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Abstract 

 
Repeated games model long-term relationships and competition. On each round of the game, 
players receive a payoff depending on their own and other players’ actions. They discount future 
payoffs to present value with a discount factor. Complexity of such games increases remarkably 
when players are allowed to randomize between their pure actions. A player’s strategy assigns an 
action for every possible history of play and a strategy profile consists of all players’ strategies. A 
strategy profile is a subgame-perfect equilibrium if no player has a profitable deviation after any 
history. 
 
Very little is known about the set of subgame-perfect equilibrium payoffs for repeated mixed-stra-
tegy  games. Finding this set can be very complex even for simple two-player games. This study 
aims to develop an algorithm for finding this equilibrium set in prisoner’s dilemma. The algorithm 
is based on a useful fixed-point characterization of the set, presented by Abreu, Pierce and 
Stachetti. It finds the equilibrium payoff set by first assuming a certain continuation payoff set, 
and then iteratively calculating the set of total payoffs. If the set of total payoffs converges, the al-
gorithm has finished its task. The algorithm will only find the equilibrium payoff set and does not 
provide us with information about the strategies that produce these payoffs. 
 
Implementing the algorithm turned out to be complex for a prisoner’s dilemma with an arbitrary 
discount factor. A classification of 2 x 2 games by Borm was utilized for systematic treatment of 
games where expected continuation payoffs are included in the stage game payoffs. Doing this cal-
culation efficiently was the most difficult task in the algorithm’s implementation. 
 
The set of subgame-perfect equilibria was successfully calculated for prisoner’s dilemmas with big 
discount factors. Some results were also obtained for small discount factors, but the problem still 
needs more thorough treatment. This study focused on prisoner’s dilemma to simplify the compu-
tational task. However, with small discount factors, implementation of the algorithm brought ideas 
that could be expanded and thus solve the equilibrium sets for other 2 x 2 games, too. 
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1 Introduction

Is ”live every day like it is your last” a good advice? Why do people not behave
according to it? That is because they know that their life is a series of repeated
interactions. They do not spend their paycheck on the first day of the month because
they know that it results in a very unpleasant future. Repeated games, especially
infinitely repeated games, have a very different nature than games that are only
played once.

In an infinitely repeated game, players play the same stage game infinitely many
times. If the game is a pure-strategy game, players choose a certain action on every
round. In a mixed-strategy game, players are allowed to randomize over their pure
actions. Strategy profile of the game defines how players will act after any history.
On each round, each player receives a payoff that depends on all player’s actions on
that round. Players discount their future payoffs to present value with factor δ.

In 1965, Selten introduced concept of a subgame-perfect equilibrium [11]. It is a
strategy profile from which no player has incentive to deviate after any history.
Finding strategy profiles that are subgame-perfect equilibria is a very nontrivial
problem. However, Blackwell’s important result from dynamic programming [6]
guarantees that only the profitability of one-shot deviations has to be checked. Berg
and Kitti have used elementary subpaths to find equilibrium strategies among pure
strategies [4].

The set of subgame-perfect equilibria in repeated mixed-strategy games has remained
a mystery. This is propably because finding Nash equilibria is difficult enough for
games with pure strategies. Abreu, Pearce and Stacchetti presented a fixed-point
characterization of the set for repeated games with imperfect monitoring [2],[3]. Berg
and Schoenmakers studied the characterization for mixed strategies [5]. It can be
seen as a special case of imperfect monitoring. See Chapter 9 in [8].

Aim of this study is to implement an iterative algorithm that calculates the equilibrium
payoff set for a repeated prisoner’s dilemma with mixed strategies. The key idea is to
use the fixed-point characterization of Abreu, Pierce and Stachetti. We study games
in which public correlation is not allowed and players observe only the realized pure
actions and not the randomization probabilities that the other players use. Only the
equilibrium payoffs are of interest. A fixed-point algorithm does not tell us what
kind of strategies are needed to get a certain equilibrium payoff. Obtained results
are compared to pure-strategy games.

