separately,
because their relative importance is in a very different scale. Changes in
values of objective functions between the two larger branching structures are
much smaller than for the first ones. This gives an idea that maybe the
problem is stabilising.

To establish a good estimate on the model stability and what would be
a minimum size for a tree, larger trees should be tried. In Kaut (2003) and
Hilli et al. (2007) the authors suggest that stabilising occurs for trees larger
than 1000 scenarios in the final node. Due to the model performance we did
not run such tests.

Secondly, we studied the stability of the decision variables, namely the
allocations, in small scenario trees. Results for decision variable stability can
be seen in tables 5.1 and 5.2.

It is seen that for high risk tolerance the stability of the decision variable
becomes an issue. For low risk portfolios the deviations in optimal values of
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Figure 5.1: Stability of the utility measures and first stage decision vari-
ables. Low risk aversion, high risk portfolio. {a,b, e} = {1072,30,2% }

Compare to table 5.2.

Table 5.1: Stability of the first stage decision variables, high risk aversion,

low risk portfolio. {a,b} = {1,30}, 25 runs.

Asset Class Equity MM  Gov bond IG bond Real estate
Average 33% 635% 01% 22.8 % 10.3 %
Standard deviation | 1.0 % 6.3 % 0.2 % 7.2 % 1.9 %
Smallest value 1.3% 494%  00% 6.5 % 6.5 %
Largest value 52% 8%  09% 37.9 % 13.9 %

decision variables remain stable.

Finally we plotted the moments of the equity returns in the scenario
tree used earlier in the main studies, and compared them to the moments
the moment matching algorithm is matching them to. Moments and target
moments can be seen in figure 5.2. Here we can see all moments obtaining a
relatively good fit, but not perfect. It is difficult to say the reason for these
matches being only approximate, but it may be an accuracy in the solver,
which we could overcome by adjusting the tolerance level.

Table 5.2: Stability of the first stage decision variables, low risk aversion,

high risk portfolio. {a,b} = {1072 30}, 25 runs.

Asset Class Equity MM  Gov bond IG bond Real estate
Average 143% 13.0% 01 % 30.1 % 42.5 %
Standard deviation | 7.1 % 176 % 02 % 25.3 % 24.9 %
Smallest value 6.1% 00% 0.0 % 0.0 % 11.4 %
Largest value 30.1 % 581 % 0.7 % 69.5 % 79.1 %
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Figure 5.2: Moment values of equity return trees for two a tree with branching

{6,6}.

Still, in figure 5.2 even the higher moments obtain a very close match to
their target values. Here it could be worth considering a more sophisticated
relative weighting in the matching procedure, to primarily match the lower
two moments and then the higher ones.

5.2 Potential issues in model specification

In this section we discuss some of the choices concerning the model specifi-
cation, and what other choices could have been possible. There are arguably
numerous aspects that could have been made otherwise.

First of all, the selection of scenario generating methodology. We chose
moment matching as the scenario tree generating algorithm, because it had
been previously used successfully in a similar problem. Moreover, the mo-
ment matching algorithm had the property that it may be able to accomodate
more information in smaller trees, than for example simulation based pro-
cedures. It was indeed suggested in Hgyland and Wallace (2001b) that for
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a five dimensional problem like the problem we studied in this thesis, the
smallest number of branches would be at around six.

On the other hand, the model suggested by Hilli et al. (2007) would have
been utilised in a similar problem. However, the model Hilli et al. (2007)
proposed was much more complex. Their model would have required the
use of more sophisticated optimisation tools than MATLAB, and it remains
unclear how big scenario trees would have been possible to solve with the
current solution.

Of the individual asset class returns money market investments seem
to be the one with most issues concerning the modelling. Due to the fact
that the return correlations differ significantly from the ones observed in the
historical data, it is easy to draw a conclusion that other methods could have
been applied.

Modelling of the investment grade bonds is also topic that contains many
aspects that could be criticised. First of all, including the loss rate as we did,
was not suggested anywhere in the literature we were able to find. Therefore
it is fair to say that it complicates the model unnecessarily. But if we were to
include a riskier debt asset class, namely the speculative grade bonds to this
model, it would be much more important to include the loss rates, because
they are significantly higher for speculative grade bonds.

