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Abstract

Mathematical optimisation models have been succesfully used for solving problems
across multiple industries. Often, the purpose of these models is to provide decision
support by guiding the development of effective plans and decisions. In the process
of providing decision support, obtaining the numerical solution of an optimisation
model is usually not limiting, and increasingly large and complex models are solvable
as a result of increased computation resources and improved solution algorithms.
However, analysing and understanding the model results can be difficult for large
and complex problems. Analysing model results often involves processing one or
several model scenarios with varying parameters, so that related conclusions become
available to the user. This part of the mathematical programming process is usually
done by the analyst on a case-by-case basis, but this could be aided through com-
puter assisted tools known as Intelligent Mathematical Programming Systems (IMPS).

In this Thesis, we develop a method for analysing and comparing the results of
optimisation scenarios. This method forms a basis for a new form of IMPS that
can be used to analyse both individual model scenarios and differences between
two scenarios. The method is based on the idea of preserving the structure of the
mathematical model along with the optimisation results, by representing the results
as a graph. While the use of the method is considered in the context of supply chains
and linear programming, the approach is fairly general and could be applied in other
types of optimisation problems as well. The implementation of the IMPS is done
with open-source technologies and can be coupled with any modelling environment
and solver.

The usability of the developed method for scenario analysis is evaluated through a
case study related to an existing supply chain optimisation model at a large pulp and
paper company. We identify some scenario related questions where the developed
method has advantages over the traditional approaches where the model structure is
not explicitly preserved. The case study illustrates that the developed method has
many potential use cases, especially in conjunction with other methods. Furthermore,
multiple development needs and avenues for further study are identified.

Keywords Optimisation, mathematical programming, decision support system,
model analysis system, scenario, supply chain, graph
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Tiivistelma

Matemaattisia optimointimalleja on kaytetty menestyksekkaasti ongelmanratkaisuun
monilla eri teollisuuden aloilla. Usein optimointimallien tarkoitus on tarjota pa&atok-
senteon tukea ohjaamalla tehokkaiden suunnitelmien ja padtoksen tekemista. Téassa
paidtoksenteon tukiprosessissa optimointimallin numeerisen ratkaisun saavuttami-
nen ei ole useimmiten rajoittava tekija, ja yha laajempia sekd monimutkaisempia
malleja voidaan ratkaista lisddntyneiden laskentaresurssien seké kehittyneiden rat-
kaisualgoritmien avulla. Sen sijaan mallin tulosten analysointi ja ymmartaminen
voi olla vaikeaa laajojen ja monimutkaisten ongelmien tapauksessa. Mallin tulosten
analysointiin siséltyy usein yhden tai useamman mallin skenaarion prosessointi si-
ten, etta relevantit johtopadtokset tuloksista tulevat kayttdjéan saataville. Taméa osa
matemaattisesta mallinnusprosessista tehdadn usein tapauskohtaisesti analyytikon
toimesta, mutta tiata voidaan auttaa tietokoneavusteisilla tyokaluilla.

Téassé diplomityossa kehitetdadn menetelméa optimointimallien skenaarioiden analy-
sointiin ja vertailemiseen. Tama menetelma luo perustan uudenlaiselle aputyokalulle,
jota voidaan kayttda seka yksittaisten mallin skenaarioiden ettd kahden skenaarion
valisten erojen analysointiin. Menetelmé pohjautuu matemaattisen mallin raken-
teen sailyttamiseen optimiratkaisun lisdksi, mika tapahtuu tallentamalla tulokset
graafimuodossa. Vaikka menetelmén kéyttoa tarkastellaan 1dhinné toimitusketju-
jen ja lineaarisen ohjelmoinnin nakokulmasta, lahestymistapa on melko yleinen ja
voi soveltua myo6s muihin optimointiongelmiin. Kehitetyn aputyokalun pohjana on
kaytetty avoimen lahdekoodin teknologioita, ja se voidaan yhdistda mihin tahansa
mallinnusymparistoon ja ratkaisijaan.

Kehitetyn menetelman kaytettavyyttda skenaarioanalyysiin arvioidaan erdan toi-
mitusketjun optimointimalliin liittyvan tapaustutkimuksen avulla suuressa pape-
riteollisuuden yrityksessa. Tyossa tunnistetaan skenaarioihin liittyvia kysymyksia,
joissa kehitetylld menetelmélla on etuja verrattuna lahestymistapoihin, joissa mallin
rakennetta ei eksplisiittisesti séilyteta. Tutkimus havainnollistaa menetelman mah-
dollisia kayttokohteita, erityisesti muihin menetelmiin yhdistettyna. Lisaksi tyossa
tunnistetaan menetelméan liittyvia kehitystarpeita ja jatkokehityksen suuntia.

Avainsanat Optimointi, matemaattinen ohjelmointi, paatoksenteon tukijarjestelma,
mallianalyysijarjestelma, skenaario, toimitusketju, graafi
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Symbols and abbreviations

Symbols

A matrix A

Ajj matrix entry in ith row and jth column

G=(V,E) Graph G with node set V' and edge set E

G = (U,V,FE) Bipartite graph G with disjoint node sets U and V', and edge set F

Operators

x transpose of vector x

AN B interesection of sets A and B
AUB union of sets A and B
A\ B difference of sets A and B

Abbreviations

IMPS  Intelligent Mathematical Programming System
LP Linear Programming

MILP  Mixed Integer Linear Programming

APS Advanced Planning System

DMAS Deductive Model Analysis System

IMAS  Inductive Model Analysis System

DSS Decision Support System



1 Introduction

1.1 Background

Since the development of mathematical programming, the ability to solve larger and
more complex optimisation problems has significantly improved as a result of better
solution algorithms and abundant computing power. The numerical computation of
a solution is no longer the bottleneck in most mathematical programming processes.
Rather, the tasks related to creating, analysing, understanding and communicating
these models and their various instances have an increasing role in applications.

While the technical purpose of mathematical programming is to find the optimal
value of a given objective function subject to given constraints, in practice this
is done to provide some form of decision support by guiding the development of
effective plans and decisions. Thus, mathematical models are sometimes embedded
into a larger Decision Support System (DSS). In addition to providing decision
recommendations, these systems are used to validate whether or not the model is an
accurate enough representation of the real underlying system, as well as to establish
credibility of the model in the eyes of the often non-technical decision makers with
rich reporting and visualisation of the results, for instance.

At the core of both providing sound decision recommendations and establishing
model credibility is the process of developing fundamental insights into why the
model solution is what it is. This extends far beyond the question of what particular
numerical values the decision variables of the optimal solution are. Such insights are
important in many applications of mathematical programming, where there seldom
exists a single perfect model solution that fully encapsulates the underlying model
uncertainties and directly translates into actionable plans.

To enhance model understanding, it is often beneficial to consider several model runs
with varying parameters and structures, reflecting the alternative assumptions, ob-
jectives and uncertainties regarding the mathematical model. These model instances
reflecting various possible realities are often referred to as scenarios (Ronnqvist
et al., 2015). The term scenario analysis refers to how these model scenarios are
organised and processed so that important conclusions are available to the model
user (Greenberg and Chinneck, 1999). Depending on the case, the decision maker
may be interested in one particular scenario, or they may be interested in knowing
what are the key differences between two, or even multiple scenarios.

In terms of solving the mathematical model to optimality, there is usually a somewhat
clear path to victory: Assuming that the model is not ill-structured, one only needs
to have an appropriate solver that is capable of solving the problem, and ensure
adequate computing resources. However, there is no standard procedure for distilling
key insights from the mathematical model, as these are arguably more difficult to



generalise or even define in exact terms which are often preferred by mathematically
inclined analysts. This is not to say that no quantitative tools exist: For example,
most commercial mathematical programming environments are able to perform
elementary sensitivity analysis, enabling the analyst to study how small, individual
parameter changes affect the model solution. However, this type of analysis can only
answer a fraction of the questions that may be relevant to the decision maker.

The process of gathering insights from models and their scenarios is usually done on
a case-by-case basis, since there exists no industry standard tool that would aid the
analyst in this regard. Furthermore, this process often falls to the analyst responsible
for creating and programming the model, as the ability to gather insights often
requires understanding the model structure. Clearly, this part of the mathematical
programming process could benefit from automated assistance, where some computer
program would provide the analyst with ready-made tools to analyse and compare
model scenarios. Such systems equipped with computer-assisted model analysis are
referred to in the literature as Intelligent Mathematical Programming Systems (IMPS)
(Greenberg and Chinneck, 1999). Although numerous systems have been developed
for general model analysis, few of these have focused on the aspect of scenario analysis,
and computer-assisted tools for scenario analysis reported in literature are virtually
nonexistent.

1.2 Thesis objective and scope

This thesis develops a new form of IMPS for analysis purposes in practical applications
at an industrial case company. The IMPS is based on ideas previously presented by
Greenberg (1983), where optimisation models are modelled as graphs. In this thesis,
we extend this notion to the two-scenario case, which allows the comparison of two
individual model scenarios. The usefulness of the developed IMPS is validated in a
participatory development process with optimisation experts at the case company,
where several questions pertaining to the case company’s optimisation models were
collected and categorised.

Although the problem of gathering insights from models is a very general one,
we mostly limit our considerations to optimisation models related to supply chain
planning. This is because such models are at the heart of the case company’s business,
and focusing on a slightly more specific model category is a more approachable
problem than trying to build a system that would fit to any type of mathematical
model.

In terms of mathematical models, this thesis is limited to Linear Programming (LP)
models, as they are the main workhorse at the case company, simpler to analyse
than e.g. nonlinear or mixed-integer-linear programming (MILP) models, and the
MPS file format, which is a core input of the implemented IMPS, supports only LP
models and MILP models. The aforementioned considerations are not to say that
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the approach suggested in this Thesis would not work for other types of models:
Even though we have limited our attention to a more specific level, the same ideas
are applicable to other model types as well.

1.3 Thesis structure

The remainder of this thesis is organised as follows. Chapter 2 introduces the
background by providing a review of the existing literature regarding automated
model analysis and supply chain optimisation. We also review linear programming
to provide further context.

Chapter 3 describes some of the common questions related to supply chain optimi-
sation analysis, collected from discussions with multiple optimisation and subject
experts. We categorise the questions into different types, and assess for each type
the amount of scenarios involved and the difficulty of answering these questions.
We also explain and characterise different types of model changes related to these
questions.

Chapter 4 describes different general approaches for building an IMPS and explains
the foundation behind the approach taken in this Thesis. We present an overview
of the developed IMPS, describing its main inputs, outputs and functionalities.
In addition, we describe the practical requirements, design choices and the main
algorithms used in the IMPS in detail.

Chapter 5 describes the use of the IMPS by performing a case study related to an
existing paper supply chain optimisation model at the case company. We illustrate
through multiple examples how the IMPS can be used to review and analyse different
scenarios and model results.

Finally, Chapter 6 summarises the thesis, provides further development needs and
presents the most important conclusions drawn from the entire body of work.
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2 Background

2.1 Mathematical programming process

The mathematical programming process can be simplified into the form shown in
Figure 1. First, the problem domain is described to include only the objects that are
relevant to solving the problem at hand. Then, a mathematical model is extracted
from the problem domain by defining the relevant decision variables, constraints and
objectives of the problem. In addition, the model often includes parameters, some
of which may be uncertain. Thus, several instances of the model, differing in terms
of the data used, can be solved. The results for these various instances can then
be collected as case studies. Unexpected results or other questions arisen from this
case study may then lead to re-examining the problem domain, or modifying the
mathematical model. Therefore, the entire process forms a closed loop, as depicted
in Figure 1. The mathematical programming process can be subdivided further into
seven main functions, based on the taxonomy presented by Greenberg and Chinneck
(1999).

——=| Problem Domain ————

| Mathematical Medel |

Instar :

Case Study

Figure 1: The mathematical programming process (Greenberg and Chinneck, 1999).

1. Model expression is related to the various forms in which the mathematical
model can be created. Such forms include algebraic modelling languages, spreadsheets,
block-schematics, and other representations. While the appropriate form of expression
may depend on the problem, it should ideally enable the user to detect possible
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errors and omissions. Two important functions related to model expression are
documentation and verification. Documentation entails recording a description
of the model, such that people other than the original creator may understand it.
Verification, in turn, is related to ensuring that the computer-resident model coincides
with our functional description.

2. Model viewing refers to the forms in which the model and its solutions can
be viewed to the user. These views may employ the same structure as the original
model expression, although other views based on graphical or natural language
representations are possible as well. As is the case in model expression, there is often
no "best" view, as this may depend on both the preferences of the modeler, and the
problem itself. A related function is reporting, which may include functionalities
such as interactive query, the generation of some internal files for further analysis, or
creating some other form of report for presentation.

3. Model simplification refers to various methods of finding simpler model expres-
sions that still capture the essence of the original problem. Some form of simplification
functionality is often included in commercial-quality solvers, but their main purpose
is usually to increase optimisation performance, rather than deliver new insights into
the problem.

4. Debugging is the process of finding and removing the possible mechanical errors
in the model. Such errors may lead to problems such as infeasibility, unboundedness
or non-viability. Note, however, that the viability of the model as a representation
of reality cannot usually be answered by debugging alone.

5. Data management refers to the structures and techniques applied to manage
the various information that is generated and collected in the mathematical program-
ming process. These structures may have varying complexity, ranging from simple
spreadsheets to large databases.

6. Scenario analysis refers to various methods of processing and filtering the
information generated from multiple model instances, representing various scenarios.
An important application is cross-scenario analysis, where the purpose is to find
and ideally also explain the main differences between scenarios. It is worth noting
that Greenberg and Chinneck (1999) uses the term scenario management to refer
to this function. However, this term is also used to describe how and why different
types of scenarios are created in the problem context. In the scope of this thesis, we
consider the scenarios as given by subject experts, and assume that these scenarios
appropriately capture the significant uncertainties related to the problem. Therefore,
our main focus is in the function of how different scenarios are analysed and compared,
rather than how these scenarios were created. The field of scenario management
related to the generation of various scenarios is an interesting field of study in itself,
see e.g. Seeve (2018).

7. General analysis refers to other general questions one might have about the
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mathematical model, unanswered by the previous functions. These include, for
example, finding important relationships in the data, and finding the root cause
of the price of a certain variable. General analysis tools provide the user with
means to explore the model structure in further detail, thus helping the user answer
some model-related questions. Related functions include validation and redundancy
analysis. The purpose of validation is to determine how well our model represents
reality, given the context of decision support that the model is designed to offer.
Redundancy analysis, as the name suggests, is related to finding possible redundancies
in the model.

Based on this taxonomy, functions 6 and 7 are the main focus of this Thesis. How-
ever, it is important to note that these functions are not separate entities in the
mathematical programming process, but they are rather intertwined. For example,
different model views can be beneficial in general analysis.

2.2 Analysis of supply chains

With the growth of Enterprise Resource Planning (ERP) applications in organisations,
supply chain management has become a major area for model-driven decision support
systems and mathematical programming (Power and Sharda, 2007). Supply chains
are complex entities involving multiple phases, each involving their own planning
decisions. Many of these planning problems can be translated into mathematical
models, provided that there is sufficient data available to model the supply chain
adequately. As ERP systems have made this data more accessible to analysts, the
use of mathematical programming has seen increasing use in many supply chain
activities, including the planning of logistics, production and demand (Power and
Sharda, 2007).