Prisoner’s dilemma is one of the most famous concepts in game theory. Focusing on
it, computational challenges of the problem are more realistic to overcome as there
are only two player’s and two pure actions. Although the study focuses on prisoner’s
dilemma, new information is obtained with ideas to widen the scope of research in
the future.
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2 Theoretical background

This section introduces the basic concepts that are used to describe games. The
difference between single shot games and repeated games is clarified with an example.
This study focuses on 2× 2 games and therefore a special notation for such games is
presented. The key theorem needed to understand the presented algorithm, fixed-
point characterization of subgame-perfect equilibria, is also explained.

2.1 The stage game

2.1.1 Basic notation and concepts

A game that is played only once is called a stage game. The set of players is denoted
by N =

{
1, ..., n

}
. Each player i has a set of possible pure actions Ai and the set

of possible pure-action profiles is A = ×i∈NAi. This paper studies games in which
players are allowed to randomize over their pure actions. Player i’s set of possible
mixed-action profiles Qi is a set of probability distributions over Ai. Also, we denote
the cartesian product of those by Q = ×i∈NQi. A pure action ai ∈ Ai is actually a
mixed action qi ∈ Qi, a distribution that assigns probability 1 on a and 0 on the
other pure actions.

The set of pure-action profiles that can be realized when mixed-action profile q is
played is called the support of q and denoted Supp(q) = ×i∈NSupp(qi), where

Supp(qi) =
{
ai ∈ Ai|qi(ai) > 0

}
. (1)

Moreover, for each a ∈ Supp(q), the probability for a realizing is given by

πq(a) =
∏
j∈N

qj(aj). (2)

Now we can define a payoff function u : Q→ Rn. When a mixed-action profile q is
played in a stage game, player i receives payoff

ui(q) =
∑
a∈A

ui(a)πq(a). (3)

Player i’s minmax payoff

vi = min
q−i∈Q−i

max
qi∈Qi

ui(qi, q−i) (4)

is the lowest payoff he can be forced to. Here q−i is player i’s opponents’ action
profile from the set Q−i = ×j∈N,j 6=iQj.
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The set of individually rational payoffs F∗ can only consist of points where no
player gets a payoff less than his minmax [8].

F? = {v ∈ F † | vi ≥ vi}, (5)

where F † is the convex hull of stage-game payoff points.

2.1.2 2 × 2 bimatrix games

This thesis focuses on games with two players both having two possible pure actions.
In such a game, N = 2 and |Ai| = 2, i ∈ {1, 2}. Let us denote the actions
A1 = {T,B} and A2 = {L,R}. In bimatrix representation, this means that player 1
chooses between rows and player 2 between columns. Throughout this thesis, we use
four letters

• a = {T, L}

• b = {T,R}

• c = {B,L}

• d = {B,R}

to denote the four possible pure-action profiles. Using this notation, A = A1 × A2 =
{a, b, c, d}. In a bimatrix, the four cells represent the four pure-action profiles. Every
cell has a payoff vector (u1, u2) representing the payoffs from that profile.

Example 2.1. Table 1 defines a stage game PD1, in which u(a) = (3, 3), u(b) = (0, 4),
u(c) = (4, 0) and u(d) = (1, 1).

L R
T 3, 3 0, 4
B 4, 0 1, 1

Table 1: Game PD1.

2.1.3 Nash Equilibrium

We denote the mixed-action profile of all players excluding i by q−i. It is an element
of the set Q−i = ×j∈N,j 6=iQj.

Definition 1. Action profile q ∈ Q is a Nash equilibrium of the stage game if for all
q′i ∈ Qi and i ∈ N ,

ui(q) ≥ ui(q′i, q−i). (6)
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According to Nash’s existence theorem [9], all stage games have at least one mixed-
or pure-action Nash equilibrium.

Example 2.2. In game PD1, d is a Nash equilibrium.

2.2 Repeated games

2.2.1 Play in a repeated game

In an infinitely repeated game, players play the same stage game again and again
infinitely many times. The game is assumed to be perfectly monitored, meaning that
the players observe every realized pure-action profile that is played and remember
all earlier moves. However, players can only observe the realized actions and not the
actual probability distributions that others possibly use. Thus, to make randomization
possible, a mixed action qi must produce exactly the same expected payoff for every
aj ∈ Supp(qj), for all j ∈ N, j 6= i.