Real estate investments were modelled according to their total returns,
and the moments of total return index were based on an index we composed
ourselves from historical data of the Finnish real estate market. This makes
it a country specific, and if we were to apply it on another geographical
area, the local real estate market should be modelled separately. In Meucci
(2009) the real estate investments are suggested to be modelled according
to distributions of their compounded total returns, which is the strongest
argument for our model specification. In Hilli et al. (2007) the real estate
investments are modelled, however, with two distinct factors, which we have
blended together in our model. Hence it is fair to say that our modelling of
real estates has room for improvement.

In more general terms, the modelling decisions made concerning the in-
terest bearing asset classes could be reconsidered. Asset classes are assumed
to be of fixed duration, about five years, and their return modelling is based
on solely one fixed point in the interest rate curve. This omits the changes
in value caused by the shape of the yield curve, and changes in the shape of
the curve. Having only two interest rates of different maturities modelled,
we are not able to construct an entire yield curve. Constructing an approx-
imation for the entire yield curve across all maturities would enable us to
model arbitrary cash flows according to their present values. As an exam-
ple, liability modelling could be based on estimated cash flows, which could
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then be market valued in the scenarios generated. This would complicate
the model further, and the number of required scenarios to accomodate the
problem would increase.

For modelling the interest rates we employed the CIR model, which is a
short-rate model based on one random factor. Other alternatives for selected
model existed, but because the CIR model has properties we valued, we
chose it. As shown before, estimating parameters for a short-rate model
was challenging, because the recent history of European interest rates is not
consistent with the core assumption of the short rate models: the mean
reversion. We estimated the model parameters from Japanese data, making
an assumption that the past history of low rates seen in Japan would occur
in Europe too. If this assumption was altered, it is very likely that the results
we obtained would not hold.

Dependencies between asset class returns were modelled according to lin-
ear correlations. This is a common assumption in financial models. More
sophisticated possibilities exist, and copula functions could prove to be an
alternative solution for modelling the dependencies. The problem that is
embedded in linear correlations is that they do not adjust in time, nor along
the probability of the event. In the events of extreme events in the financial
markets it is typical that the correlations tend to rise. This means that when
the equity markets sink unexpectedly, the corresponding bond market sinks
as well, even though under normal market conditions their correlation would
be low. Copula functions would complicate the model even further, hence it
would be a trade-off to consider the easier tractability, to better modelling.

5.3 Solver selection and computational issues

The model is implemented entirely in MATLAB programming environment
without additional solver capacity available. To improve the model perfor-
mance using other solvers could be worth considering.

In the literature similar models have been solved using more sophisticated
optimisation tools. In Hilli et al. (2007) the authors suggest using the AMPL
modelling language and MOSEK solver. These modelling tools employ same
interior-point algorithms as MATLAB, the tool we used in our work, so
the algorithm does not provide an obvious reasons to change the modelling
language.

Hoyland and Wallace (2001a,b) do not mention the solver used. They do,
however, mention the scenario generation being run on a Sun Ultra Sparc 1
machine. Hence, a modern PC should be able to cope with a similar problem
if specified efficiently.
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If we were to develop the model further, considering the performance
issues could be one of the key issues to continue working with. One of the
decisions made in the model building phase, that proved to be inefficient, was
the use of matrix formulation in (3.6) to calculate the function values at the
end of planning horizons. The formulation may be useful in calculating model
values once, but it is not suited for iterative evaluation, which is present in
all optimisation algorithms.

5.4 Further research topics

During the process of building the model and analysing results we have found
several directions in which the development could be continued.

From the software and performance point of view, exploiting more pow-
erful optimisation tools than MATLAB could be considered, as mentioned
before. In the algorithm there remains parts that could be made more effi-
cient, and then enable modelling larger problems.

Considering other possibilities for interest rate modelling would be one of
the key aspects to consider when developing the modelling further. Assessing
the problem of extremely low interest rates would be an interesting issue,
and it would be beneficial to seek for further justification for selected model
parameters.

Like the models by Hilli et al. (2007) and Hgyland and Wallace (2001a),
it would be interesting to implement regulatory solvency requirements in the
model. The shortfall cost could be adjusted to be defined according to these
regulatory limits set by the financial supervisory authorities. Conducting
these studies with revised and updated model parameters would be of interest
as well, because the market environment has been very different during the
times these models were developed and proposed.

