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Condition based maintenance has become an increasingly popular maintenance
strategy. According to the strategy, maintenance decisions are made in compli-
ance with the actual condition of the equipment. The introduction of condition
based maintenance strategy requires the establishment of a condition monitoring
system that is used to determine the condition of the maintained equipment. One
way to observe the condition of the equipment is to analyze the changes in its
audio signature.

This study examines the feasibility of an audio based condition monitoring sys-
tem for the condition monitoring of a certain type of equipment. First, the audio
signatures are measured in several conditions, where the equipment operates nor-
mally, and in three fault situations. Obtained audio signatures are then analyzed
by using statistical features in time and frequency domain as well as power spec-
tral densities.

From the three fault cases, two can be accurately detected by using the selected
methods. Different normal operational conditions do affect the sound signature,
but notably not as much as the detected faults do.
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Päiväys: 23. toukokuuta 2016 Sivumäärä: vi + 68
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Laitteen kunnonvalvontaan perustuva menetelmä on viime aikoina noussut
suosituksi kunnossapitostrategiaksi. Kyseisessä strategiassa huollot ja korjauk-
set tehdään laitteen senhetkisen kunnon mukaan. Tästä syystä strategian
käyttöönotto vaatii toimivan kunnonvalvontajärjestelmän. Eräs tapa havainnoida
laitteen kuntoa on analysoida laitteen tuottamia ääniä ja niiden muutoksia.

Tässä työssä tutkitaan ääneen perustuvan kunnonvalvontajärjestelmän soveltu-
vuutta tietyn tyyppisen laitteen kunnonvalvontaan. Työssä mitataan laitteen
tuottamia äänisignaaleja eri normaalin toiminnan olosuhteissa, sekä kolmessa eri
vikatilanteessa. Äänisignaalien analysointiin käytetään aika- ja taajuustason ti-
lastollisia parametreja, sekä äänisignaalin spektriä.

Valituilla menetelmillä pystytään selkeästi havaitsemaan kaksi kolmesta testa-
tusta vikatilanteesta. Erilaiset normaalin toiminnan olosuhteet vaikuttavat myös
laitteen tuottamiin ääniin, mutta vaikutukset ovat selvästi pienemmät kuin ha-
vaittujen vikojen aiheuttamat muutokset.
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Chapter 1

Introduction

As in any field of business, also companies providing maintenance services try

to constantly improve their operations. In the case of maintenance business,

the improvements might be more efficient use of resources, reduced downtime

of the maintained items or reduced number of failures. One way to improve

is to use appropriate maintenance strategy in each circumstance. Condition

based maintenance is one of the more recent widely used maintenance stra-

tegy, which can improve the mainenance operations by taking into account

the actual condition of the maintained item.

Since condition based maintenance requires information on the condition

of the maintained item, a condition monitoring system must be implemented

before the condition based maintenance strategy can be adopted. Condition

of an item can be observed through several manners. In case of electrome-

chanic equipment, changes in the condition often result in changes in the

audio signature of the equipment. Therefore observing the changes in equip-

ment’s audio signature is one possible way for determining the condition of

the equipment.

In this study, applicability of audio based condition monitoring system for

a specific type of electromechanic equipment is investigated. First, several

techniques used in audio based, or similar, condition monitoring systems

are searched from the literature. The number of different signal processing

methods is vast. Based on the literature review, wavelet transformations

1



CHAPTER 1. INTRODUCTION 2

are the most commonly used methods in audio based condition monitoring

systems. However, condition monitoring system considered in this study

requires the signal processing methods to be intuitive and computationally

light. Therefore time and frequency domain statistical features and power

spectral denstities are used in this study to analyze the audio measurements.

The applicability of the selected approach is tested by using data gathered

from experiments performed on several pieces of equipment. In order to

examine the stability of the audio signature of the equipment, measurements

from different usage patterns are included in the experiments. The purpose

of the condition monitoring system is to detect faults from the monitored

equipment. To test this ability, three different faults are generated to one

piece of equipment. Then k-nearest neighbours algorithm is used together

with the selected signal processing methods to examine the diagnostic ability

of the audio based condition monitoring system.

The rest of the thesis is structured as follows. Chapter 2 contains brief

introduction to maintenance, condition monitoring and audio signals. In

the condition monitoring introduction, the focus is on techniques applicable

to audio based condition monitoring systems. In Chapter 3 the condition

monitoring data obtained from the experiments are presented, as well as the

methods, which are used to analyze the data. In Chapter 4 the results of the

experiments are presented and analyzed and in Chapter 5 the findings are

discussed. Finally Chapter 6 concludes the study.



Chapter 2

Background

2.1 Maintenance

The user of any electromechanical equipment wants that the equipment is

able to perform the required tasks without interruptions due to malfunc-

tions. Depending on the equipment, unpredicted failure might cause ad-

ditional costs or even severe accident. Most pieces of equipment require

maintenance in order to stay in operative condition.

There are several different maintenance strategies, which are suitable for

different situations. One possible classification of the maintenance strategies

is to divide them into these three categories: breakdown maintenance, pre-

ventive maintenance and condition based maintenance (CBM) [28]. When

selecting the most appropriate maintenance strategy, several aspects of the

maintained item should be considered. Influential aspects are for example

spare part availability, mean time to repair, failure frequency, induced dam-

age by failure and available resources [8].

In breakdown maintenance, the equipment is maintained only after mal-

function has occured. This stategy is also known as run to failure mainte-

nance or reactive maintenance. Obviously, this strategy is not suitable for

safety critical items. It is also not a good strategy if a failure in one item

might cause other failures in the same item or other items, which then am-

plifies the effect of the initial failure. This maintenance strategy is usually

3



CHAPTER 2. BACKGROUND 4

used for less expensive and noncritical items.

Preventive maintenance aims to prevent the malfunctions by maintain-

ing the equipment periodically with a certain interval. The intervals could

be based on historical data or prognostics about the life time of the equip-

ment or some of its components. However, such interval is hardly optimal

for all equipment, especially in the case, where the same maintenance plan

is used for several equipment in various environments and usage profiles.

Due to various environments, usage profiles and other aspects affecting the

equipment, they tend to age and break down at various rates. Therefore,

for some equipment, the pre-scheduled maintenance plan causes unnecessary

downtime whereas other equipment break down before the next scheduled

maintenance.

CBM is similar to preventive maintenance in the sense that ideally in both

strategies, maintenance activities are always performed before actual prob-

lems occur. The idea of CBM is to monitor the condition of the equipment

and conduct maintenance procedures only when required. When applied

properly, CBM can decrease the maintenance costs and equipment failure

occurrences [28]. The greatest drawbacks of CBM are the high development

and implementation costs. Because CBM requires knowledge of the actual

condition of the equipment, a condition monitoring system is a vital part

of any CBM strategy. Therefore a condition monitoring system must be

developed and implemented before CBM can be applied.

2.2 Condition monitoring

According to the definition by Williams et. al. [32], condition monitoring is

comprised of continuous or periodic measurement and interpretation of data,

indicating the condition of the monitored item and determining its need for

maintenance. Some other authors use narrower definition by excluding the

determination of the need for maintenance [11]. In this study, the latter

definition is adopted, as the consideration of actual need for maintenance is

not within the scope of this study. Condition monitoring system can be thus

divided to three phases as presented in Figure 2.2.



CHAPTER 2. BACKGROUND 5

Data
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Figure 2.1: Phases of condition monitoring system. Modified from [1]

The first step is data acquisition. In order to tell something about the

condition of an equipment, it must be observed. In modern condition mon-

itoring systems, the observations are performed by sensors. The goal of the

condition monitoring system is to identify the condition of the monitored

equipment. Therefore the sensors should be selected so, that they measure

signals which manifest changes in the condition of the equipment. In dif-

ferent types of machines, the faults occur differently. Often faults or other

changes in equipment condition can be observed through changes for example

in vibrations, sounds, temperature or electic current. Some commonly used

sensor types are accelerometers, microphones, temperature sensors, current

sensors and oil sensors [16].

The second step is data processing, or data analysis. In this step, the data

acquired from the sensors is processed so that the most relevant information

concerning the condition of the equipment is extracted from the vast amount

of sensor data. First the data might require pre-processing, after which it is

analyzed by using some of the many algorithms, models or tools developed for

various circumstances. At the end of the data analysis, relevant information

is extractred from the data and fed to the next step.

The last step of the condition monitoring system is decision making sup-

port. The role of condition monitoring system in maintenance decision mak-

ing is to provide information on the condition of the equipment. Most of

the condition monitoring systems provide information only on the current

condition of the equipment. The analysis of the current condition is called

diagnosis. Sometimes the future condition of the monitored equipment can

be estimated as well. Prediction of time and type of potential upcoming

faults is called prognosis.
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2.2.1 Data acquisition

Data acquisition is in the basis of condition monitoring, because all the anal-

ysis and decision recommendations are essentially based on the data acquired

from the equipment. The problem in data acquisition is to choose what kind

of data is collected and how. The goal of condition monitoring is to gain

insight on the condition of the equipment. Therefore it is intuitive that the

acquired data should be such that it is affected by the changes in equipment

condition. Sometimes also the environmental conditions have influence on

the equipment. If that is the case, then the relevant environment parame-

ters should be monitored as well. There are several possible variables to be

measured and also several kind of sensors to measure them. Some of the

sensors, e.g. accelerometers or microphones for measuring acoustic emission,

must be attached to the monitored equipment, whereas other sensors, e.g.

microphones for audio signature measurements, humidity sensor, etc., can be

placed just close to the equipment, which makes them easier to install.