Let H t be the set of all possible histories after t rounds of play, with a typical
element ht =

{
q1, ..., qt

}
, where qt is the action profile played in the tth round of

play. Moreover, H = ⋃∞
t=0 H

t is the set of all possible histories.

In a repeated game, each player i has a strategy that is a function σi : H → Qi,
telling the player what to do after any history. The players’ strategies form a strategy
profile σ =

{
σ1, ..., σn

}
. Starting from initial history h0 = ∅, σ induces a path of

play for the game. On round t, strategy profile σ yields a payoff uti = ui(qt(σ)) for
player i. During the game, the player receives a flow of payoffs

{
u1
i , ..., u

t
i, ...

}
and

discounts them with factor δi ∈ (0, 1). The expected total normalized payoff from
the game for player i is

Ui(σ) = E
[
(1− δ)

∞∑
t=0

δtui(qt(σ))
]
. (7)

2.2.2 Subgame-perfect equilibrium

In Section 2.1.3 we introduced the concept of Nash equilibrium for a single-shot game
and now we extend it to repeated games.

Definition 2. A strategy profile σ is a Nash equilibrium of the repeated game if for
all σ′i and i ∈ N ,

Ui(σ) ≥ Ui(σ′i, σ−i), (8)
where σ−i is player i’s opponents’ strategy profile.

However, a Nash equilibrium does not demand optimal behaviour in all possible
situations. We define σ|h to be the strategy profile after history h.
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Definition 3. A strategy profile σ is a subgame-perfect equilibrium (SPE) of the
repeated game game if for all σ′i, h ∈ H and i ∈ N ,

Ui(σ|h) ≥ Ui(σ′i, σ−i|h). (9)

Strategy profiles that are SPE do not allow irrational behaviour after histories during
which someone has deviated from the equilibrium path. In the course of a SPE, we
can interpret the game in the following way: On each round, players play a stage
game in which payoffs are formed by taking into account the expected continuation
payoffs, i.e., calculating what the total payoff from the game will be if a certain
profile is played on that round.

Example 2.3. If game PD1 is infinitely repeated and players are patient enough,
the following strategy profile is a subgame-perfect equilibrium:

• Play T/L on every round unless either player has deviated

• If either player has deviated, play B/R infinitely.

If players are patient enough, i.e., δ is not very small, no player wants to deviate
because it will result in a smaller total payoff. This strategy will result in a payoff

U = (1− δ) · 3 + δ · 3 = 3 (10)

for both players. This is better than what was possible to reach in the same single-
shot game.

2.2.3 Fixed-point characterization

A useful characterization for finding equilibria of repeated games was developed by
Abreu, Pearce and Stachetti in [2],[3]. Let the most profitable deviation outside
Supp(qi) be the pure action that yields

di(q) = max
a′i∈Ai\Supp(qi)

ui(a′i, q−i) (11)

and the punishment payoff of player i in any compact set W be

pi(W ) = min
{
wi, w ∈ W

}
. (12)

Suppose that a ∈ Supp(q) induces a continuation payoff x(a). Then a mixed-action
profile q has an expected continuation payoff

w =
∑

a∈Supp(q)
x(a)πq(a). (13)
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Definition 4. [5] A pair (q, w), where w ∈ W , is admissible with respect to W , if
for all i ∈ N

(1− δi)ui(a) + δiwi ≥ (1− δi)di(q) + δipi(W ). (14)

These are the incentive compatibility (IC) conditions.

Consider a stage game where payoffs are formed by combining the continuation
payoffs with the payoffs of the original stage game. Thus action profile a will give
the payoff vector

µ(a) = (I − δ)u(a) + δx(a). (15)

We denote the set of all equilibrium payoffs in this stage game by M(x).

Lemma 2.1. [5] The set of subgame-perfect equilibrium payoffs, denoted by V, is
the largest fixed point of the following mapping B:

W = B(W ) =
⋃

x(a)∈W
M(x), (16)

where (q, w) is admissible with respect to W , w = ∑
a∈Supp(q) x(a)πq(a) and q is a

Nash equilibrium in a stage game defined by the continuation payoffs x ∈ W |A|.
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3 Research problem and methods

Very little is known about the set of equilibrium payoffs in repeated mixed-strategy
games. The aim of this study is to develop methods to find out what this set will
look like when given a 2× 2 bimatrix game and the players’ discount factors. In this
section, algorithm for reaching the goal is presented first in abstract level and then
more specifically for prisoner’s dilemma.