Although supply chains have no single definition in the literature, they can be seen
as systems of organisations, people and activities that are involved in moving a
product from supplier to customer (Press, 2011). Typical activities in supply chains
involve the transformation of resources, such as energy and raw materials, into
finished products, transporting those products, and finally distributing them to
customers. Between these end points, there may be multiple value adding activities
that in combination are necessary in order to deliver the final product (Janvier-James,
2012).

Common entities in the supply chain include suppliers, manufacturers, warehouses,
transportation companies, distribution centers and retailers. A supply chain can
be represented as a network between these entities. The nodes of such a network
may depict these different entities, such as suppliers and production facilities, and
links between the nodes depict the material flow through the network, e.g. the
procurement of raw materials from suppliers to the production facilities. Figure 2
shows one simple example of a supply chain ,which shows how materials flow through



14

a supply chain network through suppliers to end customers.

Suppliers Production Wareh Customers
PP facilities arenouses
51 C1 >
52 c2 >

Figure 2: Example of a supply chain.

Supply chain management is the task of integrating the organisational units in the
supply chain and coordinating the flows of materials, finances and information such
that the ultimate customer demands are fulfilled, and the competitiveness of the
supply chain is improved as a whole (Stadtler, 2005).

The ultimate goal of acheiving and maintaining the competitiveness of the supply
chain is in turn achieved by directing the supply chain in a strategically viable and
sustainable position compared to its competitors. Customer satisfaction is often an
important means to achieve this aim (Trkman et al., 2005). The degree of success in
achieving these goals depends on two major factors: the integration of organisational
units and the coordination of flows (Weintraub et al., 2008). These factors may
be further divided into smaller building blocks which further detail the activities
necessary for success. The building block that is particular interesting in the context
of this thesis is advanced planning. Systems which incorporate mathematical models
and solution algorithms are referred to as Advanced Planning Systems (APS) in
supply chain management, and they can be viewed as decision support systems
that often utilise mathematical programming (Stadtler, 2005). Thus, the benefit
of using these systems as decision support tools would be greatly increased if they
provided assistance in the main functions related to the mathematical programming
process.

Although APS are often proprietary software developed by various vendors, they
commonly exhibit a hierarchical architecture, since the planning itself is usually a
hierarchical process (Ronnqvist et al., 2015). The main purpose is to support the
planning of material flows across the supply chain, including the business-related
functions of procurement, production, distribution and sales. The related planning
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tasks can be done at varying time intervals and levels of aggregation, ranging from
aggregated long-term planning to specific short-term planning. Considering the levels
of aggregation and material flows through the business-related functions as the axes
of supply chain planning, we can describe the various planning tasks through the
supply chain planning matrix shown in Figure 3 (Stadtler, 2005). We will use the
example supply chain shown in Figure 2 to explain how these planning tasks are
related to the different supply chain entities.

long-term Strategic Network Planning
mid-term Master Planning
Demand
Purchasing || Production | | Distribution | | 2""Ng
& Planning Planning
Material
Demand
Requirements . Transport Fulfilment
short-term | Planning Scheduling Plannpiﬁg & ATP

Figure 3: The supply chain planning matrix (Stadtler, 2005).

The hierarchical nature of supply chains is evident in the time dimension: On the
longer end, the planning interval may be several years, in which case the goal is
often to decide the long-term strategic components of the supply chain, including
the capacity and location of production sites, warehouses, transportation means
and customer service areas. This corresponds with strategic network planning in
the supply chain matrix, where the goal is to design the supply chain so that it
enables the best possible economic performance over an extended period of time
(Goetschalckx, 2002). In our example supply chain, this would mean planning the
structure of the supply chain network itself: This would involve questions such as
which suppliers should be included, or how many warehouses are required to serve
customers in different areas.

When the structure of the supply chain is set, master planning is done to find the
most cost-efficient means to respond to the demand forecasts over some medium-term
time interval, often covering a full seasonal cycle. The objective here is to synchronise
the flow of materials along the entire supply chain (Rohde and Wagner, 2002). In
our example supply chain, this would mean planning all raw material purchases from



16

suppliers, quantities of production at facilities, distribution to different warehouses,
and finally sales to customers. The plans at this stage are done to provide an
overview of how the supply chain should be operated on an aggregate level, as the
more detailed plans are done on separate stages.

After the production flows have been assigned to different sites, more detailed
production planning and scheduling is often done within each production facility.
The aim with these planning stages is to determine a more detailed production
schedule, which shows for example how different machines or flow lines should be
operated, and what should be done on different work shifts. (Stadtler, 2002a) In our
example supply chain, this planning stage would solve how the different production
facilities should be operated in detail, for example on a daily basis.

Based on the directives from master plans as well as shorter-term production planning
and scheduling, procurement quantities can be planned with a purchasing and material
requirements planning module. This module is necessary for planning non-bottleneck
operations, since usually only potential bottlenecks in raw material availability are
planned for in production planning and scheduling (Stadtler, 2005). In our example
supply chain, this planning stage would solve in detail how and when different raw
materials should be purchased from different suppliers.

The distribution planning module considers the flow of goods between sites as well
as in the distribution network of the supply chain. Although the master planning
phase may include some seasonal stock level requirements at some points of the
supply chain, the transports of goods to customers directly or through warehouses
and distribution centers are planned in this module in greater detail (Fleischmann,
2002). Even more detailed is transport planning, where specific vehicle loading plans
based on production orders to be completed during the next day or shift are formed.
This planning phase thus requires order-level knowledge, as well as information
on customer-specific needs, including legal restrictions and delivery time windows
(Stadtler, 2005). In our example supply chain, these planning stages would show
which links between suppliers, warehouses and customers should be used, and what
the quantities of flows should be in detail between these entities.

The aforementioned planning tasks clearly indicate the importance of different time
intervals in supply chain planning, but other dimensions in the planning process
often have hierarchical dimensions as well. For example, in the product dimension,
some stock keeping units are different versions of the same product, and similar
products may belong in some common product families or groups. On the customer
side, some customers operate in different countries, which may in turn be part of
different geographical regions (Miller, 2002).

In many cases, the decision maker may not be particularly interested in what is
happening to a specific product or customer, but would rather understand the
decisions in terms of product families or customer regions (Miller, 2004). As such,
an ideal decision support system should enable the user to perform model analysis
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on different hiearchical levels. Naturally, the level of detail used in the underlying
mathematical model sets the lowest possible level of analysis, but the ability to
consider the model in terms of its upper hierarchical dimensions, such as product
families or customer regions, could provide much more informative decision support
in some situations.

2.3 Linear Programming

Linear programming (LP), also called linear optimisation, is a special case of the
more general concept of mathematical programming. It is a method for achieving
the best numerical outcome in a mathematical model where all relationships are
linear. In other words, linear programming refers to techniques for the maximisation
or minimisation of a linear objective function, subject to linear equality or inequality
constraints. All linear programs can be described with the following form (Bertsimas
and Tsitsiklis, 1997):

min ¢x
st. Ax <b (1)
x>0

where x is the vector of decision variables, c is the cost coefficient vector, b is the
right-hand side vector and A is the matrix of coefficients related to the problem
constraints. In general, we assume that all parameter values A,b, ¢ are known when
the optimisation is run, and the objective is to find the vector x that minimises
the objective function ¢’x, while satisfying the constraints. Note that by "knowing'
in this context we do not mean that there must be absolute certainty what the
"correct" values for each parameter are. Rather, we mean that for a single model run,
each parameter has a certain value that does not change. The actual uncertainty
in the parameter values can be addressed by running multiple scenarios, where the
uncertain parameters are varied.

The inequalities Ax < b and x > 0 are the constraints which specify the feasible
region, the set of all possible solutions of the optimisation problem that satisfy all of
the constraints. In linear programming, this feasible region is a convex polyhedron,
a set defined as the intersection of finitely many half spaces, each defined by a linear
inequality constraint. A linear programming algorithm, such as the simplex method,
finds the point in the feasible region where the objective function has the smallest
value, if such a point exists (Bertsimas and Tsitsiklis, 1997).

Note that any maximisation problem can easily be changed to the corresponding
minimisation problem, because minimising some function f(z) is equivalent to
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maximising the function — f(x). That is, one needs to only multiply the objective
function by -1 to change from one to the other.

Linear programming is applicable in a vast field of problems, where quantities can take
any real values, and are only restricted by linear constraints. Linear programming has
many applications in various industries; In supply chain planning, it has been used
for example in solving planning tasks related to master planning and distribution
planning. Many powerful solution algorithms for solving linear programming have
been developed, and these can be used to solve models involving thousands of
constraints and variables in a short period of time (Stadtler, 2002b).

2.3.1 Dual variables and sensitivity analysis

Given any linear programming problem, we can associate with it another problem
called the dual linear programming problem. Each variable in the dual problem
is associated with a constraint of the original problem, and these can be seen as
penalties for violating the constraints (Bertsimas and Tsitsiklis, 1997). The dual of
linear program (1) can be formulated as

max p’b
st.prA<ch (2)
p<oO0

Where p is the vector of dual variables. In linear programming, the optimal objective
function value to the primal problem is equal to optimal objective function value of
the dual problem, if an optimal solution exists (Bertsimas and Tsitsiklis, 1997).

These optimal dual variable values are important in traditional sensitivity analysis
of linear programming models, as they can be used to determine how sensitive the
optimal solution is to small changes in model parameters. Specifically, these dual
variable values can be used to determine a range for each individual objective function
and right-hand side vector coefficient, over which the individual coefficient can vary
without having to solve the optimisation again. This information is readily available
in most commercial solvers, and can be used to analyse the effect that small individual
parameter changes would have on the optimal solution (Bradley et al., 1977).

While the appeal of this traditional sensitivity analysis is apparent as it provides exact
quantitative information on the mathematical model, its applicability in practical
model analysis setting is limited. This is because traditional sensitivity analysis
can only be used to analyse small changes in individual objective function or right-
hand side vector coefficients, or multiple smaller changes under some very limiting
conditions (Bradley et al., 1977). Especially in large linear programming models, a
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change in a single model parameter is rarely a topic of interest. Furthermore, such
sensitivity analysis does not allow for all types of constraint changes, namely those
related to constraint coefficients. Also, many practically relevant changes to the
model alter the model structure: For example, adding a new customer or warehouse
in the supply chain usually entails the addition of multiple decision variables and
constraints. In such cases, traditional sensitivity analysis offers little assistance.

2.4 Model analysis systems

A model created by mathematical programming can be embedded in a model-driven
Decision Support System (DSS). By definition, such systems support managers
in their decision-making efforts by applying one or several quantitative models to
the problem at hand. In addition, model-driven DSS allow users to manipulate
model parameters, thus enabling sensitivity analysis of the model outputs as well
as more ad hoc "what if' - analyses. Furthermore, DSS can be differentiated from
more specific decision analytic studies by two characteristics: Firstly, they make the
quantitative model easily accessible to non-technical specialists trough user interfaces,
and secondly, they are intended for repeated use in similar decision situations (Power
and Sharda, 2007).

One of the purposes of a DSS is to help the decision maker develop a better un-
derstanding of the complex system represented by the mathematical model. There
are multiple potential sources of increasing this understanding in the mathematical
programming process. Perhaps the most direct source is the actual model formulation
phase: During model formulation, the decision makers may modify their mental model
based on the discoveries of new relationships between key factors, counterexamples
of assumed relationships or fallacies in deductive logic (Steiger, 1998).

Another source is the deductive analysis of a single model instance, considering
all of the knowledge inherent in the model structure, as well as the solution. For
instance, the sensitivity analysis of an LP model solution can help the decision maker
understand which parameters are more important than others, and what kind of
an effect some small parameter change would have on the solution. An additional
source of understanding is the inductive analysis of multiple solved model instances.
An example of this would be to solve several model instances while varying some
parameters over appropriate ranges, after which these instances can be analysed to
assess the relative importance of the individual parameters and their interactions
(Steiger, 1998).

The previously mentioned sources of understanding motivate to examine the potential
of model analysis systems. Model analysis systems are systems built to enhance the
decision maker’s understanding of the business environment represented by the model,
by helping them interpret and manipulate the output of model solvers and analyse
existing knowledge, or extract new knowledge from the business environment the
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system represents. Model analysis systems can be roughly divided into two classes
based on their primary type of processing logic: These classes are deductive analysis
systems (DMASs) and inductive analysis systems (IMASs). These systems are
distuingished from each other by both their required input as well as the processing
logic employed. Whereas DMASs operate on singular model instances and apply
existing model-specific knowledge, IMASs operate on many solved instances and
apply inductive analysis to generate new knowledge (Steiger, 1998).

DMAS are systems that apply paradigm- or model-specific knowledge to a specific
model instance, addressing questions such as "Why is this the solution?", or "why is
this instance infeasible?". Perhaps the most prominent example of a DMAS to this
date is called ANALYZE, described in detail by Greenberg (1983). It is a computer-
assisted analysis system for linear programming models, providing interactive query
of the LP matrix and solution values, as well as other functionalities, including model
simplification and network path analysis.

IMASs are systems that operate on a set of solved model instances, where some
parameter values are varied and the goal is to find the "key parameters" which have
the greatest impact on the model solution. One simple form of IMAS is applying
regression analysis to multiple model runs, in order to determine the impact of
changes in model input parameters to the output. In other words, the goal is to build
a metamodel which would help the decision maker build insights into the business
environment being modeled (Steiger and Sharda, 1996).

One related approach for generating insights from mathematical models is the use of
simplified auxiliary models in conjunction with the original model (Geoffrion, 1976).
Geoffrion suggests that these auxiliary models should be both intuitively plausible,
and solvable in closed form or by simple arithmetic. Ideally, the solution behavior
of the auxiliary model is far more transparent than that of the full model, yet it
should yield fairly good predictions of the general solution characteristics of the full
model.
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3 Scenario analysis for supply chain optimisation
models

When supply chain optimisation is used to support decision making, the decision
makers typically want to understand the model results and further see how the
results change in different scenarios. In this chapter, we outline the principles of
scenario analysis for supply chain optimisation. First, some characterisations for
typical changes between scenarios are given. Then, a framework for some common
analysis questions is presented along with considerations for how these questions can
be answered.

3.1 Characterisation of model changes

When comparing various scenarios of an optimisation model, the possible changes
can be divided into two categories: parameter-based and structure-based changes.
Parameter-based changes are those where the value(s) of some input parameter(s)
of the model is(are) changed. In linear programming, such parametric changes are
related to either i) the cost coefficients of the problem, represented by the cost vector
c, ii) the constraint limits, represented by the right-hand side vector b, iii) the
coefficients of the constraint matrix A, or some combination of the above. However,
the structure of the model remains unchanged. Structure-based changes are those
where the model structure itself is modified in some way. In linear programming,
these are related to the addition or deletion of constraints, decision variables, or both
at the same time. Note that adding new constraints adds new rows to the constraint
matrix and the right-hand side vector, whereas adding new decision variables adds
new rows to the decision variable vector, new columns to the constraint matrix and
new entries to the cost vector. This obviously involves adding the corresponding
parameters to the model as well.

It is important to note that the decision maker does not typically understand
how their business questions translate into the mathematical model: The decision
maker considers the problem through the physical entities of the supply chain. It
is the responsibility of the analyst to ensure that the appropriate changes in model
parameters or structure are made to reflect the changes that the business case
represents. Depending on the business question and model itself, this translation
process may range in difficulty from very simple to prohibitively complex.