Extending the model to consider the regulatory solvency requirements
would require us to consider modelling of market risk of liabilities. This
would lead us back to considering better modelling of the interest rates, even
the entire yield curve. Estimating the yield curve would enable modelling
arbitrary future cashflows based on present valuation. A potentially suitable
model for such parsimonious yield curve modelling could be the Nelson-Siegel
model, where the interest rate term structure is modelled based on a small
number of factors. (Nelson and Siegel, 1987)

One of important issues not addressed in this thesis is the transaction
costs investors face when adjusting their portfolios. This remains as a fur-
ther research topic. Especially for the illiquid assets, such as real estates,
considering a costs for adjusting the portfolio would probably change the
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results. Moreover, every investor has their current portfolio - taking into
account the costs occurring from adjusting from the initial portfolio should
change results as well. These considerations could narrow down the dominant
allocations to real estates, which are perhaps a bit unrealistic for institutional
investors.



Chapter 6

Conclusions

The starting point for this thesis was to develop a sound multi-period asset
allocation model, potentially including liability modelling. While liability
modelling proved to be too challenging at this point, we simplified the ap-
proach, and instead of liabilities, the risk was modelled according to an annual
target return.

The multi-period model we developed is a stochastic programming model,
which is based on scenario trees. In stochastic programming we do not have
deterministic objective functions for the optimisers, but the optimisation is
conducted in a probabilistic setting, which means that instead of optimising
an outcome, we optimise the expected value of an outcome.

Scenario trees were generated to accommodate the properties of five dis-
tinct asset classes, each of which was modelled according to a market invari-
ant, or a combination of multiple market invariants. Scenario tree generation
procedure was based on a moment matching algorithm, where the properties
of the scenario trees were fitted to pre-specified properties modelled by means
of time series and econometrics. Econometric modelling of the interest rates
had some complications, because the mean revertive models could not be
fitted to times series with a clear trend. To overcome this issue we used the
corresponding historical data from the Japanese interest rates, because the
current extremely low interest rates have been the prevalent market condition
for more than a decade in Japan.

This is, however, a significant factor reflected to the results. Because
the interest rates were modelled according to very low rates, their return
potential is also very low. This makes the other than interest bearing asset
classes more attractive, because they provide better income for the investor.

One of the key hypotheses we had concerning the outcome of our model
was that the dynamic asset allocation strategy would be dominant when
compared to a fixed-mix strategy. In our study the scenario trees were two-
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stage trees. The only difference between the fixed-mix strategy, and the
dynamic strategy, was that in the dynamic strategy the investor is allowed
to adjust their portfolio once during the planning period. In the fixed-mix
strategy the allocation remains intact until the end of the horizon.

The results of this comparison were as expected: allowing the decision
maker to adjust their decision should in principle benefit the outcome. How-
ever, when we studied more closely the second period decisions the investor
should make, a bigger picture was left somewhat unclear. Because the sce-
nario trees generated were sparse, we were unable to develop comprehensive
decision rules for updating the portfolio based on the observed outcome.

The result we obtained from the second period allocation suggests that a
behaviour like in the constant proportion portfolio strategy, may be justifi-
able. This means that adjusting the portfolio to a riskier composition after a
favourable outcome seems reasonable, because the investor has a large safety
margin to the penalty treshold, namely the return target. Strong conclusions
of any sort should however be avoided, because the model specification had
multiple attributes that could be specified differently.

A comparative study with the traditional mean-variance optimisation
developed by Harry Markowitz, was conducted. The results of this study
showed that the portfolios given by the stochastic programming, are indeed
close to their counterparts generated by mean-variance optimisation. Even
the portfolios for the first period in the dynamic model were close to the
efficient portfolio. This result may suggest that if the investor is used to
conducting similar optimisation in the mean-variance framework, the deci-
sion maker could understand the problem better through mean-variance pa-
rameters, even when the actual optimisation is conducted in the stochastic
programming framework.

Intuitive results for constructing extremely high and low risk tolerance
portfolios were confirmed: if the risk tolerance is high, the investor should
invest most their funds in equities. In the opposite end of the risk spectrum
the investor should invest in money market investments. Under the assump-
tions of low interest rates, government bonds seemed the worst asset class
to invest in, because according to the model developed, they yield negative
expected returns in the two-period planning horizon.

The stochastic programming model seemed to favour three asset classes:
equities in the high risk end, money markets in the low risk end, and real
estates in between. In lower end of the risk and return spectrum small
allocations to investment grade bonds occur, and even minuscule allocations
to government bonds emerge.

Differences compared to other strategies, namely the fixed-mix strategy,
and the mean-variance optimal strategy seemed surprisingly small. This may
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be, however, because only one adjustment to the portfolio in the planning
period is allowed. More adjustments should mean better performance for the
dynamic strategy compared to the fixed strategies.