Since there are many different variables which can be measured, the type

of the data varies as well. Jardine et al. [16] divided the condition monitoring

data into three categories: value type, waveform type and multidimension

type. Value type means the data, which is collected one value at time, e.g.

temperature, humidity. Waveform type contains the data which is collected

at high sample frequency, usually during a relatively short time period. Ex-

amples of waveform data are vibration and acoustic signals. Multidimension

type contains the data which is collected as multidimensional variable, such

as image data.

Condition monitoring systems may differ also in terms of sampling in-

terval. Condition monitoring can be continuous or discrete. In continuous

condition monitoring, the measurements are taken continuously or at short

intervals with sensors permanently attached to the equipment, whereas in

discrete case, the measurements are taken and analyzed in discrete points in

time. Continuous sampling is more accurate solution, but it might be unnec-

essary or even simply not feasible. Appropriate sampling interval depend on

the equipment, its requirements and its usage. Oil analysis is a typical exam-
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ple of discrete condition monitoring and vibration monitoring is an example

of often continuous condition monitoring.

In many cases, the condition monitoring is done remotely, which requires

the data acquisition hardware to contain also a communication interface for

sending the data forward. Sometimes the equipment is in remote location,

which poses challenges regarding the connectivity. Depending on the type

of the connection, transfer capacity might be restrictive, if continuous online

condition monitoring is performed remotely by using vast amount of data.

In some cases the information security aspect of the data transmission must

be taken into account as well.

In addition to condition monitoring data, i.e. vibrations, audio signals,

environmental data, etc., also so called event data is collected. Event data

contains information on what has happened, (e.g. what faults have occured

and when, how the equipment has been used, etc.) and what has been made

(e.g. maintenance, repairs, etc.). When this data is combined with the con-

dition monitoring data, the deviations in condition monitoring data due to

some specific fault can be identified and that information could be used in

the future to predict the occurrence of a similar fault. This is important es-

pecially in the beginning of the condition monitoring system implementation,

when there usually is not information available on the effects of all different

fault situations. Another situation, where the event data is extremely useful

is the identification of the reason of unexpected data. For example, if the

equipment is modified, the condition monitoring data could change signif-

icantly. Without knowledge of the done modification, the changes in data

could cause unnecessary troubleshooting. However, the event data is harder

to collect automatically, so the implementation of the event data acquisition

and integration to condition monitoring data can be complicated.

2.2.2 Data processing

The purpose of the data processing step is to extract the useful information

from the vast amount of raw data obtained in the data acquisition step. Be-

fore the actual data processing, pre-processing of the data is often required.
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Data pre-processing can be, for example, cleaning the data from corrupted

measurements or selecting only a certain subset of the data. Methods used in

data processing step depend on the type of the acquired data. As described in

the previous section, condition monitoring data can be very versatile, which

means that there are vast amount of different data processing methods as

well. In this study focus is on acoustic signals. Because acoustic signals

belong to the waveform data type, the data processing methods explained in

this section are restricted to those for processing such data. The processing

of waveform data is also known as signal processing. The most common sig-

nal processing methods can be categorized in three categories: time domain

analysis, frequency domain analysis and time-frequency domain analysis.

Time domain analysis uses the original time series. Usually time domain

analysis is done through statistical parameters calculated from the time se-

ries. Mean, standard deviation, maximum and kurtosis are examples of con-

ventional statistical parameters. Features calculated from time domain signal

can be used to get an overall impression of the signal. [20]

Frequency domain analysis is based on frequency domain transformation

of the original signal. During operation, every mechanical component or pro-

cess in a machine has characteristic frequency signature. If a fault or a defect

changes the dynamics of the monitored system, the charachteristic frequency

signature often changes as well. Fourier transform is the most common fre-

quency domain representation of the time series data. Frequency domain

representation of the signal shows the frequency content of the whole time

series signal. Therefore the original time domain signal should be stationary.

[20]

Time-frequency domain analysis is also based on a transformation, but as

opposed to the transformations used for frequency domain analysis, the time-

frequency transformations takes both time and frequency domains into ac-

count. Time-frequency domain analysis is especially useful for nonstationary

signals. Short-time Fourier transform and wavelet transform are examples of

signal’s time-frequency representations.

Next, examples of various data processing methods utlizied in audio-based

condition monitoring systems are presented.
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Heng and Nor [13] used statistical time domain analysis to detect defects

from rolling element bearings. Several statistical variables, e.g. kurtosis and

crest factor, were calculated from sound pressure and vibration signals. The

values of the variables were then compared in normal condition and several

faulty conditions.

Ubhayaratne et al. [30] proposed a condition monitoring system for sheet

metal stamping machine. The condition of the machine was determined by

root meand square and maximum peak value of extracted audio signal.

Dai et. al. [5] proposed an audio feature based method for monitoring the

progress of a bone drilling process. Dai et .al. [5] applied discrete wavelet

transform to audio data. Products of standard deviations of the different

scales of wavelet transform were used as features in condition diagnosis.

Rafezi et al. [26] used audio signals to detect the wear of a drilling

tool. In their study, audio signal was first transformed by wavelet packet

decomposition and then statistical features, i.e. root mean square, peak

amplitude and variance were calculated from the selected wavelet packet

components. Those features were then used to distinguish worn tools from

the sharp ones.

Wu and Liu [33] used wavelet packet decomposition to extract features

from audio signals in fault diagnosis system for internal combustion engines.

In the study, audio signatures from a healthy motor as well as motors with

five different faults were recorded. Wavelet packet decomposition was applied

to those signals and entropies of the resulting components were calculated

for each wavelet packet. The entropy levels corresponding to different motor

conditions were then used to train a classifier for automatic fault diagnosis.

Also Olsson et al. [22] utilized wavelet packet decomposition technique

to extract features from audio signals. In that study, peak values of wavelet

packet coefficients from different scalings were used as features. The audio

signals were recorded from industrial robot arm movements in three differ-

ent conditions and the proposed condition monitoring system achieved 91%

accuracy.

More examples of different data processing techniques can be found for

example from the review article of Henriquez et al. [14]
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2.2.3 Feature selection

Especially in the case of waveform data, such as vibration or acoustic data,

the raw signals are usually so large, that it is not practical to use the whole

raw signal in diagnosis step. Instead, the output of the data processing step

is a set of features, which are supposed to appropriately represent the raw

data acquired from the equipment.

What the features are and how many of them are needed varies from case

to case. However, regardless of the occasion, there still are common require-

ments for the set of features. For example, the features should retain the

information from the original data regarding the examined phenomena. Also

the number of the features should not be unnecessarily large. If there are

features which do not contain any useful information, the excessive amount

of features just hinders the subsequent analysis and might also decrease accu-

racy of the condition diagnosis. The selection of the feature set is extremely

important because the later analysis and diagnosis are based on these fea-

tures.

The number of possible features is basically unlimited and the problem

is to find the right set of features. It requires knowledge of the studied

phenomena and the monitored system to decide the features which are cal-

culated, i.e. features which are considered useful. Sometimes, if the studied

system is simple enough, it might be easy to select one or two features which

are affected the most by the condition changes. However, often it is not so

clear how the measured signals behave in different conditions, so the set of

extracted features might be huge.

The methods for selecting the appropriate subset of features can be di-

vided into wrappers, filters and embedded methods [10]. Wrapper-based

methods utilize the selected learning machine as a black box to evaluate

the feature subsets based on their predictive power. Embedded methods

are inherent to the training process of the learning machine. These meth-

ods are usually specific to given machine learning method. Unlike wrappers

and embedded methods, filters are independent of the used machine learning

methods. Usually the filters select the feature subset so that it maximizes
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some objective function.

A number of objective function alternatives have been proposed, such as

Fisher’s linear discriminant [7], Laplacian score [12] and ReliefF [27]. Fisher’s

method is widely used technique and it has been applied to condition moni-

toring systems as well [3, 34, 35]. The basic idea of Fisher’s linear discrimi-

nant is to maximize the between class variance and minimize the within-class

variance.

Based on the selected method, feature selection can be seen as a part

of signal processing step or decision making support step of the condition

monitoring system framework presented in Figure 2.2.

2.2.4 Decision making support

Decision making support is the last step of a condition monitoring system.

In this step, the information extracted from the data in data processing step

is used to evaluate the condition of the monitored equipment. The output of

this step, and thus the whole condition monitoring system, is an estimation

of the equipment’s condition. There are two kind of estimations: diagnostics

and prognostics [16]. Condition diagnostics focus on the current condition

of the equipment and it aim to detect, identify and locate the present fault

modes. Prognostics on the other hand attempt to predict faults and failures

in advance, before they occur. In ideal situation all faults could be pre-

dicted through prognostics, because then there would be less failures and the

maintenance planning would be much easier and more efficient. However, in

practice that is not possible and therefore there is also need for diagnostics

capabilities.

