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1 Introduction

Evaluating the value or efficiency of a discrete set of alternatives often involves several criteria.

Many methodologies, such as the outranking methods proposed by Roy (1968), the data

envelopment analysis (DEA) by Charnes et al. (1978) and the analytic hierarchy process by

Saaty (1980), represent advances in such multi-criteria evaluation. Yet, multi-attribute value

theory (MAVT) by Keeney and Raiffa (1976) and Dyer and Sarin (1979) is unique in that it is

based on an axiomatization of preferences, which establishes a solid theoretical background for

multi-criteria evaluation and decision analyses. MAVT methods have received much attention

both in literature and in applications, as Corner and Kirkwood (1991), Keefer et al. (2004),

and Hämäläinen (2004) note in their reviews.

Based on MAVT applications, additive value functions, in particular, are transparent and

easy-to-understand models for analyzing, and deriving decision recommendations in multi-

criteria decision problems (e.g., Golabi et al. 1981, Kirkwood and Sarin 1985, Mustajoki et al.

2004, Ewing et al. 2006, Mild and Salo 2009). Such value tree analysis makes it possible to rep-

resent the objectives and the attributes that measure how alternatives achieve these objectives

as a hierarchical ‘tree’. Conventionally MAVT captures the decision maker’s (DM’s) prefer-

ences through tradeoff statements in terms of equally preferred (hypothetical) alternatives

(Keeney and Raiffa 1976), or through direct evaluation of parameter values (Edwards 1977,

Von Winterfeldt and Edwards 1986). Yet, difficulties in providing such preference statements

have motivated the development of methods that accommodate incomplete information about

the relative importance of the attributes and, moreover, about the alternatives’ achievement

levels with regard to the attributes (e.g., White et al. 1982, Weber 1987).

In many methods for incomplete specification of preferences, the DM expresses preferences

with numbers, such as score intervals (White et al. 1982) or intervals for attribute weight

ratios (Salo and Hämäläinen 1992). Several studies, however, suggest that ordinal comparison

of actual or hypothetical alternatives is more suitable for eliciting the DM’s preferences,

because (i) alternatives’ achievement levels are often described verbally due to lack of natural

measurement scale (Larichev 1992), (ii) value judgements can be easier to express in words

than through numbers (Sarabando and Dias 2009), and (iii) a group of DMs attempting

to obtain a joint preference representation may disagree about the numerical statements

(Kirkwood and Sarin 1985) or even the appropriate measurement scales (Grushka-Cockayne
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et al. 2008), but they may still agree on a rank-ordering of the attributes’ relative importance

or the alternatives’ achievements with regard to the attributes. Indeed, Larichev (1992) and

Edwards and Barron (1994) argue that numerical evaluation affects negatively the reliability

of the analysis. Moshkovich et al. (2002) observed in their review that discrete scales with

verbal explanations are often applied even, when the attributes have a natural numerical

measurement scale. They argue that this is because procedures for numerical parameter

estimation are time-consuming and not necessarily well understood by the DMs. Indeed,

Moshkovich et al. (2002) conclude that ordinal information is less complex and expect it to

more accurately reflect the DM’s preferences. This view is shared by Larichev et al. (1995) who

note that attempts to solve decision tasks through more ‘exact’ (quantitative) judgments may

lead to erroneous results, thus suggesting use of ordinal judgments. Yet, ordinal information

may need further quantification so that the precision of the preference specification better

matches the intensions and ‘true’ preferences of the DM (Sage and White 1984) and, moreover,

provides decision recommendations that discriminate between the alternatives.

With an incomplete specification of preferences and alternatives, there are typically several

value functions and characterizations of the alternatives’ achievement levels that are consistent

with the stated information. Based on combinations of parameters that correspond to these

value functions and achievement levels, the non-dominated (White et al. 1982; see also Hannan

1981) and potentially optimal alternatives (e.g. Hazen 1986) can be identified and proposed

as ‘good’ decision candidates. Further decision support can be provided by applying heuristic

decision rules that recommend a single alternative. Suggested rules are based on comparing

(i) the ‘sizes’ of the parameter sets that favor an alternative (Eiselt and Laporte 1992), (ii)

the magnitudes of value differences (Park and Kim 1997, Dias and Clímaco 2000, Salo and

Hämäläinen 2001, Sarabando and Dias 2009) and (iii) sums of these value differences (Ahn

et al. 2000). In addition to such rules, approaches to describe the alternatives’ sensitivity

to the DM’s preference statements have been developed (e.g., Rios Insua and French 1991,

Kämpke 1996, Butler et al. 1997).

