
Aalto University

School of Science

Master’s Programme in Mathematics and Opeartions Research

Santtu Saijets

Modelling of preferences in multimodal
routing algorithms

Master’s Thesis

Espoo, April 17, 2018

Supervisor: Professor Harri Ehtamo, Aalto University

Instructor: M.Sc. (Tech) Taina Haapamäki

Aalto University
School of Science
Master’s Programme in Mathematics and Operations Re-
search

ABSTRACT OF
MASTER’S THESIS

Author: Santtu Saijets

Title:
Modelling of preferences in multimodal routing algorithms

Date: April 17, 2018 Pages: 63

Major: Systems and Operations Research Code: SCI3055

Supervisor: Professor Harri Ehtamo

Advisor: Taina Haapamäki M.Sc. (Tech.)

In this thesis, we study the ongoing change in the field of passenger transport.
We focus on the required technological solutions and introduce an idea of a tech-
nological platform connecting all the transport service providers seamlessly to
the available interfaces offering combined transportation services for the trav-
ellers. We present a reference architecture for the platform and identify that
development is needed to more accurately model the travellers’ preferences in the
multimodal routing algorithms used in the platform.

Label constrained shortest path problem Dijkstra’s (LCSPP-D) algorithm is
one typically used to model the traveller’s preferences in the journey planning.
We propose two ways to improve the preference modelling with this algorithm.
Firstly, the travellers should be clustered into similar groups so that the parame-
ters describing the preferences could be shared within the group. This way more
emphasis could be given to the optimization of the group specific parameters.
Secondly, instead of returning journey plans using a single objective function, a
set of journey plans should be returned where each would describe the travellers’
preferences in different situations. Then, depending on temporary variables such
as the weather, a travelling companion or the amount of luggage the traveller
could select the plan most suitable for the specific situation.

We focus on the second improvement and build a test framework in order to
evaluate the LCSPP-D algorithm more closely in our sample network. We define
multiple models to describe the travellers’ preferences and use these to return
journey plans from the sample network. The results show that journey plans
modelling the travellers’ preferences can be returned and using the designed pref-
erence models for a single trip we can return multiple plans each describing differ-
ent kind of preferences. However, further research is needed to study how well the
algorithm can actually model the traveller’s preferences and how the preference
models used in the algorithm should be defined.

Keywords: multimodal routing algorithms, preference modelling, mobil-
ity as a service

Language: English

Aalto-yliopisto
Perustieteiden korkeakoulu
Systeemi- ja operaatiotutkimus

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Santtu Saijets

Työn nimi:
Preferenssien mallinnus multimodaalisissa reititysalgoritmeissa

Päiväys: 17. huhtikuuta 2018 Sivumäärä: 63

Pääaine: Systeemi- ja operaatiotutkimus Koodi: SCI3055

Valvoja: Professori Harri Ehtamo

Ohjaaja: Diplomi-insinööri Taina Haapamäki

Tässä tutkimuksessa tutustumme muutokseen, joka on käynnissä hen-
kilöliikenteen alalla. Erityisesti meitä kiinnostavat tarvittavat teknologiset rat-
kaisut ja esittelemme ideamme teknologia-alustasta, joka yhdistäisi liikkumispal-
veluiden tarjoajat saumattomasti kaikkiin eri rajapintoihin, jotka tarjoavat keski-
tetysti liikkumispalveluita kuluttajille. Esittelemme viitearkkitehtuurin kyseiselle
alustalle ja tätä kautta tunnistamme, että kehitystä tarvitaan ainakin paranta-
maan preferenssien mallinnusta reititysalgoritmeissa, joita alustassa käytetään.

Ehdotamme kahta parannusta tukemaan preferenssien mallinnusta olemassa ole-
via algoritmeja hyödyntäen. Matkustajat tulisi ensinnäkin luokitella ryhmiin pre-
ferenssiensä perusteella. Tätä kautta preferenssimallit voitaisiin jakaa ryhmän
kesken ja enemmän panostusta voitaisiin käyttää ryhmäkohtaisten mallien ke-
hittämiseen. Toiseksi sen sijaan, että reititysalgoritmit palauttaisivat yhden ta-
voitefunktion mukaan optimoituja reittejä, niiden tulisi palauttaa joukko erilaisia
reittejä, jotka kaikki pyrkivät kuvaamaan matkustajan preferenssejä erilaisissa ti-
lanteissa. Sitten riippuen vallitsevista muuttujista, kuten säästä, matkustusseu-
rasta ja kantamusten määrästä, voisivat matkustajat valita tilanteeseen sopivim-
man reittisuunnitelman.

Tutkimme jälkimmäistä parannusehdotusta tarkemmin ja rakennamme ke-
hikon, jonka avulla voimme testata reititysalgoritmeja testiverkostossamme.
Määrittelemme useampia malleja kuvaamaan matkustajien preferenssejä ja haem-
me näiden avulla reittejä testiverkostostamme. Tulokset osoittavat, että prefe-
rensseihin mukautuvia reittiehdotuksia voidaan palauttaa ja muokkaamalla pre-
ferenssimalleja oikein on mahdollista palauttaa samalle reitille joukko erilaisia
preferenssejä kuvaavia reittejä. Jatkotutkimusta kuitenkin tarvitaan arvioimaan,
kuinka hyviä nykyiset reititysalgoritmit ovat oikeastaan kuvaamaan matkusta-
jan preferenssejä ja kuinka ryhmäkohtaiset preferenssimallien parametrit tulisi
tarkemmin määrittää.

Asiasanat: multimodaaliset reititysalgoritmit, preferenssien mallinnus,
liikkuminen palveluna

Kieli: Englanti

Acknowledgements

First and foremost, I would like to thank Taina Haapamäki and the whole
team at Flou Solutions Ltd for all the help and support you have provided
for me during the process. Applying mathematics to the field of passen-
ger transport has been an interesting journey and you have taught me a lot
about both the industry and other things such as team work, communication
and problem solving. I am also grateful to my supervisor professor Ehtamo
for the given guidance and constructive feedback needed to make this happen.

Biggest thanks belong to my family and friends. My family has always been
supportive and has been pushing me forward when needed. My friends have
been giving the much needed other things to think about and also without
them this would never have been possible.

Contents

1 Introduction 6

2 Smart Mobility Options 7

2.1 Conventional Travelling Options 7

2.2 Combined and New Transport Services 9

3 Open Technology Platform Combining Services 10

3.1 Mobility as a Service Concept 11

3.2 Reference Architecture . 12

4 Routing Algorithms 14

4.1 Routing in Road Networks . 14

4.1.1 Modelling the Road Network 15

4.1.2 Dijkstra’s Algorithm 15

4.1.3 Turn Restrictions . 17

4.1.4 Speed-up Techniques 18

4.2 Routing in Public Transport Networks 22

4.2.1 Modelling the public transport Network 23

4.2.2 Transfer Buffers . 26

4.2.3 Footpaths . 29

4.2.4 Applying Dijkstra’s to public transport Networks . . . 30

4.2.5 Speed-up Techniques 31

4.3 Multimodal Routing . 31

4

4.3.1 Modelling the Multimodal Network 31

4.3.2 Label Constrained Shortest Path Problem 33

4.3.3 Speed-up Techniques 36

5 Preference Modelling in Multimodal Routing 38

5.1 Preference Modelling using Label Constrained Shortest Path

Problem Dijkstra’s Algorithm 38

5.1.1 Preference Modelling Using Finite State Automata . . 39

5.1.2 Multiple Relevant Travelling Options 39

5.1.3 User Segmentation . 41

5.2 Proof of the Concept . 42

5.2.1 Sample Network . 42

5.2.2 Implemented Test Framework 44

5.2.3 Test Runs . 50

5.2.4 Results and Further Improvements 54

6 Discussion and conclusions 55

A Label Constrained Shortest Path Problem with R 61

5

6

1 Introduction

In the field of passenger transport it is essential for the traveller to easily find

the available transport services. Until recent years the services have been

scattered and there have not been any practical tools for the traveller to

inquire the possible options collectively. Hence, typically e.g. taxi and public

transport have been considered as separate and mutually exclusive services.

However, in certain cases it could be reasonable to utilize both during a single

trip.

Furthermore, in other industries such as telecommunications we have al-

ready seen a major transformation due to the digitalization (Li and Whalley

2002). Similar effects can now be seen in passenger transport as well. The

established business models have increasingly been deconstructed by service

providers such as Uber and Lyft (Horpedahl 2015).

We see a need for new technological solutions such as platform architectures

and multimodal routing algorithms. Haapamäki and Mäkinen (2017) pre-

sented an open technology platform integrating different market players for

information exchange and to matchmake travel demand and supply. The idea

is to combine all the transport service providers under the same platform and

to connect these through the platform to different interfaces offering trans-

port services for the travellers. Then, the travellers can search for journey

plans and handle collective bookings and payments from the same place using

e.g. their mobile devices.

The presented platform utilizes multimodal routing algorithms to find the

journey plans. Our view is that development is needed to improve the mod-

elling of preferences in routing to only suggest truly relevant travelling op-

tions. The aim for this study is to find potential routing algorithms allowing

this and to design methods to improve this feature in these.

In this study we first take a look at the ongoing change in the field of pas-

senger transport. Then, we present a reference architecture for the presented

technology platform. Thirdly, we conduct a literature review to study the

routing algorithms available. After this we select one of the presented al-

7

gorithms and study how the algorithm should be modified to improve the

modelling of the traveller’s preferences. Lastly, we design and implement a

modular test framework which allows us to test the proposed improvements.

2 Smart Mobility Options

Transport services available have stayed the same for many decades. Only

recently we have seen a change in the available options. In this section we

look at the ongoing change in the field of passenger transport.

2.1 Conventional Travelling Options

For long in the field of passenger transport we have had a limited amount of

travelling options. Travellers have been able to utilize either private modes

(e.g. car, bike, and walking), public transport modes (e.g. bus, metro, and

tram) or on-demand modes (e.g. taxi). We are interested in modelling more

closely how these alternatives look from the traveller’s point of view. In order

to do this we constructed an illustrative model to describe the traveller’s

selection process when selecting the mode to be exploited.

Firstly, for the model we need to identify different factors driving the deci-

sion. We assumed that the cost is the main factor. Naturally, there are also

other affecting factors such as travelling time, comfort, waiting time, and

the amount of rush in the vehicles. We decided to keep the cost as its own

measure and combined the other factors under a measure called a perceived

service level. Naturally, travellers weight the individual measures combined

under the perceived service level differently but in our approximative model

the actual weights are not relevant. Secondly, we need to describe how the

traveller would use the described measures in the selection process. Our

assumption is that the traveller first selects the sufficient service level and,

then, starts to minimize the cost of the service.

Now, we can draw the previously mentioned conventional transport modes

8

on a scatter plot with the cost on the x axis and the perceived service level

on the y axis. Again here, it is impossible to find any exact values for the

described measures since they depend on many external factors. Thus, we

present our approximations for these and assume that these can be used to

demonstrate the phenomena we want to elaborate later in this section. The

scatter is presented in figure 1.

P
er

ce
iv

ed
Se

rv
ic

e
Le

ve
l

Consumer Price

Service level gap No services

Walk

Bike

Tram

Bus

Train

Own car

Taxi

Figure 1: Estimated perceived service level and cost of the conventional travelling
modes

From the figure 1 we can see that there are no services available for the whole

scale of the perceived service level. The options presented in this figure seem

to be divided into two clusters. In the lower part of the graph we have the

options with a lower perceived service level and lower consumer price. In the

upper part of the graph we have the services with a higher price and higher

service level. Our approximation of the situation shows that there is a clear

service level gap in the figure. Related to the decision model described earlier

this means that the travellers looking for services with an average service level

have to pay a lot more than they probably would be willing to or lower their

requirements for the perceived service level significantly in order to find any

travelling options.