Prognostics is naturally much harder to implement than diagnostics. It

also requires much more information, not only on the failure mechanisms,

but also on the fault propagation process. The information can be obtained

through historical data or by building models of the fault mechanisms. How-

ever, when the examined system is complex enough, modelling of the fault

becomes infeasible. In that case, a condition monitoring system with diag-

nostic abilities is an exelent tool to collect the necessary data for prognostics
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development. In this study, the decision making support is restricted to

diagnostics, leaving prognostics as a matter of future research.

In essence, diagnostics is a classification problem, where the features or

the condition monitoring data are inputs and the output is the diagnosed

state of the monitored system. As in the data processing step, the amount

of possible techniques to solve this problem is huge. In this section, some of

the most common methods are introduced.

One simple option is to set threshold values for certain features. If the

value of the feature exceeds the threshold value, the equipment is diagnosed

as faulty. The selection of the threshold levels manually may be difficult and

time consuming. That causes problems especially then, if several pieces of

equipment are being monitored and each of them has unique threshold levels.

To overcome the problem of threshold setting, it can be automated. [15]

Statistical process control (SPC) is similar to using thresholds, as the idea

of SPC is to measure the deviations of a signal or variable from a reference

signal or value. Control limits are determined based on the deviations in

normal condition. If the measured signal or variables drift outside the control

limits, it indicates that something has changed. Although SPC was initially

developed for quality control, it is also applied to fault detection in condition

monitoring systems. [9]

Various machine learning methods are quite common tools for diagnos-

tic purposes. Usually the selected machine learning algorithm is trained by

labeled samples. This supervised learning requires data from each fault sce-

nario. Some common machine learning methods are artificial neural networks

and support vector machines.

Inspiration for artificial neural networks arise from biological nervous sys-

tems. Artificial neural networks consist of interconnected processing ele-

ments, i.e. neurons. In each neural network there are at least one input neu-

ron and one output neuron. The connections between neurons, i.e. weights,

are adjusted based on the training data. Artificial neural networks have been

succesfully used for condition diagnosis for example by Wu and Liu [33], Yan

and Gao [34] and Rad et. al. [25]. In addition to the requirement of vast

training data, artificial neural networks have other drawbacks as well. One
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issue is that the neural networks are almost black boxes, as the network trains

itself and after the training, the resulting weight matrix is hard to interpret.

Artificial neural networks are also prone to overfitting. [29]

Support vector machines are essentially 2-class classifiers. They map

the original input space to a high-dimensional feature space, where the two

classes can be separated by a hyperplane. The mapping and the optimal sep-

arating hyperplane are determined by the training data. Despite the nature

of 2-class classifier, support vector machine extensions to multi-class classi-

fication problems have been developed [24]. Support vector machines have

been applied to condition diagnosis for example by Pöyhönen [24] and Yuan

and Chu [36]. More examples can be found from a survey of support vector

machine usage in machine condition monitoring and diagnosis compiled by

Widodo and Yang [31].

K nearest neighbours algorithm is a simple and widely used nonparamet-

ric classification method. The algorithm compares a new observation to the

training data and classifies the new sample to belong to the most frequent

class among the k nearest training data samples. Although the algorithm

requires training data as well, the amount of required training data is much

smaller compared to the amount of data required by artificial neural net-

works and support vector machines. K nearest neighbour based algorithm

have been used for condition diagnosis for example by Lei et. al. [18] and

Olsson et. al. [22].

It is also possible to think the condition of the monitored machine to be

a stochastic process, or more precisely, a Markov chain. Since the actual

condition of the machine can not be observed, the state of the machine must

be estimated based on the aquired sensor data, which is affected by the

condition of the machine. Hidden Markov models can be used for analysis

of such unobservable Markov chains. To define a hidden Markov model, the

number of possible states, transition probabilities between states, probability

distributions of observed variables in each state and probability distribution

of initial state are required. Again, test data is required to estimate the

model parameters. However, it is easier to incorporate new information to

hidden Markov model than to artificial neural networks or support vector
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machines. Hidden Markov model based applications to condition diagnosis

have been presented for example by Baruah and Chinnam [2], Bunks et. al.

[4] and Dong et. al. [6].

All of the aforementioned condition diagnosis methods are data driven,

because the observed training data is the only source of information on the

observed system. Another way to perform condition diagnosis is to use model

based methods. In model based methods, physics based models are con-

structed to predict how the system would behave in different situations and

different conditions and how that behaviour would affect the measured val-

ues. The new measured data is then compared to the outputs of the differ-

ent models. The condition of the system is then determined to be the same

as the corresponding model, which provided the most accurate prediction.

However, this method is difficult to implement, because it requires very deep

knowledge of the examined system. Especially when the system is complex

or when changes in environment affect the measurements as well, accurate

models are even harder to build.

2.3 Sound

Sound is a pressure wave that propagates through an elastic medium, e.g.

air. There are two fundamental mechanisms for generating sound waves. In

the first mechanism, sound wave is caused by a vibrating solid body. Sound

waves generated that way are also called structure-borne sounds. In the

second mechanism, sound wave is caused by pressure fluctuations induced

by turbulance and insteady flow. Those sound waves are also referred to as

aerodynamic sound. Most of the sounds generated by mechanical machines

are structure-borne sounds. When the machine is operating as intended, the

audio signature stays usually the same, given the operation conditions and

environment do not change. When the machine develops a defecct, it often

changes the vibrations and sounds generated by the machine. For example a

skilled technician can identify some faults from a car engine by just listening

to it. [21]

Humans perceive sound waves through pressure changes incident on the
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eardrum. Humans can hear sound pressures ranging from 20µPa to 200Pa.

As the range is so large, the sound pressure amplitude level is usually rep-

resented in decibels. When two variables differ by one decibel, the ratio of

those numbers is 101/10(≈ 1.26). Thus the sound pressure level (SPL) is

defined as

SPL = 10log10

(
p2

p2ref

)
= 20log10

(
p

pref

)
, (2.1)

where p is the root mean square amplitude of the sound wave and pref is the

reference sound pressure. Standardized reference pressure for sound waves

in air is 20µPa [20].

Microphones are used to convert air pressure changes to electronic signals.

Electronic signals are then converted to digital audio signals, which can be

processed by computers. Because SPL value is relative to the reference sound

pressure, the measurement instrumentation must be calibrated before it can

be used for SPL measurements.

Humans do not hear sounds below 20Hz or over 20kHz. Within that

range the perceived loudness of sounds with same amplitude depend on the

frequency of the sound wave. As measurement instruments aim to achieve flat

frequency response, the measured sound pressure levels must be filtered in

order to get information on the perceived loudness of the sound. A-weighting

is the most common method to obtain filtered sound pressure levels, which

correspond to the human perception. The sound pressure levels after A-

weighting are denoted as dBA. [20]

In audio measurements, the data acquisition device, i.e. microphone, do

not have to be in contact with the monitored equipment. Therefore it is often

easier to install compared to some other sensors such as accelerometers or

acoustic emission microphones. One major drawback of audio measurements

is the sensitivity to external noises and reflections of the original signal [20].

Therefore the ability of condition monitoring system to perform well in var-

ious environmental conditions is especially challenging when it is based on

audio measurements. In some cases the unwanted noise could be filtered from

the signal, but that requires knowledge of the properties of the actual signal

and/or the external noise. For example, if it is known that the observed sig-



CHAPTER 2. BACKGROUND 16

nal is limited to specific frequency range, other frequencies containing only

noise could be ignored. On the other hand, if the external noise is known

to be limited to certain frequency range, where the signal itself do not carry

much relevant information, those frequencies could be filtered as well. There

are also other, more sophisticated ways to remove unwanted noise from the

signal, but they usually require more than one measurement of the signal.

When the condition monitoring system is supposed to work in various en-

vironments, the external noise can be basically anything and for different

equipments the audio signatures differ. As a result, there is basically no way

to distinguish external noises from the noises generated by the examined

equipment, which also makes signal de-noising extremely challenging.



Chapter 3

Materials and methods

The feasibility of audio based condition monitoring system is investigated

through experiments performed on a specific type of equipment. In this

chapter, the experiments, data gathered from them and the used analysis

methods are explained in detail.

3.1 Materials

The methods described in this chapter are applied to data acquired from

several similar type of equipment. The examined pieces of equipment are

electromechanic systems consisting mainly of a container, which is sliding

on metallic rails, an electric motor and its drive. All the measurements

are conducted in an actual usage environment. In addition to audio signal,

the measurement instrumentation provides information on the status of the

equipment, i.e. whether the container is standing, accelerating, moving at

constant speed or decelerating. In this study, only the constant speed phase

of the movement is examined. The status information is used to extract the

section of audio signal corresponding to the constant speed phase. Hereafter

a sample refers to one such section of an audio signal acquired from one piece

of equipment during one travel. Here travel is defined as the time interval,

which starts when the equipment is preparing to move the container, and

ends when the container has stopped again.