Ideally, the model is structured in a way that allows easy manipulation of components
that are likely to be of interest to the decision maker. For example, a change in the
currency exchange rate may affect multiple separate entities in the supply chain, from
raw material procurement to customer sales. Instead of having to change each related
cost coefficient separately, the exchange rate could be included as a parameter, which
automatically changes all related model parameters accordingly. Another example
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would be to allow removing a raw material supplier from the supply chain, such that
all directly related decision variables and constraints are removed.

3.2 Frequent analysis questions

We next describe some of the common business questions related to supply chain
optimisation. These questions were collected from discussions with multiple opti-
misation and subject matter experts at the case company, including people from
different subdivisions and backgrounds. These individuals work with different kinds
of supply chains, ranging from wood sourcing to paper production. Our objective
is to present the collected questions in the most general setting possible. However,
it should be acknowledged that while these questions were identified as relevant
for multiple supply chains, the case company is still somewhat limited to a specific
industry. Thus, there is a possibility of bias towards the problems related to the
specific company and its industry. We believe that these questions may be found in
other types of supply chains as well, but their applicability to other settings is not
evaluated here.

Table 1 shows example questions that are divided into separate categories based on
two characteristics: We assess i) whether the question can be answered with one,
two, or multiple scenarios, and ii) whether the question is easy or difficult to answer,
based on the analysts’ qualitative assessment.

Table 1: Common supply chain analysis related questions

Scenarios | Difficulty | Example questions

Single Simple "Who are my top customers by sales?"
"What is produced at facility X17"

Single Complex | "Who are common suppliers for products P1,P2 P37’
"Which raw materials are most critical in sales?"

Two Simple "What’s the cost difference between the scenarios?"
"Which products are produced less in scenario 27"
Two Complex | "How does the cost change affect customer sales?"

"How production changes if material R1 is unavailable?'

Multiple | Simple "Which scenario is the most/ least profitable?"
"Which products are produced most across scenarios?"

Multiple | Complex | "What is the order of production bottlenecks?"
"What are common patterns across scenarios?"

Based on our discussion with subject matter and optimisation experts, as well as
examining the common questions, we were able to distinguish some key elements
that are present throughout these questions. Regardless of the amount of scenarios
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and difficulty of the question, they are all linked to one or both of the following
model-related factors:

e The optimal values or cost impacts of individual decisions and constraints
e The relationships between individual decisions and constraints

The first factor is quite clear when we consider that the primary objective in most
supply-chain related optimisation models is to minimise costs or maximise profits.
Here, the cost impact refers to the total effect a decision has on the objective function,
taking into account both the value and the unit cost related to the decision. These
allow us to assess the relative importance of individual decisions in terms of costs
associated with them. However, for constraints and potentially some decisions, there
may not be explicit costs involved. Furthermore, the optimal values of decisions are
often important in their own right, as they provide the actual decision recommenda-
tions that interest the decision maker. Thus, both the values and cost impacts of
the individual model components are often at the center of model analysis related
questions, whether we are studying an individual model solution, or comparing the
differences between two model scenarios.

While the individual decisions and constraints can be interesting to study, the
relationships between different model decisions and constraints are often equally
important. This is because most individual decisions in the model are made in
conjunction with other decisions, depending on the constraints that bind them
together. For example, a decision to produce some quantity of a product P1 in
facility X1 requires some capacity, which means there is less capacity available to
produce other products, which are governed by separate decisions in the model.
Many of the more complicated questions related to supply chains are of this type:
The decision maker wants to understand not only what the individual decision
recommendations are, but how they are related to each other.

In the following, we provide an overview of the different question categories, and
explain how these are related to the aforementioned model factors. While not an
exhaustive list by any means, it provides motivation for why these factors can be
considered as the focal points for many analysis purposes. How exactly our developed
IMPS utilizes these factors is discussed in further detail in Sections 4.2 and 4.4.

Single scenario, Simple questions

This category includes questions that can be answered directly from the model
solution, without paying attention to the model structure or relationships between
different entities. The ability to sort and filter the results based on desired attributes
is sufficient. Examples include obtaining a list of top customers by sales, or a list of
products produced at facility X1. Considering our example supply chain in Figure
2, the first example would require us to find the total cost impacts of all decisions
related to customer sales, then group and sort these cost impacts by customer. For
the second example, we would have to find all production quantity values of decisions
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related to facility X1. In both cases, only individual decision variable cost impacts
and values were required to answer the question.

Single scenario, Complex questions

This category contains questions related to a single model run, but the answer cannot
be found without considering the model structure and the relationships between
decision variables. The main difference with the previous category is that individual
cost impacts or values are no longer enough, as we now need the ability to relate
different decisions together. An example would be to find the common raw material
suppliers for a list products such as P1, P2 and P3, or finding the raw materials that
are involved in the most customer sales. Considering our example supply chain in
Figure 2, the first example would require us to find all possible paths from different
production facilities, where procuts P1, P2 and P3 are being produced at some
non-zero quantity, to all suppliers that supply the raw materials required for these
products. The second example would require us find paths from customer sales
decisions to the different raw material purchase decisions from suppliers, then group
and sort the total cost impacts of the customer sales by each individual raw material.
Thus, not only the cost impacts and values of individual decisions are required, but
also the connections between them.

Two scenarios, Simple questions

Simple questions related to comparing two scenarios are queries such as "What is the
overall cost difference between these scenarios?" which can be answered by comparing
the optimal values of the objective function, or "Which products are produced less in
scenario 2", which can be determined by comparing individual production quantity
decisions between the scenarios. Similar to the single-scenario case, answering these
questions is straightforward, requiring only the ability to aggregate the results as
desired. In our example supply chain in Figure 2, the first example would require
to sum together the total cost impacts of all decisions made in the supply chain:
These include raw material costs from suppliers, production costs, transportation
costs and sales profits. After this is done for both model scenarios, these sums can be
subtracted to obtain a total cost difference between them. The second example would
require finding the total values of production quantity decisions made at different
production facilities, grouping them by each individual product, and subtracting these
scenario-specific values. While perhaps slightly more complex than the individual
scenario case, basically the cost impacts and values are again enough to answer these
types of questions.

Two scenarios, Complex questions

Many of the simple questions regarding scenario comparison can be considered at
a more detailed level. For example, instead of simply calculating the overall cost
difference, the decision maker may be interested in the primary sources that cause
this difference: maybe the overall logistics costs have increased, but is it because
individual routes from facility X1 to customers C1, C2 and C3 have become more
expensive, or due to small increase in costs everywhere? Note that the change between
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the two comparable scenarios might not have anything to do with logistics costs but
rather there could have been a change in customer demands, which eventually leads
to increased logistics volumes somewhere. The decision maker may be interested
in understanding how certain changes are related to each other: For instance, this
may involve questions such as "How does a change in currency rates affect customer
sales?", or "How does production change if capacity is increased at facility X17". In
the example supply chain shown in Figure 2, for the first example we would have to
identify all the affected customers, for whom there is a difference in sales volumes, in
other words the optimal values of the various sales decisions, between the scenarios.
Then, the analyst might try to link these changes to the different warehouses, in
order to observe how the production flows change throughout the supply chain, or to
different production facilities to examine how the product mix has changed as a result
of the changes in costs. The second example could be explored by first checking what
the differences in production quantity decisions related to facility X1 are between the
scenarios, and then try to find connections from these to customer sales, as well as
production quantity decisions at other production facilities. Answering these types
of questions exhaustively is very difficult without considering the entire supply chain,
as there is generally no pattern that is guaranteed to occur.

However, there is one special occurrence between two scenarios that was found
prevalent in the case company: These are cases where the optimal value of some
decision in one scenario seems to have an approximately opposite effect to some
other decision in the other scenario. For example, considering the example supply
chain in Figure 2, it could be that the production quantity of product P1 increases at
facility X1, while at the same time the production quantity of product P1 decreases
at facility X2 by a similar amount. Another example could be that the transportation
of product P1 to some customer C1 is switched from warehouse W1 to warehouse
W2. These effects may happen due to various reasons, either through a direct or an
indirect change in the factors that affect the optimal value of the related decision
variables.

Furthermore, these substitution effects can be found at varying hierarchical levels:
If substitution seems to happen at a higher level of hierarchy, then it is likely to
be a sum of smaller substitutions that happen on the lower levels. As such, these
substitutions are often sought first at higher hierarchy levels, since these can be used
to explain the changes at lower levels. In terms of decision support, these may provide
more valuable information to the decision maker. As an example, the fact that the
production of an entire product group is switched from site to another carries more
weight than stating that these products individually are produced at different sites.
These substitution effects were found pervasive enough that we created a special
algorithm for finding these between scenarios. This is explained in further detail in
Section 4.5.

Multiple scenarios, simple questions
When comparing multiple scenarios, the simple questions a decision maker may
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be interested in are such as "How do all these scenarios compare in terms of total
profits?" or "What are the most commonly produced products?". In our example
supply chain in Figure 2, for the first example we would simply sum over all total
cost impacts for each individual scenario, after which they could be sorted in any
desired order. For the second example, we would collect the production quantities
for each individual product across all production facilities and scenarios, after which
we could sort the products by total volume. These questions follow a common theme
with other simple cases: As long as there is no need to consider how the supply chain
entities (or model elements) are related to each other, there is not much difficulty
involved, even if there are multiple scenarios to consider.

Multiple scenarios, complex questions

This is the most general category of questions, where multiple scenarios are compared
in ways that require deeper knowledge than the overall results, and some method
of linking together decisions between multiple scenarios. As an example, a decision
maker could be interested in the order of production bottlenecks that arise when
demand is increased. Answering such a question requires solving the optimisation
problem multiple times with varying customer demands, as well as information that
links these demands to production entities. For our example supply chain in Figure 2,
we would then observe how the different production facilities operate with increasing
customer demand. Another possibly interesting query would be to find the potential
common patterns between all considered scenarios: Such patterns would suggest that
the decisions involved are robust and should be made regardless of the considered
uncertainties. For the example supply chain, we might find for example that facility
X1 always produces product P1, even if the costs or the structure of the supply chain
changes. However, this category of questions is very difficult to answer, even more
so than two-scenario comparisons, and they will not be explored in more detail in
this Thesis.

3.3 Questions as driver for scenario analysis

The mathematical programming process can be viewed as a series of transitions from
the real world into the model world: Often, the process starts after some need for
change is recognised in the real world (Keisler and Noonan, 2012). In a supply chain
optimisation context, this starting step may be the decision maker recognising the
need for decision support in managing the supply chain more efficiently. The initial
transition from the real world to the model world then happens as the mathematical
model is formulated by the analyst.

After the mathematical model has been formulated, it can be used to perform various
analyses that interest the decision maker. Scenario analysis can thus be seen as
the process of connecting the decision maker’s interests into the model world, and
translating the corresponding model results or changes back into the real world.
This view of scenario analysis emphasises that parsing the model results is only



27

part of the process, and that it is equally important for the analyst to understand
what the decision maker’s key interests are. The main purpose of gathering business
questions from decision makers is to facilitate the scenario analysis process by
identifying the relevant matters the analyst should focus on. Moreover, answering
these business questions with the mathematical model is by itself a method of
providing decision support, thus they are often related to the primary reason for the
model’s existence.

Furthermore, categorising the business questions can help the analyst obtain a
broader understanding of the decision maker’s key interests, and what the practical
requirements for answering these questions are. For example, in terms of scenarios,
are most questions related to a single scenario, or is there a clear need for additional
model runs? Additionally, understanding the general difficulty of the questions
that interest the decision maker can help the analyst in deciding the best practical
approach for scenario analysis: For instance, if the majority of the business questions
are simple, there is probably no need for complicated analysis tools, and simple
reporting capabilities will suffice.
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4 Methodology for building Intelligent Mathemat-
ical Progamming System

In this section, we describe different technical approaches to scenario analysis in use of
optimisation models, and their benefits and drawbacks. Our focus is not on evaluating
commercial optimisation packages (such as IBM ILOG Decision studio, AMPL or
AIMMS), but instead focus on general approaches that are based on analysing the
information about the optimisation model structure and the solution. Typically,
these kinds of systems are based on spreadsheet technologies (e.g., Microsoft’s Excel)
or programmable environments (e.g., Python, R).

4.1 Approaches to building IMPS

Simple approach

In a simple IMPS, the amount of data saved from the model is minimal and it is
used only for simple visual representations and comparisons. An example of this
would be to save the model solutions to a spreadsheet, which could then be used
to assess simple queries, such as listing the largest changes, or plotting the results
based on some preset function. The most significant benefit of such an approach
is that it usually requires less model-specific knowledge than its more advanced
counterparts. Spreadsheet software have achieved widespread popularity due to their
high availability and ease of use, and they are widely used also for model analysis
purposes (Grossman, 2008). However, the functionality offered by the built-in tools
of spreadsheets is often limited, and writing more complicated functions can become
tedious. Furthermore, a supply chain model can have millions of decision variables,
which alone can make the use of spreadsheets very difficult (LeBlanc and Galbreth,
2007).

Results oriented approach

A more advanced approach is to use a relational database system to store and manage
the information obtained from various scenarios. The various entities related to the
problem can be saved as separate data tables, and relationships between different
entities can be described with additional tables. This entire database can then be
processed in a business analytics platform, such as Microsoft’s PowerBI or Tableau
Software’s Tableau, which allow the user to construct different types of dashboards
and views into the model solutions. The main advantage of this approach over
the simple one is that the additional data and the relationships between entities of
the supply chain, described by relational tables, allow for more advanced queries
into the model solutions. In addition, the hierarchical structure of the system can
be represented as additional attributes or additional tables, thus preserving the
hierarchical structure and allowing the user to view results on any desired level of
aggregation.
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A typical example of this approach would be to save each of the entities of the supply
chain, such as suppliers, products and customers, as a separate table. In addition
to providing an identification code for each entity, these tables may contain the
hierarchical levels as additional attributes. Then, the optimal solution can be stored
into the database as separate tables for each type of decision variable, along with
any relevant attributes.

One drawback of this approach is that the user must have model-specific knowledge
and experience to find the desired connections in the data. For example, while the
data related to the model structure is saved, the structure of the model itself is not
preserved. As a result, it becomes difficult if not impossible to determine how two
decision variable values, such as production quantities of products P1 and P2, are
dependent on each other by some common constraint, such as a production capacity
constraint.

Model oriented approach

As previously mentioned, the dependencies between variables are obscured in the
results oriented approach: For example, we know the optimum value of a decision
variable, as well as its impact on the objective function value. However, based on this
information alone, we cannot say which other decision variables are related to this
decision variable, and how these relate to the discovery of the optimal solution.

Suppose that in the optimal solution, the value of the decision variable related to the
production quantity of product P1 is non-zero. This alone can raise several questions
that may be interesting to the decision maker: For instance, why is this exact amount
produced? Is there a capacity constraint that is limiting the production, and if
so, then what other products are competing for the limited capacity? Then, how
does this product flow through the supply chain - which warehouses is it sent to,
and which customers’ demand is satisfied by this decision? In order to answer such
questions, one clearly needs some form of access into the relationships of the supply
chain entities.

This lack of information related to the relationships between model components in the
previous approach motivates the form of IMPS developed in this Thesis. We call this
the model oriented approach. Here, the main difference compared to the previous
approach is that the structure of the original model is preserved, which enables
queries that are related to the model structure. Whereas the previous approach
only considers the optimal decision variable values, in this approach the constraints
related to the decision variables, as well as the links between them, are processed
and saved as part of the solution data.