9

2.2 Combined and New Transport Services

It would seem reasonable that there is room for new and more flexible services

such as ride sharing or demand controlled public transport inside the gap

presented in figure 1. Furthermore, the two clusters do not necessarily need

to be considered separate and mutually exclusive. Instead we could combine

services from both clusters to see the wanted variation in the cost and in the

perceived service level.

Combinations would mean e.g. that on-demand modes could be used in the

parts of the journey where there are no public transport options available or

the frequency of these options are low. E.g. a traveller could start the journey

by taking their own car from the starting point to the nearest train station.

Then, continue by train to the station nearest to the destination. Finally,

finish the journey by taking a taxi from the train station to the destination.

In addition, if there would be multiple travellers taking the same route the

taxi could be shared or new public transport options could be introduced for

a specific part of the journey.

Naturally, development in technologies and solutions available would improve

the situation even more. New data sources and real time connectivity could

allow multiple improvement such as better optimization of vehicle capacities,

dynamically optimized travelling routes and improved ride sharing possibili-

ties.

We estimated the situation after the described transformation. Our estima-

tion is presented in the figure 2. We can see that the service level of all

the previously presented services is a bit improved. Furthermore, there are

now options available for the whole scale of the perceived service level. This

means that the traveller could now set the sufficient service level freely and,

then, start to minimize the cost of the service without any compromises on

the perceived service level.

There are multiple reasons why we estimated that the transition looks like

the one seen between the figures 1 and 2. Firstly, new services and service

models increase the competition in the market. Increased competition lowers

10

the prices and typically improves the service level of the available services.

New interfaces and applications also make the services more accessible for

the travellers. Secondly, resources could be utilized more efficiently. Thirdly,

services could be more personalized for the traveller’s preferences. More per-

sonalized services improve the quality of services especially in the unpleasant

parts of the trip and this way the service levels of these journeys can be

increased substantially.

Pe
rc

ei
ve

d
Se

rv
ic

e
Le

ve
l

Consumer Price

Better services and lower prices through competition
and service integration

No gap, new services,
combined services
and integrated
paltfroms

Private motoring, new
technologies and
shared capital

Figure 2: Our view of the situation after the combined services and new service
models are fully integrated into the transport system

3 Open Technology Platform Combining Ser-

vices

In the previous section we presented that there is a major change coming

to the field of passenger transport. This section concentrates on a solution

commonly proposed to be the driver for this change. First, we take a look at

the general concept and, then, study it from a technological point of view.

11

3.1 Mobility as a Service Concept

Earlier we presented the idea about the combined transport services. The

combination of multiple consecutive transport services is typically referred as

a trip chain. As described in the previous section by trip chain we mean inte-

gration of multiple consecutive elementary connections into a single journey

seamlessly. Commonly the concept where elementary connections are packed

seamlessly into these trip chains is known as a Mobility as a Services (MaaS)

concept.

Naturally, these trip chains will be automatically packed and easily accessi-

ble through an easy-to-use interface. Furthermore, collective bookings and

payments are handled automatically. Until recent years there have not been

any practical tools for the traveller to inquire the possible trip chains. In the

worst case each elementary connection should have been searched, booked

and paid separately. Thus, an interface is needed where all this can be done.

This interface is typically known as a MaaS operator.

The MaaS operator is used through a smart phone application or a website.

Given the starting point and destination it offers different kind of trip chains

to reach the desired destination. The traveller can freely select the most

suitable one. Then, the operator will book the needed services and deliver

the payments for the necessary parties. Furthermore, the operator keeps

the traveller informed about the ordered services and in case of delays or

cancellations offers new options for the traveller.

The operator will be connected to a technology platform for information ex-

change. The platform communicates with the transport service providers

and depending on the available services suggests journey plans and delivers

needed bookings and payments. This platform structure is open for all rel-

evant transport service providers and different MaaS operators are able to

exploit the same technology platform structure and open API definitions.

12

3.2 Reference Architecture

As described above technology platforms integrating the MaaS operators

and transport service providers will be needed. In this sections we present a

reference architecture for this kind of solution.

The design is presented in the figure 3. On top we have the MaaS operators

and in the bottom we have the transport service providers. For both of these

we have the integration layers as well. In the middle we have the actual

engine of the technology platform.

There are three components in the actual engine situated in the middle of

the reference architecture:

• User need and preferences are evaluated in the service level model

component situated on the right side of the reference architecture. The

identification of the preferences allows to state rules as public transport

can be used as long as there are no vehicle transfers included or prefer

the use of bike always when possible.

• Service supply exchange communicates with the service providers.

It knows what is the availability of different travelling options and it

handles the pricing of different services. Bids can be placed by all

relevant service providers and the best price will be offered for the

traveller.

• Matchmaking engine is situated in the center of the engine and it

connects the travellers to the transport service providers. It is in charge

of finding the best routes and service providers included in these routes

for the traveller. It is similar to the existing route planners. However,

the routing algorithms take into account the user preferences from the

service level model and the availability and pricing information from

the service supply exchange.

Naturally, solutions described above demand development in technologies

and interfaces available. This is why we also presented our estimation of

the technological gap and state of the implementations available for each

component presented in the infrastructure. The technological gap is color

13

Front end integration

Transport service provider integration

Mobile front end

Train PT Shared
car

Te
ch

n
o

lo
gy

p
la

tf
o

rm

Car
rental

Technological gap

Available implementations

Reference architecture

Color coding

…Public
bikes

Technological gap Implementations

Technology exists Already implemented

Similar technologies available Similar ones exist

Not developed by anyone Totally new solution

Service
supply

exchange

Match-
making
engine

User need
and

preference

Figure 3: Our design of the MaaS-operator architecture. Technological gap and
the available implementations are also color coded in the figure.

coded in the upper left corner of each component and the state of the available

implementation in the right lower corner. For both attributes the estimation

is done on a three scale level. The lighter the color is the more mature the

attribute of the component is. The estimation is done in order to identify the

parts where most research and development is needed. We can see that the

largest gap and the absence of implementations is found from the operator’s

key components and from the interface between the operator and the service

providers.

One key component in the architecture design presented above was the match

making engine. In this study we focus on this component. More specifically,

we take a look at the possible ways to improve the modelling of the traveller’s

preferences inside the routing algorithms. First, we take a look at the existing

algorithms and, then, modify one to improve the routing results for our

purposes.

14

4 Routing Algorithms

In route planning road networks are usually modelled as directed graphs be-

cause of the inherent resemblance between these two. This way it is possible

to apply shortest path algorithms to find the optimal routes between two

points in the road network. Shortest path algorithms have a large amount of

application areas such as management science, telecommunication and trans-

port (see e.g. Jaumard et al. 1998, Kompella et al. 1993, Dumas et al. 1991).

Due to this, lots of research has been done resulting in several methods devel-

oped (Van Vliet 1978). This section presents a literature review of possible

routing algorithms applied in the field of passenger transport. First, we intro-

duce separately well performing methods for route planning in road networks

and public transport networks. Then, we will combine these two resulting

in a multimodal journey planner. Algorithms presented in this section are

exploited later during the study.

4.1 Routing in Road Networks

Modes that are not dependent on any predetermined stops or schedules, such

as car, taxi, walking, and cycling can be called individual modes. Conven-

tional routing algorithm used in vehicle routing can be used to optimize the

routes travelled by these individual modes. Naturally, different travelling

speeds and possibly networks must be applied for each mode. In this section

we take a look at routing algorithms that perform well in vehicle routing.

First, we study how the road network can be modelled. Then, we examine

shortest path algorithms and present methods that will improve the outputs

of the algorithms. Finally, we take a look at preprocessing methods which

help us in lowering the query time of the algorithm. In the section 4.3 we ex-

ploit these methods in the construction of the multimodal routing algorithm.

15

4.1.1 Modelling the Road Network

The road network is modelled as a directed graph G = (V,A), where V

is a set of vertices and A is the set of arcs connecting the vertices. Each

intersection is represented by a vertex s ∈ V and each road between two

intersections is represented by an arc (s, t) ∈ A, s 6= t. With every arc (s, t)

there is an associated non-negative cost l(s, t) which corresponds e.g. to the

time it takes to travel through the arc. The travelling time property of an

arc is mode dependent. Distance dist(s, t) between two vertices s and t is

the sum of the associated arc costs in the path from s to t.

4.1.2 Dijkstra’s Algorithm

In routing we are searching for the shortest path between the source vertex

s and the target vertex t. Typically, Dijkstra’s algorithm (Dijkstra 1959)

is used to solve the shortest path problem. It computes the shortest path

from a single source vertex s to every other vertex. It uses a priority queue Q

ordered by distance dist(s, u). Algorithm is initialized by setting all distances

to infinity except dist(s, s) = 0 and s is added to Q. Then, algorithm iterates

by extracting the vertex u with a minimum distance dist(s, u) from Q. It

looks at all the arcs (u, v) incident to u and for these it determines the

distance dist(s, v) by computing dist(s, u) + l(u, v). If the value dist(s, v)

is improved compared to the distance saved in Q, it is updated and vertex

v is added to Q. Dijkstra’s algorithms has the label setting property which

means that once the arc v is extracted from Q the distance dist(s, v) is

correct. Thus, when calculating the distance between two points s and t the

algorithm may stop as soon as t has been extracted from the priority queue

Q. During the computations it is typical to save the parent of each extracted

vertex so that the correct route between the source s and target t can be

easily found.

Dijkstra’s performance can be further improved by introducing the bidi-

rectional search (Dantzig 2016). It runs Dijkstra’s algorithm simultane-

ously starting from the start and end points limiting the amount of ver-

16

S T

(a)

S T

(b)

Figure 4: Illustrations of the search spaces that the conventional Dijkstra’s algo-
rithm and bi-directional Dijkstra’s algorithm have to scan until the shortest path
to the target vertex is found. Figure (a) represents the conventional Dijkstra’s
algorithm and figure (b) represents bi-directional Dijkstra’s algorithm.

tices scanned. The algorithm can be stopped as soon as the same vertex is

extracted for the first time by both algorithms. The shortest path is then

dist(s, t) = min{dist(s, u) + dist(u, t) : ∀u visited by both algorithms}.

Simultaneous running of two algorithm limits the search space of the algo-

rithm. The amount of vertices visited is roughly the half of the amount of

vertices visited with the original Dijkstra’s algorithm. Figures 4(a) and 4(b)

show an approximation on how the search space changes. In 4(a) we have

a conventional Dijkstra’s algorithm and in 4(b) a bidirectional Dijkstra’s al-

gorithm. The shape of the scanned search space depends on the way how

the vertices are situated in the geographical map and, typically, it is not as

symmetric as in the figures.

17

4.1.3 Turn Restrictions

With the algorithms above there is no way to model turning restrictions.

In road networks it is typical that when approaching an intersection from

a particular road it is not possible to turn to all possible directions. In the

graph G this means that the possible arcs (v, w) incident to v depend on the

already travelled arc (u, v). In order to find a feasible travelling route this

restriction has to be taken into account in the algorithm.