17
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The data used in this study is acquired from five separate pieces of equip-

ment. Samples of travels in normal condition are obtained from each piece of

equipment. Those samples are used to analyze the variations between differ-

ent sets of equipment as well as the effects of different start and end positions

of travels. The amount of data used for the analysis of variations between

different sets of equipment is 65, 56, 5, 7 and 40 samples from equipment

#1 to equipment #5, respectively. To decrease other sources of variation,

start and end positions are the same for all the samples from one piece of

equipment and similar across all pieces of equipment.

Figure 3.1: Example of one audio sample. This sample is taken from equip-
ment #1 during normal operation. Start and end times of constant speed
phase are marked by vertical dashed lines.

Even when there is no fault present, the sound signature might change

because of different type of usage. For example applied load, length of the

travel and start and end positions of the travel may have an effect on the

audio measurements. Different cases of normal usage should not be identified

as a fault. Therefore it is necessary to take into account the effects these

variations have on the equipment’s sound signature. To test the effects of
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different loads, five different load situations are applied to one equipment.

The effect of the microphone position is tested simultaneously by changing

the microphone position during each load situation. The considered loads

are: zero, low, high, unbalanced high and full. Usually the load is distributed

evenly in the container, but in unbalanced high load case the load is applied

only on one side of the container. High load only on one side of the container

is not necessarily normal situation, but still possible scenario in normal usage.

For each microphone and load combination, approximately ten samples with

same travel length are collected from equipment #1.

Another source of variation in normal operation is the length of the move-

mement. When only constant speed phase is considered, the length of the

movement must be at least so large that the container actually moves at con-

stant speed between acceleration and deceleration. The effect of travel length

is investigated by examining samples from one piece of equipment with dif-

ferent travel lengths. For that purpose 41, 31 and 14 samples with respective

travel lengths of 0.33, 0.67 and 0.83 are collected from equipment #5. The

aforementioned lengths are unitless, as they are relavite to the longest pos-

sible movement of the equipment in question. The starting positions are the

same for every measurement, but the ending positions change according to

the length of the movement. Similarly for investigation of effect of different

start and end positions, samples with same travel lengths, but different start

and end positions, are collected from equipment #5. The amount of data

is 41, 38 and 21 samples for end positions 0.24, 0.40 and 0.57, respectively.

Again, the positions are unitless, as they are relative to the length of the

rails in the examined equipment.

To test the feasibility of audio measurements for condition monitoring in

this particular case, also data from faulty equipment is required. For that

purpose, three separate fault cases were examined in one equipment. The

fault cases were selected based on the frequency of the fault occurence, so

that some of the most frequent faults are considered. However, only such

faults were selected, which supposedly generate audible noise. The analysis

is restricted to the period, when the container is moving at constant speed.

By doing so, the different speeds and accelerations cause less variations to



CHAPTER 3. MATERIALS AND METHODS 20

Table 3.1: The number of samples from each piece of equipment.
hhhhhhhhhhhhhhhhhhExperiment

Equipment
#1 #2 #3 #4 #5

Normal operation 65 56 5 7 40
Different load 100 - - - -
Different length - - - - 86
Different position - - - - 100
Fault cases - 47 - - -

the measurements and thus it helps to detect the effects of the actual faults

being tested. The restriction to only constant speed phase excludes the

shortest measurements, as the container does not move at constant speed at

all between acceleration and deceleration.

In the first fault test, the metallic rails were modified so that there were

discontinuities in the rails. This would cause an additional noise each time the

container slides past such a discontinuity. The second fault case is generated

by removing lubricant from the sliding rails. The last case is also related to

the rails. This time the sliding is hindered by placing dirt on the rails. In the

last two cases, the friction between the container and rails is changed, which

is expected to change the sound generated by the equipment across the whole

period when the container is moving. The number of samples varies from

five from fault #2 to 17 from the third fault case. From normal condition

there are 13 samples and from the first fault case 12 samples. The samples

in first fault case are measured from travels of fixed length, whereas for other

cases the lengths of the signals vary.

The total number of samples from each piece of equipment for different

experiments are presented in Table 3.1.

3.2 Data acquisition

In all of the aforementioned experiments, one microphone is used to measure

the sounds generated by the monitored equipment. The placement of the

microphone is determined by the surroundings of the equipment, so it is not
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possible to unify the position of the microphone across equipments. Audio

measurements are generally sensitive to microphone position, as the distance

to the sound sources and reflections from surrounding structures affect the

measurements.

In addition to microphone, there are also other measurement instruments,

which provide information on the status of the equipment. As the examined

equipment contains a linearly moving object, it is natural to define the normal

operation phases as: Standing, accelerating, moving at constant speed and

decelerating. Through the data provided by those additional instruments, it

is possible to link the audio measurements to different phases of the normal

operation.

3.3 Signal processing

In this study, only conventional time and frequency domain methods are used.

The main reasons for using only simple and conventional methods are the

ease of interpretation of the results and small requirements for computational

resources. Those reasons origin from the legislative restrictions for recording

audio in public areas. Some of the possible locations of the examined pieces

of equipment are within areas, where the recording of audio is forbidden.

Therefore the audio measurements must be analyzed locally in real time,

which poses demands for computatonally simple signal processing methods.

Since the raw audio data can not be recorded, the measured audio signals are

represented as a set of features calculated from the signals. If the measured

feature values differ significantly from normal values for a given equipment,

the reason for the deviations is often determined by comparing the feature

values to previous fault situations. If some previously occured fault resulted

in similar changes in the feature values, the same fault has possibly occured

again. However, if there is no similar data, the ease of interpretation of the

features might provide useful information for narrowing down the possible

reason for the abnormal behaviour.

As described in Chapter 2, signal processing consist of signal pre-processing

and actual signal processing methods. In the following sections, the used sig-
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nal pre-processing procedures as well as used methods in time and frequency

domains are presented.

3.3.1 Signal pre-processing

Before the actual signal processing methods are applied, the validity of

aqcuired signals are checked. Signals may be invalid for example because

of instrumentation malfunction. Because the audio data and equipment sta-

tus information are used together in the analysis, measurement is discarded

if either of those signals are missing or incomplete. The next step is to incor-

porate the equipment’s status information to the audio signal. As each phase

of the normal operation cycle has its own unique sound signature, the raw

signal is divided into smaller bits corresponding to different phases. Different

faults are present in different phases in different ways, so the analysis of the

phases should be done separately and possibly by using different methods. In

this study, the analysis is restricted to the constant speed phase. The faults

considered in this case are such that they can be perceived by human ear. To

bring forth the features audible to humans, the audio signals are A-weighted

before the analysis.

3.3.2 Time domain analysis

The most straightforward way to gain information from the acquired audio

signal is to examine the raw audio signal, which is in essence a time series

of values corresponding to sound pressure levels at the location of the mea-

surement microphone. The examined time series can be described through

statistical features, i.e. parameters, calculated from it. Different features

describe different aspects, so calculating several features from one signal can

give comprehensive description of that signal. In this study, 11 statistical

features are used to characterize a signal in time domain. The feature set is

the same as the one used by Loutas et. al. [19] and some of those features

are also used in condition monitoring by Lei et. al. [18], Pachaud et. al. [23]

and Heng and Nor [13].
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The 11 parameters, which are used as the features are presented below.

Here {Xt} is assumed to be a time series.

1. Expected value

µ = E[Xt] (3.1)

2. standard deviation

σ =
√
E[(Xt − E[Xt])2] (3.2)

3. square mean root

xsmr = (E[
√
|Xt|])2 (3.3)

4. Root mean square (RMS)

xrms =
√
µ2 + σ2 (3.4)

5. Peak value

xpeak = max{|Xt|} (3.5)

6. Skewness (Third moment)

xskew = E[(
Xt − µ
σ

)3] (3.6)

7. Kurtosis (Fourth moment)

xkr =
E[(Xt − µ)4]

(E[(Xt − µ)2])2
(3.7)

8. Crest factor

xC =
xpeak
xrms

(3.8)

9. L factor

xL =
xpeak
xsmr

(3.9)

10. S factor

xS =
xrms

E[|Xt|]
(3.10)
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11. I factor

xI =
xpeak
E[|Xt|]

(3.11)

In the above mentioned functions, it is assumed that all the expected values

E[·] do exist as finite quantities, that do not depend on the time point t.

In this case, the random variable Xt is the sound pressure level next to

the observed equipment during the constant speed phase of one movement.

Obviously, the real probability distribution of X is not known, but it must

be estimated through the measurements. Parameter estimators calculated

from the measurements converge in probability only if the observed values

{x(1), x(2), x(3), . . . , x(N)} from one movement fulfill the corresponding sta-

tionarity assumptions (existence of finite expected values that do not depend

on t). In essence, that means that the audio generating process should be

stationary during the whole measurement period.

In practice those assumptions do not always hold exactly. However, as the

audio signal is measured only during the constant speed phase, the process

does not change too much during the measurements.

