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Cars often utilise only a fraction of their capacity. Ride-sharing utilises the excess
capacity by connecting the drivers and the passengers. This Thesis develops a
model to evaluate the performance of a ride-sharing platform. The objective of
the model is to create performance estimates to see if a ride-sharing service is a
feasible concept in a given area.

Platforms facilitate the markets between the supply and the demand. The users of
a platform benefit from the number of other users. This is called as the network
effect. People will not use a service that does not provide them with enough value.
To meet this requirement, a service with a network effect must have a sufficient
number of users that is called the critical mass. Services are often piloted with a
small sample of users. Piloting a platform service that needs a critical mass may
be challenging because reliable data cannot be obtained with only a few users.

Agent-based modelling produces comprehensible results about the performance
of a modelled platform. The model provides quantitative results that make sense
and similar results have been obtained in previous studies. The demand forecast
employed in this Thesis do not correspond real data, but they could be easily
replaced by results derived from more advanced traffic models.
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Henkilbautojen kapasiteetista kdytetadn yleensa vain murto-osaa. Kimppakyy-
tipalvelut ottavat kapasiteetin kidyttoon yhdistelemalla kuljettajia matkustajiin.
Tassa tyossa kehitetddn malli alustan suoriutumisesta kimppakyytipalvelulle.
Tavoitteena on vastata kysymykseen: "Soveltuuko palvelu tutkitulle alueelle?"

Alustat yhdistédvit palvelunaan eri markkinaosapuolet; kysynnin ja tarjonnan.
Alustoilla on verkostovaikutuksia, eli kiyttdjat hyotyvit toisten kiyttajien suuresta
méaarasta. Kriittinen massa on se maara kayttéjia, jolla palvelu houkuttaa
kumpiakin osapuolia kayttajiksi. Palveluita voidaan pilotoida ennen kayttoonottoa
pienelld méaaralla kayttajia. Alustapalvelu vaatii kuitenkin kriittisen massan
toimiakseen, joten niita voi olla hankala pilotoida. Luotettavaa dataa ei pystyta
tuottamaan vain muutamalla kayttajalla.

Agenttipohjainen malli tuottaa helposti tulkittavia tuloksia mallinnetun alustan
suorituskyvysta. Tulokset ovat tolkullisia ja vastaavat aiempia tutkimuksia kimp-
pakyytipalveluista. Kaytetyt kysyntdennusteet eivit valttamétta vastaa todellista
dataa, mutta ne on helppo korvata kehiittyneempien liikennemallien antamilla
tuloksilla.

Avainsanat: Alusta, Kimppakyyti, Soveltuvuustutkimus, Agenttipohjainen
mallintaminen, Paritus
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DAR dial-a-ride
DARP dial-a-ride-problem

DART dial-a-ride-transit

DRT demand responsive transportation
FIFO First-in-First-out

HOV high occupancy vehicle

MaaS mobility as a service

PTAL public transport accessibility level
SOV single occupancy vehicle
Variables

05 distance of the shortest path between ¢ and j

Sk speed of a car owned by user k
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t(k)  the earliest possible departure time for user k
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x,(k) travel cost savings as a passenger for user k
xq(k) travel cost savings as a passenger for user k
yp(k) travel cost savings as a passenger for user k

4(k)  travel cost savings as a passenger for user k

Y

h(e)  the objective value for match e

e) value or surplus for the passenger in match e
) value or surplus for the driver in match e

cw(k) value for the waiting of user k

ci(k)  value of time for user k
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rf initial charge for a passenger
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04 per kilometre for a driver
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Chapter 1

Introduction

1.1 Background

Platforms are services that connect different sides of interaction [1]. For instance,
a shopping mall is a platform that creates markets inside the mall. Fach store can
benefit from the customers of the other stores by differentiating their selection. The
variety of goods sold in the mall is greater than the selection of any single store.
Together they establish a platform ecosystem [1]. What makes digital platforms
timely is the advancement of technology [1]. Digitalisation has opened the possibility
for new business models.

Major players have been overthrown by smaller platform business; taxi companies
have lost their clients to Uber [2][3], Blackberry has fallen behind Apple [4] and retail
business has moved to Amazon [5]. The common factor in these developments is
that the platform, instead of competing with a product of its own, offers a channel
for other businesses to provide their products on the platform.

Many platforms are multi-sided markets, arising from the platform connecting
multiple sides of the market within the platform ecosystem. Two-sided markets are
the most common, as most businesses have two sides: supply and demand. The
platform acts as a broker between supply and demand. For example, the game console
connects the game industry and the gamers. Having both sides for the markets
creates the chicken-or-egg problem [6]. That is, the platform must have suppliers
in order to offer something for consumers, but suppliers are unwilling to join the
platform without consumers. The effects in which the quantity of either side has an
impact on the value of the product are called network effects.

Network effects in brokerages are commonly cross-side externalities as users

benefit mainly from the users of the other side of the market. Same-side externalities



often occur with technology standards [7]. Technology standards have increasing
profitability with the number of the adopters [8]. The markets of technology standards
have a tendency to tip over to a technology that has gained enough adopters compared
to the alternative technologies, making the given technology a dominant design. The
word critical mass may be used to mean the point where the tipping occurs. It can
also refer to the number of adopters, whereafter the network becomes self-sustaining.
Early adopters [9] may try the service, but without enough users, the utility is too low
and using the service will be discontinued. Network effects are present in platform
economics. Seen from this perspective they share similarities in market behaviour

with the technology standards

Demand responsive transportation (DRT) is one of the possible applications for
the platforms. In DRT, the supply is tailored on-demand, in contrast to buses with
timetables and fixed routes. The combined supply makes the service more valuable
to customers. If one were to directly contact the supply of just one taxi driver, there
would be a serious lack of availability, because the taxi driver might already have a
customer. The location of the taxi driver could be inconvenient. The driver could be
on the other side of the town, resulting in a long waiting time for the consumer and
creating costs for the driver. Taxi companies combine the supply provided by many
drivers to one. It is more likely within multiple taxis that at least one to be free
compared to a given taxi. The taxis are dispersed geographically and consequently,
the nearest taxi is likely to be nearer than if only one taxi were contacted. The service
level can thus be significantly improved by increasing the number of taxis. These
effects have been studied [10] and tested with a piloted mass DRT system called
Kutsuplus, which did show the effect of increasing profitability with the number of

users [11].

The availability of excess resources can give opportunities for business ideas. Such
resources can be almost free because otherwise they would not be exploited. The
ownership of such resources may be dispersed. This gives platform solutions an
advantage because they have the capability to combine the access to the supply of
such resources from multiple suppliers. One such unexploited resource is private cars.
The utilisation rate of cars is low, given that the cars are parked most of the time.
The car has a fixed number of seats, thus empty seats are an excess capacity. The
problem is that of providing access to the excess capacity often requires work, which

the owners are unwilling to provide without compensation.

In ride-sharing, travellers share the same car with other individuals with similar

itineraries and time-schedules [12]. Ride-sharing can be hitch-hiking or some more



organised version, like a carpool, where commuters take turns in driving each other.
Ride-sharing is similar to the taxi services, but if the drivers have somewhat regular
routes, it resembles public transportation. For the success of public transportation,
accessibility is vital. Public transport accessibility level (PTAL) is a method to
measure the accessibility of a location by using public transportation [13]. In ride-
sharing, the accessibility level of some point depends on the number of drivers. If
there are no drivers whose itineraries and time schedules match those of a person
who requires transportation, the destination may not be reached with ride-sharing by
that person. If the PTAL within the area is too low, by default public transportation
will not be used there. If it is not used by default, people will get access to some
alternative mode of transportation, such as their own a car. The same will apply to

ride-sharing.

Without critical mass, the service is unlikely to be used. The public transport
network serves a customer that may interchange between multiple modes to reach
nodes of a network that are not directly connected; the lines create complementary
value for each other. This is different from ride-sharing because ride-sharing is often
considered as a taxi-like service from origin to destination. The network effects
are thus even stronger than in the public transport network. The public transport
networks are controlled by a management, so that they can have unprofitable lines for
the sake of increasing PTAL. Even non-public mass transport can have unprofitable
lines if they complement enough the other lines, but in ride-sharing, each driver
will expect to get some form of benefit for their participation, which additionally

increases the point of a critical mass.

In carpooling, the lost flexibility is the main reason for not participating [14].
Despite the efforts to increase the popularity by government subsidized high occupancy
vehicle (HOV) lanes that are allowed to be used only by cars that have more passengers
than a predefined limit, the share of carpoolers has been decreasing [15]. Ride-sharing
is about the driver selling his flexibility. The driver loses the possibility to alternative
time usage options. For many, the loss of flexibility is greater than the benefits of

carpooling has to offer.