In the following section, we present the structure of the IMPS we have developed.
We first describe the basic idea behind our model structure based approach, after
which we provide a schematic view of the IMPS and a brief description of the used
technologies and the IMPS’s functionalities.
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4.2 IMPS description
4.2.1 Linear program in graph form

Consider again the general linear program

min ¢’ x

st. Ax<b
x>0

Each row of the LP constraint matrix A corresponds to one constraint in the opti-
misation problem, whereas each column corresponds to one decision variable. The
non-zero coefficients in row A; of the matrix present which decision variables are
directly linked to this constraint, whereas the non-zero coefficients in a column a;
correspond to links from this decision variable to different constraints. The afore-
mentioned ideas indicate that the structure of a linear programming problem may
be given in the form of a graph, which we define as follows (Diestel, 2016).

Definition 4.1. An undirected graph is an ordered pair G = (V, E), where V is
a set whose elements are called nodes, and FE is a set of two-sets of nodes, whose
elements are called edges.

Depending on the context, the edges of the graph may link two nodes symmetrically,
in which case the graph is called undirected. The edges may also link two nodes
asymmetrically, in which case each edge has a distinct start and end node, and the
graph is called directed. These directed edges can be given as a set of ordered pairs:
For example, an edge from node u to node v would be given as the pair (u,v). The
formal definition for a directed graph is as follows.

Definition 4.2. A directed graph is an ordered pair G = (V, E), comprising of a
set of nodes V', and FE is a set of ordered pairs of distinct nodes, whose elements are
called directed edges.

Considering also the aforementioned fact that in an LP model, decision variables are
directly linked only to constraints and vice versa, we note that the nodes form two
disjoint sets U and V', corresponding to the rows and columns of the LP constraint
matrix A, respectively. Each edge in the graph links one decision variable and
constraint, or a node in U to a node in V. Graphs that satisfy such a condition are
called bipartite graphs (Diestel, 2016).

Definition 4.3. A bipartite graph is a graph G = (U, V, E') whose nodes can be
divided into two disjoint and independent sets U and V', such that every edge in the
set of edges E connects a node in U to a node in V.
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With the help of these definitions, we can now present the definition of the funda-
mental digraph of a LP problem, which was originally given by Greenberg (1983).

Definition 4.4. (Greenberg, 1983) The fundamental digraph of a LP constraint
matrix A is a bipartite, directed graph G = (U,V, E) with node sets U and V,
corresponding to the constraints and decision variables of A, respectively. The set of
edges F is defined by the non-zero elements of A, and they are directed based on the
signs of the valuesin A: Vie U,j € V: A;; <0< (i,j) € E, A;; >0< (j,i) € E.

The directions of the edges in the fundamental digraph can be explained as follows:
For each entry in the constraint matrix A, the edge is from the constraint i to the
decision variable j, if the corresponding matrix entry A;; is negative, thus the edge
is given as the pair (i, j). Likewise, the edge is from the decision variable j to the
constraint ¢, if the corresponding matrix entry A;; is positive, and the edge is given
as the pair (j,7). Note that for each constraint node, the directions of incoming edges
can be switched around by multiplying the corresponding constraint by -1. In the
case of an inequality constraint, this naturally switches the direction of inequality as
well. The problem is then no longer in the general form, but the logical structure of
the problem is not changed.

We illustrate how the fundamental digraph can be formed by using a simple example.
Consider a manufacturing company that can only produce two types of products, P1
and P2. Producing both products requires two raw materials, R1 and R2. Each unit
of P1 requires 1 unit of R1 and 3 units of R2, and each unit of P2 requires 1 unit of
R1 and 2 units of R2. The total availability of these raw materials is 5 units of R1
and 12 units of R2. Each unit of P1 can be sold for a profit of 6 per unit, and each
unit of P2 can be sold for a profit of 5 per unit. The company wants to maximise is
profit. Denoting the production quantities of the products xp; and xpy respectively,
we formulate the corresponding linear programming problem as

max 6$p1 + 5l’p2 (3>
st.xp1+xpa <5 (4)
31’P1 + 217132 S 12. (5)

This problem contains two decision variables, xp; and xps, and two constraints (4)

and (5) that limit the availability of each raw material. The corresponding constraint
11

matrix is A = 3 ol thus both decision variables are linked to both constraints, and

since all entries of A are positive, the edges are directed from the decision variables to

constraints, as described in the definition of the fundamental digraph. The resulting

digraph for this problem is shown in Figure 4.
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Figure 4: The fundamental digraph of the example problem.

4.2.2 Expanding the graph information

The fundamental digraph of the constraint matrix serves as a starting point for our
graph structure. However, this structure offers only little information outside of the
links between model components. To enable more detailed queries into a single model
solution and the comparison of different scenarios, we need additional information
related to each node. Thus, our purpose is to expand this digraph structure by
allowing each node to contain additional information by themselves, thus removing
the need to store this information somewhere else. In the following, we describe the
attributes that are saved as part of this augmented solution graph.

For decision variables, each node should store information on the following;:
1. The optimal value of the variable in the corresponding solution.
2. The cost coefficient of this variable in the objective function.
3. The cost impact of this variable to the objective function.

The need to store the optimal values is obvious, especially when comparing separate
model scenarios. However, these decision variables may have varying magnitudes
and different units. Therefore, when considering the relative importance of different
changes in decision variable values, the change in decision variable values by itself is
not always a good metric.
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Instead, the cost impact of each decision variable provides a more unified metric for
assessing how impactful each change is, since the units of all decision variables are
converted to the unit of the objective function. In linear programming, this cost
impact is simply calculated as the corresponding cost coefficient multiplied by the
decision variable value.

It may be unapparent at first glance why we would need to store information on the
cost coefficient separately. However, when comparing scenarios where some of the
cost coefficients change, explicitly determining this change can be beneficial, as this
cannot be exactly deduced from the changes in value and cost impact alone.

For constraints, each node should store information on the following:
1. The row sum of the constraint, or A;x.
2. The right-hand side (RHS) of the constraint.

The row sums of the constraints provide valuable information on how each constraint
is satisfied. Furthermore, when comparing scenarios, a change in the row sum
corresponds to a change in the flows through that constraint.

A change in the right-hand side for an inequality constraint corresponds to change
in the upper or lower bound of the constraint, e.g. the upper bound for maximum
capacity, or the lower bound for a minimum production constraint. In situations
where we want the focus of the analysis is on such changes, such information is
essential.

Consider also the edges between nodes in the fundamental digraph: They are created
solely based on the signs of elements in the constraint matrix A, and there is no
information on the exact value of the dependency between the constraints and
decision variables, which are given by the entries in the constraint matrix. To enable
comparisons between solutions where these values are changed, it makes sense to
store these values exactly as they are, instead of simply connecting the nodes based on
non-zero entries in the constraint matrix. Thus, we augment each edge in the graph
to contain the exact value of the corresponding entry in the constraint matrix.

The aforementioned attributes form what we generally refer to as the attribute vector.
Each node and edge in the graph is associated with exactly one attribute vector,
and the contents depend on whether the entity in question is a constraint node, a
decision variable node, or an edge.

Definition 4.5. The attribute vector associated with decision variable z; is
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where 27 is the optimal value of the decision variable, and ¢; is the cost vector
component associated with the decision variable z;.

Definition 4.6. The attribute vector associated with constraint y; is

b;
T [Zj Ay ] ’

where 0; is the right-hand side vector component associated with constraint y;, and
A,;j is jth column (decision variable) of ith row (constraint) of the constraint matrix A.

Definition 4.7. The attribute (scalar) associated with edges is s = A;;, where
the edge is (y;, z;) if A;; <0 and (z;,y;) if A;; >0

For the aforementioned attribute vectors, we only need the decision variable values
of the optimal solution, and the right-hand side and cost vectors b and c, in addition
to the constraint matrix A. However, to further enrich our ability to find specific
patterns and relationships in the model, it is useful to map the decision variables and
constraints to the real entities of the supply chain. The specifics obviously depend on
the particular problem, but we attempt to give some general guidelines here based
on our experiences.

Each node should have a unique identification code that links it to the specific
decision variable or constraint. This is necessary, since otherwise we would be unable
to match the same nodes between different scenarios. This clearly requires that
the identification scheme should also be consistent across scenarios. One should be
especially careful when using automatic numbering, since these may change after
the addition or deletion of a decision variable or constraint. The MPS file format
supports variable naming, so this is not an issue in practice.

Furthermore, a classification based on different node types is useful. In a supply
chain context, these often include information on whether the node is related to
e.g. the acquisition of raw materials, production of goods, or satisfying customer
demand. The purpose of including such information is to incorporate the logical
structure of the problem, enabling the IMPS to look for more specific patterns the
user might be interested in. The node types could coincide with the mathematical
model formulation, so that each different type of decision variable and constraint is
included as the type of the respective node.

In addition, nodes should have more specific information on their distinct dimensions,
based on the node type. For each node in the graph, we define the dimensions as
follows.

Definition 4.8. The dimensions of node n are defined as a function D,,: K,, — L,
where K, is the set of keys for node n, and L,, is the set of values for node n.
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We assume that the node keys match between all nodes of equal type, which means
that when comparing the dimensions of two nodes of the same type, we can use
the set of keys from either of these nodes. These dimensions should also be quite
clear from the mathematical model, as these coincide with the properties each de-
cision variable and constraint has. For example, consider a decision variable node
ny for the production quantity of some product P1, in some production facility
Al, at some time period T'1. Then, the keys of D,,, are the names of these dimen-
sions, such as productID, facilitylD, and periodID, with the corresponding values:
D, (productI D) = P1, D, (facilityl D) = A1, D, (periodI D) = T'1. For another
production decision variable node ns, the production quantity of the same product
at the same facility, but at time period T2, the corresponding dimensions would be
D, (product] D) = P1, Dy, (facilityI D) = Al, D,,,(periodI D) = T2.

For constraint nodes, we may include the type of the constraint as an additional
key-value pair in its dimensions: In other words, each constraint node’s dimensions
can include a special key, with a corresponding value depending the type of the
constraint: ’<’ (L), ’=" (E), or >’ (G). This can be useful in situations where we
want to filter results based on binding inequality constraints, for instance.

As discussed in Section 2.2, supply chains often include multiple hierarchies. To
enable queries where some of these hierarchies are the focal point of interest, the
nodes should also carry information on the hierarchies relevant to the node. For
example, a node related to a product would contain information on the related
product family, in addition to the specific product. This approach is inefficient in
terms of space usage, since this hierarchical information is duplicated for each node
that share some of their attributes. However, if we want to maintain the graph as an
exact representation of the model structure, this approach is necessary. These can be
then included as additional key-value pairs into the corresponding node dimensions
D,.

Finally, it may be beneficial to distinguish between two separate types of entities in
the optimisation model: i) entities that can be linked to physical entities of the supply
chain, such as decision variables related to production, or material flow constraints,
and ii) virtual entities that are included in the problem formulation, but do not have
a physical interpretation. Entities such as minimum production levels or penalties
whose goal is to guide the solution in some direction are part of this category.

We provide an example to illustrate how the aforementioned information would
be augmented into the fundamental digraph. Consider again the simple linear
programming problem (3)-(5), and its fundamental digraph. Obtaining the optimal
solution results in decision variable values xp, = 2, 2, = 3. The cost coefficients
of these decision variables are obtained directly from the first row, thus we have
cp1 = 6,cpy = 5. The cost impacts of the decision variables are easily calculated as
Tpicpy = 2 X 6 =12, and zhycps = 3 x 5 = 15. For the constraints (4) and (5), we
observe that both of them are less-than constraints, and their right-hand sides are 5
and 12, respectively. Their row sums can be calculated as x5, +2p, =243 =5, and
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3xpy + 20py = 2 X 3+ 3 x 2 =12. Thus both constraints are binding at the optimal
solution. From the constraint matrix A, we obtain the following attributes for the
edges between nodes: s(xp1, (4)) = 1,s(zp1, (5)) = 3,s(xpa, (4)) = 1, s(zp2, (5)) =
2.

This example problem basically contains nodes of two types: Both decisions could be
classified as decisions related to production quantities, and both constraints could be
classified as constraints related to raw material availability. For the dimensions, the
production quantity decisions could have a key productID that maps to the product
of the corresponding node: D, ., (productI D) = P1, D,.,,(product] D) = P2. For the
raw material constraints, the dimensions could have a key RMID that maps to the raw
material of the corresponding node: Dy(RMID) = R1, Di5y(RMID) = R2.

The augmented digraph for the example problem is shown in Figure 5. For each edge
and node, the corresponding numeric attribute vector is illustrated as a rectangle,
and the node dimensions as key-value pairs inside the node. Note that the structure
of the original graph has not changed, but it now includes much more information
that can be used in analysing the model solution.

Xp2
productlD: P2

XpP1
productlD: P1

oo

(5)
TYPE: L
RMID: R2

(4)
TYPE: L
RMID: R1

Figure 5: The augmented digraph of the example problem.

4.2.3 Schematic view and file structure

The schematic view of the IMPS is shown in Figure 6. The necessary inputs for the
IMPS consist of two separate files: the model file (.MPS) and solution file (.SOL),
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Figure 6: Schematic view of the IMPS

which will be described in more detail later. Each model run generates a pair of these
files, and most commercial solvers allow the user to save these files separately. In
addition, we may include auxiliary files which contain additional information related
to the problem. The currently supported auxiliary files are the following:

i) a metafile, a text file containing a list of all decision variable and constraint
types, along with the dimensions related to each of these types. This metafile
is based on the same naming convention that is used with the variables and
constraints of the problem, so different parts of the variable or constraint name
can be directly matched with the rows from the metafile.

ii) a hierarchical mapping of some dimensions to upper hierarchical levels. This
file specifies the dimensions with hierarchical levels, listing each value at the
lowest level with the related upper levels. For example, for each unique product
identification code, we may identify the related product family.

iii) a list of virtual constraints. In some cases, the model may include some virtual
constraints or penalties that do not represent any physical flow or material
constraint in the supply chain, but instead are meant to guide the solution in
some direction. Specifying these separately allows the user to either ignore or
specifically look for relationships related to such constraints.

The technologies used in the IMPS include Python, Gephi and Neo4j. All of the
technologies applied in the IMPS are free to use and widely accessible, which makes
further development easy. Python was chosen as the main programming language of
the IMPS, due to the familiarity of the language at the case company, as well as its
powerful data and graph manipulation libraries. Gephi is an open-source software
package used for graph and network analysis. It includes a 3D rendering engine that
allows the user to display and explore large graphs in real time. Furthermore, the
user has broad access to the data inside the graph, and the program enables multiple
methods of filtering, manipulating and clustering the graph. As such, it provides a
powerful tool for the visual analysis of graphs (Bastian et al., 2009).

Neo4j is a graph database management system developed by Neo4j, Inc. Compared to
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traditional relational database management systems, the foundational element behind
this system is a graph that represents relationships in the data. In Neo4j, all entities
are stored as nodes, edges, or attributes. Each node and edge can have multiple
attributes, and they can be labelled with different names to narrow graph searches
to desired labels. The representation of optimisation model runs as graphs directly
translates into a graph database of this form: each decision variable and constraint
is a node in the graph database, with the attributes and labels corresponding to its
type. Relationships between nodes are the same as the connections between decision
variables and constraints.