The measurement data is used to approximate the aforementioned pa-

rameters by using the the following estimators:

1. Mean

TD1 = x̄ =

∑N
t=1 x(t)

N
(3.12)

where N is the number of data points in the signal and x(t) is the t:th

observed data point of the signal.

2. standard deviation

TD2 = x̂sd =

√∑N
t=1(x(t)− x̄)2

N − 1
(3.13)

3. square mean root

TD3 = x̂smr =

(∑N
t=1

√
|x(t)|

N

)2

(3.14)
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4. Root mean square (RMS)

TD4 = x̂rms =

√∑N
t=1 x(t)2

N
(3.15)

5. Peak amplitude

TD5 = x̂peak = max
t
|x(t)| (3.16)

6. Skewness (Third moment)

TD6 = x̂skew =

∑N
t=1(x(t)− x̄)3

(N − 1)x̂3sd
(3.17)

7. Kurtosis (Fourth moment)

TD7 = x̂kr =

∑N
t=1(x(t)− x̄)4

(N − 1)x̂4sd
(3.18)

8. Crest factor

TD8 = x̂C =
x̂peak
x̂rms

(3.19)

9. L factor

TD9 = x̂L =
x̂peak
x̂smr

(3.20)

10. S factor

TD10 = x̂S =
x̂rms

1
N

∑N
t=1|x(t)|

(3.21)

11. I factor

TD11 = x̂I =
x̂peak

1
N

∑N
t=1|x(t)|

(3.22)

Mean value of audio signals is always close to zero, so too high or too low

values could indicate a failure in data acquisition device. RMS corresponds

to the loudness of the measured sound signal. When mean is zero, RMS is

equivalent to standard deviation. Skewness, kurtosis and crest factor as well

as L, S and I factors describe the shape of distribution. Skewness measure

the symmetry of the distribution; distribution which is symmetric about the
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mean has a skewness close to zero. Kurtosis measure the weight of tails of

the distribution. Normal distribution has a kurtosis value close to three,

whereas distributions with smaller tails have larger and flatter distributions

have smaller values of kurtosis. Crest factor as well as L, S and I factors all

describe in their own way, how much the extreme values differ from the rest

of the population.

3.3.3 Frequency domain analysis

As described in Chapter 2, frequency domain analysis considers the frequency

content of the signal. Power spectral density (PSD) describes how the power

of the signal is distributed over frequency range and it is often used in fre-

quency domain analysis. Before the PSD can be obtained, the signal must

be converted from time domain to frequency domain. Discrete Fourier trans-

form (DFT) is the most common way to perform the conversion. DFT of

x(k) on the interval [0, N − 1] is defined as

X(k) =
N−1∑
n=0

x(n)e−i
2πkn
N (3.23)

where 0 ≤ k ≤ N − 1 and N is the number of points in the signal. The

output of DFT is in general complex signal and contains information on

both amplitudes and phases of the frequency componenets. PSD takes into

account only the amplitudes of the frequency components, thus it is ignorant

to the phase information. The simplest way to estimate PSD is periodogram

and by using DFT it is calculated as

P̃per(k) =
∆t

N
|X(k)|2 (3.24)

The main drawback of periodogram is high variance of the PSD esti-

mator, which can also be seen from the example presented in Figure 3.2.

Periodogram is also inconsistent estimator, because the variance does not

approach zero as the sample size tends to infinity. One way to improve

the estimate is to divide the signal into shorter, equally sized segments and

then average the periodograms calculated for each segment. That is called



CHAPTER 3. MATERIALS AND METHODS 27

Bartlett’s method and it reduces the variance of the PSD estimate. Welch’s

method improves the estimate further by applying a window function to each

segment and allowing the segments to overlap. By doing so, the spectral leak-

age effect is reduced. Thus, PSD estimate obtained by Welch’s method is

Figure 3.2: Example of periodogram PSD estimate calculated by 3.24. This
sample is taken from equipment #1 during normal operation and it is the
same as presented in Figure 3.1.

P̃Welch(k) =
∆t

MU

M−1∑
j=0

|
K−1∑
n=0

w(n)x(n+ jD)e−i
2πkn
K |2, (3.25)

where M is the number of averaged segments, K is the length of one segment

and D is the offset between two consecutive segments. For example, for 50%

overlap, D = K/2. U is a scaling coefficient, which compensates for the

energy of the window function w(n).

U =
1

K

K−1∑
n=0

|w(n)|2 (3.26)

Window functions which start and end at close to zero basically force
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the signal to be periodic. In this study, Hamming window is used and it is

defined as

w(n) = 0.54− 0.46 cos(2π
n

K
), 0 ≤ n ≤ N (3.27)

As the length of each segment is now K < N insted of N in the pe-

riodogram, the frequency resolution of this estimate is worse than in peri-

odogram. The range of index k is now [0, K − 1]. In this study, Welch’s

method is used to estimate PSD. Therefore the notation P is used to denote

PSD estimate calculated by using equation 3.25.

An estimation of a characteristic PSD Peq,i of equipment i is obtained by

taking a median of all the measurements from that equipment separately for

each frequency component, i.e.

Peq,i(k) = median
j∈Ji

{Pj(k)}, ∀k ∈ {0, 1, 2, ..., K − 1} (3.28)

where Pj is the PSD estimate of measurement j. Ji is the set of measurements

from equipment i.

Traditionally the frequency domain analysis concerns a few selected fre-

quency bands, which are known to be associated with certain fault modes.

However, in this case the frequencies affected by the faults are not known

beforehand. Therefore the whole PSD estimate is used in fault detection.

In addition to the PSD estimate itself, some statistical features are also

used to describe the frequency content of the signal. Some of the used param-

eters, and the corresponding estimates, are similar to the parameters used in

time domain. However, some additional estimates, based on applied litera-

ture [19], are also considered. For those features, it is difficult to find exact

population quantities from the literature. One could say, however, that if

the corresponding expected values exist as finite quantities and they do not

depend on k, then by weak law of large numbers, estimates based on averages

do converge in probability to the corresponding expected values.
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The used frequency domain features are: 1. Mean

FD1 = P̄ =

∑K−1
k=0 P (k)

K
(3.29)

where K is the number of data points in the PSD and s(k) is the k:th data

point of the PSD.

2. Standard deviation

FD2 = Psd =

√∑K−1
k=0 (P (k)− P̄ )2

K − 1
(3.30)

3. Skewness (Third moment)

FD3 = Pskew =

∑K−1
k=0 (P (k)− P̄ )3

KP 3
sd

(3.31)

4. Kurtosis (Fourth moment)

FD4 = Pkr =

∑K−1
k=0 (P (k)− P̄ )4

KP 4
sd

(3.32)

5. Spectral centroid

FD5 = Psc =

∑K−1
k=0 f(k)P (k)∑K−1

k=0 P (k)
(3.33)

where f(k) is the frequency corresponding to k:th data poin of the PSD.

6. Spectral standard deviation

FD6 = Pssd =

√∑K−1
k=0 (f(k)− Psc)2P (k)

K − 1
(3.34)

7. Spectral RMS

FD7 = PsRMS =

√∑K−1
k=0 f(k)2P (k)∑K−1

k=0 P (k)
(3.35)
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8. Spectral shape parameter 1

FD8 = Pss1 =

√∑K−1
k=0 f(k)4P (k)∑K−1
k=0 f(k)2P (k)

(3.36)

9. Spectral shape parameter 2

FD9 = Pss2 =

∑K−1
k=0 f(k)2P (k)√∑K−1

k=0 P (k)
∑K−1

k=0 f(k)4P (k)
(3.37)

10. Spectral shape parameter 3

FD10 = Pss3 =
Pssd

Psc

(3.38)

11. Third moment of spectrum

FD11 = Psskew =

∑K−1
k=0 (f(k)− Psc)

3P (k)

KP 3
ssd

(3.39)

12. Fourth moment of spectrum

FD12 = Pskurt =

∑K−1
k=0 (f(k)− Psc)

4P (k)

KP 4
ssd

(3.40)

13. 0.5. moment of spectrum

FD13 = Pskurt =

∑K−1
k=0 (f(k)− Psc)

1/2P (k)

KP
1/2
ssd

(3.41)

3.4 Condition diagnosis

In this study, the amount of data from fault situations is not sufficient for

training a sophisticated machine learning algorithm, e.g. artificial neural net-

work or support vector machine. As the condition monitoring system should

be applicable to various machines, model-based methods are also inapplica-

ble.
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For condition diagnosis, a simple k nearest neighbor (k-NN) method is

used. As described in Chapter 2, the idea of k-NN is to assign a label to a new

sample based on the k nearest, i.e. most similar training samples. Euclidean

distance is used as a measure of similarity between two samples. Let y1

and y2 be the feature vectors of samples x1 and x2, respectively. Euclidean

distance between samples x1 and x2 is then

d(y1, y2) =
√

(y1 − y2)′(y1 − y2) (3.42)

The class label for new sample is then obtained by first finding the k training

samples with smallest euclidean distances to the new sample. Then the most

frequent class label in the set of k nearest neigbors is assigned to the new

sample. If there is no single most frequent class label, then the class is

selected, which has the nearest training sample. Before the classification,

the features are scaled to similar scale so that each feature has the same

importance when the distances are calculated. In this case, the features’

variations in the normal operation samples are utilized for scaling. The

features of each sample are scaled linearly so that -1 and 1 correspond to the

smallest and largest values of each feature in the normal operation samples.