Casual carpooling, which is also known as slugging, is one of the most successful
ride-sharing modes. In slugging, the passengers flock in given locations, often near
big highways [16]. In the United States, there are three cities where slugging is active.
Washington has over 30-years of history with slugging, giving slugging creditability
as a transportation mode. The spontaneous nature is preferred to prearranged

carpooling, as the flexibility is compromised less. The slugging spots have a transit



possibility in proximity, removing uncertainty whether destination can be reached if
slugging were to fail. The passengers gain free trips and both drivers and passengers
save time with HOV lines. Even then slugging is not popular.

Dynamic ride-sharing has the flexibility benefit of slugging while being a taxi-like
solution, where passengers are picked up wherever instead at a fixed set of locations.
Many ride-sharing programs have failed, while only a few have survived [17]. In a
survey study on the feasibility of dynamic ride-sharing in Berkeley California, 20%
of respondents reported that they would be willing to use dynamic ride-sharing for
commuting [17]. About 12.000 passengers commute daily by single occupancy vehicle
(SOV) at Berkeley, of which 7.000 persons live in areas considered to be dense enough
to be feasible. The feasibility was defined to be such that the match rate would be at
least 60%. Free parking was found to be an effective mean to subsidise. A guaranteed
free taxi ride back home was considered important. People also wanted that the
service could be ordered earlier, which was also one of the desired characteristics of
Kutsuplus [11]. Mobility as a service (MaaS) refers to the concept in which access to
logistic resources is layered behind interface making a set of actual transportation
modes an abstraction of one single mode. One idea for making ride-sharing feasible
has been to integrate it as part of MaaS solution, it would provide cost savings, while

not having the problem of accessibility to some locations.

1.2 Research objectives

This Thesis develops and tests a method that could be used to evaluate, whether
a platform is likely to work. For example, a service business may be required to
generate sufficient profit.

The feasibility is subjective and depends on the stakeholder’s preferences. The
feasibility studies may use technical, economic, legal, operational and scheduling
metrics as in the TELOS framework for the feasibility study [18]. In the context
of project management, an approach where a case of an application is developed
from a concept in phases is called the phase-gate model [19]. Each gate between
phases is a feasibility study to evaluate whether the development should be continued.
This often saves resources, as evidence about applications infeasibility may be found
during the project.

For a platform, the operational performance is non-trivial. The platform may not
function successfully without a critical mass, thus it cannot be reasonably piloted

with only a few users. This is especially true if the platform relies on the supply of



resources owned by its users. To evaluate the performance, an agent-based model
is built to simulate the platform. A customer-centric approach can be vital for a
platform. Users will not use the platform if the platform is not feasible for them from
their own point of view. This means that the market of the platform is mutually
beneficial for all sides of the market. This can make managing service quality and
incentives important in the design of the platform.

Mechanism design is a game-theoretic framework for designing an optimal outcome
for a governance, making it relevant for the platforms. Optimality is decided by
the designer of the mechanism and is thus subjective. In contrast to the traditional
mechanism design, the platform is a service with similar quality requirements as any
other service. Different mechanisms may have different interfaces. The users may
prefer open access to information and options to choose, instead of a governance that
decides the outcome and enforces it, but with a preferred outcome.

The design of the ride-sharing platform has many possible architectures and
features. This Thesis designs one platform that maximises the profit of the platform.
The platform is simulated for a demand scenario. Parameters and models for the
scenario are optimistic. The simulation accounts for the fact that the users will not
use a service that does not provide enough value for them. Appraising quality would
need much information on the preferences of the users. Such information is easy to

integrate for the developed method.



Chapter 2
Literature review

Already in 1991, it was found that automated matching has a better match rate
than manual work in ride-sharing [20]. As the technology advances, new possibilities
for automatisation have been introduced. Dial-a-ride-problems (DARP) are closely
related to DRT, as DRT is sometimes also called dial-a-ride-transit (DART). The
word dial-a-ride (DAR) is often used in pre-scheduled cases like transportation
services for handicapped and elderly people, while DRT has come to mean more
dynamic taxi-like services of small buses. In DARP, a fleet of vehicles with given
capacity pick up people from different locations [21]. Many DARP-algorithms have
been developed [22]. The objectives of a service may also include quality, which
has been studied for DAR services [23]. Some algorithms consider quality as a
desirable attribute and handle it in the objective function while some treat it as
a constraint, ensuring sufficient quality. The optimisation has been also studied
specifically for dynamic-ride-sharing [24]. Optimisation is only a one of the activities

of a ride-sharing service.

2.1 Classification framework for ride-sharing ser-

vices

The following activities identify the user-side of a ride-sharing: planning, pricing,
and payment [12]. Rides can be shared in four different patterns introduced in
Figure 2.1. A driver can serve multiple passengers or the number of passengers may
be constrained to only one.

In ride-sharing the route always begins from the driver’s origin and ends at the

driver’s destination. A passenger can be picked-up via the route the driver would
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Figure 2.1: Positional elements of ride-sharing. Blue and white are used to distinguish
between two passengers. In detour ride-sharing, there are two possible routes. The
passenger picked up first could be dropped off before picking another up [12].
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Figure 2.2: Classes of ride-sharing along axis of two main taxonomic criteria [12].
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Figure 2.3: Different options of service types identified by implemented business
functions.

normally travel, this is shown as a straight arrow from the driver’s origin, to the
driver’s destination in Figure 2.1. In such cases, there are multiple ways of locating
the passenger. What makes inclusive and partial ridesharing different is that in
partial the passengers may travel to a location for the pick-up and continue from the
drop-off, while in inclusive ride-sharing the origin and destination of the passenger
are required to be on the drivers’ route.

There are taxonomic criteria which classify services and emphasise how different
types of service are distinct, see Figure 2.2.

Primary search criteria describe how the users are matched. Routing and time is
the dynamic ride-sharing, which requires information about the routes. On-Demand
pair and time refer to pairing systems, where the routing is aggregated to areas.
Keywords are on a list, from which users may search possibly interesting offers.
On-Demand pair and first-come first-serve is basically the same as casual carpooling
or slugging.

The target market describes the demand the service is designed to meet. On-
Demand is considered similar to conventional taxi services, whereas Commute is
for commuting. Long-distance is for the longer distance travels. Event-based trips
like festivals and conferences are considered as long-distance. Along these axes, the
classes of service can be identified. The names are clear or have been introduced
except for the One-shot ride-match which means the type of services that do not
provide automated pricing.

Decisions about planning of the trips, pricing and how the payment is conducted
depend on the class of the ride-sharing service. Planning is relevant in Routing and
time, and On-Demand pair and time. The other two leave the task of matching to

users. Planning decisions are often algorithmic. The service types for a ride-sharing



platform are introduced in Figure 2.3.

Pricing can be a catalog price, rule-based or negotiation-based. Catalog prices are
defined by the users, rule-based pricing has some formula that may include parameters
like distances and in the negotiation-based pricing the price is decided between the
driver and passengers. Pricing for dynamic real-time ridesharing introduces additional
problems for the pricing mechanism.

The mechanism should induce truthful information from the users for serving
them as well as possible. It is possible that the users manipulate the system for
their own benefit. The participants may feel that the mechanism is unfair if only
drivers or passengers benefit. Another problem arises when there are differences in
the outcome created by the submission time and the time window that can be used
in matching. Behaviour in which the people play a game with the submissions timing
has been noticed in online auctions [25]. For robustness, the pricing may need to
adapt to different situations, like the change of schedules and no-shows.

Payments can be done directly between the driver and the passenger or via a third
party, for example via bank. It is only the latter that may be used in a commercial
application. This is because if the cash does not go through the platform, it is
inconvenient for the platform to get its share. There is also a difference on how
tailored or fixed the timetable and the route are. All ride-sharing businesses are
considered to be motivated by the cost-sharing between participants. Taxis are
considered to seek to maximise their revenue, whereas DAR has a neutral motivation
between cost-sharing and generating revenue.

Users may feel insecure when travelling with strangers. In many services, trust to
strangers is tried to achieve with profiles of users that are visible to other users. Profiles
include feedback from previous matches which proves the user’s trustworthiness. An
escrow mechanism that does not proceed the payment to a driver that does not
exceed a threshold quality has been proposed [12]. Safety is just a part of the quality

features.