4.2.4 MPS Parser

MPS (Mathematical Programming System) is a file format for presenting LP and
MILP problems. The format is column-oriented, meaning that the structure of the
file is based on the decision variables, as opposed to row equations. Furthermore,
all model components receive names, which can be used advantageously in the post-
processing steps as we describe below. The format is compatible with essentially
all commercial LP solvers, which is why it was chosen as the standard input of our
IMPS. To convert the MPS file into a feasible data structure, an MPS parser is built.
We briefly describe how our MPS parser functions through the various fields of the
MPS file.

The MPS file starts with a NAME record, which our MPS parser skips since this is
arbitrary and has no significance in model structure. Then, the parser reads through
the following ROWS section, corresponding to each constraint in the model, saving
each row name as a new key in a hash table. The type of the constraint, E for
equality (=) rows, L for less-than (<) rows, and G for greater-than (>) rows, is saved
as an attribute. Note that the objective function is specified as a special row with
name 'OBJ’ of special non-constraining type N. Then, the following COLUMNS
section contains the non-zero coefficients of the constraint matrix. Here, the parser
checks each entry, and saves the column-coefficient pair as a key-value pair under the
corresponding row key. Next, the RHS section contains the right-hand sides of the
constraints. The parser saves these as attributes under the corresponding row key.
Missing entries are assumed to have a right-hand side of zero. The optional sections
of BOUNDS and RANGES are not considered in the current implementation, since
they are only specific forms of constraints that could be described in the COLUMNS
section as well. As a final result, our parser results in a hash table- type data structure
with keys corresponding to the rows of the model, and columns related each row form
an inner hash table of key-value pairs of column names and coefficients, along with
the other row-related attributes. This is similar to an adjacency list representation
of the graph, which is efficient when the underlying graph is sparse.

Note that the MPS format we have used is an extended format, which allows for
variable and constraint names longer than 8 characters, the maximum limit in the
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traditional MPS format. This format allows the use of whitespace characters as
field limiters, but the names used cannot contain whitespaces. Furthermore, the
naming convention of variables and constraints we currently use is based on the
format automatically generated by some commercial solvers, e.g. Gurobi. Here, the
variable or constraint name starts with the type, followed by square brackets that
contain comma-separated values for each related attribute. The pseudocode for this
algorithm is given in appendix A.

4.3 Constructing individual graphs

After obtaining the parsed MPS (PMPS) file, the graph construction is straightfor-
ward. The only additional information necessary to create an augmented solution
graph is the solution (.sol) file, containing the optimal decision variable values for
the specific model run. Assuming that the decision variable names are consistent
with the ones specified in the MPS file, we simply look up the optimum value for
each decision variable from the solution file when creating the corresponding node.
These can then be used to calculate the cost impacts of each decision variable, as
well as the row sum of each constraint. Finally, if any auxiliary data is included,
these files are parsed and the relevant attributes are added to each node.

As a final result, we obtain a graph data structure in Python that can either be
transferred into Gephi for visualisation, or into a graph database from which we can
query any model-related information that is relevant to the business questions of the
decision maker.

The pseudocode for the graph construction algorithm is given in appendix B. In the
algorithm, the word 'row’ refers to the set of key-value pairs indentified by a row
key, and a specific attribute 'val’ in this row is referred to as row[val]’. Thus, for
columns, ’col’ refers to the column name, while row[col]” refers to the multiplier of
the decision variable ’col’ in the constraint 'row’. Similarly, we refer to the optimal
decision variable values and cost coefficients by referring the respective mappings
by the column name. Notice that the row with key 'OBJ’, identifying the cost
coefficients of decision variables, is treated separately from the other rows.

4.4 The comparison of graphs

Given two augmented digraphs for the same model, G and H, we then wish to
compute their difference to produce a comparison graph. We denote this new graph
as C' = G — H. In this section we describe how this operation is done. It is important
to note here that there may be alternative methods for constructing such a graph,
but this version has proved to be reasonable for our purposes.
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The main idea behind the construction of the comparison graph is performing a
node-by-node comparison of the graphs. This is done by subtracting the attribute
vector of each node in H from the corresponding node’s attribute vector in GG. For
example, consider two nodes ng, ny, which are the corresponding nodes from graphs
G and H, respectively. Then, the corresponding node in the comparison graph,
denoted n¢, is going to have the attribute vector:

Sng = Sng — Sny (6)
The comparison graph is then constructed based on the difference in each decision
variable’s attribute vector. Specifically, if the optimum value or the cost impact of
a decision variable has changed between scenarios, it is included as a node in the
comparison graph. It is important to consider these changes simultaneously, since
there may be cases where the change can only be seen in one of these elements. We

motivate this further by considering several examples.

For instance, some decision variables may not carry explicit costs by themselves:
Consider a supply chain case where we have separate decision variables for the
purchasing of raw materials and the consumption of these raw materials. Naturally,
the cost incurred by purchasing some raw material should only be accounted for
once, therefore the decision variables that control the consumption of these materials
are zero cost. If we were to consider only the cost changes between the scenarios, we
would only see that some raw material was purchased more or less, and not how this
affects its consumption.

Likewise, some decision variables may have the same optimum value in the scenarios,
even though the cost impact of these decision has changed. Consider again a supply
chain example, where the margin profit for selling some product has changed between
scenarios. In such a situation, it may be that the optimum decision is still to sell the
same amount of that product as before. Thus, if we were only checking the changes
in volume, we might miss a significant part of the change in the objective function
value.

Note that there is also a potential case where the only difference in the attribute
vector is in the cost coefficient. However, this is only possible if the optimal value of
the decision variable is zero in both scenarios. This implies that the decision is not
taken in either of the considered scenarios, thus it can be considered irrelevant in
terms of scenario differences.

It is worth mentioning that comparing these total cost impacts may be somewhat
unreasonable in cases where the cost coefficient has also changed. For example, con-
sider a case where the marginal profit obtained by selling some product is "worsened"
by some change between scenarios. As a result, the optimum solution may be to
either reduce or completely stop selling this specific product. Then, this decision by
itself has a negative cost impact, since less profits are obtained due to this decision.
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However, the cost impact obtained simply by comparing the profits obtained by
selling this product in different scenarios are misleading, because it does not take into
account the fact that if we were to continue selling this product, our profits would
have also been less than previously. Thus, a fair comparison would be to consider
the loss based on the new cost parameter too, not just the old one.

The decision variable nodes, where neither the cost impact nor optimum value has
changed, are not included in the comparison graph. This includes both cases where
optimum variable values are zero and non-zero, and there is no distinction being
made between these cases. If the optimum value of a decision variable stays the
same, and its cost impact remains the same as well, then we can safely ignore it.
This is because such decisions clearly have no impact on the difference between the
model scenarios, which are the primary reason for studying the comparison graph
in the first place. In practice, we set some small tolerance value, and consider all
absolute changes less than this as equivalent. This tolerance allows us to ignore very
small changes that are either rounding differences, or otherwise have a negligible
impact on the solution difference.

In addition to the relevant decision variable nodes, the comparison graph includes all
incoming and outgoing edges from these nodes, as well as the constraint nodes at the
other end point of each edge. This means that all constraints that are directly affecting
any relevant decision variable are included in the comparison graph. Note that similar
to irrelevant decision variables, there may be constraints that are irrelevant in terms
of scenario difference: For instance, there may be constraints that are linked only to
these irrelevant decision variables, thus they can be ignored.

There are a few special cases worth discussing. First, to enable the addition or
deletion of decision variables and constraints between scenarios, we must be able to
include nodes that are only part of one model scenario. Our approach with such
nodes is as follows: For decision variable nodes, we set the missing attribute vector
to the zero vector 0. In other words, if the decision variable node ng is only in G
but not in H, we set s,,,, = 0, and similarly for decision variables only in H but not
in G, we set s,, = 0, then compute the difference in attribute vectors as described
in equation 6. As a result, all decision variable nodes that are only part of one
scenario are included in the comparison graph, if the decision variable has a non-zero
value, cost impact or both. For constraint nodes, we can use the same approach for
calculating the difference in the attribute vector, but only include the constraint
nodes that share an edge with a relevant decision variable node in the comparison
graph.

With the aforementioned considerations, we can define our comparison graph formally
as follows. Note that the two node sets are not treated equally in the definition: The
decision variables define the primary structure of the comparison graph.

Definition 4.9. Let G = (Ug, Vg, Eg), H = (Uy, Vg, Ex) be two augmented di-
graphs of the same model, where Ug and Uy are the sets of constraint nodes in
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G and H, while Vg and Vy are the sets of decision variable nodes in G and H,
respectively. The comparison graph is the graph C = G — H = (U¢, V¢, E¢),
where Vo = {nc e Vo U VH‘ Sno =+ 0}, Eec = {60 e Eq U EH| dne € Vo ing € 60},
and Ug = {n¢ € Us UUy| Jec € Ec : no € ec}.

In the comparison graph, the set of decision variable nodes V- is the subset of all
decision variable nodes in the union of V; and Vg for which the attribute vector
difference is nonzero. This in turn defines the set of edges E¢, which is the subset
of the union of Eg and Ey which include any node in Vi as one of its end points.
Finally, the set of constraint nodes Uy is the subset of all constraint nodes in the
union Ug and Uy, for which there is at least one edge in F¢ that the node is a part
of.

Regarding the information in these comparison graphs, there is valuable information
we can include in the node and edge dimensions: As described previously, the
comparison graph can include nodes or edges that are only part of one scenario, and
we want the comparison graph to include information on which solution each node is
from. Usually, the vast majority of the nodes should be the same between scenarios,
since otherwise we are comparing models whose structures differ significantly, and
direct comparisons are not a reasonable approach. However, we can generally allow
some decision variables and constraints to be different between scenarios. This allows
analysing the effect that these nodes have on the solution, especially if other model
parameters are not simultaneously changed. An example would be setting a minimum
production constraint for some product type, in which case our comparison graph
would show how the solution changes due to the addition of the constraint. Another
special case is when a decision variable could have potentially been included in the
optimal solution for both scenarios, but the optimum value is zero in one of them.
Such changes are of particular interest, because they relate to decision variables that
are relevant in only one of the scenario solutions. In both of these cases, we can
include this information as additional key-value pairs to each node’s dimensions: For
example, consider again a node ng that is in G but not in H, and a node npg that is in
both G and H. We may then add to each node’s dimensions in the comparison graph
a special key such as ’sol’, and set the corresponding value based on which scenario
the node is from. We thus have in this case that D, (sol) =’G’, and D, (sol) =
'Both’.

The rest of this section will explain the algorithm used to create the comparison
graph in practice. The pseudocode for this algorithm is given in appendix C. In
the algorithm, we refer to the attributes vector of node or edge e of graph G as
Gle]. In order to simplify notation, we do not make a distinction between numeric
attributes and non-numeric dimensions. We assume the non-numeric dimensions to
be equal between the scenarios (for nodes that are included in both scenarios). The
algorithm consists of two main steps: First, we perform the node-by-node comparison
for all nodes. Denoting the graphs as in the definition of the comparison graph, this
comparison yields potentially three separate sets of decision variable nodes: VN Vy,
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Ve \ Vi and Vi \ V. Each decision variable node in the comparison graph belongs
to exactly one of these sets, and we update the node’s dimensions based on which set
it belongs to. As the difference in attribute vectors can be calculated only for nodes
in the first set, for nodes in the other sets we calculate the difference by setting the
missing attribute vector to zero, as described previously. For decision variables in
both scenarios, we also check if the optimum value is zero in one of the scenarios,
and update the node dimensions accordingly. We then include only those decision
variables where the difference in attributes is non-zero. We apply similar same steps
for constraint nodes, but without this inclusion step. After all relevant decision
variable have been included, we proceed to creating the edges between nodes.

For each decision variable node in the comparison graph, we proceed differently based
on which set the node belongs to. For each node in Vg \ Vy, we know that all edges
can only be part of G, thus we can directly add all edges to the neighboring constraint
nodes, and update the edge dimensions accordingly. Similarly for nodes in the set
Vi \ Vi, all edges are known to be only part of the other scenario with graph H.
For decision variable nodes in the set Vi N Vg, the situation is slightly more difficult.
While most edges are again part of both scenarios, we allow for the possiblity of some
edges belonging to only one of the scenarios. For example, consider some external
production constraint that limits the production of certain products. The same
constraint may be included in both scenarios, but the decision variables linked to
this constraint may not be the same across the scenarios. Considering some specific
node, its neighboring edges are in one of the following three sets: e N ey, denoting
neighboring edges from both scenarios, eg \ ey, denoting neighboring edges only from
G, and ey \ e, denoting neighboring edges only from H. Note that neighboring edges
refer to both incoming and outgoing edges in this case, as there is no need to further
differentiate between these two sets. The edge comparisons between the scenarios
can then be performed in a similar fashion to the node comparisons: For edges in
both scenarios, we directly calculate the difference between numerical attributes,
and for other edges we update the edge’s dimensions accordingly, and calculate the
difference by setting the missing numerical attributes to zero.

After the edges between nodes have been created, there graph may still include
isolated constraint nodes with no incoming or outgoing edges. These are constraints
that are not directly related to any of the changes between scenarios. Thus, as a final
step, we remove all isolated nodes from the comparison graph. As the end result,
we obtain the comparison graph, which can then be used as the basis of analysis
similarly to the solution graph of a single scenario. Note that this procedure does
not guarantee that the comparison graph is fully connected: there is a possibility of
producing a disjoint union of subgraphs. If such subgraphs exist, this implies that
there are some changes that are not directly related to each other, and these changes
can be analysed separately.
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4.5 Detecting substitutions

As previously discussed in Section 3.2, one pattern that can be utilized in scenario
analysis is finding potential substitutions between the decision variables in two
scenarios. To automatically find these, we have created a special substitution
detection algorithm. While we believe there exists no exact mathematical definition
for this occurrence, we give an explanation of our approach followed by a formal
definition.

We define substitution as two opposite changes of roughly equal magnitude, that
is, of similar absolute value. The chosen attribute can be either the optimal values
or the total cost impacts of the decisions, depending on the context. These are not
limited to pairwise switches, as one of these changes may also be the composite
of several smaller changes. Our algorithm relies on two additional assumptions:
2) The substitutions must happen in the same node type, and 3) only nodes with
marginally equal dimensions are considered. The second assumption means that
different types of decision variables or constraints should not be compared, while the
third assumption requires some further explanation. We formally define marginally
equal dimensions as follows:

Definition 4.10. Two nodes n; and ny of the same type in the comparison graph
have marginally equal dimensions if there is exactly one key for which the node
dimensions have different values: 3k € K,,, : D, (k) # D, (k).

Note that since the keys are always assumed to be common between nodes of the
same type, the key in the definition can come from either of the nodes. We will
further motivate this assumption through an example. Consider a decision variable
for the quantity of product P1 sent to customer C1 from warehouse W1. Then, if
this quantity has changed between scenarios, one might ask questions such as: i) has
the quantity of product P1 sent to customer C1 from warehouses other than W1
changed, ii) has the quantity of product P1 sent from warehouse W1 to customers
other than C1 changed, or iii) has the quantity of products other than P1 sent from
warehouse W1 to customer C1 changed? In all of these cases, our goal is to find the
changes where all but the one dimension in question are the same. For example, for
i) we would find all changes related to the same customer C1 and product P1, but a
different warehouse. Using definition 4.10 and the aforementioned conditions, we
define substitutions in the context of the comparison graph as follows.