One popular solution is to model these restrictions with turning tables con-

nected to each vertex (Delling et al. 2011a). This means that the table

associated with each vertex tells the allowed turning directions. There are

limited amount of these tables and in order to save memory these tables can

be shared among many vertices. However, if turn restrictions are applied

standard Dijkstra’s algorithm cannot be applied any more as shown in the

figure 5. In the figure we want travel from vertex 1 to the vertex 5. Since the

left turn is not allowed when travelling from 1 to 2, we can replace it with

two right turns and get to the destination. Label setting property of the

Dijkstra’s algorithm ensures that the algorithm visits every vertex at most

once and the conventional Dijkstra’s algorithms would not be able to return

the path to the vertex 5.

Another solution proposed by Caldwell (1961) is to present roads as vertices

and connections between roads as arcs. Then, the arcs are only added be-

tween roads if the corresponding turn is allowed. This approach would allow

the use of the conventional Dijkstra’s algorithm. However, the size of the net-

work increases considerably since there is one new arc for every connection

in the intersection.

Third solution proposed by Geisberger and Vetter (2011) is to maintain a

priority Q of arcs instead of vertices and find the optimal path between

originating arc and destination arc. This would allow us to apply Dijkstra’s

algorithm and the size of the network would not be increased.

Turning restrictions also make it possible to apply turn costs. Applying turn

costs means that the time that it takes to turn in intersection will be taking

18

Figure 5: Example of an intersection with a turning restriction. Since the path
1− 2− 5 is not allowed the conventinal Dijkstra’s algorithm would not be able to
return the path from 1 to 5.

into account in the routing. Turn costs can improve the outputs of the routing

algorithm significantly since e.g. unnecessary U-turn are avoided. Delling

et al. (2011b) propose costs of 100 seconds for U-turns and zero otherwise.

Also other kinds of fixed costs can easily be applied. E.g. add a fixed cost

when turning right or left and when travelling trough a intersection with

traffic lights (Geisberger and Vetter 2011). Also fixed costs can be easily

shared between similar intersections in the same way as turning tables in

order to save memory.

4.1.4 Speed-up Techniques

For routing algorithms a fast query time is essential and it is typical that

trade-offs have to be made between the preprocessing time and the query

time. Dijkstra’s algorithm doesn’t require any preprocessing time but it

also falls behind many algorithms when comparing the query times. Lots of

research have been made in order to reduce the query time of the routing

19

algorithms (see e.g. Goldberg and Werneck 2005, Van Vliet 1978, Geisberger

et al. 2012a).

Typically, in designing of these speed-up techniques three different properties

of the road networks can be exploited: goal direction, hierarchical structure

or small separators (Bast et al. 2016). Goal direction techniques exploit e.g.

geometric properties of the network in order to guide the search algorithm

into the right direction. Thus, reducing the number of unnecessary vertices

scanned. Hierarchical structure techniques exploit the strong hierarchical

structure of the road networks in the way that it take into account that

long paths typically converge to a small number of important roads such as

highways. By scanning these roads first it is possible to reduce the number of

unnecessary roads scanned. Small separator techniques exploit the fact that

road networks are close to planar networks. Planar networks are networks

that can be drawn on to a planar surface without any arcs crossing each

others. Although, road networks are not planar since there are bridges and

underpasses they have been observed to have small separators as well (see e.g.

Eppstein and Goodrich 2008). This means that by removing a comparatively

small number of vertices the graph can be composed to several smaller graphs.

Then, e.g. distances between these separating vertices can be precomputed

and this information can be used in order to decrease the query time.

In this study we will present more closely a popular speed up technique

called contraction hierarchies (CH) presented by Geisberger et al. (2008).

This algorithm exploits the second presented property of the road networks,

hierarchical structure.

CH algorithm is run in two phases. There is a preprocessing phase and a

query phase. In the preprocessing phase a procedure called vertex contraction

is performed. This procedure adds several short cuts into the graph. Then,

in query phase bidirectional Dijkstra’s algorithm uses these short cuts and

is able to return the shortest path faster than the conventional bidirectional

Dijkstra’s algorithm. Geisberger and Vetter (2011) showed also that this

technique works with turning restrictions and costs as well.

The vertex contraction is performed to every vertex in the graph one at a

20

time. The order of the contraction is arbitrary but in order to achieve the

needed speed-up in query time, a sophisticated order is essential. Here, a

single vertex contraction is presented first formally. Then, we go through a

simple example of the same procedure. Finally, an approach to select the

contraction order more sophisticated is presented.

Let v be the first vertex to be contracted. Furthermore, let {u1, . . . uk} be

the set of vertices where there exists an outgoing arc (ui, v), i = 1, . . . , k

and {w1, . . . wl} be the set of vertices where there exists an incoming arc

(v, wj), i = 1, . . . , j. First, the algorithm removes all incoming and outgoing

arcs of v and checks if any shortest path from any vertex in {u1, . . . uk} to any

vertex in {w1, . . . wl} were removed. If there were shortest paths removed,

the algorithm adds short cuts to the graph corresponding to these removed

shortest paths. Then the algorithm selects the next vertex to be contracted.

Again it removes the incoming and outgoing arcs, checks if there were any

shortest paths removed and adds corresponding short cuts to the network.

The algorithm continues this until the whole graph is contracted. After each

vertex contraction the graph is left as it is. Thus, no removed arcs are placed

back in the graph and no added short cuts are removed between the vertex

contraction. After each vertex is contracted a result graph G∗ can be build.

This is the original graph G extended with the short cuts calculated in the

vertex contraction phase.

An example of a single vertex contraction procedure is presented in figure

6. In the figure we have a small graph with 6 vertices. Arc costs are also

presented in the figure. In the figure the vertex 3 is contracted. Thus, first all

incoming and outgoing arcs are removed from 3. Then, we can see that the

shortest paths from 1 to 6 and 1 to 5 were removed. Thus, we have to include

two short cuts. These are marked with red arcs. It could be possible to add

also a short cut from 1 to 4 but since there are also other paths with the

same cost it is not compulsory. If the whole vertex contraction phase would

be performed to the example graph we would have to continue the vertex

contraction from the resulted graph and perform the next contraction to a

next vertex in the graph. Then, we would continue this until every vertex in

the graph is contracted.

21

1

2

3 5

6

4
2

3 4

3

2
2 2

1 1

4

1

2

3 5

6

4
2

2 2

1 1

7 7

6
7

Figure 6: Illustration of contraction procedure in contraction hierarchies algorithm.
In the figure vertex 3 is contracted.

As mentioned before, the order in which the vertices are contracted is arbi-

trary. However, it has to be done in a sophisticated way in order to achieve

the needed speed-up in query time. Ideally, we would like to select the or-

der so that only the important short cuts would be added to the graph.

Thus, short cuts representing important roads such as highway and main

roads. Multiple ways have been presented to select the order (Geisberger

et al. 2008). The one presented most frequently in the literature is the lazy

updates technique. Next, we will present this briefly.

In the lazy updates a measure called edge difference is first calculated for

every vertex. It is a property of a vertex which tells that if the vertex con-

traction is performed to it what is the difference in the amount of arcs in the

graph before and after the contraction. E.g. the edge difference of the vertex

3 in figure 6 is -3 since five arcs are removed and two short cuts are added.

After the edge difference is calculated for each vertex they are placed in a

priority queue ordered by the edge differences and the contraction is started

from the vertex with a smallest edge difference. Naturally, when vertices

are contracted, the edge difference of the non-contracted vertices can change

and in principal after each contraction these values should be updated for

the whole priority queue. However, the calculation of the edge difference

for every vertex is considered computationally costly. This is why on every

iteration the edge difference of the vertex next in the priority queue is only

calculated. If it is equal or lower than the original edge difference, the vertex

22

will be contracted. Otherwise, it is placed back in the priority queue. Again,

this procedure is repeated until the whole graph is contracted.

There is still one thing that needs to be considered while contracting ver-

tices. In order to be able to exploit bi-directional Dijkstra’s after the vertex

contraction phase we have to know the order on which the contraction is

performed. This is why while the vertices are contracted labels from 1 to |V |
are assigned to them.

Before the query phase of the CH algorithm can be applied two alternative

graphs has to build from G∗. This is done using the labels assigned to

the vertices in the contraction phase. These two graphs are called up and

downward graphs. Upward graph G∗ ↑ is build in the way that it only

contains the arcs where the arc is going from a vertex with a smaller label to

a vertex with a larger label. The downward graph G∗ ↓ is build in opposite

way so that it contains only the arcs where the arc is going from a vertex

with a larger label to a vertex with a smaller label. Furthermore, the arcs

are reversed in G∗ ↓.

Next, bi-directional Dijkstra’s can be applied. It is done so that the algorithm

that starts from the source vertex uses the upward graph G∗ ↑ and the

algorithm that starts from the target uses the downward graph G∗ ↓. The

shortest path is then

dist(s, t) = min{dist(s, u) + dist(u, t) : (1)

∀u visited by both Dijkstra’s algorithms}.

4.2 Routing in Public Transport Networks

In the previous section we examined how routing of individual modes can

be done in a road network. This section examines the other popular appli-

cation of routing algorithms, routing in public transport networks. Thus,

here we consider only modes such as bus, metro, tram and train that de-

pend on some predefined schedule. A key difference compared to the routing

in road networks is that routing in public transport networks is inherently

23

time-dependent. This means that the network is given by the schedule and

consists of stops and scheduled connections between them. Journeys per-

formed in this network can consist of one or more consecutive elementary

connections. These elementary connections are journeys travelled in a single

vehicle between two specific stops. Footpaths have to be also included in

the model in order to allow walking between two nearby stops. This section

presents algorithms that allow routing in public transport networks. First,

we take a look at possible ways to model the public transport network. Then,

we study the algorithms applied in these networks and, finally, we examine

the possible ways to fasten the query time.

4.2.1 Modelling the public transport Network

The timetable can be modelled as a directed graph G = (V,A) and there are

two main approaches to do this, time-expanded and time-depended model

(Müller-Hannemann et al. 2007). Both of these have their advantages and

disadvantages. In this section we will introduce both of these approaches

side-by-side in order to be able to compare the two available methods.

First, we have the time-expanded model. Here, every vertex s ∈ V corre-

sponds to an event happening in a specific time. They are either vehicles

arriving to a specific stop or vehicles departing from a specific stop. Thus,

there exists a vertex for every event in the timetable. Naturally, there are arcs

in the graph that represent transitions between the events in the timetable.

An arc (s, t) ∈ A, s 6= t between the vertices s and t will added to the graph

if one of the following condition is satisfied.

• Vertices s and t represent consecutive events of a vehicle travelling

between two stops. I.e., s is the departure event from a specific stop

and t is the arrival event to the following stop.

• Vertices s and t represent consecutive events within a single stop.

Events s and t can be e.g. the arrival and departure event of the

same vehicle or two consecutive arrival events of different vehicles to

the same stop. The key is that the events within a specific stop have

24

to be ordered by time and two consecutive events have to be connected

with an arc corresponding to the possibility to just stay on the stop

and wait for the upcoming departures. These arcs within a stop can

be called as waiting arcs.

For every arc (s, t) ∈ A, s 6= t there is a non-negative cost l(s, t) assigned

which corresponds to the time difference between the two events in the ver-

tices s and t. Figure 7(a) shows an example of a time-expanded graph. In the

figure we have a sub-graph of a larger public transport network. In the graph

we have two public transport lines and three stops. The first line travels the

route stop1 − stop2 − stop3 and the second line travels straight from stop1

to stop3. We can see that the vertices can be seen to unroll the time since

there is always a single vertex for every event in time.