Formally

ỹ = 2
y − yNmin

yNmax − yNmin

− 1 (3.43)

where ỹ is the scaled feature vector, yNmin and yNmax are vectors of mini-

mum and maximum values of each feature in the normal condition samples,

respectively. All of the calculated features do not necessarily contain any

useful information. Therefore only a subset of the original features are used

for classification. The feature subset selection is performed by filtering the

best features based on Fisher discriminants. Let T be the set of all features,

S ⊆ T the set of selected features and z the feature vector containing only

the selected features. Then define class means µi, total means µ, within-class

scatter matrix SW and between-class scatter matrix SW as follows

µi =
1

ni

ni∑
j=1

z̃j i = 1, . . . , C (3.44)
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µ =
1

n

C∑
i=1

niµi (3.45)

SW =
C∑
i=1

ni∑
j=1

(zj − µi)(zj − µi)
′ (3.46)

SB =
∑
i∈S

(µi − µ)(µi − µ)′ (3.47)

where C is the number of classes. Based on Fisher discriminant, the best

feature set consisting of m features is obtained by solving the following op-

timization problem

maximize
S⊆T

F (S) =
|SB|
|SW |

subject to |S| = m,

(3.48)

where |S| is the cardinatlity of S. Unfortunately finding the optimal subset

is NP hard problem. Therefore the selected subset is determined by heuristic

greedy algorithm. In greedy algoritm, Fisher discriminant ratio is calculated

intependently for each feature and then m features with largest values are

selected to form the set S. When only one feature is considered, Fisher

discriminant is calculated as

F (yk) =

∑C
i=1 ni(µ

k
i − µk)2∑C

i=1

∑ni
j=1(y

k
j − µk

i )2
, k = 1, . . . ,M (3.49)

where M is the total number of original features.

To decrease the bias of the k-NN algorithm, the classification is done

by using leave-one-out method. The features used for classification are thus

selected separately for each sample by using the whole data set except the

sample being classified.

The k-NN algorithm is then tested for different combinations of k and

m. Because the sample size is so small, some combination of k and m can

give very good results by chance. To obtain a more robust assessment of
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the classification accuracy, the most frequent classification result is used to

analyze the accuracy of the k-NN method.



Chapter 4

Results

In this chapter are presented the results of the analysis, when methods de-

scribed in Chapter 3 are applied to data obtained from the experiments.

4.1 Normal audio signature

The starting point of analyzing the audio signatures of the examined pieces

of equipment is to examine several audio measurements from one piece of

equipment. In Figure 4.1 are presented PSD estimates of 56 measurements

from equipment #1. The measurements are collected from travels with same

length, while the equipment was being used normally in actual usage en-

vironment. Due to the authentic environment, there are a few abnormal

measurements, which are caused by external noises.

The sound signatures of different pieces of equipment can be compared

in frequency domain by comparing the PSDs of the measured audio signals.

PSD estimates for each of the five pieces of equipent are constructed from

individual samples from that equipment by using equation 3.28.

From Figure 4.2 it can be seen that the frequency contents, and thereby

the audio signals as well, are clearly different for different pieces of equipment.

Also the distributions of the statistical features calculated from both time

and frequency domain signals differ between the pieces of equipment. Four

examples of those variations are presented in Figure 4.3.
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Figure 4.1: PSD estimates of 56 measurements from equipment #1. All the
measurements are taken from travels with same start and end positions.

4.2 Variations in normal operation

During normal operation, equipment can be used in many ways. Different

usage patterns may change the audio signature and condition monitoring

system should not mistake those variations as faults. First analyzed source

of variation is load. All the feature values from the load test can be found

from appendix A, but the most notable results are presented in this chapter.

In time domain features, the effects of load changes are small, except for

the unevenly distributed load. For example maximum and rms values are

generally higher in unevenly distributed load compared to other load condi-

tions. The differences between different evenly distributed loads are visible

in frequency domain features. For example, the value of spectral fourth mo-

ment (FD12) is much higher in high and maximum loads compared to low

and zero load situations, respectively. The corresponding values are listed

in Table 4.1. Again, the values of unevenly distibuted load are clearly dis-

tinguishable in several features, e.g. mean of PSD (FD1), spectral standard
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Figure 4.2: Averaged PSD estimates from five different pieces of equipment.

deviation (FD6) and spectral shape parameter (FD8).

Table 4.1: Examples of frequency domain features, which are different for
different evenly distributed loads.

Mic position #2 Mic position #5
PPPPPPPPPFD12

Load
Low High Zero Full

Min ∗ 10−8 0.857 1.311 0.925 1.846
Median ∗ 10−8 0.883 1.657 0.972 1.880
Max ∗ 10−8 1.071 1.692 1.013 1.909

In Figure 4.4 are presented two examples how different loads change the

PSD estimates. In both Figures 4.4a and 4.4b, median PSD estimates as well

as upper and lower limits of PSD estimates of given set of samples. Number

of samples considered in Figure 4.4a is 10 for low load case and 9 for high load

case. In Figure 4.4b, the corresponding sample sizes are 10 and 7 for evenly

distributed high load and unevenly distributed high load, respectively. From

Figure 4.4a it can be seen that the PSD remains approximately the same
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Figure 4.3: Four examples of statistical features, which differ among the
different pieces of equipment.

for most of the frequencies. However, the spikes at frequencies around 5.5

Hz and its harmonics are higher when there is no load applied compared to

the maximum load. The PSD estimates for evenly and unevenly distributed

high loads are shown in Figure 4.4b. The additional noise caused by unevenly

distributed load changes the PSD significantly for almost the whole frequency

range. Also the variance of PSD estimates is clearly larger when the load is

unevenly distributed.

Another source of variation in normal operation is the length of the move-

mement. All time and frequency domain feature values as well as the PSD

estimates for the measurements are presented in appendix B. There are two

main results from the length test. First is that the two longest movements

are very similar to each other according to the features and PSD estimates.

And the other is that the values of the shortest movements differ significantly

from the two other sets in many features. Differences between the shortest

and other travels are most apparent in features rms (TD4), C factor (TD8)

and mean of PSD (FD1). The differences in values of the aforementioned
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Figure 4.4: Changes in PSDs when load changes. (a) differences between
zero load and full load. (b) differences between high, evenly distributed load
and high, unevenly distributed load. In (a), the microphone is positioned at
location #5, whereas in (b), the microphone is located at #3.

featuers between the two shortest travels are presented in Table 4.2.

The position of the container might also affect the sound signature of

the equipment. That is the case especially if there is some stationary sound

source in proximity of the container route. For example the motor’s drive

can be loud, if not soundproofed. In Figure 4.5 the rms values of several

measurements from equipment #5 with same length are plotted against the

end positions. The rms values are clearly increasing as the end position

increases. However, this phenomena does not occur in every equipment.

Rest of the results from container position test are presented in appendix C.

4.3 Fault situations

To test the audio measurements as a condition indicator, three separate faults

were generated to one piece of equipment. The changes in time and frequency
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Table 4.2: Examples of time and frequency domain features, which are dif-
ferent for samples from short and long travels. The feature values in this
table are median values from the measurements. P-values are results from
Wilcoxon rank sum test for same medians against alternative hypothesis of
different medians.

hhhhhhhhhhhhhhhhhhFeature
Travel length

0.33 0.67 P-value

TD4 1.886 ∗ 10−3 3.702 ∗ 10−3 2.78 ∗ 10−3

TD8 1.279 1.349 1.01 ∗ 10−11

FD1 12.773 18.497 6.63 ∗ 10−9

domain features caused by the three tested fault cases are visualized in Figure

4.6. From the figure it can be noticed that the third fault has the highest

variance in the values, especially for mean (FD1), standard deviation of PSD

(FD2) and spectral standard deviation (FD6). Most of the values of those

features are also clearly above the maximum values of normal condition.

The variations are not so large in the second fault, but still slightly larger

than during the normal condition. However, the values are mostly within

the normal extremes except for spectral standard deviation (FD6). The first

fault scenario show much less variation compared to other measurements.

Most of the features are between the normal minimum and maximum, but

the maximum value of the signal (FD5) and other features derived from it,

i.e. crest factor (FD8), L factor (FD9 ) and I factor (FD11) are slightly

larger than the corresponding values in normal condition.

In Figure 4.7 are the PSD estimates from the three fault cases as well as

from operation in normal condition. The PSD estimates for each case are

calculated by using equation (3.28). From the figure it can be seen that the

PSD of the first fault case is almost identical compared to the PSD of normal

condition. The PSDs of the last two fault cases differ from the normal case

in frequency ranges 7-12 kHz and 3-9kHz for second and third fault cases,

respectively.
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Figure 4.5: Audio signal rms values plotted against travel end position. Data
is acquired from equipment #5.