Definition 4.11. Let n; be a node and N some set of nodes in a comparison graph,
and denote the attribute vector of node n as s,,. Then, n; and N can be considered
as potential substitutions in attribute ¢ if the following conditions apply:

1. The attribute ¢ of n; and sum of the attribute in N are opposite and roughly
of equal magnitude, and all nodes in N have the same sign:
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Sny 1] + Xnen suli] = 0, sp,[isn]i] <0 Vn € N.
2. The node ny; and all nodes in N are of the same type.
3. The node n; and all nodes in N have marginally equal dimensions.

Given the comparison graph of two scenarios, the user of the algorithm can select
a desired node type and numerical attribute, within which these substitutions are
searched for. This can be applied at any desired level of aggregation, using the same
hierarchical mapping as in the creation of the graph. As a prerequisite, the comparison
graph must include information on node types and dimensions, and optionally on
potential hierarchies. Furthermore, the user can select a desired tolerance for the
maximum difference that is still to be considered as a substitution effect: For example,
the user might establish that the positive change must account for at least 90% of
the corresponding negative change.

The procedure of the algorithm is to first select only the nodes of the desired type
from the graph. Then, if the comparisons are desired at some specific aggregation
level, we remove the attributes not part of the aggregation level: For example, if the
nodes are related to products, we may remove a product ID dimension, if we want
to focus on product families instead of individual products. We then end up with
some nodes with duplicate keys, and we can simply sum their attributes together.
This aggregation approach is similar to the one suggested in Section 4.8, but here we
do not directly alter the structure of the underlying graph.

Then, for each of the nodes, we search for other nodes of marginally equal dimensions,
where the direction of change is opposite to the original change. The algorithm then
attempts to find some combination of these changes that is closer to the original
change than the specified tolerance. This is done by taking a cumulative sum of the
changes in decreasing order of magnitude, and checking this sum every time a new
change is added to it. If the cumulative sum of changes is closer to the original change
than the specified tolerance at any point of this process, then these are reported
as potential substitutions to the user. It is also possible that there are multiple
potential combinations for substitution, but the current version of the algorithm only
returns the first one that is found. The pseudocode for this algorithm is given in
appendix D.

4.6 Automatic report writing

An additional functionality often seen in IMPS is the capability of producing some
automatic reports to the user. Such reports can further lighten the burden of
the analyst by automatically calculating or otherwise presenting some meaningful
information of the scenario, so that the analyst does not have to spend additional
time trying to find these specific pieces of information manually. These can be
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especially powerful in situations where similar pieces of analysis would be repeated
for different scenarios.

Naturally, there are many potential points of interest when analysing supply chain
scenarios, thus no single report can address all potential questions a decision maker
may have. Nevertheless, some pieces of information can certainly be generalised, at
least in the context of the supply chain. Focusing on the capabilities of the model
oriented approach, the simplest informative reports that can be written are those
related to constraint information. For example, on the production side, we can report
the capacity bottlenecks that are occurring in the supply chain, or contrastingly
where some capacity is left unused. On the customer side, we can report unsatisfied
demands for specific products or customers. Such reports can be directly generated
from the solution graph, and the user only has to specify which node types (machine
capacity, customer demand) they want to see.

In order to fully utilise the capabilities offered by the model oriented approach,
reports based on more complex relationships can be created on top of the solution
graph. These reports are more oriented towards answering specific questions the
decision maker may have, and they often need to be more customised to the specific
optimisation model. An example of such a report is ranking the most critical raw
materials in the supply chain, in terms of total sales of products that are reliant on
the specific raw material. Another example is ranking the unmet demands in the
supply chain, in terms of total profits that are currently not obtained.

The main difference between these automatic reports and ad hoc queries made into a
graph database is that these automatic reports are designed such that they attempt
to fully answer some pre-specified question, whereas the ad hoc queries are more
flexible but also require the analyst to specify the model relationships they are looking
for.

4.7 Visual network analysis

In scenario analysis, the ability to simply visualise the model graph as a network of
nodes is potentially useful, especially in cases where the main concern is to assess
the impact of different decisions in one scenario, or the various changes that have
happened between scenarios. In this visual graph representation, we can perform
different types of highlighting and manipulation based on the subject of interest. For
example, we can make node size reflect their respective cost coefficient or cost impact,
thus drawing attention to the nodes where most significant cost contributions happen.
Another possibility is considering the actual values of the decision variables, which
correspond to volumes flowing through the supply chain. Thus, highlighting decision
variable nodes based on their values could be used to show the most significant flows
of materials through the supply chain. These can be applied both when analysing a
single scenario, in which case we visualise the individual solution graph, and when
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comparing two scenarios, where we visualise the comparison graph instead. There is
obviously a slight difference in the interpretation of these cases: with a single scenario,
we are highlighting the most impactful decisions in terms of cost or volume, and
with two scenarios we are actually considering the most impactful changes regarding
these decisions. In both cases, these visualisations can provide the analyst with a
meaningful overview of the model results.

Although the emphasis of costs or volumes are perhaps the most obvious use cases,
there are many other possibilities of using network analysis tools in a model analysis
setting. For example, in single scenario analysis, the information saved on constraint
nodes can be used to highlight binding inequality constraints. In the case of less-than
constraints, these often indicate bottlenecks in the supply chain, such as limited
warehousing or production capacity. Emphasising these bottlenecks can provide the
decision maker with useful information on how the supply chain operates, at least
according to the underlying optimisation model. Furthermore, these results can
provide ideas for new interesting scenarios that could be explored.

In scenario comparison, nodes can be filtered based on the flags that indicate in
which scenarios the node is active (non-zero) or even present at all. This would
allow the analyst to observe which parts of the supply chain are most affected by
the change between scenarios, not in absolute terms but rather by showing which
previously unused options have become attractive, or which previously attractive
decisions are no longer made. This can highlight many interesting facts, such as
previously unused production capabilities that have become active, or previously
unmet customer demands that are now being satisfied. Similarly, we may highlight
production decisions that are no longer made, or customer demands that are no
longer profitable enough to satisfy.

Furthermore, any of the other node attributes can be used in filtering the network to
show only the specific parts of the graph that the analyst is interested in. For example,
if the analyst wants to know what is happening to a specific product, customer, or raw
material, they can filter the graph to show only the nodes with matching information
on the desired attribute, such as a specific product identification code. Such filtering
can be very useful if the interest of the decision maker can be narrowed down to
a more detailed level that corresponds to some of these attributes. However, the
limitation with this filtering approach is that it does not include nodes without the
relevant attributes, even though they might be considered relevant otherwise.

Some of the aforementioned visualization capabilities are illustrated in figures 7, 8
and 9 below. These figures are visualizations of a particular supply chain related
scenario comparison graph, the details of which are omitted here. In all of these
figures, the size of the nodes is scaled relative to their cost impact, such that decisions
with larger cost impacts (either positive or negative) have a larger size. Although
the figures are all related to the same scenario comparison, they highlight different
factors.
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Figure 7: Example visualization of cost impacts

In Figure 7, the direction of cost impact is highlighted with a specific color: Positive
and negative changes are shown with green and red, respectively, indicating changes
such as increased or decreased sales of certain products. The third color is used for
nodes with no explicit cost impacts. A figure of this type shows how the different
changes contribute to the total cost difference between the scenarios. In this example,
there is only a handful of changes with significant cost impact, and while there are
few decisions with large positive cost impacts, these are largely offset by the negative
cost impacts.
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Figure 8: Example visualization of active decisions

In Figure 8, the same comparison graph is highlighted in a different manner. Here,
the colors indicate the related scenario for each decision: The yellow nodes are those
that are active in both scenarios, whereas the the orange and blue nodes indicate
decisions that are only made in the first or the second scenario, respectively. This
figure gives us a different view into the scenario differences: In this example, we
observe that some of the largest changes in terms of cost impact are only related

to one of the scenarios, indicating that some significant production changes should
occur in order to minimize costs.
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Figure 9: Example visualization of filtered graph

In Figure 9, the colours are the same as previously, but the graph is filtered to include
only decisions and constraints related to a specific product, e.g. product P1 as in
the previously considered examples. This filtering makes the resulting graph more
sparse, as only decisions and constraints directly related to product P1 are shown.
This also makes the results easier to interpret, as there is less clutter from nodes that
are not interesting to the decision maker. In this example, we observe that many of
the impactful decisions are actually related to the product that we have chosen to
filter here, which means that the production and sales of this particular product are
largely affected by the scenario changes.



ol

4.8 Aggregation of graphs

As discussed previously, supply chains are often embedded with hierarchical struc-
tures, such as products belonging in product families and customers in different
regions. In many situations, we may not be interested in specific changes in a single
decision variable, but would rather know what the important changes are on a higher
hierarchical level. Here, we consider one possibility of comparing results hierarchically
using a process known in graph theory as node contraction, or vertex identification
(Pemmaraju and Skiena, 2003). We will first give a formal definition, and then
explain how this process could be used in diagnostic aggregation.

Definition 4.12. Let u, v be a pair of nodes in the graph G = (V, E'). The contrac-
tion of nodes u, v consists of merging them together into a new node w, such that w
is adjacent to the union of nodes to which u and v were adjacent. This results in a

new graph G’ = (V', E), where V' = (V' \ {u,v}) U{w}.

We assume that the nodes are not required to share an incident edge between them.
Note also that in general, this operation may result in a graph with self-loops or
multiple edges between nodes, even if the original graph did not contain these.

Consider the graph G = (V, E), that contains all decision variable changes as well as
the related constraints. Let us assume that we would like aggregate the results over
some specific hierarchical dimension h that is one of the keys for node dimensions,
related to an original dimension d. Aggregation over this hierarchical node dimension
is then equal to merging together any two nodes of the same type ny,ny that i) have
the same value in dimension h: D, (h) = D,,(h), and ii) have the same values in all
other dimensions except the original dimension: Vk € K, \ {d} : D,, (k) = D,,(k).
In other words, we combine nodes of marginally equivalent dimensions, where the
marginal difference is in dimension d. After the two nodes have been merged together
into a new node, the edges incident to this new node correspond to the edges that
were incident to the original nodes. This aggregation process can be done by first
removing the original dimension d from all nodes that contain it, after which some
nodes have identical dimensions. Then, for each subset of nodes that have identical
dimensions, we can perform pairwise node contraction in any order, until there is
only one node left in the subset.

In the comparison graph setting, the process of node contraction can be applied
to the comparison graph to produce a smaller graph, where each node corresponds
to an aggregation of several decision variables or constraints. Naturally, after such
operation the result is no longer an exact representation of the underlying system.
However, in the case that we are interested in the changes on an aggregate level, this
operation may indeed provide us with a simpler and more manageable representation
of the original problem.

One important and nontrivial question is what node contraction does to node
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attributes. There is no clear answer as to what should happen, since by definition of
node contraction, the result of contracting two nodes is always a new node, which
is simply incident to the union of nodes that were indicent to the old two nodes.
However, in an optimisation setting, we are minimising some objective function, and
the cost effects of each change on the graph is known. Therefore, a natural numerical
representation of the cost effect of a contracted node is to sum the individual cost
effects together. With this notion, the aggregated graph remains consistent with the
original one in the sense that the total difference in the objective function remains
the same.

Clearly, this notion of summing the values together could be applied to all other
numerical node attributes as well, although their interpretation may not be quite as
straightforward. For example, the sum of cost coefficients between contracted decision
variable nodes does not provide meaningful information. However, an average or
median over these changes may be more informative. Following this idea, perhaps it
would be possible to define a separate aggregation function for all different types of
numerical node attributes, such that the result from aggregation is then conducive
to the analysis of these aggregate results.

However, it is also possible that some attributes cannot be reasonably described
in aggregate form. Consider, for example, the non-numeric attributes that flag the
solutions in which the decision variable was active. Then, after performing node
contraction over some dimension, the resulting supernode may include nodes that
were active in different solutions. There is no clear answer what would be the best
form of aggregation.

In the case when the optimisation problem consists of several time steps, one special
form of aggregation would be to aggregate the results over time. If we are not
interested in what happens in the model at a specific time step, but rather want
to know what the model does on a more aggregate level, then this approach can
simplify the graph by making it considerably smaller. However, as with other forms of
graph aggregations, there are potential cases where such aggregation is problematic:
For example, if some model parameters change over time, we lose the information
regarding when these changes happen.
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5 Case study

The case study focuses on paper supply chain optimisation which will be described
first in detail. Then, the use of developed IMPS is illustrated along with some
insights from the analyst who has developed the model and presented its results to
case company managers earlier.

5.1 Supply chain description

Figure 10 shows the paper supply chain in a graphical form. Notice the similarity
with the general example shown in Figure 2: The main difference is that the amount
of differents supply chain entities has been fixed, and production facilities are referred
to as mills.

Mill Warehouse Customer

Figure 10: Case study paper supply chain

In terms of different supply chain planning phases described in Section 2, the model
is an example of master planning, with the added ability to analyse the impact of
different first tier decisions as well. The optimisation model contains the supply
chain from the manufacturer’s point of view. The chain begins with suppliers,
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who supply different raw materials to mills in different regions. Each mill has 2-4
machines of limited capacity, and these machines are used to produce various products
using machine- or mill-specific production recipes. These recipes each have their
own specific raw material requirements, and some products can be produced with
multiple recipes. The products are then processed into finished products and sent
to warehouses. From the warehouses, the products are finally sent to customers.
Specifically for the customer and product dimensions, there is additional hierarchical
information: Each customer belongs to some specific region, and each product is
part of a larger product family.

Fach decision variable and constraint in the model is related to a monthly time
period, and the model includes twelve monthly periods. The overall objective of the
optimisation model is to maximise the total sales margin by allocating the estimated
customer demand to the different production facilities and their machines. In other
words, the goal is to maximise profits obtained by sales, taking into account the
variable costs related to factors such as raw material procurement and logistics.

In more detail, the model includes the following variables:

® Pipgt - Amount of raw material £ purchased from supplier A to mill g in period
t

Dy, - Amount of raw material k£ consumed on recipe r in period ¢

@it - Amount of product ¢ produced with recipe r in period t

I, - Stock level at finished product storage p for product ¢ at the end of period
t

Xipet - Customer ¢’s demand for product ¢, satisfied by finished product storage
p in period t

The following constraints are included in the model:

Machine material flow[k, g, t] Z Pihgt = Z Dyt (7)
reR(q)
Machine_production[k, r,t] : Dgrt = prrQirit (8)
Machine capacity[l,t] : > s,Qrir < my (9)
reR(l)
Storage flow[p,i,t] : Z Qrit + 1 Z KXipet + Lpit (10)
reR(q,i)

Demand[i, ¢, t] : ZXipct < diet (11)
p
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Here, R(q) denotes the recipes that belong to the mill q. py, is the amount of raw
material k£ needed to produce one unit of recipe r. R(l) is the set of all recipes that
can be produced with machine [, s;, is the capacity used with machine [ for each unit
of recipe r, my; is the maximum capacity of machine [ at period t. R(q,?) denotes all
recipes that can be produced in mill ¢ whose end product is 7, and finally d;. is the
customer c’s estimated demand for product ¢ at period t.

The constraints (7) state that all material bought to the mill at each time period
must be consumed by some recipe that the mill is using during the same period.
Constraints (8) state that each recipe has a specific conversion rate from each
raw material to product. Constraints (9) state that each recipe has some capacity
requirement for each unit produced, and that the total capacity used should not
exceed the given maximum capacity. Constraints (10) state that the flows of material
through each finished product storage should be conserved. Finally, constraints
(11) state that there is some specified demand for each customer, product and time
period, and that this demand is an upper limit of what can be satisfied through
the different storages. In addition to these physical constraints, there are additional
virtual constraints, which are not discussed here. The exact details of the model
parameters are not crucially important: Rather, the key is to understand how the
different model components are connected to each other. The immediate connections
between the nodes of the model can be seen in the constraints, as they show exactly
which constraint is linked to which decision variables.