Stop 1:

Stop 2:

Stop 3:

Line 1

Line 2

Line 1

Line 2

(a)

Stop 1:

Stop 2:

Stop 3:

Lin
e

 1

(b)

Figure 7: Two illustrations of the same sub-graph belonging to a larger public
transport network. Figure (a) represents the time-expanded model and (b) repre-
sents the time-dependent model.

Second possibility is to use the time-depended model presented by Brodal

and Jacob (2004). This model is closer to the one presented in the section

Routing in Road Networks. In this model vertices s ∈ V corresponds to the

stops and there is an arc (s, t) ∈ A, s 6= t between the stops s and t if there

is a vehicle going from s to t without stopping anywhere. The difference

25

to the model in the road networks is that the arc can be travelled only at

certain times and, thus, the travelling time depends on the time of arrival to

the source vertex. This information is encoded in the travel time function

associated with the arc (s, t). The function outputs the complete travelling

time given the arrival time in vertex s. E.g. if the traveller arrives to the

departure vertex 10 minutes before the desired connection departures the

travelling time is naturally the actual time it takes to travel the distance plus

the 10 minutes the traveller has to wait before the departure. An example

of a travelling time function is presented in figure 8. Here, we have a simple

connection between two stops. The travelling time is 15 minutes and the

connection departures every 20 minutes. We can see that the minimum

travelling time is 15 minutes if the traveller arrives to the departure stop

just in time. Furthermore, the maximum is just less than 35 minutes which

corresponds to the situation where the traveller just misses a connection.

0

5

10

15

20

25

30

35

40

10:00 10:10 10:20 10:30 10:40 10:50 11:00 11:10 11:20

Tr
av

el
lin

g
tim

e

Arrival time at the source vertex

Travel Time Function

Figure 8: Example of a travelling time function. On the x-axis we have the trav-
eller’s arrival time to the source vertex and on the y-axis we have the travelling
time. Filled circles represent the departure events from the corresponding stop.

Network itself in the time-depended model looks very similar to the network

26

used in road networks. The figure 7(b) presents the same network as in 7(a)

but modelled with the time-depended model. Now there is a travelling time

function associated with each of the arcs in the network.

4.2.2 Transfer Buffers

There is also a need to model the time that it takes to change the vehicle

at a stop with multiple connections departing from it. There are multiple

reasons to include this property in the model. Typically, the traveller needs

some time to get out from the previous vehicle and some time to find the

next vehicle. The previous connection can also even be a bit late and, thus,

some buffer is needed. A common practice is to include a constant time into

the model that the traveller at least have to have in order to be in time

in the next vehicle. This constant time is called as a transfer buffer. The

implementation of the transfer buffers depends on the model used to model

the public transport network.

For the time-expanded model Pyrga et al. (2008) presented a solution where

for each of the departure vertices an additional transfer vertex is presented.

This means that all events in a specific stop can be separated into three

layers: arrival, transfer, and departure layers. An example is presented next

in order to demonstrate the proposed method.

A simple example of the time-expanded model with transfer buffers is pre-

sented in the figure 9. The figure presents a single stop when time is running

from 10:00 to 10:12. The time is presented on the left. Between this time

there are three lines arriving and departing the stop: Line 1, Line 2 and

Line 3. Gray areas in the figure present the three layers. As seen from the

figure there are always an additional transfer vertex presented next to each

departure vertices. Since the time running on the left, we can see that the

arc length between the transfer and departure vertices is always zero. Next,

two arcs are added for each of the arrival vertices. One goes from the arrival

vertex to the departure vertex of the same vehicle. It is always possible to

stay in the vehicle and continue using the connection. The second arc goes

27

to the next transfer vertex which is at least length of the transfer buffer away

from the arrival vertex. In this figure this means that if the next connection

leaves in less then 5 minutes from the arrival event the corresponding transfer

vertex has to be skipped. Because of this the second arc leaving from the

arrival vertex of the Line1 skips the transfer vertex of Line2. The departure

of Line 2 is 4 minutes after the arrival of the Line 1. The transfer buffer is 5

minutes and, thus, the traveller cannot make to the departure of the Line 2.

However, the Line 3 leaves 10 minutes after the arrival of the Line 1 and 8

minutes after the arrival of the Line 2. Thus, departure of the Line 3 is the

first transfer where travellers transferring from both lines Line 1 and Line 2

can make in time according to the model. This is why there are two arcs

going to the transfer vertex of the Line 3.

Arrival Transfer Departure

10:00

10:02

10:04

10:06

10:08

10:10

10:12

Transfer buffer = 5 min

Figure 9: Example of transfer buffers applied to the time-expanded model. Here,
we have a single stop with three lines arriving and departing the stop: Line 1,
Line 2 and Line 3. Time is presented on the left side of the figure and all events
happen between 10:00 and 10:12. The dashed arcs point to events outside this
window.

Earlier a sample network constructed with the time-expanded model was

presented in the figure 7(a). The figure 10(a) presents the stop 1 presented

originally in 7(a) extended with the transfer buffer model presented above.

The time is left out of this figure in order to keep the figure as simple as

possible.

28

Stop 1:

TransferArrival Departure

Line 1

Line 1

Line 2

Line 2

(a)

Stop 1:

𝒄𝒃𝒖𝒇𝒇𝒆𝒓

𝒄𝒃𝒖𝒇𝒇𝒆𝒓

(b)

Figure 10: Two illustrations of the same stop in a public transport network. In
figure (a) the stop is modelled using the time-expanded model and in figure (b)
using the time-dependent. Transfer buffers are included in the both models.

With the time-dependent model there are several possibilities on how to

model the transfer buffers. Pyrga et al. (2008) presented a model where

with every arrival to a specific stop there is a connection specific vertex

presented. These vertices are connected to the common stop vertex with an

arc that has a constant cost that correspond to the applied transfer buffer.

An example of the situation is presented in 10(b). This example corresponds

to the stop 1 presented in 7(b). Let’s assume that that the traveller arrives

to the stop using the connection Line1. Based on the model it first arriver to

the connection specific vertex presented on top of the figure. If the traveller

selects to continue using the same connection no extra cost is applied and the

journey is continued normally using the travel time function associated with

the following arc. On the other hand, if the traveller selects to get out from

the vehicle and move to the common stop vertex presented in the middle a

cost equal to the cbuffer has to be accepted. Then, the traveller can select

without any extra costs which is the next connection to be exploited.

29

4.2.3 Footpaths

Naturally, also the possibility to walk between nearby stops has to be in-

cluded in the model. Also here, the method on how the footpaths are applied

depends on the network model applied.

In the time-expanded model the procedure is quite simple but requires ad-

dition of multiple arcs to the graph. If there exists a footpath between two

stops, an arc is added between each of the arrival event at the first stop and

the earliest reachable departure event at the transfer vertex in the latter stop.

E.g. Disser et al. (2008) presented a way to include footpaths in the

time-dependent model. The way to model the transfer buffers in the time-

dependent case makes the model a bit more complicated. Since the footpaths

already include the total cost of walking between the two stops, two common

stop vertices cannot just be connected with a footpath. This would result

as an extra transfer buffer cost applied for each footpath exploited in the

middle part of a journey. Furthermore, the transfer buffer cost cannot not be

just subtracted from the added footpaths since when a journey would start

with walking the cost of the footpath would be too small. This is why an

additional foot vertex has to be introduced for every stop with footpaths con-

nected to it. An example of the situation is presented in figure 11. Here, the

foot vertex is presented on the left, the common stop vertex is in the middle,

and footpaths are marked with dashed arrows. We can see that all departing

footpaths leave from the foot vertex but arriving arcs arrive straight to the

common stop vertex. This is done to avoid zero length loops that would

allow avoiding of the transfer buffer cost.

For the both models possible footpaths between two stops can be calculated

beforehand using the algorithms presented in the section 4.1 and then in-

cluded in the public transport networks. The way of selecting the added

footpaths has to be designed properly.

30

0c

0 c
0

0

0

foot vertex

common stop
vertex

connection
specific vertex

connection
specific vertex

Figure 11: Example of including footpaths (dashed arrows) in the time-dependent
model.

4.2.4 Applying Dijkstra’s to public transport Networks

In public transport routing the network is time-dependent and the costs are

modelled in time it takes to travel between the vertices. Thus, we want to

minimize the time it takes to travel the route between the source an the

target stop. This problem is called as the earliest arrival problem.

In the time-expanded model the graph is a normal directed graph with non-

negative arc costs. Thus, it is possible to apply the same methods as pre-

sented in the road network routing. The only difference is that now there

is no single target vertex. This is why the algorithm is initialized with the

earliest possible event in the source stop and stopped when any vertex from

the target stop is extracted from the priority queue. Algorithm can be called

as Time Expanded Dijkstra (TED).

In the time-dependent model the arc costs are not constant and depend

on the departure time. Thus, modifications to the conventional Dijkstra’s

algorithm has to be made (Orda and Rom 1990). First, instead of keeping

the travelling times in the priority queue Q, the times of day are saved in

the priority queue. The other modification that has to be made is that when

the algorithm scans an arc (s, t) the cost l(s, t) = c(s,t)(τ), where τ is the

time extracted from the Q and c(s,t)(x) is the travel time function associated

31

with the arc (s, t). The rest of the algorithm works in the same way as in

the previous sections and the algorithm continues until the target vertex is

extracted from Q. Also here, multiple target vertices have to applied since the

model to handle transfer buffers increases the number of vertices associated

with a specific stop.

4.2.5 Speed-up Techniques

Similarly as in the vehicle routing, the query time is important also in public

transport routing. For the both models, time-expanded and time-dependent,

many speed-up techniques have been introduced (Bast et al. 2016). For the

time-expanded model e.g. Bauer et al. (2008) combined construction hierar-

chies and goal-directed methods in order to fasten the query time. For the

time-dependent model e.g. Geisberger (2010) applied contraction hierarchies

but had some problems due to too many shortcuts.

4.3 Multimodal Routing

In multimodal routing we would like to combine all the travelling modes

presented in the previous sections under the same algorithm. Thus, the

algorithm should be able to return journeys that can exploit e.g. car, public

transport modes and on-demand modes during the same trip. An example

of a multimodal journey could be that the traveller starts the journey by

taking a car to the nearest train station, continues by train, and finishes

the journey with a taxi to the destination. In this section we first study

how the multimodal network can be modelled. Then, we take a look at

an example algorithm applied in multimodal routing. Finally, we consider

possible speed-up techniques for the algorithms.

4.3.1 Modelling the Multimodal Network

A common way to model a multimodal network is to first build separate

graphs for each of the modes as presented in the previous sections. Then,

32

include link arcs that allow modal switches between the separate graphs

(Delling et al. 2009). These link arcs are only introduced between the vertices

we want to allow the modal switches. Typically these can be presented in

places like train stations and they are connected to the geographically nearest

vertices in other graphs. E.g. a link arc is placed between a train station

vertex and the nearest vertex in the road map. It can be also taken into

account that modal switches from a private car to other modes take place

only in places with park-and-ride spaces.

In order to connect two nearest vertices from separate graphs the coordinates

of the vertices have to be available and so called nearest neighbour problem

has to be solved. This means that we have to calculate the distance from e.g.

the trains stop vertex to the nearby vertices in the road network.

A popular solution is to use k-dimensional trees (Bentley 1975). In k-

dimensional trees the algorithm first splits the search space iteratively into

small areas which correspond to the tree leafs. This is done so that the leaf

size is relatively small and there are at least one vertex in each leaf. Then,

these leafs can be exploited to calculate the distances between the nearby

vertices and based on the distances the vertices to be connected with a link

arc can be determined.