4.3.1 Classification results

Before the actual classification, the Fisher discriminant is used to identify the

best variables for the classification task from the time and frequency domain

features as well as power density estimates at different frequencies. The val-

ues of Fisher discriminant for all time and frequency domain parameters and

13 PSD estimate indices with the greatest values are presented in Table 4.3.

The discriminant values are much higher for selected PSD estimate indices

compared to the discriminant values of other features. The distributions of

five variables, which have the highest discriminative information based on

Fisher discriminant are illustrated in Figure 4.8. The variables in the figure

are scaled by using (3.43).

To demonstrate the disctiminative properties of the audio data, each sam-

ple is assigned to one of the four classes, i.e. normal, fault #1, fault #2 or

fault #3 by using k-NN algorithm. The classification results for different

number of considered variables m and nearest neighbors k are presented in
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Figure 4.6: Scaled values of the time and frequency domain parameters in all
three fault cases. The plus signs and horizontal lines at -1 and 1 correspond
the median, minimum and maximum values of the features in normal condi-
tion, respectively. The boxes span from first to third quantile, the horizontal
line within the box denotes median and the whiskers indicate the minimum
and maximum values.

Table 4.4. k = 1 and k = 2 are equivalent, so k = 2 is omitted and because

the sample sizes are so small, maximum value of k is set to five. The number

of variables used for classification ranges from one to ten. The number of

missclassifications is smallest for combination (k,m) = (5, 6) with two misses

and largest for (k,m) = (5, 1) with 10 misses. The mode of missclassification

rate is four samples out of 47 and it is achieved 13 times.

The most frequent result is presented as a confusion matrix in Figure 4.9.

This result was obtained ten times in 40 different combinations of m and k.

The ten parameter combinations are written in italic in Table 4.4. Even if the

misclassification rate changes with different k and m, the accuracy between

groups {Normal, Fault #1} and {Fault #2, Fault #3} remains good. When

k > 1, only once a sample from fault #1 is classified as fault #2 and otherwise

there are no misclassifications between those two groups.
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Table 4.3: Fisher discriminant values of all time and frequency domain fea-
tures as well as top 13 PSD estimate indices.
Feature Value
TD2 1.24
TD4 1.24
TD3 0.77
TD5 0.69
TD8 0.16
TD11 0.14
TD9 0.13
TD6 0.06
TD7 0.04
TD10 0.02
TD1 0.00

Feature Value
FD6 5.68
FD2 3.50
FD1 2.67
FD13 1.08
FD7 0.75
FD12 0.68
FD11 0.41
FD10 0.33
FD5 0.30
FD9 0.14
FD3 0.03
FD4 0.02
FD8 0.00

Feature Value
P (626) 893
P (667) 568
P (669) 556
P (670) 555
P (662) 453
P (677) 451
P (573) 434
P (570) 432
P (575) 410
P (657) 394
P (625) 390
P (672) 385
P (526) 377

Table 4.4: The number of misclassified samples for different number of con-
sidered variables m and nearest neighbors k. The smallest value is bolded
and the values corresponding to combinations resulting in the most frequent
result are written in italic.
HHH

HHHk
m

1 2 3 4 5 6 7 8 9 10

1 9 7 8 9 7 8 8 6 7 8
3 6 8 5 5 4 4 4 4 4 5
4 9 7 6 6 4 4 4 4 5 6
5 10 7 5 6 4 2 4 4 4 6
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Figure 4.7: PSD estimates of normal operation and three fault cases.

Because the size of the test data is so small, it is also interesting to

examine how much the set of selected variables changes when one sample is

left out. The selections of the most common variables within top five are

presented in 4.10. The first variable is the same for each iteration. Also four

of the five variables are almost always among the top five and most of the

time they consist the top four variables. There are some variations especially

in the selection of the fifth variable, but also the second, third and fourth

variables are occasionally different from the usual top five variables.
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Figure 4.8: The variations of the variables with highest Fisher discriminant
value in each fault case. The scaling and interpretation of boxes are the same
as in Figure 4.6

Figure 4.9: Confusion matrix of the most frequent classification result.
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Figure 4.10: The appearance of the five most frequent parameters in 47
leave-one-out iterations.



Chapter 5

Discussion

The audio based condition monitoring often rely on the assumption that the

equipment has a characteristic sound signature, which stays fairly constant

when the condition of the equipment and its environment stay the same.

Based on the measurements presented in Figure 4.1, it seems that the as-

sumption of repeatability is valid also in this case. There are clearly some

outliers due to external noises. However, the number of abnormal samples

is so small, that the external noises do not prevent the condition monitoring

through audio measurements in similar environments. On the other hand,

the few outliers show that excessive external noise change the audio signature

remarkably. Therefore, in noisier environments, it is possible that condition

monitoring through audio measurements is not possible.

The comparisons between different pieces of equipment reinforce the as-

sumption that different pieces of equipment have different sound signatures.

The differences are caused not only by some adjustable design parameters,

e.g. size or speed etc., but also by different technical implementations. There-

fore it is not feasible to construct a model based condition monitoring system

for these equipment, as new model should be developed individually for al-

most every equipment.

In the load test, the unevenly distibuted high load differs the most from

the other load situations. As there is high load only on one side of the con-

tainer, the container is tilted, which causes additional parts of the container

46
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to be in contact with the rails. That results in an excessive noise, which can

be seen through the changes in the values of several features. That kind of

load is, however, rarely applied in actual usage.

Among the other load situatons, the changes in audio signatures are not

so large. Most notably, the changes seem to be smaller than the changes

caused by most of the tested faults. In frequency domain the changes occur

at the frequency ranges corresponding to the characteristic frequencies of the

motor. If condition diagnosis is done by comparing current measurements

to previous results, the various loads increase the variance of some features.

Because the different normal loads do not change the audio signature as much

as some faults do, those faults should be distinguishable even if information

on load is not available or taken into account.

As expected, the position of the microphone changes the acquired sound

signature, as the reflections and distances to sound sources are different. For

example, in Figure 4.4 the effect of microphone position can be seen through

the peaks at around frequencies 11 kHz and 16.5 kHz, which are clearly more

prominent and have different shapes in 4.4b than 4.4a. Based on this test it is

not possible to say which position is the best. However, it can be said that if

the microphone positions are not the same, comparison between two similar

equipment even in similar environments based on the features considered in

this study is not feasible.

Also the start and end positions of the travel as well as travel length have

effect on the audio signature of the equipment. Since travels with different

lengths can not have same start and end positions, part of the changes asso-

ciated with different travel lengths are caused by differences in start and end

positions.

Due to changes caused by start and end positions of the travel, a condition

monitoring system can detect faults and other anomalies more accurately if

only travels with same start and end positions are used as normal reference.

The main drawback of that approach is that it requires normal reference for

every different combinations of travel start and end positions. Frist problem

arising from that is the increased need for storage space, as the number of

differenct combinations can be large. Another and more significant problem
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is the numer of normal reference samples. Some travel positions might be

rarely used, so condition monitoring system might be unable to detect faults

during such travels due to lack of normal reference data.

The similarities between spectrums of fault case #1, i.e. discontinuity in

the sliding rails, and normal operation were expected, because the PSD aver-

ages the frequency content of the whole signal and the phenomenom caused

by the first fault, i.e. the sound when the container passes the discontinuity,

is localized in short timeframe. It is also difficult to distinguish the sound

caused by the fault from the time domain signal, because in the audio signal

there are often similar and even louder noises even when there is no fault

present. Still the accuracy of the k-NN classifier is very good also for that

fault, even though it only uses power densities at various frequencies as fea-

tures. The reason for this lies in the difference between the type of samples

from normal operation and the first fault case: the samples of normal opera-

tion are measured from travels with random length, whereas the samples of

the first fault are all measured from travels with fixed length and same start

and end positions. The results described in Chapter 4 also show that the

sound signature slightly changes when the position and length of the travel

changes. Because of the similarities of the first fault case’s samples, k-NN

algorithm likely finds another sample from the same fault to be the near-

est neighbour, even though samples from normal operation might be just as

close, if the start and end positions were the same.

From the features calculated from the samples, only maximum value and

a few other features derivatived from the maximum seem to display difference

between normal situation and the first fault case. However, the difference

in the values of those features are not very large and any external noise can

easily cause large variations in maximum value. Maximum value on its own

does not reveal much about the fault. Considering all that, it seems that

there is no adequate way to detect faults similar to the fault #1 by using the

methods presented in Chapter 3.

However, sound measurements can still be used to identify and even lo-

calize those faults, at least if information on the position of the container is

available. Then the fact that the sounds caused by the fault occur only in



CHAPTER 5. DISCUSSION 49

specific location can be used to distinguish such a fault from other similar

noises appearing randomly. The position information can be used to identify

the fault by examining the sound pressure levels, i.e. short term rms values

of the audio signal, against the position of the container, if such information

is available. By comparing the rms against position plots presented in Figure

5.1, it can be seen that in the measurements of faulty equipment, there are

peaks at positions 0.44 and 0.53, which are not present in normal condition.

In addition to noise, the discontinuity in rails most likely causes also abnor-

mal vibrations to the sliding object. If vibrations of the sliding object are

measured, the first fault would probably be much easier to detect through

the vibration data.