2.2 Service quality

SERVQUAL is the best known framework in marketing discipline for the quality of
the services [23]. The framework is also known as RATER which is an abbreviation
of its determinants: reliability, assurance, tangibles, empathy and responsiveness. In
SERVQUAL framework, the gap model, shown in Figure 2.4, describes quality with

gaps of expectations and perceptions [26]. The gaps explain the possible sources
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Figure 2.6: Quality of DAR service described by case specific attributes and dimen-
sions [29].

that lead to dissatisfaction of the customers. The provider of the service may have
difficulty in managing the different levels of an organisation to meet the objectives of
the management in the operations. The communication can raise expectations, but
also has a direct effect to the perceived service. It is also that the management may

have an erroneous idea about what the customers would expect.

Expectation confirmation theory illustrated in Figure 2.5, seeks to explain hierar-
chically different aspects behind customer satisfaction [27]. It has been found that
performance explains quality better than expectation, and that customer satisfaction
explains future purchase intentions better than service quality [28]. SERVPERF was
created from SERVQUAL to handle with performance related parameters better [28].
The hierarchy between determinants and attributes can lead to estimation errors.
Not having a hierarchy improves estimation accuracy. Also, disconfirmation of beliefs
is often almost meaningless. Dropping them reduces the number of attributes by
half [28].

The quality measurements of DAR services have been explained with the case
specific quality dimensions instead of RATER determinants [23]. The determinants
are replaced by these dimensions. Abstract dimensions have observable attributes. An
example of such model has been made [29], which is illustrated in Figure 2.6. Service
quality of DAR services has also been researched in the context of transportation

models [23]. The attributes can be measured directly in simulations and optimisations.
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The most often used quality specifications in operations research literature are:
difference between actual and desired delivery time, maximum ride time and excess
ride time over direct time. The time window, during which the destination is to be
reached, is often taken as a constant for all of the users. In the operations research
models of DAR, quality is in the objective function or ensuring that the quality

attributes achieve the predefined threshold levels [30] as constraints.

2.3 Routing and matching algorithms

DAR services can be identified to be something between static and dynamic [22]. In
static services, all transportations are known, and in dynamic services, the routing
is done as vehicles begin operating. Often it is something between, as a subset is
known. Also in dynamic ride-sharing the routes are often considered to be submitted
before departure [24]. This creates lead-time, which makes the optimisation more
static. What makes most of the DARP different from ride-sharing is that in DARP,
the fleet is assumed to be permanent. In ride-sharing, the drivers have their own
destinations that need to be met within their own time window. Ride-sharing is thus
DARP with an additional constraint.

Ride-sharing has some specific features to DARP which are sometimes taken into
account in optimisation [24]. It is dynamic because the rides can be ordered within
a short time. The fleet is not owned, and the drivers are not employed by a central
organisation. The trip-related costs are divided between the passenger and the driver.
The service brokers only non-recurring trips. The participants have prearranged the
ride contrary to hitch-hiking or slugging. The service provides some automation that
helps matching and facilitates communication between the users.

The matching algorithm has been studied in the literature [24]. The algorithms
may optimise the outcome, but sometimes they use heuristics or auctions. The ob-
jective is often to minimise system-wide vehicle-miles and travel times or maximising
the number of participants. This is unlike in DARP, where the objective considers
often to minimise fleet size or driven journey, though some algorithms try to take
quality into optimisation [22]. Still, the motivator behind DART is usually to reduce
social welfare costs of transporting passengers that cannot use many of the other
modes of transportation and the services are often provided by a government [23].

In dynamic ride-sharing constraints are the time windows of the users. This is
similar to DAR, but matching the time windows between passengers and driver makes

time the dominant constraint rather than the capacity of a vehicle. For this reason,
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many of the ride-sharing algorithms consider only detour ride-sharing with a single
passenger. What makes many DARP algorithms unusable for dynamic ride-sharing
is that in dynamic ride-sharing it must be accepted that not all of the customers
may have a match. Some of the DARP algorithms may turn a customer down. If
the time windows cannot be matched with a fixed fleet size the algorithm tries to
perform as well as possible.

What makes dynamic ride-sharing fundamentally different from DARP is that
the service providers are independent. They have their own objectives and thus they
are not willing to sacrifice their own benefit to reach the system-wide social optimum.
This has motivated agent-based models, because the actions are done for self-interest,
which can lead to a difference from the social optima called the price of anarchy [24].
One could argue that auction-based optimisation heuristic takes this into account,
because every user bids in auctions according to their willingness to pay [31], although
the users’ willingness to pay in auction algorithms is a heuristic to maximise the
objective function, not an actual benefit. The auction type of optimisation is part
of the decentralised agent-based optimisation method family. They are often faster
than the centralised system optimisation that produces better system-wide results.
One may benchmark an algorithm against performance of a static binary integer
program which solves the system-wide optimal solution for matching the users [31].

Matching independent agents opens up problems which can be addressed with
game theory [12]. Designing a mechanism for selfish agents in a game-theoretic
environment is a mechanism design problem [32]. Two-sided matching is a widely
studied problem in a mechanism design. It has been applied in allocating medical

interns to hospitals [33].

2.4 Mechanism design

Social choice theory is a framework for aggregating agents’ preferences for deciding
about outcomes affecting the agents [32]. Mechanism design is a social choice theory
with strategic agents. The agents tell the preferences that they expect to maximise
their benefits. This leads to a Bayesian game in which the preference or payoff for
an agent is not known. The problem in mechanism design is to find a mechanism
that optimises the outcome even if the agent would not necessarily tell their true
preferences. If the optimal strategy for the agents is to tell true preferences; to be
truthful, the mechanism can be called truthful, strategy proof, incentive compatible
or direct [25][32].
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The mechanism designer may have some objectives for the outcome that the
mechanism must fulfil. If the sum of the agents’ values for the outcome is maximised,
the mechanism implements a social choice function. In this special case, the revelation
principle says that if such mechanism exists, there exists a strategy-proof mechanism.
If such a mechanism is not possible or if some other objectives conflict, the mechanism
may only minimise the inefficiency from the strategic behaviour, in which case it is
called the price of anarchy minimisation [32].

The mechanism can exchange cash between agents. In such cases, the designer
may want to maximise the revenue. The mechanism may seek zero profit. This could
be the case if for example the mechanism would regulate the use of public goods. It
could be that some nations are creating an organisation to share rights for pollution
or fishing. The nations would not like to have an organisation that enforcing the
mechanism makes profit. It would create a problem on how to share the profits,
which may lead to a conflict. Then the mechanism could seek a budget balance by
sharing all of the cash, minimising the maximum revenue or at least not to make
losses.

The mechanism may need to incentivise the agents to participate in the mechanism.
If the agents value fairness, the mechanism may seek maxmin fairness where it is
maximised the smallest value of any agent. The outcome may need to provide value
for every agent making agents ex post individual rational. The constraint can be
relaxed to hold only as an expected value. Then the agents are said to be ex interim

individual rational [32].



Chapter 3

Model of ride-sharing

3.1 The problem

Reasons for travelling are often tied to specific locations and times. This generates a
spatial demand for transportation.

There are many transportation modes to satisfy the demand. In order to serve
the purpose of travel, the offered transportation must go from the origin to the
destination at the given time. People have some demand flexibility, to the extent
that they are prepared to walk and wait, the origin and the destination of the
transportation mode do not have to be exactly the origin, nor the destination of the
person. The public transportation has fixed schedules and locations where one can
get on and off the vehicle and the trip can consist of multiple modes.

The preferences include among others, how willing the persons are to wait or
walk. Different people have different preferences; elderly people would not like to
walk, but have plenty of time to wait and commuters that could walk need to reach
their workplaces before their work shifts begin. People’s preferences influence the
price they are willing to pay. Payments make it possible to change value between
the flexibilities and alternative goods and services.

Many people have a car to satisfy their need for transportation. A car gives its
owner access to possibly the most flexible transportation mode. The car is often
located close to the owner’s origin and can be used at any time. A car can reach most
destinations, and parking lots are built in the vicinity of many possible destinations.
This differs from public transportation which is designed to meet the aggregated
demand.

The public transportation may fail to satisfy all demand. A taxi is often used in

such cases. The taxi needs to be ordered before the transportation, but it serves the

15
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need as does one’s own car without the need for a parking lot. The taxi company
and the public transportation provider have their costs from operating their fleet.
Owning a car entails costs. Even if the government were to subsidise trips, there can
be some limits for the costs. The price can be higher than the willingness to pay.
The need for transportation can be left unsatisfied. Most cars have multiple seats,

which leaves a lot of the capacity unexploited.