Since independent modes are modelled in similar graphs and the graphs share

many common vertices, it seems unnecessary to apply the link arcs between

them. One possible solution is to assign two separate costs to the arcs be-

tween the two vertices where several modes can be exploited (Pajor 2009).

However, this would require some minor changes to the Dijkstra’s algorithm.

Furthermore, since in the multimodal network walking can be performed

in a network specifically intended for walking there is no need to include

separate footpaths. Link arcs between the public transport network and

pedestrian network need to be linked properly using the methods presented

in Foothpaths section.

In multimodal routing it needs to be considered that although a modal change

would be possible in a specific place it might not be feasible. E.g., it shouldn’t

33

be possible to always switch to the car mode during a trip since obviously the

car is not available everywhere. The algorithm presented next gives answers

to this question.

4.3.2 Label Constrained Shortest Path Problem

Multiple algorithms have been developed for multimodal routing. In this

study we will concentrate on the one called label constrained shortest path

problem Dijkstra (LCSPP-D) presented by Barrett et al. (2000). As men-

tioned above the algorithm would have to ensure that the sequence of ex-

ploited travelling modes is feasible. LCSPP-D uses formal languages to do

this. This will be demonstrated below but first some other concepts are

needed to be defined. This section mainly follows the concepts presented by

Pajor (2009).

First, in LCSPP-D an alphabet Σ has to be defined. It is a finite set of

symbols. An example of an alphabet could be

Σ = {foot, car, bus, train, tram,metro, bike, taxi}.

After the alphabet is defined each arc in the graph G is assigned with a label

from Σ based on the mode that is exploited when using the arc.

A sequence w = [foot, car, foot] of symbols from Σ is called a word and a

concatenation of words w = [foot, car, foot] and v = [foot, bus, bus, foot] is

simply defined as wv = [foot, car, foot, foot, bus, bus, foot]. Then, language

L has to be defined to restrict the sequences of used travelling modes, i.e.

the accepted words.

For the language L the i’th power set of L can be defined. It is done recur-

sively so that

• If i = 0 : L0 is an empty word and

• If i > 0 : Li = {wv|w ∈ Li−1 and v ∈ L}.

Then, we can introduce the Kleene-Closure of L which is

34

L∗ =
⋃
i≥0

Li.

This allow us to define that L ⊆ Σ∗. Furthermore, we have to define that

concatenation of two languages L1, L2 ⊆ Σ∗ is defined

L1 · L2 = {vw|v ∈ L1 and w ∈ L2}.

Generally, LCSPP-D puts no restriction on the language L but, typically,

regular languages are considered sufficient to model the mode restrictions

(Pajor 2009). Thus, also here the language L is restricted to be a regular

language.

Definition 1. Regular languages over an alphabet Σ can be defined recur-

sively using construction rules

1. The empty language ∅ is regular

2. {σ} is an regular language for all σ ∈ Σ

3. If L1 and L2 are regular languages, then L1 ∪ L2, L1 · L2 and L∗1 are

also regular languages

4. There are no other regular languages over Σ

Regular languages can be identified using regular expressions or finite au-

tomata. Next, finite automata are introduced for this purpose.

A (non-deterministic) finite automaton A = (Q,Σ, δ, S, F) consists of the

possible states Q, an alphabet Σ, a state transition function δ, a set of initial

states S and a set of final states F . Typically, finite automata are described

visually with a transition graph. An example of a transition graph is pre-

sented in figure 12. States q ∈ Q are presented as vertices and for every label

σ ∈ Σ we draw an arc from q to r if and only if r ∈ δ(q, σ). Initial states

are marked with an incoming arc and final states are marked with a double

framed vertex.

The transition graph is used to determine whether a word w is accepted

by the language L. The word w is accepted by the finite automaton if there

35

exists a path from one of the initial states to one of the final states so that the

subsequent arcs on the path are labelled the subsequent symbols of w. If there

is no such path the word w is rejected. E.g. in the figure 12 word v = [a, b, b, a]

would be accepted since we can travel the path q0 − q1 − q2 −−q3 − q3 from

the initial state to the final state. On the other hand word u = [a, b, a] would

be rejected.

Figure 12: Example of a transition graph buil for alphabet Σ = {a, b}

LCSPP-D operates on a product network which is constructed using the

original network and the finite state automaton. Here, we give a formal

definition for the product network.

Definition 2. Giving the original graph G = (V,A), the labels from Σ for

each arc and the non-deterministic finite state automaton A = (Q,Σ, δ, S, F),

the product network GX = (V X , AX) is defined as follows

• The vertices in the product network consist of tuples (v, q) ∈ V X where

v is a vertex from the original graph and q is a state from the finite

state automaton.

• An arc ((v1, q1), (v2, q2)) is only added to GX if there exists an arc

(v1, v2) in the original graph G and the arc is labelled with σ ∈ Σ so

that there exists a transition q2 = δ(q1, σ) in the automaton.

• The non-negative cost associated with ((v1, q1), (v2, q2)) is l(v1, v2).

The resulting graph is not multimodal in the sense that when running the

algorithm we do not have to consider what kind of modal changes are made

during the journey. There are only allowed modal changes included in the

graph.

36

An algorithm for solving the label constrained shortest path problem in deter-

ministic polynomial time was presented by Barrett et al. (2000). In Holzer

(2008) and Barrett et al. (2008) the algorithm was developed further so

that the product network does not need to be computed explicitly and the

needed space is reduced significantly. In this case the original graph G and

the automaton A are given as an input for the algorithm. Then, a normal

Dijkstra’s algorithm is run from a source vertex s to the target vertex t so

that the product graph is calculated only for the arcs and vertices adjacent

to the current search space of the Dijkstra’s algorithm.

The algorithm 1 presents the methods described above. For the sake of sim-

plicity we assume that all of the arcs are time-dependent, there are no turn

restrictions or speed-up techniques applied. Furthermore, the algorithm be-

low allows us to present multiple target vertices but it also works only with

a single target.

4.3.3 Speed-up Techniques

Similarly as in the routing in road networks and in public transport networks,

there are multiple speed-up techniques developed for the multimodal routing

as well (see e.g. Delling et al. 2009). Here, we only briefly present the one

exploiting contraction hierarchies for LCSPP-D.

Geisberger et al. (2012b) applied Contraction Hierarchies with LCSPP-D

and developed an algorithm called User-Constrained Contraction Hierarchies

(UCCH). In the algorithm the contraction is done so that the vertices whose

adjacent vertices only belong to the same modal network are contracted.

This ensures that all the short cuts travel inside the same modal network

and, thus, resulting journey plan obeys L. The algorithm is run in two

phases. In the first phase the contraction is performed for each sub-graph

that are given as a possible initial or final transport modes. Contraction is

stopped when the uncontracted core graph is reach. Then, LCSPP-D can be

37

run in the resulting graph.

Algorithm 1: Algorithm for solving the label constrained shortest path
problem

Data: The original multimodal graph G = (V,A). The source s ∈ V
and the target(s) t ⊆ V of the journey. The finite state
automaton A = (Q,Σ, δ, S, F) representing a regular language
L ⊆ Σ∗

Result: A shortest path from s to t which obeys the preference rules
stated in L.

PQ ← a priority queue for the product vertices (v, q) ordered by the
non-negative cost from the source vertex to the vertex (v, q) in
increasing order;

forall qS ∈ S do
PQ.push((s, qs), 0);

end

settled-targets ← ∅;
while not PQ.isempty() do

(v, q)← PQ.pop();

if v ∈ T and q ∈ F then
settled-targets ← settled-targets ∪{v};
if settled-targets = T then

stop;
end

end

forall outgoing arcs (v, w) do
forall states q′ ∈ δ(q, label((v, w)) do

if (w, q′) is a new product vertex then
PQ.push((w, q′),dist((s, qS), (v, q)) + l((v, q), (w, q′))) ;

else

if (w, q′) not yet extracted and
dist((s, qS), (v, q)) + l((v, q), (w, q′)) <
dist((s, qS), (w, q′));
then

PQ.updatePriority((w, q′),
dist((s, qS), (v, q)) + l((v, q), (w, q′)));

end

end

end

end

stop
end

38

5 Preference Modelling in Multimodal Rout-

ing

As stated earlier our view is that development is needed in routing to improve

the modelling of the traveller’s preferences. In this section we will propose

some methods on how this feature could be improved in multimodal routing.

First, we study the methods that could improve the preference modelling in

LCSPP-D. Then, we test the improvements in a small sample network.

5.1 Preference Modelling using Label Constrained Short-

est Path Problem Dijkstra’s Algorithm

The initial goal with the routing algorithm is to find relevant and attractive

travelling options, i.e. journey plans, for the traveller given the starting

point and the destination. So far, all the algorithms presented above have

been optimizing only the travelling time. Thus, the fastest path has been

the optimal path. However, it can be easily argued how realistic this model

is. Naturally, factors such as congestion, weather, and number of vehicle

transfers during the journey also contribute to the attractiveness of a journey

plan. Furthermore, individual travellers weight these factors differently. E.g.

some travellers always minimize the travelling time while others do not really

care about the time as long as they can travel the route without any vehicle

transfers.

Because of the reasons stated above also other factors in addition to the

travelling time should be taken into account. E.g. Aifadopoulou et al. (2007)

proposed a type of a multicriteria optimization solution where they applied

linear penalties that depend on the primary optimization variable such as

the travel time. However, with the LCSPP-D the problem can be addressed

without any modifications on the objective function.

39

5.1.1 Preference Modelling Using Finite State Automata

Multiple studies show that LCSPP-D can be also exploited in preference

modelling (see e.g. Pajor 2009, Dibbelt 2016). With LCSPP-D the regular

language restricting the sequences of allowed travelling modes can be designed

in the way that it also describes the traveller’s preferences. A simple example

is shown in the figure 13. Here, the idea is to model journeys performed using

only public transport modes with no transfers. The actual structure of the

finite state automaton depends off course on the way the multimodal network

is constructed and, thus, with different kind of networks functionally similar

finite state automata might look completely different.

E.g. in the current example the network would be time-dependent and the

arcs linking different modal networks would labelled with a link label. Fur-

thermore, arcs leaving the connection specific vertices inside a single stop

would be labelled with a transfer label. In the figure, we have a finite state

automaton with four states q0, q1, q2, and q3. States q0 and q1 are marked

as initial states. Thus, the corresponding journey could start by walking or

with one of the public transport modes. The automaton has three final states

q0, q1, and q3. The key point here is that the finite state automaton only

allows to use the transfer links once. Thus, if public transport modes would

be exploited they could be used only once and no vehicle transfers would be

allowed.

5.1.2 Multiple Relevant Travelling Options

As stated earlier the goal of the routing algorithm is to return a journey plan

given the starting point and the destination. Furthermore, the section above

showed that with LCSPP-D traveller’s preferences can be taken into account

with a proper design of the formal language used in the algorithm. Next, we

will present our view of how the preferences should be taken into account in

the routing.

There are multiple things that can be encoded in the finite state automaton

to describe the traveller’s preferences. Problem is that traveller’s preferences

40

଴ݍ

ଵݍ ଶݍ

foot

link

train
metro
tram
bus

transfer
ଷݍ

link

foot

Figure 13: Example of a finite state automaton modelling traveller’s preferences.

can depend on temporary variables such as local weather, fatigue or travelling

companion. From the routing point of view these kind of temporary variables

can be difficult to implement. Furthermore, e.g. Dibbelt (2016) pointed

out that the exact modelling of preferences would also require users to set

parameters into the application before understanding what are the real effects

of these parameters to the returned journey plan. Thus, we would like to

avoid modelling of the traveller’s preferences too accurately.