3.1 Algorithm

Let V be the set of subgame-perfect equilibrium payoffs. Idea of the algorithm for
finding V in a 2 × 2 game is the following:

1. Choose W0 = [m1,M1]× [m2,M2], where

• mi is the minmax payoff for player i

• Mi is the maximal stage game payoff for player i

This should be a sufficiently large rectangle to surely contain V .

2. W ← W0.

3. Suppose that the setW can be used as continuation payoffs after any pure-action
profile played first.

4. Calculate four affine transformations

X(α) = (1− δ)u(a) + δW (17)

for α = {a, b, c, d}. This means that for all four pure actions played on the first
round, you calculate what the set of possible total payoffs is, as W is assumed
to be the set of all possible continuation payoffs.

5. Calcuate B(W ), which is now the union of the sets of equilibrium payoffs in
all possible stage games where payoffs µ(α) can be chosen freely from X(α).
Let us denote this operation by

E(X) =
⋃

µ(α)∈X(α)
M(µ), (18)

where X = {X(a), X(b), X(c), X(d)} and M(µ) is the set of equilibria for a
game with payoffs µ(α), α = {a, b, c, d}.

6. If B(W ) 6= W , W ← B(W ) and go to Step 3. Else B(W ) = V .

An example of the first iteration of the algorithm is presented in Figure 1. Choosing
W0 to be a rectangle will cause the set W to always consist of only X-Y polygons,
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Figure 1: Example of mapping B. The blue square represents W . Green squares are
four affine transformations of W and denoted X(a), X(b), X(c) and X(d). Here the
discount factor δi = 0.24 for both i. The red polygon represents B(W ).

which makes the task of calculating B(W ) easier.

Definition 5. [10] An X − Y polygon is a simple polygon with only horizontal and
vertical edges.

The hardest part of the algorithm is without a doubt Step 5. In order to be able to
perform the equilibrium calculations, we first need to divide sets X(α) into polygons
for which it can be done easier. The division consists not only of dividing the sets
into parts with a more convenient shape but also dividing them into parts that are
oriented more conveniently with respect to each other.

5.1 If W is not a connected set and consists of K simple polygons, we need to first
divide all X(α) into simple polygons X(α)j, where j ∈ {1, 2, ..., K}.

5.2 Let us now assume that we have four separate simple X-Y polygons PA, PB,
PC and PD oriented like in Figure 2. Let us then define points

pB =
(

min
x∈PB

x,max
y∈PB

y
)

(19)

and
pC =

(
max
x∈PC

x, min
y∈PC

y
)
. (20)

X-Y oriented lines through both points divide PA and PD into maximum of four
parts each, leaving the remaining parts oriented more conveniently. Figure 2
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illustrates an example.
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Figure 2: Example of four simple polygons. X-Y oriented lines through points pB
and pC divide PA and PD into maximum of four parts.

5.3 Finally to simplify the calculation, we need to split the remaining polygons
into X-Y convex parts.

Definition 6. [10] An X − Y convex polygon is an X-Y polygon, such that within
the polygon, for any two points lying on the same vertical or horizontal line, the
straight line segment between them lies completely inside the polygon.

Let us now assume that we have divided all fourX(α) into groupsA, B, C andD. Now
we need to perform the operation E(P ) for all combinations P = {PA, PB, PC , PD},
where PA ∈ A, PB ∈ B, PC ∈ C and PD ∈ D.

One way to calculate operation E is to handle possible stage games by dividing them
into classes. A useful classification in presented by Borm in [7] where 2× 2games are
divided into 15 classes.
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3.2 Prisoner’s dilemma with small discount factors

Let us now consider prisoner’s dilemmas with small discount factors. An example
of four polygons for which E has to be calculated is presented in Figure 3. No
matter which four polygons we choose, the red dashed lines through pB and pC never
intersect with PD. Also, with a sufficiently small discount factor, PD never has the
same y-coordinate with PC or the same x-coordinate with PB. This rules out many
difficult situations.
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Figure 3: In prisoner’s dilemma with small discount factors, only PA needs to be
split. Here A, B, C and D are the four groups of polygons close to each other. All
combinations where one polygon is picked from each group have to be examined.