3.2 Model of a service

In ride-sharing, the service can be provided through a platform. The two-sided
market is between drivers and passengers. The platform organises the market by
making matches. A match is a deal that a driver will drive the passenger from the
origin to the destination, at the appointed time. From now on, the word wuser will
be used to refer a person using the platform, if it is not specified whether the person
is a driver or a passenger or if it does not matter which of them that person is.

The platform considered in this Thesis is classified as a detour ridesharing,
dynamic real-time ridesharing service for a single passenger [12]. The platform would
work the best when the users from dispersed settlement areas travel to the cities.
The service type is an integrated service with a rule-based pricing and the payment
is done via a third party. Otherwise, users would need to negotiate the price between
each other. With rule-based pricing, the platform offers a clear payment scheme
which is accepted before the service is used.

The deals are proposed by the platform. The platform has no prior information
about possible routes of its users or it does not utilise predictions in a matching
algorithm, albeit the algorithm can forecast with a reasonable confidence that the
users will commute the same route, provided that they have commuted that route
before. The schedules are often regular. Getting a match is not certain. For this
reason, dynamic ride-sharing may call for an alternative mode of transportation as a
complement, which is flexible enough to meet the demand within a short time. This
gives users time flexibility which they can utilise by giving it for the platform to
make matches. Often the most flexible such mode is having a car. Thus, the users in
the simulation have cars and they all will act as potential drivers and passengers.

The users provide following information when they ask for a ride:
e Earliest possible departure (time of day, for example 08:00)

e Latest possible arrival (time of day)
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e Origin (address, for example Otakaari 1 in Espoo)
e Destination (address).

e The roles they are willing to take (either yes or no for both driver and passenger

roles).

This information is the minimum for matching users while meeting constraints set
by their schedules. The users can decline an offered match and the matches can be
changed afterwards, until the driver departures, with a condition that both the driver
and the passenger find another match. Changing matches would be too inconvenient
if the users would lose the matches they already had.

The use case of using the platform is shown in Figure 3.1. In order to feed the
information to the platform’s system, the user fills a form similar to the left part
of Figure 3.2. The users give the information some minutes before they leave at
earliest. This is justified because the probability of being matched depends on the
width of the time window. Wider time windows increase the number of possible
matches. The users give the information as soon as they are certain of their schedule
because it increases their probability of a match without the inconvenience of waiting.
Users are delayed until their latest possible time for departure. The later matches
are preferred by the algorithm. These increase the time that the user can be used
for matching as a passenger or as a driver. This increases the number of other users
with whom the user can be matched.

Matches that do not benefit the driver or the passenger are not driven. It could
be thought that the user declines a match. Waiting is assumed not to be a sunk
effort; the users will consider it in the benefit of the match. It actually is sunk, but
the population may have users that for the service is not suitable, which needs to be
accounted for. Due to pricing, the users know whether they would benefit from the
service as a passenger, but for the driver, the benefit from a match is not known.
Users can live in an area with too low accessibility for them to actually use the

service. The accessibility is not known before the simulation results.

3.3 Generation of demand

The origins of users and the destination depend on the case specific parameters.
For example, the commuters typically leave from their homes. It would mean that
users are located in residential zones. Their destinations would be the workplaces,

in industrial, commercial, etc. zones. Vice versa, the people travel back to their
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Figure 3.2: Illustration of the systems UL. On the left is the form that a user fills.
On the right the user is prompted to accept the proposed match.
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homes. This generates a demand for transportation between residential zones and
other mentioned zones. The parameters for zones would be the quantities of residents
and some parameters that are related to the reasons of travel. From them, it can be
predicted how the traffic is formed. In either case, there is a generation-attraction-
matrix that tells how the trips are oriented. Each element has the value of how many

people are going from a given location to another given location.

This type of approach has been used to forecast traffic in Helsinki region commut-
ing area [34]. Similarly, the time aspect when the trips are executed is determined

by the reason to travel.

3.4 Time flexibility

The users have some flexibility when the destination is to be reached. When people are
aiming to meet their destinations approximately at the same time, traffic congestions
can arise. If they were to depart later or earlier, they would not need to wait
in a congestion. Even then, they are not willing to change their departure time.
Congestion implies low flexibility. In carpooling, lost flexibility is the main reason

for not participating [14].

Time flexibility is the possibility to move an action later or also earlier in time.
The range of time when the action can be executed is the time window. The actual
time window can be wide. The user may not need transportation for several days,
for example, shopping groceries is not critical if the user has stocked food in the
fridge. This Thesis will refer to the time window as the time between earliest and
latest possible departure times set by the user. The user has some time he would

like to travel but is willing to be flexible.

The user has options on how to use the time window. In ride-sharing, the lost
options include the actions that would make the user incapable of being at the
promised location, when the trip is meant to start. The user’s willingness to give up
flexibility is highly incorporated with the benefit they expect the service to provide
them. The width of a time window is likely to increase the user’s probability of
getting a match. The user will give such time window to be such that it maximises
the expected benefit. It depends on the rewarding mechanism of the platform and

on the case what the options for time would be and thus what is their benefit.
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3.5 Comparison to alternative transportation modes

The ride-sharing platform competes with other transportation modes. Thus, it makes
sense to compare it to those modes; handling the benefits with alternative costs.
They are comprehensive, unlike the benefit of possibility to change a location.
Driving involves work in that it calls for an action. Waiting has alternative options
on how to spend time, but the work does not. The Department for Transportation in
the UK uses the value of time in its transport analysis guidance that is a transport
appraisal framework [35]. Time of value is the opportunity cost for time spent
travelling. The value of time is the upper limit for the price of time flexibility.
The valuation of waiting time is complex, but there are methods for estimating the
willingness to buy. It may depend on multiple case specific factors [36]. Time is not
liquid nor substitutable [37]. Lost time is more valuable than saved and waiting for
longer increases the value of time. In this Thesis, we assume the waiting time has
the same value as the additional driving time. Without the platform, a passenger
would have driven by himself, so the value of the trip is the price of that trip done

by a car.



Chapter 4

Mathematical model

4.1 'Transportation network

The locations and routes are aggregated to a transportation network consisting of
locations as nodes 7,7 € V and major roads as edges (i,7) € Q@ € V x V. They
form an adjacency matrix 4, in which the length of all arcs is d;; > 0,V7 # j. If the
locations ¢ and j are not directly connected by a major road then ¢;; = oc. The
distances between the nodes are big enough for not to be walked.

A path between i, j € V,i # j is a sequence of nodes p = (ig, i1, . . . , i) such that
io =1,1n, = J, (ig,%9+1) € Q,9=0,...,n— 1, where n is the number of vertices the
path visits. The set of all paths connecting ¢ to j is P;;. The distance of the path is
dp = ZZ;& digige1- The shortest path between i and j is 4;;, for which holds:

i)

05 = ;2113% dp.
This distance matrix 6* is used primarily as the distance between points.

The network consists of roads that have the same speed limit. All the cars are
assumed to drive that same speed; the time it takes to travel an edge is linearly
dependent on the distance, thus the relative difference between edges is the same
in the time it takes to travel, as in the distance. The drivers choose the quickest
path. The network is known to everyone and the users prefer to minimise the time
they spend travelling. The optimal route could be given by the platform because the
platform uses the optimal routes in its rule-based pricing.

Car k has the speed s. The time is discretised so that §;;/(sxAt) € Z1,Vi,j € V.
This means that the distance from any node to another will be covered after some

multiple of At’s.
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4.2 Ride-sharing problem

There are m users in a finite set U of all users. Thus, we may refer to a user with
a unique integer k € U = {1,...,m}. The ones offering to drive also have a need
for transportation. Drivers may be matched as passengers if they do not specify
their willingness to participate only as drivers. Some might not be willing to travel
without their own car, if they need the car at work, or are not guaranteed to get a

ride back home.

Each user k has a corresponding service request r, € R. A request consists of
the need for transportation from location ¢ to 7, having to depart at the earliest ¢
and the latest time for departure ¢, which is by the platform processed automatically
from the latest possible arrival to destination. This can be done by approximating
the duration that driving the route (4, j) would take by d;;/sx. User k’s request is
ri = (i,7,t,t) € R.

For a passenger’s request, there can be multiple drivers that could pick him up.
A driver can have multiple passengers that he could pick-up. A potential match
can be made between the passenger and the driver if their service requests share
similar itineraries and time-schedule. The match is not made if it cannot be driven
within time determined by (¢,%) of the driver and the passenger. The driver and
the passenger can have only one potential match because the platform decides the
matches. It has a decision rule for the time when the match will start. The decision
rule used in the case is to choose the latest possible moment.