This is why we suggest that instead of trying to find the optimal solution

we could try to identify a set of possibly optimal journey plans. This means

that instead of returning a single journey plan the platform should return a

set of attractive plans. Then, the traveller could select the one that is the

most suitable for the specific moment.

With the LCSPP-D this can be easily done if there are multiple finite state

automata associated with the traveller. Each of the finite state automaton

could represent the traveller’s preferences in a specific situation. Then, the

LCSPP-D could be run parallel so that the actual operator platform could

41

return a set of relevant travelling options. After this the user could select

the plan fitting best to the current situation and start to optimize arrival or

departure time.

It could be argued that how important is the preferences modelling if still

multiple journey plans will be returned. However, there is a major transition

going on in the field of passenger transport. The amount of new service

models in this field is constantly growing. Thus, the need for the preference

modelling is also growing.

5.1.3 User Segmentation

In the previous section we stated that multiple finite state automata could be

used to identify the set of relevant travelling options. Each of these automata

should model the traveller’s preferences in different situations. A relevant

question is that how multiple individual automata can be designed for each

of the traveller.

Instead of designing completely new finite state automata for each of the

users we could exploit user segmentation. Thus, the travellers should be

segmented into similar groups and, then, individual finite state automata

should be designed for each of the groups. E.g. Anable (2005) divided the

travellers into six clusters based on their attitude statements. Moreover,

Stenfors (2017) showed that distinctive groups can be identified using trav-

elling data and constructed mobility archetypes to be used when planning

new mobility services. Similar results could be used to identify the correct

clusters for each traveller. Then, predefined finite state automata could be

associated with every traveller.

The cluster specific automata design it self is left for further research.

42

5.2 Proof of the Concept

As stated earlier we would like to utilize multiple finite state automata in

order to return a set of relevant journey plans for the traveller. In this section

we test this in a proof of concept environment. First, we introduce a sample

network where the tests will be run. Then, we construct a test framework

which allows us to run LCSPP-D algorithm in the sample network. Finally,

we run the algorithm using several finite state automata and take a look at

the observed results.

5.2.1 Sample Network

We will implement our tests in a small sample network presented in figure 14.

The network is highly simplified compared to a real multimodal network but

in our literature review we showed that the used algorithms would scale up

to more complicated and realistic networks as well. In our sample network

we have a single metro line with two stops, two bus lines, and a simple road

network. In the road network it is possible to travel by car and by walking.

The network consists of three separate sub-networks. The first two sub-

networks correspond to the independent travelling modes, i.e. car and walk-

ing modes. These consist of 22 vertices representing the intersections and 8

vertices representing the stops intended for the public transport connections.

The networks are presented using two files saved in a comma separated value

(CSV) format. In the first file each new line represents a vertex. An example

is given in the table 1. Here, we have the vertex name and the correspond-

ing x and y coordinates on each line. Since in our sample network the car

and walking modes exploit the same network this file can be actually shared

among the corresponding two sub-networks.

The second file describes the arcs connecting the vertices. Here, each line

correspond to an arc in the sub-network. An example is given in the table

2. On each line we have the source and target vertex names followed by the

corresponding arc length, i.e. the travelling time. Since travelling by a car is

faster than walking separate files are needed for both sub-networks.

43

Line Row content
1 1,500,5100
2 2,3200,5100
3 3,500,4400
...

...

Table 1: An example of the first CSV file describing the sub-network for the
independent modes. In the file each line correspond to a vertex in the sub-network.
First number is the vertex number followed by the x and y coordinate of the vertex.

Line Row content
1 1,3,0.0259
2 3,1,0.0259
3 3,4,0.0296
...

...

Table 2: An example of the second CSV file describing the sub-network for the
independent modes. In the file each line correspond to an arc in the sub-network.
On the lines we have the names of the source and target vertices follwed by the
travelling times between these vertices.

The third sub-network corresponds to the public transport modes, i.e. bus

and metro modes. Also here two CSV files are used to desccribe the sub-

network. The first file is equal to the first file in the sub-networks presented

before. It consists of the vertex names and their coordinates. However, the

second file differs since the network is time-dependent and there is a travelling

time function associated with each arc. An example of this file is presented

in the table 3. Here each line represents a vehicle leaving from a specific stop.

Thus, on the line we have the names of the source and target vertices, the

label of the corresponding travelling mode, and the departure and travelling

time.

All networks were built specifically for these tests. Comparison was made

how the actual road and public transport networks are typically presented

so that the constructed test framework could utilize actual road networks as

well in the future.

44

Line Row content
1 B1-1,B1-2,bus,0.3333,0.0389
2 B1-1,B1-2,bus,0.3403,0.0389
3 B1-1,B1-2,bus,0.3472,0.0389
...

...

Table 3: An example of the second CSV file describing the sub-network for the
public transport modes. In the file each line correspond to a vehicle leaving from
a specific stop. On the line we have the names of the source and target vertices,
label of the corresponding travelling mode, and departure and travelling times.

5.2.2 Implemented Test Framework

Next, we need a framework where we can run the tests and utilize the sample

network described above. The main components needed in this framework

were constructed using object oriented programming and the actual tests

were run using simple scripts. Everything was implemented using the R

language (R Development Core Team 2008). In total, we constructed three

modular class structures to be used in all tests and a single function to run

the algorithm. Then, we had multiple scripts in place to run the tests with

different parameters. Furthermore, separate scripts were needed to visualize

the obtained results. These were implemented using the R language’s ggplot

package (Wickham 2009). For simplicity we present here only the designed

class structures and the main function used to run the LCSPP-D algorithm.

First, we present the class structure that allows the optimization algorithm

to query information about the used network. This can be found from the

figure 15. All constructed class structures are presented using the Unified

Modelling Language (UML) type of notation. Each container in the figures

represents a class. The class name is presented on the top. Class attributes

are presented below the name and the class methods in the bottom part of

the container. After each attribute or method there is also a brief description

available. Furthermore, there are two type of classes in the figure, base classes

and derived classes. A base class stands on its own and all the attributes

and methods available are described inside its own container. A derived

class represents a specialized version of the base class. It inherits all the

45

1 2

3 4 5 6

78

91011

12

13 14

15

16

17

1819

2021

22

M1−1

M1−2
B1−1

B1−2

B1−3

B2−1

B2−2B2−3

Mode
Car & walking
Metro
Bus

Figure 14: The sample network where all the tests were executed. There is a single
metro line and two bus lines in the network. In the network it is possible to travel
using independent modes, i.e. car or walking modes, or using the public transport
modes.

components of the base class but can also overwrite specific functionalities

and even present new ones.

From the figure 15 we can see that we have two base classes, Network and

SubNetwork classes. Network class represents the complete network and the

SubNetwork class a component of this where only a single mode can be ex-

ploited. Furthermore, we have a derived class called SubNetorkT imeDependent.

46

It has the same functionalities as its base class, SubNetwork, but the travel

times are time dependent and calculated using a travel time function associ-

ated with the corresponding arc.

Network

+ subnetworks: list of subnetwork classes

+ initialize(): Initialize the class structure

+ pushNetwork(subNetworkClass, modeName): Push a new subNetwork
 to the network, provide the mode labels as well
+ getAdjacentVertices(vertex): Get the adjacent vertices given the vertex
 name (inputted as a list with the name and the corresponding mode)
+ getTravellingTime(startVertex, endVertex, departureTime): Get the
 arrival time to the endVertex given the startVertex and the departure
 time
+ validMode(modeName): Check if the mode exists in the network
+ validArc(startVertex, endVertex): Check if the arc exists in the network
+ getAllVertices(): Returns all vertices found from the network
+ getLabel(startVertex, endVertex): Return the label associated with the arc

SubNetwork

+ mode: A label associated with the subnetwork

+ connections: A named connetion matrix representing the connections in the
 subnetwork
+ connections: A named connetion matrix representing the connections in the
 subnetwork
+ vertices: A list of vertices found from the sub network
+ distances: Distance matrix

+ initialize(modeName, connectionMatrix, distanceMatrix): Initialize the class
 structure

+ getConnections(): return the connections matrix
+ getDistances(): return the distances matrix
+ getAllVertices(): return all the vertex names
+ getTravellingTime(startVertex, endVertex, departureTime): Get the
 arrival time to the endVertex given the startVertex and the departure
 time
+ getAdjacentVertices(vertexName): Get the adjacent vertices given the
 vertex name
+ validArc(startVertexName, endVertexName): Check if the arc exists in the
 network
+ validVertex(vertexName): Check if the vertex is found from the sub network
+ getLabel(startVertex, endVertex): Return the label associated with the arc

SubNetworkTimeDependent
+ distances: A function returning the travelling time given the departure time

+ initialize(modeName, connectionMatrix, distanceFunction): Initialize the
 class structure

+ getTravellingTime(startVertex, endVertex, departureTime): Get the
 arrival time to the endVertex given the startVertex and the departure
 time. Calculate this using the provided function.

1n

(Inherits)

(Interface)

Figure 15: Class diagram of the classes used to model the networks inside the
optimization algorithm. The diagram consists of two base classes, Network and
SubNetwork, and one derived class, SubNetworkT imeDependent. Furthermore,
there is an interface between the classes Network and SubNetwork. It means that
there is always one or more SubNetwork objects below a single Network object
and this Network can access these SubNetwork objects and their methods.

In addition, we have a single interface between two classes in the figure 15.

Interface here means that the Network class can reach all the SubNetwork

classes and utilize their methods inside its own methods. It can e.g. query

for a travelling time between a two specific vertices from the corresponding

SubNetwork class. This way the implementation is modular and it is easier

to e.g. add as many SubNetworks, i.e. travelling modes, to the set up as

needed.

Overall, the class structure constructed to model the network is designed to

47

be easily usable by the LCSPP-D algorithm and all the methods used in the

algorithm can be found from the figure 15. The modular design also means

that it should be possible to model any kind of transportation network with

this class structure.

Figure 16: Class modelling the finite state automaton used in the LCSPP-D algo-
rithm. The class attributes and methods are presented below the class name in the
figure, respectively. Also brief descriptions of all the functionalities is available.

The second class structure needed in the framework is presented in figure 16.

It represents the finite state automaton needed in the LCSPP-D algorithm. A

more formal definition of a finite state automaton is presented in the section

4.3.2. Also here the class structure is designed to be modular and easily

usable in the optimization algorithm. All the methods needed in the LCSPP-

D algorithm can be found from the figure 16.

The third class structure needed in the LCSPP-D algorithm is the priority

queue. This is presented in the figure 17. This is a generic implementation of

a priority queue. Any kind of tuples associated with a priority can be placed

in the queue. Then, the priority queue sorts the tuples accordingly. With the

LCSPP-D algorithm it means that product vertices, i.e. tuples consisting of

a vertex and a state, are placed in the queue associated with the travel time

48

Figure 17: The PrirityQueue class used in the LCSPP-D algorithm. The class at-
tributes and methods are presented below the class name in the figure, respectively.
Also brief descriptions of all the functionalities is available.

as the priority.

Now we have all the necessary class structures defined for tests. Next, we will

shortly describe the function running the LCSPP-D algorithm. Also here for

simplicity we only give a brief description of the function. The actual source

code is presented in the appendix A.