Model performance was an issue that arose along the way, and even
though it improved significantly during the development process, it remained
an issue to be addressed. Similar models have previously been built in more
powerful programming environments than MATLAB.

The stability of the model developed remained an open question, and it
seemed likely that larger scenario trees would benefit the accuracy of the
results. Still, the smaller scenario trees shown in this thesis could provide
a basis for bracketing the investor preferences. As the computation times
increase exponentially among the number of branches per node, it could
be an idea worth considering, to establish the risk aversion level by using
rough estimates given by small trees, and finding a more accurate solution
for prefixed risk aversion parameters in a larger scenario tree.

Even though the results of this thesis may not be applicable as such, it
serves as a basis for further developments. Because stochastic programming
is a flexible methodology, the model presented could be further extended to
an integrated model, where both assets and liabilities were modelled under
the same framework.
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Appendix A

Data characteristics

Table A.1: Quarterly first six moments of distributions of studied market
invariants.

Moment Equity MM  Gov. yield Spread Real estate
Mean 21 %  0.00 -0.05 0.02 1.9 %
Standard deviation | 11.9 %  0.61 0.41 0.37 2.8 %
Skewness -1.06 2.12 0.14 -0.12 -0.51
Kurtosis 4.88 17.04 2.50 8.80 4.59
5th mom -10.86  80.34 0.86 -7.25 -4.06
6th mom 40.23  500.03 9.00 109.11 31.18

Table A.2: Correlations of market invariants from the first node in the tree.
Compare to historical correlations shown in table 4.5.

Equity MM Gov bond IG bond Real estate
Equity 1.00  0.09 0.29 -0.45 0.19
MM 0.09 1.00 0.61 -0.07 0.21
Gov bond 0.29 0.61 1.00 -0.12 0.28
IG bond -0.45  -0.07 -0.12 1.00 -0.33
Real estate | 0.19  0.21 0.28 -0.33 1.00
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Table A.3: Historical means and standard deviation of quarterly compound
returns.

Moment ‘ Equity MM  Gov. bond IG bond Real estate
Mean 1.98 % 0.60 % 1.30 % 1.18 % 1.94 %
Standard deviation | 12.00 % 0.41 % 1.61 % 1.78 % 2.82 %

Table A.4: Historical correlations calculated from quarterly returns.

Equity MM Gov bond IG bond Real estate
Equity 1.00 -0.29 -0.32 0.22 0.25
MM -0.29  1.00 0.40 -0.01 -0.12
Gov bond -0.32  0.40 1.00 0.55 -0.34
IG bond 0.22 -0.01 0.55 1.00 0.13
Real estate | 0.25  -0.12 -0.34 0.13 1.00

Table A.5: Historical moments of quarterly changes of both European money
market yields and government bond yields and their Japanese counterparts.

FEurope Europe Japan Japan
MM gov. BY  gov. 1Y  gov. bY
N 67 111 111 111
Data since 28/06/99 29/03/88 29/03/88 29/03/88
Mean -0.05 -0.05 -0.03 -0.04
Standard deviation 0.44 0.41 0.40 0.40
Skewness -1.11 0.14 0.05 0.26
Kurtosis 3.84 -0.47 5.36 3.70
Corr to Europe 0.53 0.44
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Appendix B

Estimated short-rate model
parameters

Table B.1: Estimated parameters for the CIR-model for Japanese government
yield and credit spread with different specifications. T-statistics for each
parameter in parenthesis.

Dataset | 1/At a B o? v 2 p-value
Japan 250 0.2818 -0.5193 0.2548 0.5 3.0745 0.0795
(1.9836) (-1.7998) (12.9028)
Japan 52 0.2342 -0.42 0.2323 0.5 1.646 0.1995
(1.6433) (-1.5447) (8.2552)
Japan 4 0.0952 -0.2684 0.151 0.5 0.3167 0.5736
(1.1529) (-1.7917)  (8.7835)
Japan 2 0.1029 -0.3122 0.15 0.5 1.1803 0.2773
(0.8554) (-2.5679)  (6.746)
Japan 1 0.0047 -0.0845 0.0733 0.5 15.586  0.0001
(0.0587)  (-1.0636)  (9.0585)
Spread 250 0.1534 -0.0851 0.0966 0.5 0.0615 0.8041
(0.7952) (-0.3532)  (13.281)
Spread 52 0.2858 -0.3126 0.0834 0.5 10.5579 0.0012
(1.043)  (-0.8411) (6.3232)
Spread 4 0.8438 -0.5359 0.6727 0.5 3.4891 0.0618
(6.4832) (-3.9317)  (6.674)
Spread 2 0.5945 -0.5137 0.4968 0.5 0.0002 0.9895
(8.2803) (-9.3332) (2.6852)
Spread 1 0.2427 -0.2481 0.1733 0.5 0.9836 0.3213
(5.8535) (-4.865)  (7.2881)
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Table B.2: Estimated parameters for money market investments in the CIR-
model with different specifications. T-statistics for each parameter in paren-

thesis.