Every passenger has a set of possible drivers that could pick him up Ej. For
example, if a user referred as 1 could be driven by users 2, 3 and 5, then £} = {2,3,5}.
The set of all possible matches £ = |,y K X Ei. Thus, a match e € E is an ordered
pair (p,d) where p and d are the indices of the passenger and the driver respectively.
The network for matching has users U as nodes and matches E as edges.

The platform makes the decision about the matches by a matching algorithm.
Matching is a special packing problem in a graph, to find an optimal pairing between
users that are connected by possible matches. The optimality of a matching is
determined by the values h(e) associated with each edge e € E. If the drivers would
never act as passengers, the problem would degenerate to matching bipartite graphs.
The matching problem is illustrated in Figure 4.1. Each node can have at most one
edge after the matching. In the Figure, the user us is left without a match, while
other users share an edge with the user they are matched to. The routes and time

intervals are specified by the users. In dynamic ride-sharing, the platform matches
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Figure 4.1: Matching problem of the ride-sharing platform. Nodes are users. Edges
are the possible matches.

the users with incomplete information, because future service requests are not known.
The system-wide optimisation is run periodically. The ones that were matched on

previous periods, must be matched on later periods.

The platform has a price z,(e) it charges from the passenger p and a compensation
x4(e) for the driver d for the match e. The platform can profit from the difference
between charges and compensations. The platform can have objectives other than
maximising profits h(e) = z,(e) —z4(e), like maximising matches by defining h(e) =1
or reducing traffic congestion. The algorithm can be used to guide the assignment to

desired outcomes, by objective function or additional constraints.

The passenger k is willing to pay for the trip according to its benefit y,(k), which
is the alternative cost for that trip. Making a detour has a cost, so the driver is
willing to accept matches for a compensation y4(e). For the platform to create value,
it should be that the passengers have in general greater willingness to pay than the

drivers’ costs for making detours.

When the users specify a time window for the platform to use in matching, they
lose their flexibility, because they are required to fulfil their role. The lost time
flexibility is the greatest reason not to share rides [14]. As drivers, they need to drive
the passengers to their destinations, or as passengers be ready to be picked-up when
the drivers come to pick them up. Whether a user will use the platform depends
on their alternative modes of transportation. The users choose a mode such that
they maximise their value, which is the difference between the benefit and the price
[38]. To compromise the lower benefit from waiting, the price must be lower. The
pricing of the platform should thus create savings for the users. In order to know how
much savings it should create, this Thesis uses agent-based modelling to determine

passenger’s willingness to pay and driver’s costs.
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The cost of commitment time ¢, (k) is the value for the time the user is prepared
to wait. It is the compensation for which a user would be willing to wait if the service
would not give a match. The value of ¢, (k) is known before matching takes place.

The users might not get a match every time, and the drivers do not know the
distances of the detours before a match is offered. For these reasons, the users can
make decisions only with the expected value determined by expected savings. The
value created by a match e = (p, d) for the passenger p is v, and for the driver d is

Vq.-

vp(p) = —Cu(p) + [4p(p) — 2p(e)] (4.1)
va(e) = —cu(d) + [zale) — ya(e)] . (4.2)

The term [y,(p) — z,(e)] will be called as the value of the deal for the passenger and
[z4(e) — ya(e)] for the driver.

For a feasible service, the value of the deals is positive in general. Then drivers’
costs from detours are lower than the savings the ride-sharing creates for passengers
Yp(k) — ya(e) > 0. Also, the value of the deals needs to be greater than ¢, (k) for the
users to be willing to use it.

Every user has an own point of view for the expected value. The platform is not
necessarily a suitable option for everyone. The platform’s feasibility is subjective
depending on the platform’s vision of the scale of market penetration and profitability.

The time flexibility is not fixed. The users may wake up earlier or postpone
their reason to travel. Thus, the users can decide the width of their time windows
w(k) = tx — t;,. The users have means to control the ¢, (k) by controlling w(k). The
wider time window they give, the higher probability of finding a match.

The probability of a match depends on the number of users. And the number of
users that are at the moment available for matching depends on the width of their
given time windows. These both depend on the value the users expect to gain by
using the platform. The platform controls the value by pricing. Thus, the pricing

may give an incentive to participation and users to give wider time windows.

4.3 Pricing

In a match e in Figure 4.2, where the route of driver d is (i,j) and the route
of passenger p is (¢/,7'), the driver incurs cost y4(e) from the additional distance

a(e) = 05y + 671 + 67, — 67; of picking the passenger up and dropping him off

!
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) = e (@) + ate)e,

where ¢;(d) is the value of time and c; is the cost of transportation per kilometre.

0;;
i 6‘-"{|> J

=
* *
Ojiy 0jr;
o_-éfjf

Figure 4.2: The route of driver ¢ — j when picking-up on ¢ and dropping-off on j" a

passenger. The route that the driver would otherwise drive is marked with a dashed

arrow.

The compensation z4(e) needs to be greater or equal than the cost with the value

of time spent waiting, for the driver to accept the match
za(€) = yale) + cu(d). (4.3)

The benefit of travel y,(p) for the passenger p is approximated by the cost of the
alternative mean of transportation. Driving alone route (i, j') with one’s own car

has a cost

yp(p) = 6;3'/06-

The price z,(e) the passenger p is willing to pay to accept the matching needs to

be less or equal than the benefit of travelling without the value of waiting.

zp(e) < yp(p) — cu(p). (4.4)

Passengers pay the initial (r;) and per kilometre (r;) charges. This is also
applied to the drivers’ compensation, but with different values for initial (os) and
per kilometre (o) prices.

The price z,(e) for passenger p with route (¢, j') depends only on the route. The

passenger does not pay for the detour of the driver.

zp(p) = (5;?3»/7} + 1y
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And the compensation x4(e) for the driver
zq(e) = a(e)o, + oy.
From these, the profit A from a match e can be found to be
h(e) = 0, ri + 1y — a(e)or — oy.

If the platform wants to subsidise the service, it could be that the profits are negative.

4.4 Determining the time flexibility

The users are assumed to be ready to depart during the time-window they give.
This is inconvenient for the users because it restricts the activities they can do while
waiting. The compensation that the driver gets depends on the detour they take,
which is not known before the driver is matched. The expected additional distance
depends on the number of users, like in the case of taxis, the geographically dispersed
taxis are likely to drive a shorter distance to pick-up location of their customer. The
savings of the passenger are known, from the pricing and the route they have. The

value from the deal for a user k as a passenger is

[yp (k) — x,(K)] .

The platform may not match the users every time. The expected savings should
take this into account, but this would create a dependency on the results. This
Thesis has a policy not to have such dependencies.

Expected savings and the price required to wait create the value the user expects
to gain for their participation. This Thesis assumes that the users are willing to share
the value equally with the platform as a time window. Users give a time window
w(k) =ty — t;, by scaling the value the users are willing to provide for the platform

by the value of time

[yp(k) = 2p (k)] = cw(k) _
QCt(/{?) - ’lU(/{?),

where w(k) is the width of the time window for user k& and ¢,(k) the value of time.
The time window should grow with expected savings from the deal. Also, the ratio

w(k)/cw(k) should converge as w(k) increases. If time became almost free or infinitely
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expensive, the function would be implausible. The ratio ¢, (k))/w(k) should decrease
as w(k) increases; short waiting times are experienced as less valuable per time [37].

Function that would fit the specifications is
cw(k) = w(k)e (k).

With this function the time window becomes

lyp(k) — ()] — w(k)c, (k)
2¢4(k)

= w(k) = w(k) = [y”(kg)ct_( Z)”(k)]. (4.5)

4.5 Algorithm for maximising profit

To make a match e for a driver with passenger as in Figure 4.2, the time windows

need to be feasible.

t, >ty+ 085 /sa  (passenger p can be reached in time by the driver d)

tqg—a(e)/sq > 1,  (the driver can attain own destination in time).

Besides these physical constraints, for the users to have positive values from

matches there is constraints

xq(e) > yqle) + cp(d) (4.3), for the driver
zp(e) < yp(p) — cw(p) (4.4), for the passenger.

The drivers leave as late as possible to increase the time they are on the platform.
Thus, the departure time of the driver in all matches is minimum of the latest possible
times of both users. The two different cases are illustrated in Figure 4.3. The driver
must departure either so that he has time for the detour and arrive at the latest

possible time for arrival, or so that
min(t, — 0% /sq, ta — a(e)/sq)

The matching system illustrated, in Figure 4.4 takes the service requests in t;
before t. For each increase of discretised time, the system makes matches and fulfils
the matches scheduled with the given time by notifying them that the match is

locked. The system also removes unmatched users that for the given time equals .
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Figure 4.3: The two different cases that determine the latest possible time. Blue
boxes are the time windows. Red boxes are the time that is constraining. Black line
shows the last possible time for the driver to departure in a match.
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Figure 4.4: The steps of a matching system as a flow.
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For matching, the following optimisation algorithm is used.