In this study, we consider both the case where we only have one scenario, and the
case where we compare two scenarios. All of the single-scenario examples refer to
the same baseline scenario, where the supply chain is operated according to the best
current information on all related factors, such as demand forecasts and raw material
availability. For the two-scenario comparisons, various different scenarios based on
real business questions are compared against this baseline scenario. The objective
here is to broadly illustrate different possibilities of analysing these model results by
using the functionalities implemented in the IMPS. Without explicitly mentioning
this in each separate case, when we only have one scenario, the graph is constructed
by parsing the corresponding MPS and solution files, and then running the algorithm
described in Section 4.3. When comparing two scenarios, we first create the single
graphs, after which we create the comparison graph using the algorithm described in
Section 4.4. In addition, we include the node types, their respective dimensions and
the hierarchies for the product and customer dimensions as additional properties for
each node in the graphs. These steps enable us to perform the analyses described
below.

5.2 Visual network analysis

Figure 11 shows a visualisation of a complete scenario comparison graph between two
supply chain optimisation scenarios for the model. This visualisation was created
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Figure 11: Scenario comparison graph

in Gephi, using one of their preset layout algorithms. The main difference between
these scenarios is that in the second scenario, the production capacity of one of the
machines in mill D was increased in the beginning of the first period, compared to
the baseline scenario. The decision maker is interested in the additional profit the
new capacity would generate. This can be answered by comparing the total objective
function values between the scenarios. However, the decision maker is also interested
in how this additional capacity would actually be used, and the comparison graph
shows in detail how individual decisions change. Considering the taxonomy described
in Section 3.2, this question is an example of a question belonging in the category
(Two, Complex).

In this specific visualization, the size of decision variable nodes is relative to their
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absolute cost impact, and colored based on the direction of change: Green color
denotes positive cost impacts, either through less costs or more profits, and red
color denotes negative cost impacts through more costs or less profits. Nodes of the
third color are either constraints or have no explicit cost impact. While there are
clearly quite many changes that happen as a result of the capacity increase at mill
D, attention is immediately drawn to the few nodes with significantly larger size
than others: these are decisions on how specific product demands for customers are
satisfied from different warehouses. The labels of these nodes have been highlighted
along with the absolute change in the decision variable values: Since more products
sold corresponds to more profits and vice versa, the colors highlighting cost impacts
correspond to the change in volume. Note that the opposite is true for decision
variables for raw material purchases: Increased production volume increases the need
of raw materials, leading to increased costs. The nodes between the highlighted
nodes are the demand satisfaction constraints, showing how these changes in decision
variables are linked together. The hubs of smaller nodes marked as C1 to C5 in the
Figure are the various production and material flow constraints for each production
facility, as well as the decision variable nodes related to changes in raw material
purchases.

From the graph and the labels, we observe that the increased capacity at mill D is
used mainly to increase production of product P1, which is sent to customer 150
from mill D’s warehouse. This decision corresponds to the node marked in the
Figure as N1. Increased production of P1 leads to increased purchases of some raw
materials: the cost impacts of these decision variable changes are shown as the hub of
red-colored nodes marked as C2, connected to the aforementioned node through the
model constraints. Interestingly, the volume of P1 sent from warehouse D _FPS to
customer 150 matches exactly the amount that was previously sent from warehouse
A_FPS. Now, mill A produces less product P1 (node N2) and more product P2
which is sent to customer 147 (node N3). While the changes in volumes seem to
match across the products in this case, the raw material requirements are not quite
the same as they were previously, shown by the hub of smaller nodes marked as C3,
connected to the these two nodes.

Continuing the chain of nodes further, we observe that the demand for customer 147
was previously satisfied from warehouse C__FPS (node N4). Now, the same volume
of the same product is sent to customer from C_FPS to customer 146 (node N5). In
this case, there are actually no production changes at mill C, but the end customer for
the product changes. Finally, we see that customer 146 previously received the same
volume of product P2 from warehouse B_ FPS (node N6). Now, the freed capacity
at mill B is used to produce more of product P3, which is then sent to customer
1296 (node N7). The raw materials required only for product P2 are bought less,
whereas the materials required only for product P3 are bought more. This is shown
by the connected hubs of smaller green and red nodes marked as C4. As an overall
result, the graph representation shows to the decision maker that increasing capacity
at mill D is most valuably used by satisfying demands that were already met from
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other mills, and through several links throughout the supply chain, increased profits
are mostly generated by satisfying previously unmet demand through a different mill.
These sorts of insights are valuable to the decision maker when planning capacity
increases or any other related activities where an overview of the scenario differences
is required.

5.3 Ad hoc queries

In this section, we illustrate how the graph database representation can be used
to answer more complex questions related to analysing the supply chain, using
different ad hoc queries on the graph database. We first present a few examples
for the single scenario case, then a few examples for the two-scenario comparison
case. All of the examples shown use the syntax of Cypher, the native graph query
language used by Neo4j. An extensive user manual, covering the language in detail,
is maintained by the Neo4j team and can be downloaded from their website at
https://neodj.com/docs/.

One question considered is finding the common material suppliers for products P1,P2
and P3 in the baseline scenario, which is an example of a question of category
(Single,Complex) in our question taxonomy described in Section 3.2. In this case, the
problem can be broken into the following steps: First, find the decision variable nodes
that are related to the production of the specified products. Then, find all direct
paths from this node to decision variable nodes that are related to the procurement
of raw materials. From these nodes, collect the distinct supplier identification codes
for each product. As a result, we then obtain a list of suppliers for each product of
interest, which we can further check for differences or commonalities. Note that in
this question, the interest is not in exact values or cost impacts, but finding what
connections exist between the production decisions and suppliers.

In a graph database, performing such a query is quite straightforward. One needs
only the ability to describe the path of decision variables and constraints that is
assumed between the end points. In this case, the path is through the production
decision variable (Q), a Machine production constraint, raw material consumption
variable (D), Machine material flow constraint and finally the decision variable for
purchasing of raw material (P). The corresponding query with Cypher is as follows.
As a result, we obtained that all these products use the exact same supplier, which
was the expected outcome.

WITH [P1,P2,P3] as products

MATCH (q:Q)-(:Machine_production)-(:D)-(:Machine material flow)-(p:P)
WHERE q.ProductID in products and q.value <> 0O

RETURN q.ProductID, collect(DISTINCT p.SupplierID)

Another interesting question of the same category was the following: Which of our
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customers would potentially suffer in the baseline scenario as a result of a shortage
in raw material R17 In order to answer such a question, we obviously have to first
find out which products require this raw material. This alone requires the ability to
link all possible paths from the relevant raw material procurement nodes to different
production nodes, in a similar fashion to the previous example. In addition, we have
to proceed from these production nodes to the storage flow nodes, and finally to the
nodes that show which customers receive the related final products. Overall, this
question amounts to finding all related paths through the supply chain, all the way
from raw material purchases to the selling of finished products to customers. Similar
to the previous question, the main interest is in the connections, not exact values or
cost impacts, although these could be calculated if necessary. While slightly more
complicated than the previous example, the corresponding Cypher query is still quite
manageable. Denoting the raw material of interest as 'R1’, the corresponding query
is as follows. This query showed that there was a large population of customers
who were reliant on the availability of this raw material, which would suggest to the
decision maker that there is significant risk of losing customers, should this shortage
become a reality.

MATCH (x:X)-(:Storage_flow)-(q:Q)-(:Machine_production)-(:D)
-(:Machine _material flow)-(p:P)

WHERE p.RMID = °R1’

RETURN DISTINCT x.CustomerID

Note that answering these types of questions could be possible with a result oriented
approach using relational databases. However, this would likely require several join
operations between different tables. For the examples above, forming a comparable
answer would likely include joining together multiple tables with information on the
different supply chain entities, such as suppliers, raw materials, production facilities,
as well as the relationships between them. For an entire supply chain, this approach
can become unmanageable.

In scenario comparison, the decision makers were interested in a few questions that
can be categorized as (Two,Complex) in our question taxonomy presented in Section
3.2. First, they were interested in knowing how additional capacity at mill D would be
used in production, and ultimately increasing profits. We can begin answering such a
question by starting with the capacity constraint nodes where the RHS attribute has
increased. We first check whether this new capacity is actually used, by checking that
the row sum attribute has increased as well. Then, from these constraints, we easily
obtain the connected nodes, the decisions variables related to production, where
the value and thus production amount has increased. In case we are also interested
in where these products are shipped, we can include material flow constraints and
customer- specific shipping decision variables. An example of such a query is given
below. The result is a list of products and customers, with the corresponding volume
increases. This is a similar example to the one presented in Section 5.2, but here we
obtain a list of volumes, instead of a visual representation. Furthermore, this form
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of query does not show the entire chain of events through all different warehouses
like the visual representation does.

MATCH (m:Machine_capacity)-(q:Q)-(:Storage_flow)-(x:X)
WHERE m.RHS < 0 and m.RSUM < O and g.value < 0 and x.value < 0
RETURN x.ProductID, x.CustomerID, x.value

Another question of interest was the case where raw material R1 has become unavail-
able, thus rendering some production recipes unusable. The contrast to the similar
one-scenario case is that here, instead of trying to find the affected customers, our
objective is to explore how this change actually affects how the supply chain should
be operated. The natural starting point here is the raw material nodes that were
flagged to be available only in the first solution, in other words with the dimension
'SOL1". We then find the corresponding material flow constraints, through which
we find the affected nodes related to resource consumption, production recipes, and
ultimately the production quantity variables that are affected by this change. Such
a query would be

MATCH (q:Q)-(:Machine_production)-(:D)-(:Machine_material_flow)-(p:P)
WHERE p.sol = ’SOL1’
RETURN q.ProductID, q.value

We thus find the directly affected decisions and the corresponding volumes, but
there are multiple other questions that may arise as a result. First, if there are
multiple recipes for the same product, then we might want to know if there exists a
recipe that does not use these lacking raw materials. If such a recipe exists, then we
can find out if it is actually used to supplement the previously available production
capabilities. There are several possibilities that arise: It may be that such actions are
not as profitable, and the unused capacity, assuming that capacities have not changed
simultaneously, is used to produce some completely different products to satisfy
some previously unmet demand. Another possibility is that no other products are
profitable to produce, and the lack of raw materials results in excess capacity. In this
example, we found that there were no additional recipes in use, and that the unused
capacity would be mostly used to produce other products that were not reliant on the
missing raw material. The increased production volumes were found out through an
additional query, where we used the previously found production quantity decisions
as a starting point. Referring to the list of affected product quantity decisions as
AffectedProducts, the query is

MATCH (ql1:Q)-(:Machine_capacity)-(q2:Q)
WHERE ql1 IN AffectedProducts and NOT g2 IN AffectedProducts
RETURN g2.ProductID,q.value

The example above illustrates the difficulty of finding a general approach that could
answer any type of question, regardless of the underlying changes between scenarios.
However, such queries can aid the analyst to find possible directions of further
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analysis, which can be further enhanced by chaining multiple queries together.

5.4 Automatic report writing

In this section, we demonstrate a few of the automatic reports that can be generated
from the solution and comparison graphs. As previously mentioned, reports that
require little model-specific knowledge can be made almost directly from the graph,
whereas more complicated reports require some customisation. Nevertheless, the
same graphs serve as the starting point for all the reports discussed here.

Since the operation environment of the case study is such that the maximum pro-
duction capacity is often reached, the decision maker is interested in knowing if
there are some machines that are specifically not operated with maximum capacity
at some time periods. In terms of the question taxonomy presented in Section 3.2,
this question is of category (Single, Simple), although it would be impossible to
answer without storing the constraint information. The unused capacities can be
reported directly from the solution graph by checking all machine capacity nodes, and
comparing their respective row sum and right-hand side (RHS) attributes. In this
example, the nodes also contain the identification codes for each specific machine and
the current time period, which we can use to group and display the results separately
for each machine over time. The baseline scenario has only one machine that is
not completely utilised all the time, namely machine A3. When the corresponding
solution graph is processed by our report writer, the output is the one shown in
Figure 12. As a result, the analyst quickly obtains interesting information that they
can then analyse further.
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There is unused capacity at A3 on periods 1, 11
The utilization rates for these periods are 96.43%, 96.78%
See figure below:

1000 1

01995

01990 4

0985 1

0980 A

Lkilization

0975 A

0970

0965 4

0 2 4 6 8 10
Pericd

Figure 12: Example report for underused capacity

An already previously mentioned example of a question of category (Single,Complex)
would be finding the most valuable raw materials in terms of sales of products that
require them. Creating such a report requires several steps: First, we must be able
to calculate the cost impacts generated by each product from each warehouse, which
can be done by summing the individual cost impacts of product sales. In other
words, for each warehouse flow constraint, we sum the cost impacts of neighboring
product sales nodes. Then, this total revenue must be allocated to the production
decision variables, neighboring the same warehouse flow constraint on the opposite
side. This can be done by considering the relative volumes produced by different
recipes. Then, once the cost impacts have been allocated among different production
variables, we traverse the graph from these production variables to each raw material
supply node, and store the same (positive) cost impact of production to each of them.
As a result, we obtain a report indicating which raw materials are involved in the
most valuable sales, and what their relative impact is. For the example scenario, this
report is shown in Figure 13. The results show that a few raw materials are clearly
the most significant in terms of cost impact, suggesting that their availability plays
a significant role in generating profits.
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Figure 13: Example report for critical raw materials

For the scenario comparison case, we present an example of applying the substitution
detection algorithm to two scenarios, where in the second scenario the currency rate
between two major operating currencies has changed significantly. Here, the decision
maker wants to find out what kind of production or customer demand switches
are caused by this change. This is a special example of a question of category
(Two,Complex) in our question taxonomy in Section 3.2. We focus on the decision
variable nodes that quantify the amount of demand satisfied for each product and
customer from each warehouse (X). This analysis could focus on either costs or
volumes, but since in this case the costs are largely affected by the currency rate
change, we are more interested in how the actual volumes would change. We first
attempt to find substitutions on the highest hierarchical level: This means finding
potential substitutions on a regional and product family level, between the different
warehouses. As a result, we obtain the a list of potential substitutions, which is
shown in Figure 14.

In this specific case, the analyst can immediately notice that some significant changes
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have occurred between the scenarios: Firstly, the volumes of product family PG1 sent
from warehouse A__FPS have been shifted from customer region EUROPE to APAC.
Furthermore, this decrease in volumes from warehouse A _FPS of product family
PG1 to EUROPE is now being countered by another warehouse, C_FPS, which
has increased its sales of PG1 in EUROPE. Interestingly, this volume increase is

offset by the decrease in volumes from warehouse C__FPS to other customer regions,

namely APAC, MEIA and NORTH AMERICA. A similar story seems to happen
for product family PG2, for which we observe that warehouse B__FPS has shifted
customer sales from regions APAC, MEIA and NORTH AMERICA, such that these
combined volumes are matched by the increased volume of sales in EUROPE. These
substitutions suggest that these customer regions other than EUROPE may be less
lucrative if the currency rate does change. This was indeed the case, thus this
substitution report could be used to confirm the assumptions of the analyst, as well
as providing a more detailed view into how the supply chain operations should change
if the speculated scenario became a reality.