Now in Step 5.2, we only need to divide PA. Also, equilibrium calculations for the
divided polygons are quite simple as it seems that we only need to calculate equilibria
for games that are in Borm’s class c14.
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L R
T a1, a2 b1, b2
B c1, c2 d1, d2

Table 2: A 2× 2 bimatrix game.

Definition 7. [7] Game in Table 2 is from class c14, if
a1 > c1,

b1 < d1,

a2 > b2, and
c2 < d2,

(21)

or if all four inequations are true in the reverse direction.

For a class c14 stage game, there are two pure-strategy equilibria (a1, a2) and (d1, d2).
In addition, there is one mixed-strategy equilibrium (xm, ym), where

xm = a1d1 − c1b1

a1 − b1 − c1 + d1
(22)

and
ym = a2d2 − c2b2

a2 − b2 − c2 + d2
. (23)

We notice that xm only depends on player 1’s payoffs and ym on player 2’s. Also,
the dependence is continuous when restrictions in Equation 21 hold. Therefore, in
order to find E(P ) for P = {PA, PB, PC , PD} we only need to find the games that
produce extremal payoffs. E(P ) is then a polygon with those payoffs as vertices.

To find extremal payoffs, let us calculate the partial derivates of the mixed-action
equilibrium point coordinates.



∂xm

∂a1
= (b1−d1)(c1−d1)

(a1−b1−c1+d1)2 < 0
∂xm

∂b1
= (c1−a1)(c1−d1)

(a1−b1−c1+d1)2 < 0
∂xm

∂c1
= (b1−a1)(b1−d1)

(a1−b1−c1+d1)2 > 0
∂xm

∂d1
= (a1−b1)(a1−c1)

(a1−b1−c1+d1)2 > 0

(24)



∂ym

∂a2
= (b2−d2)(c2−d2)

(a2−b2−c2+d2)2 < 0
∂ym

∂b2
= (c2−a2)(c2−d2)

(a2−b2−c2+d2)2 > 0
∂ym

∂c2
= (b2−a2)(b2−d2)

(a2−b2−c2+d2)2 < 0
∂ym

∂d2
= (a2−b2)(a2−c2)

(a2−b2−c2+d2)2 > 0

(25)
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Now, if we want to find the extremal payoff surface S(i, j), where
i = 1 means objective 1 is to maximize player 1’s payoff
i = −1 means objective 1 is to minimize player 1’s payoff
j = 1 means objective 1 is to maximize player 2’s payoff
j = −1 means objective 1 is to minimize player 2’s payoff,

we can use information of the derivatives’ signs and take from each polygon the
corner points that contribute to the wanted objectives. Then we calculate equilibria
for all stage games that can be created using those points. Some of those games do
not produce extremal payoffs so we now must distinguish the Pareto points from
these obtained equilibrium points. After all 4 surfaces S(i, j) are calculated, we
connect the extremal payoff points with an X-Y oriented polygonal chain and we
have our set of all equilibria.

A problem arises when we are dealing with four polygons for which the x-coordinates
of PA and PC or y-coordinates of PA and PB can cross. Now, if we follow the
instructions of maximizing or minimizing what the derivatives tell us, we get games
that are not from class c14. In these cases, one has to be more careful when calculating
the extremal payoffs but calculation is not very complex for prisoner’s dilemmas.

For example, in Figure 4 we have a situation where PA has been split and we are
examinating the case where we have to compute E(P ′A, PB, PC , PD), where P ′A is the
low-left part of PA. Now when finding S(1, 1), the derivatives would tell us to choose
from PC the points that have maximal payoff for player 1 and minimal for player 2.
From P ′A, both player’s payoffs should be minimized. However, we have a restriction
that the point chosen from PA must have a smaller x-coordinate that the point from
CA, or else the game is not from class c14. In this case, xm and ym can be maximized
by choosing the top-right corner from P ′A, any point with the same x-coordinate
from PC , any point with the same y-coordinate from PB and any point from PD.
Then (xm, ym) is actually the top right corner of P ′A. Due to this, in many prisoner’s
dilemma games with small discounts the polygons stay in such shape that surface
S(1, 1) only consists of one point.