The function is called LCSPPDijkstra and it takes five arguments as an

input:

• Network class: This class describes the complete network where the

algorithm is run. All the SubNetwork classes are also found under

the Network class. Separate scripts were needed to transform the files

described in the section above to corresponding classes.

• FiniteStateAutomaton class: This class describes the finite state

automaton restricting the sequence of used travelling modes in the algo-

rithm. Separate scripts were in place to define all needed FiniteStateAutomaton

classes. The actual used finite state automata are described in the next

section.

• Source vertices: A vector consisting of the source vertex names

49

• Target vertices: A vector consisting of the target vertex names

• Departure time: The time of the departure. Since part of the used

network is time-dependent and the travel time depends on the actual

time of the day the departure time is also needed.

When the function execution starts it first initializes the PriorityQueue class

used in the algorithm. Then, it iterates like described earlier in the algorithm

1 found from the section 4.3.2. A technological perspective can be found from

the source code presented in the appendix A.

After the run is completed the function returns a list consisting of all the

necessary things for us to analyse the results. The return consists of the

following objects:

• Targets: A vector of target vertex names. Originally this is an input

of the function.

• Arrival times: Arrival times to the target vertices in the correspond-

ing order as the provided targets.

• Final states: Final states in the target vertices in the corresponding

order as the the provided targets.

• Previous vertices: A named vector of all vertices found from the

complete network. Under each name there is the corresponding previ-

ous vertex determined by the LCSPP-D algorithm. If the algorithm did

not visit a specific vertex NA is introduced here. This vector allows us

to determine the actual path the algorithm has travelled to the target

vertex.

• Sources: A vector of source vertex names. Originally this is an input

of the function.

Using these outputs and the original files describing the network, we can

visualize the results. This is done next. Also the used parameters such as

the finite state automata are described more closely here.

50

5.2.3 Test Runs

The sample network was presented in figure 14. We decided to run our tests

so that in all cases we optimize the route between the vertex 19 and the

vertex 4. First, we wanted to get a control result where no restrictions on

the sequence of used travelling modes were made. The finite state automata

corresponding to this situation is presented in figure 22(a). The resulting

journey plan is also presented in 18. We can see that the resulting route

starts from the vertex 19 with a car to the M1 − 2 metro station. Then, it

continues to the M1−1 using the metro and, finally, travels to the destination

using again a car. This is the fastest route between the two vertices but it

can be argued how realistic it is to have a car at use at the second metro

station and, furthermore, does this route model the traveller’s preferences in

any way. Thus, we need to make some improvements to the used finite state

automata.

1 2

3 4 5 6

78

91011

12

13 14

15

16

17

1819

2021

22

M1−1

M1−2
B1−1

B1−2

B1−3

B2−1

B2−2B2−3

Mode
bus
car
metro
walking

Figure 18: A journey plan to travel from the vertex 19 to the vertex 4 calculated
using the finite state automaton presented in figure 22(a).

Next, we would like to return multiple journey plans and incorporate some

more advanced finite state automata into the set up. It has to be noted that

51

1 2

3 4 5 6

78

91011

12

13 14

15

16

17

1819

2021

22

M1−1

M1−2
B1−1

B1−2

B1−3

B2−1

B2−2B2−3

Mode
bus
car
metro
walking

Figure 19: A journey plan to travel from the vertex 19 to the vertex 4 calculated
using the finite state automaton presented in figure 22(b).

1 2

3 4 5 6

78

91011

12

13 14

15

16

17

1819

2021

22

M1−1

M1−2
B1−1

B1−2

B1−3

B2−1

B2−2B2−3

Mode
bus
car
metro
walking

Figure 20: A journey plan to travel from the vertex 19 to the vertex 4 calculated
using the finite state automaton presented in figure 22(c).

52

1 2

3 4 5 6

78

91011

12

13 14

15

16

17

1819

2021

22

M1−1

M1−2
B1−1

B1−2

B1−3

B2−1

B2−2B2−3

Mode
bus
car
metro
walking

Figure 21: A journey plan to travel from the vertex 19 to the vertex 4 calculated
using the finite state automaton presented in figure 22(d).

the used automata are just illustrative and implemented to demonstrate how

the preferences could be modelled with finite state automata. We have three

different kind of automata. These are presented in figures 22(b)-22(d). First,

we have the automaton which states that only public transport can be used

but does not impose any other restrictions to the resulting journey plan.

Secondly, we have an automaton which states that only public transport can

be used and no vehicle transfers are allowed. Lastly, we have an automaton

which tries to demonstrate that also more exact modelling can be done with

the finite state automata. Here, we say that the traveller wants to find

the optimal path which starts by taking a car to a metro station and then

continuing using only public transport options.

Using the three automata described above we will now run the algorithm

to optimize the paths between the same vertices as earlier. The resulting

journey plans are presented in 19-21. Each of the finite state automata seem

to work like we expected. In the figure 19 we have the route using only public

transport options. We can see that the resulting journey plan differs a lot

from the control result presented in the figure 18. Instead of using the metro,

53

଴ݍ

car
bus

metro
transfer

foot

(a) No restrictions

଴ݍ

bus
metro

transfer
foot

(b) Only public transport

଴ݍ

foot

ଵݍ

bus
metro

transfer
ଶݍ

foot

transfer

(c) Public transport and only single vehicle transfer

଴ݍ ଵݍ

car

transfer
car

ଶݍ
transfer

ଷݍ
metro

bus
metro

transfer
foot

(d) Park-and-drive in the nearby metro station

Figure 22: Four different finite state automata used to retrieve journey plans
presented in figures 18-21.

54

the traveller now utilizes the bus lines available. Since the car mode is not

available this time, it is faster to take the two bus lines and minimize the

amount of walking during the journey.

In the figure 20 we have the route returned using the second automaton. The

restriction here was to use public transport options but only allow a single

vehicle transfers. Thus, the resulting journey plan removes the last bus leg

seen in the previous version.

Lastly, in the figure 21 we have the journey plan returned using the third

automaton. This begins as the control result presented earlier but ends by

walking since the traveller has no car available at the second metro station.

5.2.4 Results and Further Improvements

In this section we wanted to study if LCSPP-D algorithm and multiple finite

state automata could be used to retrieve a set of journey plans from a single

network. By looking at the results calculated above we can say that this is

definitely possible. We applied four different finite state automata and the

returned journey plans all obey the preference rules stated in the automata.

Our literature review showed also that the performance of the used LCSPP-D

algorithm can be boosted using applicable speed-up techniques. This means

that the results should also be scalable to a larger and more realistic network

as well. The presented test framework is modular and build so that any

network can be input as long as it is stored in a suitable format. However,

since there is a major overhead in building a new network using actual road

and public transport network, this is left for further research. Naturally, also

some modifications to the framework will be needed to include the speed-up

techniques into the calculations.

Earlier we stated also that a question left for further research is how well the

finite state automata can actually model the traveller’s preferences. Further-

more, our proposition was to cluster the travellers into groups with similar

preferences and this way the finite state automata modelling the travellers’

55

preferences could be shared within the groups. How the clustering should be

done and how the cluster specific finite state automata should be designed is

something that should be studied more closely in the future as well.

6 Discussion and conclusions

In this study, we looked at the ongoing change in the field of passenger trans-

port. First, we studied this from the travellers’ perspective. We saw new

transport service providers such as shared rides and cars entering the mar-

ket and new service models such as Mobility as a Service (MaaS) operators

evolving. Overall, in the upcoming years there will be more variety in the

available travelling options and accessibility of these options will be improved

significantly for the traveller.

We also stated that there is a need for a new technology platform integrating

the transport service providers to MaaS operators for information exchange

and to matchmake travel demand and supply. We presented a reference

architecture for the platform and estimated the need for development in

the different components of the platform. We identified that development

is at least needed to improve the modelling of the travellers’ preferences in

multimodal routing algorithms.

Then, we conducted a literature review to identify routing algorithms capable

of modelling the traveller’s preferences. An algorithm called label constrained

shortest path problem Dijkstra’s (LCSPP-D) algorithm is one typically used

in this context. We proposed two ways to improve the preference modelling

with the LCSPP-D algorithm.

Firstly, the travellers should be clustered into similar groups so that the pa-

rameters describing the preferences could be shared within the group. This

way more emphasis could be given to the optimization of the group specific

parameters. Secondly, instead of returning journey plans using a single ob-

jective function, a set of journey plans should be returned where each would

describe the travellers’ preferences in different situations. Then, depending

56

on temporary variables such as the weather, travelling companion or the

amount of luggage the traveller could select the plan most suitable for the

specific situation.

We decided to evaluate the second improvement more closely. LCSPP-D al-

gorithm uses regular languages to restrict the sequences of the used travelling

modes. By providing several regular languages for the algorithm it is possi-

ble to return different kind of journey plans for a single trip. Furthermore,

with a proper design of the associated regular languages each of the returned

journey plans could model the traveller’s preferences in different situations.

Lastly, we implemented a modular test framework where we could run the

LCSPP-D algorithm in a sample network. We designed four regular languages

to describe the travellers’ preferences and used these to return journey plans

from the sample network. The results show that journey plans modelling the

travellers’ preferences can be returned and for a single trip we can return

multiple plans each describing different kind of preferences.

The aim for this study was to identify multimodal routing algorithms ca-

pable of modelling the travellers’ preferences and find ways to improve this

property of the algorithms. We proposed two ways to improve the preference

modelling with the LCSPP-D algorithm. Furthermore, it should be possible

to apply similar improvements with other multimodal routing algorithms as

well. However, further research is needed to study how well the algorithm

can actually model the traveller’s preferences and how the regular languages

used in the algorithm should be defined. Also, further research is needed to

study how the clustering of the travellers should be done. Overall, based on

this study we can say that more development and new technological solu-

tions will be needed to support the change currently happening in the field

of passenger transport.

57

References

Georgia Aifadopoulou, Athanasios Ziliaskopoulos, and Evangelia Chrisohoou.

Multiobjective optimum path algorithm for passenger pretrip planning

in multimodal transportation networks. Transportation Research Record:

Journal of the Transportation Research Board, (2032):26–34, 2007.

Jillian Anable. ’complacent car addicts’ or ’aspiring environmentalists’?

identifying travel behaviour segments using attitude theory. Transport

Policy, 12(1):65–78, 2005.

Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-

constrained path problems. SIAM Journal on Computing, 30(3):809–837,

2000.

Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav

Marathe, and Dorothea Wagner. Engineering label-constrained shortest-

path algorithms. Algorithmic aspects in information and management,

pages 27–37, 2008.

Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-

Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Re-

nato F Werneck. Route planning in transportation networks. In Algorithm

Engineering, pages 19–80. Springer, 2016.

Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Do-

minik Schultes, and Dorothea Wagner. Combining hierarchical and goal-

directed speed-up techniques for dijkstra’s algorithm. Experimental Algo-

rithms, pages 303–318, 2008.

Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509–517, 1975.

Gerth Stølting Brodal and Riko Jacob. Time-dependent networks as models

to achieve fast exact time-table queries. Electronic Notes in Theoretical

Computer Science, 92:3–15, 2004.

58

Tom Caldwell. On finding minimum routes in a network with turn penalties.

Communications of the ACM, 4(2):107–108, 1961.

George Dantzig. Linear programming and extensions. Princeton university

press, 2016.

Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating multi-

modal route planning by access-nodes. In ESA, volume 5757, pages 587–

598. Springer, 2009.

Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck.

Customizable route planning. In International Symposium on Experimen-

tal Algorithms, pages 376–387. Springer, 2011a.

Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck.

Customizable route planning. In International Symposium on Experimen-

tal Algorithms, pages 376–387. Springer, 2011b.

Julian Matthias Dibbelt. Engineering Algorithms for Route Planning in Mul-

timodal Transportation Networks. PhD thesis, Karlsruhe, Karlsruher In-

stitut für Technologie (KIT), Diss., 2016, 2016.

Edsger W Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959.

Yann Disser, Matthias Muller-Hannemann, and Mathias Schnee. Multi-

criteria shortest paths in time-dependent train networks. Lecture Notes

in Computer Science, 5038:347–362, 2008.

Yvan Dumas, Jacques Desrosiers, and Francois Soumis. The pickup and

delivery problem with time windows. European journal of operational re-

search, 54(1):7–22, 1991.

David Eppstein and Michael T Goodrich. Studying (non-planar) road net-

works through an algorithmic lens. In Proceedings of the 16th ACM

SIGSPATIAL international conference on Advances in geographic infor-

mation systems, page 16. ACM, 2008.

59

Robert Geisberger. Contraction of timetable networks with realistic transfers.

In SEA, pages 71–82. Springer, 2010.

Robert Geisberger and Christian Vetter. Efficient routing in road networks

with turn costs. SEA, 11:100–111, 2011.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.

Contraction hierarchies: Faster and simpler hierarchical routing in road

networks. Experimental Algorithms, pages 319–333, 2008.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter.

Exact routing in large road networks using contraction hierarchies. Trans-

portation Science, 46(3):388–404, 2012a.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter.

Exact routing in large road networks using contraction hierarchies. Trans-

portation Science, 46(3):388–404, 2012b.

Andrew V Goldberg and Renato Fonseca F Werneck. Computing point-to-

point shortest paths from external memory. In ALENEX/ANALCO, pages

26–40, 2005.

Taina Haapamäki and Sami Mäkinen. Open mobility markets. 1st Interna-

tional Conference on Mobility as a Service, Tampere 28.-29.11.2017, 2017.

Martin Holzer. Engineering planar-separator and shortest-path algorithms.

PhD thesis, Karlsruhe Institute of Technology, 2008.

Jeremy Horpedahl. Ideology uber alles? Economics bloggers on Uber, Lyft,

and other transportation network companies. Econ Journal Watch, 12(3),

2015.

Brigitte Jaumard, Frederic Semet, and Tsevi Vovor. A generalized linear

programming model for nurse scheduling. European journal of operational

research, 107(1):1–18, 1998.

Vachaspathi P Kompella, Joseph C Pasquale, and George C Polyzos. Multi-

cast routing for multimedia communication. IEEE/ACM Transactions on

Networking (TON), 1(3):286–292, 1993.

60

Feng Li and Jason Whalley. Deconstruction of the telecommunications in-

dustry: from value chains to value networks. Telecommunications Policy,

26(9):451 – 472, 2002.

Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos

Zaroliagis. Timetable information: Models and algorithms. In Algorithmic

Methods for Railway Optimization, pages 67–90. Springer, 2007.

Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algo-

rithms in networks with time-dependent edge-length. Journal of the ACM

(JACM), 37(3):607–625, 1990.

Thomas Pajor. Multi-modal route planning. Universität Karlsruhe, 2009.

Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.

Efficient models for timetable information in public transportation sys-

tems. Journal of Experimental Algorithmics (JEA), 12:2–4, 2008.

R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria,

2008. URL http://www.R-project.org.

Aleksi Stenfors. Identifying mobility user segments based on everyday travel

data. Aalto University, 2017.

Dirck Van Vliet. Improved shortest path algorithms for transport networks.

Transportation Research, 12(1):7–20, 1978.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-

Verlag New York, 2009. URL http://ggplot2.org.

http://www.R-project.org
http://ggplot2.org

61

A Label Constrained Shortest Path Problem

with R

#Given the network , f i n i t e s t a t e automata , sources and ta r ge t s ,
#f ind the f a s t e s t path between the sources and t a r g e t s which obeys
#the sequence o f t r a v e l l i n g modes de f ined in the f i n i t e s t a t e automata
LCSPPDijkstra = function (network , f i n i t e _ s t a t e _machine , sources , t a rge t s ,

start_time = 0){
#i n i t i a l i z e the p r i o r i t y queue
p r i o r i t y _queue <- Prior i tyQueue $new ()

#i n i t i a l i z e the vec tor to save the prev ious v e r t i c e s ,
#with t h i s t h i s co r r e c t path i s der i ved a f t e rwards
prev ious _ v e r t i c e s <- character (0)

#push a l l sources to the p r i o r i t y queue
invisible (lapply (sources , function (x) {

p r i o r i t y _queue$push (
list (

ver tex=x ,
s t a t e=f i n i t e _ s t a t e _machine$ g e t I n i t i a l S t a t e ()) ,

start_time)
}))

#push a l l the sources in the used_ product _ v e r t i c e s l i s t
used_product _ v e r t i c e s <- lapply (sources , function (x) {

list (ver tex=x , s t a t e=f i n i t e _ s t a t e _machine$ g e t I n i t i a l S t a t e ())
})

#i n i t i a l i z e the s e t t l e d t a r g e t s
s e t t l e d _ t a r g e t s <- list ()
s e t t l e d _ t a r g e t s _time <- numeric (0)
s e t t l e d _ t a r g e t s _ s t a t e <- character (0)

#i t e r a t e u n t i l the s h o r t e s t path i s found
while (p r i o r i t y _queue$ s i z e () > 0){

#pop the f i r s t v e r t e x s t a t e combination from the p r i o r i t y queue
ext rac t ed _time <- p r i o r i t y _queue$ getPr ior i tyByPos ()
ex t rac t ed _product _ ver tex <- p r i o r i t y _queue$pop ()

#i f p o s s i b l e add ex t r a c t ed _ product _ ve r t e x $ ve r t e x to the
#s e t t l e d _ t a r g e t s
if (conta insVertex (ta rge t s , ex t rac t ed _product _ ver tex $ ver tex) &&

f i n i t e _ s t a t e _machine$ i s F i n a l (ex t rac t ed _product _ ver tex $ s t a t e)){

s e t t l e d _ t a r g e t s [[length (s e t t l e d _ t a r g e t s)+1]] <-
ext rac t ed _product _ ver tex $ ver tex

s e t t l e d _ t a r g e t s _time <- c (s e t t l e d _ t a r g e t s _time ,
ex t rac t ed _time)

s e t t l e d _ t a r g e t s _ s t a t e <- c (s e t t l e d _ t a r g e t s _ s tate ,
ex t rac t ed _product _ ver tex $ s t a t e)

#i f a l l t a r g e t s are s e t t l e d s top the s h i l e loop
if (i d e n t i c a l (s e t t l e d _ ta rge t s , t a r g e t s)){

break
}

}

#ge t the outgo ing arcs from ex t r ac t ed _ product _ ve r t e x $ ve r t e x
adjacent _ v e r t i c e s <-

network$ getAdjacents (ex t rac t ed _product _ ver tex $ ver tex)

62

#loop over the se
for (i in adjacent _ v e r t i c e s){

#ge t the p o s s i b l e t r a n s i t i o n s
po s s i b l e _ t r a n s i t i o n s <-

f i n i t e _ s t a t e _machine$ g e tPo s s i b l eT r an s i t i o n s (
ex t rac t ed _product _ ver tex $ s t a t e)

#loop over the se
for (j in p o s s i b l e _ t r a n s i t i o n s){

#check i f the move i s v a l i d
if (j $ l a b e l ==

network$ getLabe l (ex t rac t ed _product _ ver tex $ vertex , i)){
temp_product _ ver tex <- list (ver tex = i , s t a t e = j $ s t a t e)

#ge t the d i s t ance to the temp ve r t e x
a r r i v a l _time <-

network$ getTrave l l ingTime (ext rac t ed _product _ ver tex $ vertex ,
temp_product _ ver tex $ vertex ,
ex t rac t ed _time)

#i f the new product v e r t e x not found from
#the used product v e r t i c e s
if (! conta insProductVertex (used_product _ v e r t i c e s ,

temp_product _ ver tex)){
p r i o r i t y _queue$push (temp_product _ vertex , a r r i v a l _time)
used_product _ v e r t i c e s [[length (used_product _ v e r t i c e s)+1]] <-

temp_product _ ver tex
#al so update the prev ious v e r t e x
prev ious _ v e r t i c e s <- updatePrevious (

prev ious _ v e r t i c e s ,
temp_product _ ver tex $ ver tex $name %&%

"+" %&%
temp_product _ ver tex $ ver tex $mode %&%
"+" %&%
temp_product _ ver tex $ s tate ,

ex t rac t ed _product _ ver tex $ ver tex $name %&%
"+" %&%
extrac t ed _product _ ver tex $ ver tex $mode %&%
"+" %&%
extrac t ed _product _ ver tex $ s t a t e

)

}
#update i f improved
else if (p r i o r i t y _queue$ found (temp_product _ ver tex)){

if (p r i o r i t y _queue$ s i z e () > 0 &&
p r i o r i t y _queue$ g e tP r i o r i t y (temp_product _ ver tex) >
a r r i v a l _time){

p r i o r i t y _queue$update (temp_product _ vertex ,
a r r i v a l _time)

#al so update the prev ious v e r t e x
prev ious _ v e r t i c e s <-

updatePrevious (prev ious _ v e r t i c e s ,
temp_product _ ver tex $ ver tex $name %&%

"+" %&%
temp_product _ ver tex $ ver tex $mode %&%
"+" %&%
temp_product _ ver tex $ s tate ,

ex t rac t ed _product _ ver tex $ ver tex $name %&%
"+" %&%
extrac t ed _product _ ver tex $ ver tex $mode %&%
"+" %&%
extrac t ed _product _ ver tex $ s t a t e)

63

}
}

break
}

}
}

}
#c o l l e c t the wanted r e s u l t s and return them
return (list (

t a r g e t s = s e t t l e d _ ta rge t s , #a l l t a r g e t s
t imes = s e t t l e d _ t a r g e t s _time , #t r a v e l l i n g t imes to the t a r g e t s
s t a t e s = s e t t l e d _ t a r g e t s _ s tate , #f i n a l s t a t e s in the t a r g e t s
"previous vertices" = prev ious _ v e r t i c e s , #charac ter vec to r o f
#prev ious v e r t i c e s
s ou r c e s = sourc e s #sources

))
}

	Introduction
	Smart Mobility Options
	Conventional Travelling Options
	Combined and New Transport Services

	Open Technology Platform Combining Services
	Mobility as a Service Concept
	Reference Architecture

	Routing Algorithms
	Routing in Road Networks
	Modelling the Road Network
	Dijkstra's Algorithm
	Turn Restrictions
	Speed-up Techniques

	Routing in Public Transport Networks
	Modelling the public transport Network
	Transfer Buffers
	Footpaths
	Applying Dijkstra's to public transport Networks
	Speed-up Techniques

	Multimodal Routing
	Modelling the Multimodal Network
	Label Constrained Shortest Path Problem
	Speed-up Techniques

	Preference Modelling in Multimodal Routing
	Preference Modelling using Label Constrained Shortest Path Problem Dijkstra's Algorithm
	Preference Modelling Using Finite State Automata
	Multiple Relevant Travelling Options
	User Segmentation

	Proof of the Concept
	Sample Network
	Implemented Test Framework
	Test Runs
	Results and Further Improvements

	Discussion and conclusions
	Label Constrained Shortest Path Problem with R