Figure 5.1: Audio signal rms levels against position of the sliding object.
Left figure is from normal operation and right figure is from fault case #1.

The two other fault cases were quite similar, so they also caused similar

changes to the measured features. In both faults, the friction between the

rails and the container is increased, which changes the resulting sound when

the container is moving.

Friction noises can be classified in two types based on the contact pressure.
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In this case, the contact is weak without any apparent stick-slip. In such

situations, the noise is caused by the surface roughness. That kind of noise

is called roughness noise and its characteristics are rather low amplitude and

broad frequency band. [17]

The theory of friction induced noise agrees with the experiments, as the

power increases in wide frequency band due to increased friction. The friction

increased more in the third fault case. Therefore the friction noise has higher

amplitude and wider frequency band. The grater changes in the third fault

case enabled to distinguish the last two faults from each other. However, in

the test cases the faults were generated manually in an instant, whereas in

actual usage the severity of the faults vary and most likely progress gradually

through time. Therefore it might be a troublesome task to distinguish the

two faults from each other if they were to occur naturally during normal

usage.

In the fault test, only three possible fault cases were tested. In reality

the number of faults is much higher. Different faults require different anal-

ysis methods, which can be seen for example in the first teted fault case.

Based on this study, some faults can be detected through simple time and

frequency domain analysis, but many other faults require more advanced

analysis techniques, e.g. those introduced in Chapter 2.

With one microphone in an arbitrary environment, the fault identification

is very challenging. In the monitored equipment there are several possible

sound sources and with one microphone it is practically impossible to derem-

ine the source of the abnormal sound. If there are other data available as

well, such as vibration data, position data and operational data, i.e. what

is supposedly happening at each time, it would be possible to combine these

data sources and thus deduce the possible location and/or the cause of the

abnormal noise. An example of this is presented above in the case of the

first fault, where the locations of the rail discontinuities were found out by

combining the audio data to position information.

The min-max scaling used in this study is not suggested to be used in ac-

tual condition monitoring system because of its sensibility to outliers. When

sample size is large enough, more robust way to scale the features is to use for
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example 5th and 95th percentiles of the observed normal condition feature

values. In this study the sample size is so small, that the use of quantiles

is not reasonable. The changes in selected parameters during leave-one-out

cross validation demonstrate the sensibility of the min-max scaling and effects

of small sample size.

As the condition of the whole equipment is being considered, the num-

ber of possible faults is vast. Therefore it is not possible to test each of

them and to obtain training data for the classifier. That is why the classifier

demonstrated in Chapter 3 can not be used in actual online condition mon-

itoring system. Shin and Jun [28] discuss the issue of condition monitoring

system without or very scarce prior data. They suggest that in such situ-

ation, a physics-based model might be suitable solution. In this particular

application, physics-based models are not applicable because of diversity of

the considered faults and equipment/enviroment types. Another proposed

solution is to use machine learning techniques with unsupervised learning

properties in the beginning of the condition monitoring system implemen-

tation. As the amount of observed data from several conditions increases,

supervised machine learning thechniques can be applied.

One simple alternative for condition diagnosis technique is to establish

limits for normal operation right after the data acquisition system is installed.

By doing so, it is assumed that the equipment is in normal condition for a

while after the data acquisition system is installed. When the system is

installed, the technician who installs the data acquisition hardware can also

check the condition of the monitored equipment and fix it if necessary. Of

course, it is possible that the equipment break right after the installation, but

since there is no other way to remotely check the condition of the equipment,

the aforementioned assumption is the best bet for obtaining reference data

of normal condition.

Then if some parameter value drifts outside the normal limits for a longer

period of time, something has most likely changed in the equipment or its

environment. If the reason for abnormal signals is found to be a fault in

the equipment, the latest measurements can be later used as reference for

identifying similar faults.
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Normal Noise Faulty Fault 2

Fault 1

··
·

Fault m

Figure 5.2: Possible structure of hidden Markov model used for condition
diagnosis. Dashed lines and nodes represent components, which are not
always present in the model.

Similar approach might be possible to automate by using adaptive hidden

Markov models. The basic idea of hidden markov models is presented in

Chapter 2. In this case the number of states in the model could be three plus

m, where m is the number of fault cases, where reference data is available.

Out of the three first states, one would be normal state, one would be noise

state and the last one would be faulty state. In Figure 5 a possible structure

of the model is illustrated.

Initially the equipment is always in normal state, as described earlier.

If the values of the monitored parameters are not normal enough, the state

changes to ”Noise”. When the state changes to ”Noise”, the ”Faulty” state is

being updated based on the observations in ”Noise” state. If the anomality

has occured due to external noises, the following samples are most likely

normal, which change the state back to ”Normal”. However, if the changes

in the observed data originate from a fault, the audio signature characteristic

to the fault are most likely present also in the following samples. If the

equipment stays in the ”Noise” state and the sound signatures exhibit similar
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abnormal characteristics long enough, ”Faulty” state will adapt to the fault

and the state of the equipment changes to ”Faulty”.

If the newly constructed ”Faulty” state is similar to some earlier observa-

tions of a certain fault, the state of the equipment would move to the node

corresponding to that fault. If the fault is observed the first time, the current

”Faulty” node is added to the model as a new fault reference.

The issues regarding this method include the estimation of transition

probabilities, determining the learning rate of ”Faulty” node and selecting

which features to use for determining the states. In practice the only way

to estimate the transition probabilities is through observed data, which is

usually not available in the beginning of the condition monitoring system

implementation. Therefore this method is not suitable as the initial diagnosis

system.

The estimation of the model parameters belong to one of the possible

directions of future research, i.e. investigating the actual implementation

of condition monitoring system and its integration to maintenance strategy.

Some of the interesting topics in that area are the propagation of the faults

and condition prognostic possibilities as well as the maintenance decision

making based on the condition monitoring data. Regarding the propagation

of the fault, it is challenging to select the correct tolerance for abnormal

observations before the equipment is classified as faulty.

Another area of future research is the performance of different analysis

methods in detecting different type of faults. Especially interesting would

be to investigate how many faults can be found by using the simple meth-

ods used in this study or how the condition diagnostics can be improved

by integrating several sources of information. A third direction to future

research is the audio measurement aspect of the study, e.g. how much a

condition monitoring system might improve if there are two or more micro-

phones. Supposedly with several microphones, the information gained from

the audio signals can be greatly increased. For example it might be possible

to better identify the source and location of the sound and separate sounds

from different sources.
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Conclusions

In this study, feasibility of utilizing audio measurements for equipment con-

dition monitoring is examined. The experiments show that audio signature

of single equipment is fairly repetative, given certain usage pattern. Audio

signatures are also unique for each equipment. The uniqueness makes data

driven approach the only feasible option for condition diagnosis.

Variations in load, length of the travel as well as start and end position of

the travel affect the sound signature of the equipment. The changes due to

variations in normal usage patterns are smaller than the changes caused by

several faults. Thus the audio based condition monitoring system can be used

even if the changes in usage patterns are not taken into account. However, for

the condition monitoring system to be as accurate as possible, only samples

with similar usage pattern, i.e. load and travel, should be compared to each

other.

There are plethora of methods for analyzing audio data, but even sim-

ple time and frequency domain analysis methods are capable to distinguish

and detect faults from the equipment. Especially those faults are clearly de-

tected, which cause constant noise during the travel. However, not all faults

can be found, which generate additional noises. Faults which cause shorter

and quieter noises at certain location are hard to distinguish by using the

proposed methods.

On its own, audio based monitoring is not comprehensive enough to form
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a condition monitoring system for the examined equipment. However, audio

measurements can be a useful addition to a condition monitoring system,

when used in conjunction with other data sources. The implementation to

actual condition monitoring system requires still some work, especially re-

garding the propagation of faults and decision making support, i.e. when to

define the monitored equipment as faulty.
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Appendix A

Appendix A

Results of the load test. On x axis are the different load and microphone

position combinations. There are five load situations: zero, low, high, uneven

and full and five microphone positions: #1 to #5.

Figure A.1: The values of first eight time domain features in load experi-
ments.
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Figure A.2: The values of rest of the time domain features as well as first
five frequency domain features in load experiments.

Figure A.3: The values of rest of the frequency domain features in load
experiments.
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Appendix B

Comparison of travels with different lengths. On x axis, smaller number

correspond to shorter travel.

Figure B.1: The values of first eight time domain features in travel length
experiments.
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Figure B.2: The values of rest of the time domain features as well as first
five frequency domain features in travel length experiments.

Figure B.3: The values of rest of the frequency domain features in travel
length experiments.
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Figure B.4: Averaged PSD estimates of travels with different lengths.
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Appendix C

Comparison of travels with different start and end positions. On x axis,

smaller number correspond to travels with smaller end position.

Figure C.1: The values of first eight time domain features in travel position
experiments.
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Figure C.2: The values of rest of the time domain features as well as first
five frequency domain features in travel position experiments.

Figure C.3: The values of rest of the frequency domain features in travel
position experiments.
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Figure C.4: Averaged PSD estimates of travels with different start and end
positions, but same lengths.
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