Dataset | 1/At Q@ I} o v e p-value

Europe | 250 0,0065 -1,0738 0,0124 0,5 0,0122 0,9122
(1,4677) (-1,2789) (7,8641)

Europe 52 0,003 -0,6764 0,0089 0,5 1,1099 0,2921
(0,8321) (-0,9576) (4,6274)

Europe 4 -0,0103 0,1488 0,0095 0,5 8,1207 0,0044
(-4,6437)  (0,3554)  (4,4999)

Europe 2 -0,0016  -0,6784 0,0099 0,5 7,7389  0,0054
(-0,5878) (-2,5382) (8,1781)

Europe 1 -0,0002  -0,0398 0,0029 0,5 13,5926 0,0002
(-0,1234) (-0,6856) (10,6124)

Japan 250 0,0211 -0,2166 0,0946 0,5 0,0182  0,8928
(0,6493)  (-0,7791) (10,6698)

Japan 52 0,0307 -0,2759 0,137 0,5 0,4293 0,5123
(0,8417)  (-0,931) (5,616)

Japan 4 0,0342 -0,4033 0,1536 0,5 0,3049  0,5808
(1,4755)  (-2,568) (2,992)

Japan 2 0,063 -0,6374 0,2016 0,5 0,7814  0,3767
(2,576)  (-4,3445)  (3,3888)

Japan 1 0,0248 -0,5142 0,0852 0,5 9,8775 0,0017
(0,9959) (-4,2571)  (3,466)




Appendix C

Optimal allocations

Table C.1: Allocations in each node varying the risk aversion.

Annual target = 2.0 % Fixed-mix
a= 1E-04 Equity MM Gov bond IG bond Real estate
b= 100 98 % 0% 0% 0% 2%
E(w) fix. =  1.20
E(w)dyn.=  1.20 Dynamic
Node |Equity MM Gov bond IG bond Real estate
1 100 % 0% 0% 0 % 0%
2 0 % 0% 0% 100 % 0%
3 100 % 0% 0% 0% 0%
4 100 % 0% 0% 0% 0%
5 67 % 0% 0% 14 % 18 %
6 100 % 0% 0% 0% 0%
7 100 % 0% 0% 0% 0%
Annual target = 2.0 % Fixed-mix
a= 1E-02 Equity MM Gov bond IG bond Real estate
b= 100 49 % 0% 0% 0% 51 %
E(w) fix. = 1.12
E(w) dyn.= 1.15 Dynamic
Node |Equity MM Gov bond IG bond Real estate
1 58 % 0% 0% 0 % 42 %
2 0% 0% 0% 100 % 0%
3 80 % 0% 0% 0% 20 %
4 100 % 0% 0% 0 % 0%
5 22 % 0% 0% 65 % 13 %
6 100 % 0% 0% 0% 0%
7 90 % 0 % 0 % 10 % 0 %
Annual target= 2.0 % Fixed-mix
a= 1E+00 Equity MM Gov bond 1G bond Real estate
b= 10 5% 27 % 0% 47 % 21 %
E(w) fix.=  1.03
E(w) dyn.=  1.03 Dynamic
Node |Equity MM Gov bond 1G bond Real estate
1 4% 46 % 2% 35 % 14 %
2 3% 8% 6 % 75 % 9 %
3 6 % 2% 2% 2% 18 %
4 5% 32% 28 % 25 % 10 %
5 7% 5% 32% 46 % 10 %
6 8% 4% 54 % 2% 31%
7 11 % 38 % 1% 2% 47 %
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Figure C.1: Scenario trees when varying risk aversion coefficient a.
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Figure C.2: Different allocations among the efficient frontier for different parameter values for the fixed-mix strategy.
For each panel the target return and risk aversion b are fixed, a changes and results in different values in expected
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Table C.2: Definitions of the {6,6} scenario tree in numerical terms corre-
sponding to tree figures in 4.5. Table includes unique index for each node,
time step it occurs, the probability of transition to the node, and returns for
each asset class in the node.