3.3 Prisoner’s dilemma with big discount factors

When discount factors are big, implementing the algorithm is a lot easier. We only
have to calculate class c1 equilibria, because now they are possible and cover all
others. This means that we find the biggest area that can be covered by rectangles
that have one corner in each four polygons. Figure 5 shows an example.



13

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

v
1

v 2

P
C

P
B

P
D

P
A
’

Figure 4: Suppose that a is the point chosen from P ′A. Here the four blue polygons
are oriented so that from PC we have to choose a point from the left of a and from
PB a point that is lower than a in order to create a game from class c14.
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Figure 5: Example of operation E({PA, PB, PC , PD}) with a relatively big common
discount factor. Here, we are computing the third iteration and δi = 0.58 for both i.
Polygons have been cut so that payoffs less than minmax have been discarded. The
red polygon is the area than can be covered with rectangles that have one corner in
each small polygon.
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4 Results

4.1 Big discount factors

Results for game PD1 with common discount factor δ > 1
3 are presented in Appendix

A. Actually, these results are produced by defining W0 = F? in the beginning of
the algorithm. In this case W is not X-Y convex. Here, 1

3 is the smallest common
discount factor for which class c1 equilibria are possible.

In Figure 9 of Appendix C, equilibrium sets for δ = 0.57 and δ = 0.58 are presented.
It turns out that when δ < 1√

3 ≈ 0.5774, W converges to an octagon. When δ > 1√
3 ,

the Pareto efficient payoff surface becomes more complex and computation time
grows remarkably. This is the point where the pure-strategy profile of playing c or
b twice and then a infinitely becomes possible. For a symmetric 2 × 2 prisoner’s
dilemma in Table 3 this specific discount factor can be calculated by solving

c+ δc+ δ2a = d, (26)

which gives

δ =

√
c2 − 4a(c− d)− c

2a . (27)

L R
T a, a b, c
B c, b d, d

Table 3: A symmetric prisoner’s dilemma, where b < d < a < c.

When δ ≥ 2
3 , V is the whole set of feasible and individually rational payoffs. In

Figure 9 in Appendix C, mixed- and pure-strategy equilibrium sets are compared.
Pareto efficient pure-strategy payoffs are corners of V with mixed strategies. It is
an interesting result that mixed strategies do not allow equilibrium payoffs that are
arbitrary linear combinations of a and c or a and b.

Appendix B has results for game PD1 with unequal discount factors. This allows
V to go outside F?. When δi → 1 for either i, V → W0. Figure 6 shows that V
can have a billowy edge for big unequal discount factors. Algorithm can also handle
asymmetric games.

4.2 Small discount factors

With smaller discount factors the algorithm’s computation time grew remarkably.
Game PD2 in Table 4 was studied with discount factors δi ≤ 1

4 . Figure 10 in Appendix
D shows the result for δ = 0.24. When δ < 1

4 , V seems to become a very complex



15

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4
Time: 2.3672 s, N=20, df=[0.75 0.9]

v
1

v 2

Figure 6: V can have a billowy Pareto surface for some discount factor combinations.

L R
T 3.5, 3.5 0, 4
B 4, 0 1, 1

Table 4: PD2

fractal surface. Here, nine iterations were calculated. This amount of iterations was
not enough to see the final result to which V converges, but only small changes in it
occurred on the last iterations.

For δ = 0.25, V turned out remarkably bigger, which can been seen in Figure 11.
Twelve iterations were calculated, and the last iterations did not change V in any
other way but adding smaller and smaller corners. Thus, final shape of V is clear
from the result.