Found the following substitutions in the comparison:

INCREASE in values with attributes('A_FPS', 'PG1', 'APAC') substituted in Region:
[("A_FPS*, "PG1', 'EUROPE')]

DECREASE in values with attributes ('A_FPS', 'PGl", 'EUROPE') substituted in FPSID:
[('C_FPS*, "PG1', 'EUROPE')]

INCREASE in values with attributes('B_FPS', 'PG2', 'EUROPE') substituted in Region:
[('B_FPS', 'PG2', 'APAC'), ('B_FPS', 'PG2', 'MEIA'), ('B_FPS', 'PGZ', 'WORTH_AMERICA')]
DECREASE in values with attributes ('B_FPS', 'PG3", 'APAC') substituted in FPSID:
[('C_FPS*, "PG3', 'APAC")]

DECREASE in values with attributes ('B_FPS', 'PG3", 'MEIA') substituted in FPSID:
[('C_FPS*, "PG3', 'MEIA")]

INCREASE in values with attributes('C_FPS', 'PG1', 'EUROPE') substituted in Region:
[('C_FPS', 'PG1', 'APAC), ('C_FPS', 'PG1', 'MEIA'), ('C_FPS', 'PG1', 'WORTH_AMERICA')]
INCREASE in values with attributes('C_FPS', 'PG3', 'NORTH_AMERICA') substituted in FPSID:
[('B_FPS*, "PG3', 'NORTH_AMERICA')]

DECREASE in values with attributes ('D_FPS', 'PGl", 'LATAM') substituted in Region:
[('D_FPS', "PG1', 'EUROPE'), ('D_FPS', 'PG1', 'MEIA'), ('D_FPS', 'PGl', 'NORTH_AMERICA")]

Figure 14: Example report for substitutions.

These substitutions can also be visualized: Figure 15 shows part of the comparison
graph, where node contraction has been performed to combine nodes with the same
product group and customer region. For clarity, only the decision variable nodes
related to customer sales and the constraints directly connected to these decisions
are shown here. The size of the nodes in this case is relative to the volume, and
the green and red colors of the nodes indicate more and less volume, respectively.
From this figure, we identify the same substitutions that were obtained in textual
format. The first three substitutions from the report are denoted in the figure as node
clusters C1, C2 and C3, respectively. In each of these node clusters, we observe how
the counterbalancing decision variable values are connected to each other through
constraints: For example, in cluster C1 the decision variable nodes are connected
through a warehouse flow constraint, whereas in C2 the connecting constraint is
one related to demand satisfaction. This case also illustrates that a specific decision
variable may be considered a substitution in several ways: For example, clusters C1
and C2 share a common decision variable node, indicating that the change in this
specific decision variable can be considered as a substitution in two ways.
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Figure 15: Substitutions in visual format
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X[PG3B_FPSNORIH_AMERICA ALL]

X[PG3,.C_FPSNORTH_AMERICA ALL]
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6 Conclusions and further developments

This Thesis explores the potential of providing semi-automated assistance in supply
chain planning problems by creating an Intelligent Mathematical Programming
System (IMPS) to aid the analyst. The approach is based on using the underlying
mathematical model as the primary driver for the analysis by translating it to a graph,
in addition to the actual optimisation results. This differs from other traditional
approaches, where the structure of the model is not explicitly used as a tool for
analysis. We refer to this methodology as the model oriented approach.

The presented algorithm for creating a graph out of a single LP model solution is
based on an extension of the fundamental digraph described by Greenberg (1983) and
in this Thesis, it was further extended to the case where two separate model scenarios
are compared by creating a special comparison graph out of individual model graphs.
This comparison graph algorithm allows analysis of both simple parameter-based and
more complex model structure-based changes. In addition to technical details of the
approach, we explored some potential uses by considering different types of questions
decisions makers may have related to the supply chain. The main objective was to
explore how the approach could help an analyst answer such questions. Potential
uses included visual network analysis of scenarios, automatic report writing, and
storing the graph into a graph database, which the analyst can use for ad hoc or
structured graph queries.

Based on the initial results of the case study and discussions with the case company
experts, at least some of the business questions related to the supply chain are
directly related to the underlying model structure. These questions include finding
connections between various entities of the supply chain, and they can extend
through the entire chain from suppliers to final customers. In these cases, the model
oriented approach is a potential alternative to the traditional approaches, since the
model oriented approach maintains the connections between model entities. The
Thesis classified typical business questions in Section 3, and most of the questions
considered in the case study belong to the "complex" category considering either one
or two scenarios. While the distinction between "simple" and "complex' questions is
debatable and the amount of interesting questions in our case study is limited, the
few successes nevertheless demonstrate the values of the proposed approach. It is
also clear that from the case company experts’ perspective that the model oriented
approach is not a substitute to the traditional results oriented approach, but rather
a complementary one.

There are challenges related to the proposed approach: for example, visual analysis
becomes computationally challenging for large problems with millions of decision
variables. Also, the effectiveness of querying the graph database relies heavily on
the analyst’s ability to translate the business questions into the appropriate model
components and their relationships, as there is no automated process in place that
would automatically select only the relevant parts of the model into the query.
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Furthermore, these queries still require the user to understand the model structure
quite extensively, therefore limiting the usability of the system. These problems can
be somewhat alleviated by manipulating the directions of links between nodes to
match the direction of physical flows in the supply chain, but this again requires
model expertise. Finally, the automatic reports that can be written with the current
system are very limited in their functionality, as there were few simple reports that
were seen as both i) useful in a practical setting, and ii) where the implementation
with the model oriented approach was considered to be easier than other approaches.
Our aim was not to recreate the capabilities already offered by spreadsheets or BI
platforms, but rather try to explore some previously unutilised methods of reporting
model results. More complex automated reports may require a more model-specific
approach.

While our approach is quite general and easily applicable to different types of supply
chain optimisation models, and theoretically to any LP model, making conclusions
on the benefits offered by the system requires more use cases. It also remains to be
seen how general this kind of tool can be: the less individual model-specific details
and quirks can be accounted for, the more limited is the depth of analysis. The lack
of a unifying framework between the different suggested forms of scenario analysis,
supply chain optimisation models and various business questions is also evident
throughout the Thesis: almost all choices and methodologies are motivated through
specific examples instead of attempting to explain them more generally.

6.1 Future research directions

In addition to abovementioned further testing of the IMPS, the approach could
be developed further from its theoretical foundations, too. First, none of the core
components of the IMPS specifically utilise graph-theoretic results. Here, both
the network visualisation and some presented and new algorithms could potentially
benefit from existing advances in graph theory. Examples include finding specific
graph structures and interpreting them; generating richer automated textual reports
that follow "paths" or exploit the graph structures in some other way; making the
presented substitution algorithm smarter by allowing more complex comparisons or
by grouping similar substitutions together.

Regarding the structure of comparison graphs, it would be beneficial to somehow be
able to estimate which changes are most strongly related to each other. Currently, it
remains unclear whether specific changes in the optimal solution between scenarios
can be attributed to some small subset of other changes, or if the changes must always
be considered as a whole. As there is often a large amount of individual changes that
result from even a few parameter changes between scenarios, the ability to cluster
related changes together, instead of having to consider them on an individual level,
could provide significant improvements on the current analysis capabilities. As a
prerequisite, this would require us to find an appropriate measure for "relatedness"
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between different nodes in the context of the comparison graph. One simple candidate
would be to measure the distance between different nodes as the shortest path of
undirected links between them. Intuitively, it would make sense that the shorter this
path between two nodes, the more likely it is that they are related: Consider, for
example, changes in production quantity decision variables that are neighbors to the
same capacity constraint. While this approach seems reasonable at first, it would
neglect the possibility of significant interaction between entities that are more distant
from each other. This is an undesirable result, as many of the examples presented
in this Thesis already show that such distant interactions do exist. Therefore, we
believe more appropriate measures for node relatedness need to be developed.

The aggregation of graphs is another interesting subject where further study could
provide a more robust method of simplifying the often large solution and comparison
graphs that are created from optimisation models. The main concerns here are
not related to practicalities, as we managed to describe a procedure that could
be applied to produce such aggregated graphs. Rather, it is their interpretability
that is still unclear: For instance, what exactly do the aggregate nodes and edges
represent in general, or must these always be interpreted in the specific context
of the underlying mathematical model? Moreover, can we define an appropriate
aggregation function for all types of attributes, such that all the resulting aggregate
values have a meaningful interpretation?

In terms of model analysis, the main focus of this Thesis was in considering one or
two scenarios at a time, thus adopting the deductive model analysis paradigm similar
to the one in systems such as Greenberg’s ANALYZE. The alternative paradigm
that we shortly described in Section 2 is inductive model analysis, where a large
number of scenarios is processed to increase understanding of model relationships.
While the obvious drawback of such an approach is that it requires more model
runs, there are potential benefits over the deductive paradigm as well. First and
foremost, an inductive approach could allow us to create a metamodel on top of the
original optimisation model, which could then be used to explain how different model
parameters affect the solution, ideally enabling the analysis of both individual and
multiple scenarios. Since many of the decision makers’ complex questions can be
translated to finding and understanding the causal relationships between different
entities of the modelled system, it is clear why such a metamodel could be a useful
tool for the analyst. There are multiple methods with which such metamodels could
be created: For example, the use of neural networks, a field with much ongoing
research, was considered much earlier as a tool for inductive learning of mathematical
models for example by Steiger and Sharda (1996). It would be interesting to see if
some of the recent advances in this field could be transferred to the field of model
analysis.
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A MPS parsing algorithm

Algorithm 1: MPS Parsing algorithm
Data: MPS file
Result: Graph as adjacency list
initialise hash table h = ()
open MPS file
begin reading MPS file line by line
while line is not ROWS do
| Skip line
end

while line is not COLUMNS do
Split line into rowtype and rowname

Save rowname as new key in h
Save "TYPE:rowtype as new key-value pair under rowname

Read new line
end

while line is not RHS do

Split line into colname, rowname, val
Save colname:val as new key-value pair under rowname

Read new line
end

for rowname in h do
| Set 'TRHS’:0 as new key-value pair under rowname

end
while line is not BOUNDS do

Split line into rowname and val
Set val as the new value of 'RHS’ under rowname

Read new line
end

return h




B Graph Construction algorithm

Algorithm 2: Graph construction algorithm
Data: PMPS-file, sol-file, auxiliary files
Result: Solution graph
Create mapping from column names to solution values — sol
Save PMPS[’OBJ’] as a separate mapping — ob]
Initialise graph G = ()
for row in PMPS do
add row key as new node into G
add row['/RHS’] into node as new attribute
add row["TYPE’] into node as new attribute
for col in row do

if col not in G then
add col as new node into G

add sol[col] and sol[col] into node as new attributes
add obj[col]*sol[col] into node as new attribute
if row/col] > 0 then
| add edge from row to col with value row|col]
else
| add edge from col to row with value row|col]
end

end
end

f Metafile in auziliary files then
create mapping from each node type to dimension names — M

for node in G do
split node name into type and dimensions

add type into node as new attribute
get corresponding dimension names — M|[type]

for dval,dname in (dimensions, M[type/) do
| add dval into node as new attribute with name dname

end

o

end
if Hmap in auxiliary files then
for node in G do
for key in Hmap do
if key in node then
for subkey in Hmap/key] do
get matching value for nodefkey|] — hval
add hval into node as new attribute with name subkey
end

end
end
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if

virtcons in auziliary files then
for node in G do

if nodeftype] in virtcons then
get neighboring edges of node — eg

for edge in eq do
| add label "Virtual” into edge as new attribute

end
end
return G
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C Graph comparison algorihm

Algorithm 3: Graph comparison algorithm
Data: G,.H
Result: Comparison graph C'
Initialise empty graph C' = ()
Split decision variable nodes into sets Vo N Vi, Vg \ Vi, Vo \ Vi
dvars = (Ve N V) U (Vg \ Vo) U (Ve \ Vi)
for node in dvars do
if node in Vi \ Vi then

h = Hlnode]

g=20

sol = "H’
else if node in Vg \ Vi then

=0

g = Gnode]

sol = "G’
else

sol = 'BOTH’

h = H[node]

g = Gnode]
end

if g - h # 0 then
Add node to C'
Add sol to node dimensions
Set g - h as node attribute vector
if sol == 'BOTH’ then
if g/0] == 0 then
| add key-value pair active = '"H’ to node dimensions
end
else if h/0] == 0 then
| add key-value pair active = G’ to node dimensions

else
| add key-value pair active = 'BOTH’ to node dimensions

end

end

end
end
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Split constraint nodes into sets Us N Uy, Uy \ Ug, Us \ Uy
cons = (U NUg) U (U \ Ug) U (Ug \ Ug)

for node in cons do

if node in Uy \ Ug then

h = H[node]
g=20
sol = "H’
else if node in Ug \ Uy then
h=0
g = Glnode]
sol ='G’
else
sol = 'BOTH’
h = H[node]
g = G[node]
end

Add node to C'
Add sol to node dimensions
Set g - h as node attribute vector

end
for node in C do

if node in Vi \ Vg then
get neighboring edges of node from G — eg
sol =G’
for edge in eq do
g = Gledge]
add edge to C
add sol to edge dimensions
add g to edge attributes
end
end

else if node in Vi \ Vi then
get neighboring edges of node from H — ey

sol = "H’
for edge in ey do
h = Hfedge]
add edge to C
add sol to edge dimensions
add h to edge attributes
end

end
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for node in C do

else if node in Vg N Vy then
get neighboring edges of node from G and H, — eg,eq
split edges into sets eq Ney, eq \ en, €x \ eg
all = (egNey) U (ex \ eq) U (eg \ ex)
for edge in all do
if edge in (ey \ e¢) then
sol = "H’
h = Hledge]
g=20
nd
Ise if edge in (eq \ ey) then
sol = 'G’
h=0
g = Gledge]
Ise if edge in (eq Ney) then
sol = 'BOTH’
h = Hfedge]
g = Gledge]
end
add edge to C'
add sol to edge dimensions
add g - h to edge attributes
end

o O

@

end

for node in C do
get neighboring edges of node — e

if e = () then
| remove node from C
end

end
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D Substitution detection algorithm

Algorithm 4: Substitution detection algorithm
Data: Comparison graph C, type n, attribute a, substitution threshold e,
aggregation level L
Result: Report of potential substitutions
Initialise list of hash tables H = ()
for node in C' do
if nodeftype] == n then
get all node dimensions as key-value pairs — node[d]
get node attribute a — node[a]
h = node[d] + nodelal
append h to list H
end
end
if L /=( then
Initialise list of hash tables H = ()
for elem in H do
for key,value in elem do

if key not in L then
| remove key from elem

end
end
end
for elem in H do

if elem not in H’ then
| append elem to H’
end
else
| H’[elem]|[a] += Hlelem][a]
end
end
H=H

end
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for e; in H do

end

Separate e; into attribute a; and set of dimensions d;
for e; in H do

Separate e; into attribute a; and set of dimensions d;
for dim in d; do
Initialise hash table s = ()
Initialise sum ¢ = 0, list of keys k = 0
if aja; < 0 and d; N dj =d; \ dim then
| add dj:a; as new key-value pair into s
end
for key,val in s do
¢ += val
append key to k
if (1—¢)|a;| < |e| < (1+ ¢€)|a;| then
| Report k as potential substitution set for e; in dim
end

end
end

end
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