Parent [Transition Log-returns for each transition
Time Node node probability |Equity MM Gov bond IG bond Real estate
1 1 1 1.00 0 0 0 0 0
2 2 1 0.04 145% -01% -3.6% -10.6% 5.5 %
2 3 1 0.23 12.5 % 00% -07% -02% -7.1 %
2 4 1 0.03 68.5 % 03% -1.6% 0.1% 17.6 %
2 5 1 0.18] -36.9 % 00% -06% -14% 3.7%
2 6 1 0.22 303% -01% -1.7% 51% 6.6 %
2 7 1 0.31 55% -0.2% 1.0% 1.8% 1.8%
3 8 2 0.01 67.5 % 02% -01% -48% 17.6 %
3 9 2 0.18 26.5 % 01% -08% 16.4% 8.4 %
3 10 2 0.05] -35.5% 01% -30% -8.0% 4.0 %
3 11 2 0.17] -22.7% 0.0% 59% 12.0% 0.7%
3 12 2 0.42 9.0 % 0.0% 24 % 9.2% 2.0%
3 13 2 0.17 13.7 % 0.0% 1.8% 8.0 % -7.6 %
3 14 3 0.20 29.2 % 01% -12% 6.6 % 9.5%
3 15 3 0.13] -32.9% 0.1% 22% 22 % 51%
3 16 3 0.45 25% 00% -0.3% 1.1% 1.1%
3 17 3 0.16 10.2 % 0.1% 21% 29 % -9.9%
3 18 3 0.04 4.4 % 03% -3.7% -104% 6.0 %
3 19 3 0.02 483% -0.1% 3.4% 3.6 % 21.6 %
3 20 4 0.05]  -50.0 % 0.3% 52% 11.6% 13.5%
3 21 4 0.09 -1.2% 10% -23% -24% 174 %
3 22 4 0.61 14.4 % 0.5% 1.7% 19% -0.9 %
3 23 4 0.04] -50.0 % 05% -09% -1.0% -20.2%
3 24 4 0.04] -50.0 % 0.0% 06% -6.8% 9.6 %
3 25 4 0.16 59.1 % 05% -1.7% 4.6 % 12.9 %
3 26 5 0.07| -23.7% 04% -29% -3.1% 9.3%
3 27 5 0.20 25.4% 01% -0.8% 72 % 32%
3 28 5 0.07) -50.0 % 0.0% 35% 3.3% 6.9 %
3 29 5 0.11 59.4 % 01% -19% -04% 7.6 %
3 30 5 0.51 10.0 % 0.1% 1.0% 1.8% -1.0%
3 31 5 0.05} -50.0 % 00% -08% -84% -104%
3 32 6 0.08 54.2 % 0.0% 1.9% 0.7 % 12.2 %
3 33 6 0.05 8.0% 0.0% 51% 09% -121%
3 34 6 0.21 17.4 % 01% -21% -49% 54 %
3 35 6 0.08 19.9 % 0.2% 01% -29% 5.2 %
3 36 6 0.17| -37.6 % 0.0% 26% -0.6% 3.7%
3 37 6 0.41 9.3% 0.1% 09% -14% -2.3%
3 38 7 0.59 91% -01% -1.0% 0.0% 25%
3 39 7 0.05 92% -01% -25% -96% -8.0 %
3 40 7 0.07 11.9% 02% -25% 5.0 % 6.2 %
3 41 7 0.16] -28.0% -0.2% 0.5% 0.3% 24 %
3 42 7 0.04 88% -04% -22% 53% 10.4 %
3 43 7 0.09 381% -02% -04% 7.1% -4.7 %




Appendix D

Parameters for mean-variance
optimisation

Table D.1: Parameters for the mean variance optimisation. Two-period
means and standard deviations calculated from the trees in figure 4.5 and in
table C.2.

‘ Equity MM  Gov bond IG bond Real estate
Expected return 206 % -01% -05% 2.2 % 3.7 %
Standard deviation | 39.2 % 0.2 % 1.5 % 3.4 % 8.0 %

Table D.2: Correlations of linear two-period asset returns in the scenario tree
with a branching structure {6,6}.

Equity MM Gov bond IG bond Real estate
Equity 1.00  0.25 -0.31 0.32 0.39
MM 0.25 1.00 -0.30 -0.15 0.28
Gov bond -0.31  -0.30 1.00 0.30 -0.33
IG bond 0.32 -0.15 0.30 1.00 0.12
Real estate | 0.39  0.28 -0.33 0.12 1.00
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