An interesting result is, that V not a connected polygon, so not all randomizations
between two equilibria are possible. For small δ, V seems to consist of infinitely
many separate polygons. This is a big difference compared to games in which public
randomization devices are allowed.
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5 Conclusion

In, this study, a new algorithms for finding the set of subgame-perfect equilibrium
payoffs in repeated prisoner’s dilemmas with mixed strategies were created. Different
algorithms were implemented for big and small discount factors. First, an algorithm
was presented in a very abstract level for any 2× 2 game. The key idea was using
the fixed-point characterization by Abreu, Pierce and Stachetti. The algorithm was
made iterative, such that it was meant to eventually, after enough iterations, find the
wanted set. This study did not in any way consider what kind of strategies would
result in the equilibrium payoffs.

The most difficult part of the algorithm was trying to find the union of set of equilibria
for all stage games that could be created by choosing each payoff point from a certain
set assigned for it. This operation was denoted by E . The operation was divided
into parts by handling the possible stage games class by class.

For big discount factors, reliable results were obtained. The algorithm was based
on the key observation that only the stage games from Borm’s class c1 had to be
taken into account when computing the operation E . In these games, the equilibrium
sets are rectangles. The set of equilibria converged clearly in 15 iterations. This
was easily computable, and the algorithm worked also for asymmetrical prisoner’s
dilemmas.

For small discount factors, a working algorithm was implemented only for certain
discount factors. Implementation was much more difficult, because now stage games
from the c1 class could not be created when calculating E . An algorithm was
implemented by taking into account only stage games from Borm’s class c14, and
it’s extremal cases. The results were not as reliable, since omitting all other classes
of stage games in some cases was based on a guess.

There are still some discount factors between the small and big factors, for which
either of the implemented algorithms cannot be used. This is because for some
discount factors the rectangles die away, and the orientation of sets from which the
stage game payoffs are chosen is too complicated for the latter algorithm. Also,
the algorithm is not reliable when the discount factors are really small or notably
unequal.

In order to thoroughly solve this problem for a prisoner’s dilemma for any discount
factor, more exact treatment is needed. To confirm the results for small discount
factors, more classes of stage games have to be checked when calculating E . Also, the
algorithm has to be made cleverly in order to keep the computation time realistic,
and thus ensuring that enough iterations can be computed. To cover all possible
discount factors, one has to carefully calculate the extremal payoff surfaces when
implementing the operation E . Various problems can arise, and if they are solved,
probably the algorithm for any 2× 2 game, or at least for some other games, can be
also created then.
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A Results with a large common discount factor
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Figure 7: V for game PD1 with common discount factor δ ∈ [0.34, 0.67]. Images
were produced using Matlab. Here, Time is the running time of the algorithm, N is
the amount of iterations and df is the discount factor vector. Labels v1 and v2 are
the total payoffs for player 1 and player 2, respectively.
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B Results with big unequal discount factors
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Figure 8: V for unequal discount factors in PD1.
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C Comparison of equilibrium payoffs sets with
mixed and pure strategies
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Figure 9: Comparison of the equilibrium payoff sets for mixed and pure strategies.
Lower images are from [4]. Here, δ = 0.57 on the left and δ = 0.58 on the right.
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D Results with small discount factors
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Figure 10: V for common δ = 0.24 in PD2. On the right a magnified image of the
biggest polygon after 9 iterations.
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Figure 11: V for common δ = 0.25 in PD2 after 10 and 12 iterations. Figures do not
differ in a notable way.
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E Finnish summary

Peliteoriassa mallinnetaan pelaajien, esimerkiksi yritysten, välisiä kilpailutilanteita.
Pelissä pelaajan omat sekä muiden pelaajien ratkaisut vaikuttavat pelaajan saamaan
hyötyyn, ja kukin pelaaja pyrkii maksimoimaan oman hyötynsä. Toistetuissa peleissä
samaa peliä toistetaan uudelleen ja uudelleen. Pelaajat diskonttaavat kultakin kier-
rokselta saamansa hyödyn nykyarvoon tietyn diskonttokertoimen avulla ja laskevat
näin pelistä saamansa kokonaishyödyn. Tässä työssä tutkittiin kahden pelaajan pele-
jä, joissa kummallakin pelaajalla on kullakin kierroksella kaksi vaihtoehtoa. Näistä
keskityttiin Vangin ongelma -nimiseen tunnettuun peliin.