For each user, the system searches feasible matches from requests of other users.
In a binary decision vector variable z, each element corresponds to a feasible match
ec b

1, if match e is executed

Ze =
0, otherwise.

Each user is matched at most once (the user may only either serve one request as a
driver or have own request served as a passenger). This will be the only constraint for
the optimisation as z already is by definition such that the other constraints are met.
In binary constraint matrix A, there is for every user a row where each column tells
whether the user is either the passenger or the driver in the corresponding element

of z.

1,
Ake =

0, otherwise

if user k is a participant in a match e

The matches can be changed, if alternative matching yields higher profits. Person
given a match earlier must have a match. The corresponding rows of matched users
in matrix A are moved to a matrix B to force this rule. This adds to the matching
problem of Figure 4.1 an additional problem illustrated in Figure 4.5. The system

runs periodically optimisation on the matching, which works as in Figure 4.6.

The platform in charge of matching maximises its own profit. Let vector h be the
profits of the matches, each corresponding to an element of z. Preference for later
matches is achieved by adding to each element of A, ¢ times the value of discretised

time the match would begin.

max h'z  maximize the profit
s.t.
Az <1 (The person can only take part in one fulfilled match)

Bz=1 (The person that had a match previously, must have a match)
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Figure 4.5: Matching problem case of Figure 4.1, after increase of time. Blue balls
mean previously matched users. Users u; and uy have left the system. Users ug and
ug have arrived. Because ug had previously a match marked in dashed line, ug is
connected to him instead of u3, who would have been closer.
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Figure 4.6: The timeline for the optimisation system. Trapezoids are the points
where the platform runs the system-wide optimisation.
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Algorithm 1 Matching system
. initialise requests from data and calculate time windows and benefits

: matched < empty set of matched users
. left < empty boolean set of users left

. for time t to reach ending time do

1
2
3
4
5:  user pool < requests not left and t >t — ¢,
6: matches <+ empty set

7. for all passenger € user pool do

8 for all driver € user pool \ passenger do
9

if driver can be matched with the passenger then

10: if the driver and the passenger have a positive benefit then
11: to matches is added a match (passenger, driver, value)

12: end if

13: end if

14: end for

15: end for

16: A < users of matches not matched

17: B < users of matches matched

18: g <« values of matches

19:  matching < argmax h’ z|Az < 1, Bz = 1, 2 = binary
20:  left < left U matching marked to leave at t or t = ¢
21:  matched <+ matched U matching

22: end for
Hy =0 H, =-5 H, =-5 H; =5
(1,2) (1,2) (1,5) (2,6)
(match) +5 +5 +10 -5
profit 3.4) 2.6)
-5 -5

Figure 4.7: The matching with cumulative profit.

4.6 Maximising the number of matches

The optimisation of the number of matches can be done by changing the objective

function into 1z, where 1 is a vector of ones.
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Additionally, there is a new constraint
hTZ — Ht Z 0,

where H; is the cumulative profit from the people left, up-to time ¢ with initial
value Hy = 0. The cumulative profit is updated after optimisation H,,1 = H, + h' 2.
This ensures that after optimisation the platform has a positive profit. H; can take
negative values, but it is always ensured that the matches and the cumulative profit
sum to positive profit, which is illustrated in Figure 4.7. H; is —5 because the match
(3,4) leaves, making —5 profit. This is possible because the match (1,2) makes the
profit to compensate that. In later matchings, the match (1,2) can be changed, but
the match (1,2) is an option.

4.7 First-in-first-out (FIFO)

The matching can be done in a similar manner to the first-in-first-out (FIFO) principle.
This will nevertheless be addressed as FIFO, due to the resemblance. The algorithm
for the matching is fast and easy to implement as it does not optimise anything. The
results of FIFO are for comparing the results from optimisation, into results that
are not optimised. This will tell whether it is worth the effort to implement any
optimisation.

There is a queue of the requests in the order in which they were given. A new
request will be compared to the requests in the queue. If the request can be matched
with the request it is compared to, the requests are removed from the system as they
are matched. If the request cannot be matched with any request in the queue, then
the request is added to the queue. The unmatched requests leave the queue when
their latest possible time for departure comes.

The matches have the same constraints as in the optimisation. Additionally, the
platform only makes matches that generate profit; the driver’s compensation is not
higher than the price of the passenger. The same occurs implicitly when the platform
optimises the profit, but for the FIFO it needs to be explicitly added.



Chapter 5

Case South-Western Finland

5.1 Case environment

Users are the travellers in south-western Finland at peak hours. Greatest cities in
the area are Tampere, Lahti, Turku and Helsinki. The users that have a car may
act as potential drivers and passengers, whereas users without a car can only act
as passengers. This Thesis uses transportation network data from Andelmin (2014)

[39]. In Figure 5.1 is the road network of south-western Finland. The shape of a

Figure 5.1: The road network of south-western Finland used in simulations.
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Figure 5.2: Earliest departure times within nodes created as in Appendix A.

peak is taken from a morning commuters [40]. At mornings the peak starts around
city centres, when commuting begins. The commuters that have a longer distance

from home to their workplace often start their trips earlier.

The process of generating dummy data using topology of the network is ex-
plained in Appendix A. The process creates the generation attraction matrix and
the distribution of earliest departure times. The generation attraction matrix is
(origin, destination) pairs as the distribution of users as shares for it to be scalable
with the number of users. It takes into account that the users are going from the less
populated areas to cities. The distribution of earliest departure visually resembles

the data about the number of cars that pass a measuring point [40].

Figure 5.2 shows the trend of the users with a longer distance from home to city
start their trips earlier; the mean and variation increase with closeness to city centres.
In Figure 5.3 is a pooled distribution of earliest departure times of a generated

population.

All of the cars will drive the speed limit and thus have the same speed. For
the speed sy, it can be used 100 km/h as that is somewhat the aggregate speed of
the road network. The discretisation of the time and the network allows handling
of distances as times or vice versa. The discretisation is 5 minutes, which is small
enough compared to travel times to not have much effect. 5 minutes is also reasonably

good for a system-wide optimisation rounds.
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Figure 5.3: Earliest departure times from the whole population. The peak hours
are discretised to 50 periods. The number of generated users is 1,000,000 for a
visualisation purpose.
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The users input the information to the system ¢, = 15 min before their earliest
possible time for departure ¢. This is justified as the probability of being matched is
highly affected by the width of the time window for the user being usable for matches.
The users give the information as soon as they are certain of their schedule because it
increases their probability of a match without the inconvenience of waiting. Because
the service is dynamic ride-sharing it can be considered that the routes are given 15

minutes before.

5.2 Prices

In the appraisal of transportation and road projects, the value of travel time savings
is called the value of time. The time spent by drivers on their detour is approximated
to be worth same as the value of time. It is assumed that each user is an individual,
not a group. The value of time ¢;(k) for an individual commuter can be approximated
as 10.68 €/hour (Table 5.1).

Table 5.1: Value of travel time savings for a car; used by litkennevirasto [41].

Purpose of travel || persons/car | €/person/hour | €/car/hour
Work(6.8%) 1.15 23.68 27.23
Commute(20.6%) 1.10 10.68 11.75
Leisure(72.6%) 1.60 6.79 10.86
Average 1.46 8.33 12.16

The price of gasoline and car wear down per kilometre is ¢5. The Finnish Transport
Agency uses 0.1457 €/km in appraisal [41]. The same value is used in this Thesis.
It does not take capital expenditure for a car into account in the same way as does
kilometre allowance from Finnish tax authority which would be 0.43 €/km for year

2016 [42]. The users have a car, so they pay the capital expenditure for it.



Chapter 6
Computational results

The simulation could be run with different sets of features to evaluate, which set of
features optimises the objective of the platform. It makes no sense to analyse results
of parameters that are not taken into account in the platform’s design.

The most important metrics are profit and the number of matches because they
are the objectives for which the features of the platform were designed. Also, the
value for users defined in Equations (4.1) and (4.2) will be analysed. This could be
also called customer surplus. The rest of the possible parameters are not considered
to be important or sensible.