Pelaajan strategia määrää, minkä vaihtoehdon hän valitsee tietyn pelihistorian jälkeen.
Osapelitäydellisiä tasapainoja ovat strategiaprofiilit, joissa kummallakin pelaajalla
on sellainen strategia, että hänen ei kannata poiketa siitä pelihistorian jälkeen.
Sekastrategiapeleissä pelaajat saavat käyttää strategioita, joissa tietty vaihtoehto
valitaan aina jollain todennäköisyydellä. Puhtaiden strategioiden peleissä nämä
tämä todennäköisyys on aina jollekin vaihtoehdolle yksi ja muille nolla. Pelaajien
oletetaan havaitsevan vain sen vaihtoehdon, minkä toinen pelaaja tulee valinneeksi,
eikä todennäköisyyksiä, joita tämä käyttää. Lisäksi pelaajien oletetaan havaitsevan
ja muistavan kaikki omat ja toisen pelaajan valinnat.

Aiemmassa tutkimuksessa ei ole selvitetty, miltä osapelitäydellisten tasapainojen
joukko näyttää sekastrategiapeleissä. Joukkoa on karakterisoitu ja puhtaiden strate-
gioiden tapauksessa on laskettu tasapainopolkuja ja niiden tuottamia hyötyjä, jotka
ovat joillekin peleille muodostaneet fraktaalimaisia kuvioita. Yleisesti tasapainojen
laskemista on pidetty jopa turhana laskennan monimutkaisuuden takia.

Tavoitteena kandidaatintyössä oli luoda Matlab-algoritmi, jolla on mahdollista laskea
osapelitäydellisten tasapainojen joukko annetussa toistetussa vangin ongelmassa,
jossa pelaajat saavat käyttää sekastrategioita. Algoritmi lähdettiin toteuttamaan
käyttämällä aiemmin esitettyä karakterisointia tasapainojoukoille. Ongelmaksi muo-
dostui laskennallinen vaativuus. Tätä helpottamaan pyrittiin keksimään järkeviä
keinoja, joilla laskentaa saisi nopeutettua. Tuotetun algoritmin oli määrä laskea
iteratiivisesti tasapainojen joukkoa, kun niin sanottujen mahdollisten jatkohyötyjen
joukko tunnetaan kullekkin mahdolliselle ensimmäisen pelikierroksen lopputulemalle.
Jatkohyötyjen joukkoa päivitettäisiin joka iteraatiolla ja tätä toistetaisiin niin kauan
kunnes tasapainojoukko suppenee.

Algoritmi toteutettiin erikseen sekä isojen että pienten diskonttokerrointen vangin
ongelmille. Isojen kertoimien tapauksessa laskenta oli huomattavasti helpompaa ja
luotettavia tuloksia saatiin. Pienten kertoimien tapauksessa tehokkaan laskenta-
algoritmin tuottaminen oli haastavampaa, ja se saatiin toimivana toteutettua vain
kapealle diskonttokerrointen joukolle. Tasapainojoukkoa ei pienillä kertoimilla saatu
täysin suppenemaan, mutta mielenkiintoisia tuloksia saatiin joillekin kertoimille.
Pienten diskonttokerrointen tapauksessa tulosten vahvistamiseksi vaadittaisiin huo-
lellisempaa algoritmin toteutusta.
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Avoimeksi kysymykseksi jäi, millainen tasapainojen joukko on todella pienillä diskont-
tokertoimilla, tai sellaisilla kertoimilla, jotka ovat käsiteltyjen "isojen" ja "pienten"
kertoimien välissä. Ongelmaa ei siis kyetty täysin ratkaisemaan sen monimutkai-
suuden vuoksi. Kuitenkin varsinkin pienille diskonttokertoimille luotua algoritmia
voidaan tulevaisuudessa laajentaa niin, että se toimii mille tahansa kertoimille. Tämä
voi kuitenkin vaatia hyvin tarkaa, systemaattista eri tilanteiden käsittelyä algoritmin
edetessä ja osoittautua hankalaksi. Ongelman ratketessa algoritmi on luultavasti
laajennettavissa moniin muihinkin kahden pelaajan peleihin.
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