The simulation is run 5 times, with initial charges oy, 7y € {0 €,2 €,...,30 €},
compensation from detour o; € {0 €,0.08 €,...,0.56 €} and the price for distance
r, € {0€,002€,...,0.14 €}

The plotting format of Figure 6.1 can be read in a way that the smaller plots

are on top of each other horizontally and vertically. This property makes the four

prjce

driver per km
compensation
passenger per km

passenfer infal
charge

Y

driver initial
compensation

Figure 6.1: The basic format of plotting contours. Each plot is averaged over results
of simulation runs. When a plot is a constant, it is left white.
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Figure 6.2: The plot for the profit of the platform using the plotting format of Figure
6.1. The number of users is 2000.

dimensional results more comprehensible. The objective of these plots is to create
some intuition into how pricing affects the outcome and what is the relation between
the different metrics. The euro signs (€) will be omitted in the plots because it
would take space and there are no other units of value used, so there is no risk of

confusion.

Figure 6.2 shows that the results are likely to be almost everywhere continuous.

It can be seen that the plots close to each other are similar.

Figure 6.3 has one of the plots with oy = 8 €, o, = 0.16 € from 6.2. There
are no matches when the passengers have low fixed charge and low per kilometre
price or when they are both high. For the drivers, it is the same, but not as radical
because there are some matches with high fixed and per kilometre compensation.
These effects are created because the passengers are not willing to pay more than
the benefit of the trip. If the passengers do not pay enough, the drivers cannot be
compensated. The drivers have no similar threshold from the benefit because it is
possible that the passengers’ origin and the destination are via the route the driver
would be driving anyway; picking up a passenger without driving a detour is free for

the driver.
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Figure 6.3: The contour plot of profit for the pricing oy = 8 €, 0, = 0.16 €. The
number of users is 2000.
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40

The optimal pricing to maximise matches is different to the optimal pricing to
maximise the profit in Figure 6.2. The results of matches are slightly miss-aligned
with the profits, while being located closely within the same area. This means that
the match rate correlates with the profit.

Figure 6.4 has the result for the share of driving that is saved. Profit, match
rate and the saved driving correlate with each other, but the different locations for
optimality mean that as objectives they conflict.

Figures 6.5 and 6.6 show that the passengers and the drivers gain similar expected
value by using the service. The shapes of the results are similar; the pricing affects
them equally. For this reason, the passengers and the drivers aggregated values can be
handled as the customer surplus. The optimal customer surplus clearly conflicts with
the profit and the match rate. The match rate is one of the most important metrics
of quality in ride-sharing. It would likely have an effect to the user’s willingness to
pay and thus the customer surplus.

The result for profit when the system uses FIFO matching changes the shape of
results less than changing the number of users. This would imply that the shape
is highly determined by the demand, rather than the algorithm. The optimisation
manages better with the profits on the border case pricing where there are not many
matches, but the optimal pricing is the same.

The results show that the optimal price when the profit is optimised is oy =
8€,ry =18 €,0, = 0.16 €,1, = 0.02 €. For FIFO, the optimal pricing is the same.
The number of matches is maximised when the number of matches maximised with
the pricing oy = 10 €,r; = 12 €,0, = 0.16 €,r, = 0.02 €. For these prices, the
simulations were run 1000 times for user populations of sizes {100,200, ...,5000}.
When the number of matches was optimised, simulations were run only up to the
population size of 1600 because the optimisation slowed radically.

The profit distribution in Figure 6.7 shows the variation between simulations
and that it increases slowly with the number of users. Results of FIFO do not differ
significantly, which implies that the optimisation does not affect the variation. The
outliers are mostly lower to the mean.

Figure 6.8 shows that the consumer surplus is higher to FIFO when the profit is
optimised, which results from the saved driving as shown in Figure 6.9. Optimising
the number of matches increases consumer surplus and saved driving a lot, but the
profit ends up close to zero.

In Figure 6.10 FIFO has only slightly lower match rate. This means that the value

per match is a more significant contributor to profit than the match rate. Optimising
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Figure 6.5: The drivers’ aggregated value using the plotting format of Figure 6.1.
The number of users is 2000.
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Figure 6.7: The distribution of profit. The solid line shows the mean and the dashed
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level of 99.73%. Balls mark the outliers.
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Figure 6.9: The saved driving as a share of total demand. The solid blue line is the
result of optimised profit, the red dash line is the result of FIFO and green points
are the result of optimised number of matches.
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optimised number of matches.
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Figure 6.11: The average profit per match. The solid blue line is the result of
optimised profit, the red dash line is the result of FIFO.

the number of matches increases radically the number of matches.

The profit per match improves for optimised profit while decreases for FIFO with
the number of users in Figure 6.11. The customer surplus per match does not improve
as significantly with FIFO as it does with optimised in Figure 6.12. The surplus by
the number of matches’ maximisation is significantly higher than profit maximisation
and FIFO. Profit maximisation and FIFO has almost same average distances for
the matched passengers in Figure 6.13, but the optimisation decreases while FIFO
slightly increases the detours of drivers. Optimising the number of matches decreases
average distances for the matched passengers, and slightly increases the detours
compared to FIFO.

The distribution of the lengths of passengers’ trips are in Figure 6.14 and the
detours in Figure 6.15. It can be seen that both optimisations make profit with long
matches, but that to increase the match rate, the match rate optimisation loses by
making matches that have a shorter trip for the passenger and the longer detours for

the drivers.
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are the result of optimised number of matches.
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Chapter 7

Discussion

7.1 Agents

In ride-sharing case, it is reasonable to assume that the users do not decide about or
try to affect the platform’s strategy nor the implementation. They are considered
myopic enough and either accept or decline the offers from the platform. The agents
are said to be active, which means that the agents react to changes in the environment
with simple pre-determined actions. Their process of thought and analysis on how

they end up to the decisions is not modelled, so they are not cognitive.

The market dynamics of users are considered to be in free competition between
alternative modes of transportation. The users are modelled as price-takers. The
agents will accept offers that benefit them, but they will not plan strategies to
change the dynamics of the markets for their benefit. The users are assumed not to

collaborate or to take collective action; there is no cooperation.

For implementation, the decisions about trips need to be reasonably simple. The
deal brokered by the platform has a restricted format. The users could be provided
meta-data-templates for conditional route definitions or something else that makes
it possible to customise the deals. For a simpler matching algorithm, it may be
reasonable to limit the deals to individual trips, with a given set of conditions. It
would also make the assumption about myopic users that do not plan strategies
invalid because the users would need a motivation behind their customised deals
and the motivation would most likely be strategic and non-myopic. The platform’s
business model is only dynamic ride-sharing, not brokerage of transportation contracts

between individuals for carpooling.
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7.2 Pricing

The platform’s pricing is rule-based. It is assumed that the driver gets paid and the
passenger does pay. For the platform to enforce rule-based pricing, the payments are
done via a third party, not directly between the driver and the passenger. This also
allows the platform to subsidise the trips; the passengers may pay less than the driver
gets. The threshold quality for the pricing requires transparency and ease of use;
they may want to understand the mechanism and not worry about bargaining. For
transparency, the platform is not surge pricing by changing the rules between users.
The users can predict their savings and make the judgements based on the pricing
mechanism they know. As the platform is assumed to not have prior information
about routines of its users, the pricing rule can only employ information that the

users give and what can be deduced, like properties of possible matches.

The users are paid or charged only for the realised matches. It would be unrea-
sonable to charge users that used their time flexibility for matching; they would
pay for a negative benefit. Pricing does not reward users for giving a wider time
window w(k). The incentives for wider time windows are in the value of the matches,
affected by the pricing mechanism. Absurdly wide time-windows could occur if the
users would benefit from the width of the time window. The pricing mechanism
should work primarily to maximise profits and incentivise the users to participate.
Other mechanisms could work with a matching algorithm to meet other objectives

like match rate or social welfare.

The pricing rule is similar to the pricing of taxis. The prices need to be transparent
for the passengers to accept them. If the users could not predict their costs, then
they could potentially lose money for their lost time flexibility. Alternatively, the
users can tell their maximum willingness to pay as passengers or the willingness to
accept as drivers. Users would then have two decision variables: the price and the
width of the time window. They would depend on each other, making decisions hard.
Drivers can get with different matches, varying additional distances. It could be
that the drivers would require a per kilometre fee, because otherwise they would
need to charge for the worst case scenario, or would not be incentivised to give wide
time windows. This would make it hard for the drivers because they would need to
price their own time and costs. For the modelling choices, it would not make sense
because this type of pricing requires spatial games and strategies for testing their
pricing. This type of problems are sometimes solved with reinforcement learning

[43]. These methods do not always converge, which can be part of the dynamics of
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the market. For corporate entities that would be acceptable, but for price taking
consumers probably not. Also, it would make it fairly similar to the pricing of taxis,
but less transparent.

Passengers pay the initial (r;) and per kilometre (r;) charges. This is applied
also to the driver’s compensation, but with different values for initial (o) and per
kilometre (o) prices. ¢, (k) could be an inhibitor for routes that have the passenger’s
route within if drivers were not compensated in case of a(e) = 0. The initial charge
works on the passenger side as a deterrent for short trips that generate less revenue
than longer ones. The average cost per kilometre converges to marginal costs with
more distance. The platform could alternatively impose a minimum distance rule so
that the users would not give too short routes, which could increase the inconvenience
felt by the passengers. Drivers have no preference to drive alone, nor with a passenger.
Drivers are not compensated by the distance that they drive their passenger because
it decreases revenue and as an incentive does not play any role in overcoming the
inconvenience and costs of the driver. It does increase the willingness of drivers to

take longer distance passengers increasing consumer surplus.

7.3 The price of inconvenience and time flexibility

This Thesis uses the value of time as the value for waiting. This may overestimate
the value of waiting. The value of waiting varies between occasions. People have
other things in their lives, which affect the value of waiting. It is hard to model
peoples’ lives and preferences in complete detail and thus some alternative approach is
required. As the service in the thesis does not tailor the pricing and the matching for
individuals, the resolution required in modelling is lower; good approximations could
be gained by using estimates of the real aggregated distributions for the preferences.
Using the value of time as the value for waiting is a distribution where every person
is similar.

The most critical part is the user model. The agents in the model are willing to
share equally their value with the platform in order to gain value. In reality, it can
be likely that the more value the users would gain, the greedier they would become;
the agents want a greater share of the value if there is more value. The effect has
been studied in economics [44].

The users set their time windows depending on the value they expect to get.
Before the platform is simulated, the value is not known. For an expected value,

the probability distribution for the properties of the match is not known. Platform
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could be simulated with an initial guess and the results then used in a next iteration
round, as shown in Figure 7.1. As the population consists of agents, this would be
reinforcement learning.

If there is complexity in the system, as is the case in our simulation, the effects
of changing actions are uncertain. The agents’ decisions affect the outcomes. The
agents learn from the same outcomes. For this reason, the agents need to be realistic
for the simulation to have a realistic outcome. If the agents learn to play a game in
unrealistic dynamics created by the agents themselves, they would create unrealistic
dynamics for them to learn more about. Even if the simulation would be terminated
after few rounds, instead of waiting for convergence, the users would have learned
to behave unrealistically. The reinforcement learning may not converge [43]. There
can also be path dependency, meaning that different initial states could converge to
different points.

One possible model is that the users would give a time window that maximises
the expected value. This would require the information how the time windows effect
the probability of matching. Because every user would do this, finding time windows
would become a game between users. It is unlikely that the users could forecast the
system dynamics with a good precision. The users could learn from the outcomes of
the simulation. Because the users may not forecast the outcomes, it could be better
to have adoption model for the users to make a decision whether they will use the
platform. In the adoption model, some users would try the service and if they would
perceive that using the service benefits them, then they would keep using the service.
There can be a lag as expected value is determined by using the service [27].

With a feedback, the error from the structure of the model would be iterated
multiple times, possibly amplifying the effect from an error. With a feedback, the
system would be much more complex and there is no data to verify whether the
model is reasonable. To decrease the effect of the model it was decided not to have
the feedback for the model in this Thesis. Thus the model is as illustrated in Figure
7.2.

7.4 Matching algorithm and simulation

The algorithm chosen for matching is binary integer linear programming. The other
faster algorithms have been developed, for actual matching use, whereby binary
integer linear programming is used as a benchmark [31]. Heuristics are designed for

an application case. The development of algorithms may take a long time, and their
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feasibility is about speed and the capability to implement. These are not taken into
account in this Thesis. Binary integer linear programming gives an upper bound for
the matching algorithms the services would use.

The rolling horizon simulates the dynamic nature of partial information when
matches are done. The users may have some patterns that emerge from regular
schedules. They could be taken into account for a more optimistic evaluation by

using the full information for matching.



Chapter 8
Conclusions

In simulations, the platform manages to produce value for the customers as seen in
Figure 6.12 for the customer surplus. Whether the value is enough, considering that
the model is optimistic, is uncertain. Using optimisation algorithms gave a clear
advantage over FIFO in profit of the platform and the number of matches. Thus, the
optimisation algorithm can be of importance for the feasibility of the service. The
ride-sharing platform might have a possibility to be a feasible service. The properties
of the platform cannot be decided without making a decision about the objectives
of the platform. Different platforms have different performance as seen for example
between optimisations and FIFO.

The model for time flexibility could have been removed and replaced by a con-
stant width for the time windows. The generated dummy data captures some real
phenomena, but as the effects of real phenomena are not thoroughly researched in
this Thesis, they could have been replaced by uniform distributions. The rolling
horizon property for the matching algorithm is also controversial. The platform
can utilise some forecasting. The assumption that the platform does not utilise it
is not optimistic and leads to inferior performance. Matching the users and later
changing the users they were matched with might be reasonable to change into
such that the users are only notified to leave as the ride they are assigned to begin.
This also produces inferior performance, while the existence of such a feature is not
necessarily part of threshold quality [30], meaning that the users would not require
such a feature.

The result of match rate has a similar shape as a function of the number of users
as in the literature [10][45]. The existence of a price region where the pricing produces
matches and where it does not is trivial. The results are largely continuous in the

model parameters and make sense. Even though the model for the time flexibility
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is questionable, the agent-based modelling approach would seem to work well for a
feasibility study.

The system is modular; agents and the platform are not the same but only interact,
so it is easy to make changes to the platform for the development of implementations,
or to improve the analysis by integrating more refined models of traffic and customer
behaviour.

A similar method for a feasibility study could be applied in any case where
time constrained resources are distributed on two-sided markets. One such example
would be that of renting construction machines. The machines are stored on the
construction sites, but used only for a fraction of the time. Increasing the utilisation

rate of them would decrease the capital intensiveness of the industry.
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Appendix A

Generating data

Simulating traffic requires data about the times, origins and destinations of travel.
This Thesis generates dummy data to be used in the simulation. The generated data
tries to approximate people mostly around the cities travelling to their closest city.

To separate the nodes of the network that are more likely places for a user to
start their route, network centralities are used. These metrics try to measure the
centrality of a node, with the topology of a network the node is in [46]. The network
centrality metric a : V' — R for a node in the network V', is the average degree of
neighbours [46]. The N nodes are indexed in a decreasing order of centrality. The
node 1 is the node with the lowest centrality, N the highest. The nodes within the
cities often have more edges. The nodes around cities are connected with nodes
within cities. This makes the nodes connected to the cities have higher centrality

than the nodes connected to them, but not cities.

The normalized network centrality of a node ¢ in the network V' of N nodes is

a(i)

W) =S oy

Because the network centrality of the node corresponds to the motivation for the
travel to cities, the relative values are maintained in the probability of the node i

being the origin po for a user by reversing
poli) = a(N —i). (A1)

The destination depends on the origin by distance. The distance from 7 to j is

normalised 5
0i(J) = =+
h=1 %,
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The shorter the distance from origin, the more probable the node is to be the
destination. The distances from each node ¢ have a mapping from the ordering to
the index of the node &; : [1,2,..., N — 1] — V. §;(1) is the farthest node from 1,
0;(N — 1) is the closest one.

Specifically, pp,(8;(n)) is the probability for n:th closest node from i d;(n) to be
the destination for an origin 7. The probability depends on the centrality of Sz(n)

and its distance from ¢

0:(0:(N — m)) - a(&i(n))

p.(8(n)) = W 5
pp,(6(n)) SNI5.(6.(N — 1)) - a(b:(h))

,Vnell,2,...,N—1] (A.2)

where the denominator normalises the distribution by summing over every possible
destination.

The earliest possible departure time t is modelled to look similar to the data
about the number of cars that pass a measuring point [40]. A visual inspection of
the data suggests that the shapes resemble beta-distributions and that more central

nodes have the peak later than the nodes with lower centrality. The distribution is
t ~ Beta(3,2a(7)),

where the parameters are estimated to produce visually similar shape to the data.
Now that the user has the origin and the destination, the width of the time
window w can be computed by Equation (4.5). The latest possible departure time ¢

of the user is ¢ + w. All of the service requests can then be made with algorithm 2.

Algorithm 2 User initialisation

1: for all user € user pool do

2:  the origin i of user ~ pp (A.1)

3:  the destination j of user ~ pp, (A.2)
4:  the earliest possible departure time ¢ of user ~ Beta(3, 2a(7))
5: the width of timewindow w of user calculated from 4;; (4.5)
6
7

. the latest possible departure time for user t =t + w
end for