The DEA method by Charnes et al. (1978) (referred to as CCR-DEA) resembles MAVT

in that it models the efficiency of decision making units (DMUs) by examining the ratio of ad-

ditive output value and additive input value. As its primary results, CCR-DEA distinguishes

between efficient and inefficient DMUs. Further results are provided by efficiency scores that

convey information about how efficient a DMU can at best be, when it is compared with all
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output and input weights to the DMU that is the most efficient with those weights. However,

this measure does not discriminate between efficient DMUs. In addition, the efficiency score

is based on one combination of weights, which is typically different for each DMU and also

depends on what other DMUs are included in the analysis. These features have motivated the

development of, for example, cross-efficiency analysis (Sexton et al. 1986) in which the DMUs’

efficiencies are evaluated by using an aggregate measure that is based on several combinations

of weights.

This dissertation extends possibilities of using ordinal information in value tree analysis

and efficiency analysis. Specifically, Paper [I] introduces the notion of incomplete ordinal

information which is specified through statements that associate a set of attributes or alter-

natives with a set of rankings. For example, the DM can state that attributes 1 and 2 are

among the three most important ones in the preference model. Paper [II] develops a model

to characterize the corresponding feasible region of value function parameters so that other

kinds of statements can be used to complement ordinal statements, and to provide decision

recommendations in this setting.

Paper [III] shows that many proposed decision rules and concepts for multi-parameter

sensitivity analysis can exhibit rank reversals (Belton and Gear 1983) so that changing the

normalization of the additive value functions can change the recommendations of these rules

and the results of the sensitivity analyses. Furthermore, Paper [III] develops a model to com-

pute all the rankings that the alternatives can attain under incomplete preference specification

and characterization of alternatives. The resulting ranking intervals do not depend on the

selected normalization. They can be used as complementary ordinal information alongside

dominance relations and they help, for example, in conducting sensitivity analyses. Paper

[IV] develops the ratio-based efficiency analysis methodology, which makes it possible to use

the ordinal comparison concepts of dominance and ranking intervals to compare DMUs, when

their efficiency is measured through ratios of additive output and input values, as in CCR-

DEA.

The rest of this summary article is structured as follows. Section 2 discusses the relevant

theory and methods for value tree analysis with incomplete information and data envelopment

analysis. Section 3 summarizes the contribution of this dissertation. Section 4 discusses the

implications of the methodological developments of the dissertation and outlines some ideas

for future research.
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2 Theoretical and methodological foundations

2.1 Additive value in multi-attribute value theory

Decision problems with several objectives are generally referred to as multi-criteria decision

making problems. Miettinen (1999) divides these further into two categories (see also Ko-

rhonen et al. 1992): In multi-objective optimization, the problem’s feasible solutions are in

general implicitly defined, whereas multi-criteria decision analysis (MCDA) deals with prob-

lems with a finite number of predefined solution candidates. Methodologies for solving MCDA

problems include for example (i) the analytic hierarchy process (AHP) by Saaty (1980) (see

Ishizaka and Labib 2011 for a review), (ii) the outranking methods, such as the family of

ELECTRE methods (see Roy 1968 for the seminal paper in French; see Roy 1991 and Roy

and Vanderpooten 1996 for reviews), and the PROMETHEE methods (Vincke and Brans

1985; see Behzadian et al. 2010 for a review) and (iii) multi-attribute utility theory (MAUT)

and multi-attribute value theory (MAVT) by Keeney and Raiffa (1976).

In MAVT, alternatives are described as vectors of attribute-specific achievement levels, and

the DM’s preferences are captured by a relation so that ‘x = (x1, . . . , xn) � (y1, . . . , yn) = y’

is interpreted as “x is preferred or indifferent to y” (Keeney and Raiffa 1976). The aim is to

form a value function V which captures this relation so that V (x) ≥ V (y) if and only if x � y.

If both x � y and y � x hold, then the DM is indifferent between x and y, that is, they are

equally preferred. Dyer and Sarin (1979) extend MAVT by presenting requisite conditions

for comparing differences in the strength of preference between pairs of alternatives through

relation ‘�d’. This establishes measurable value functions so that V (x′)−V (x) ≥ V (y′)−V (y)

if and only if x → x′ �d y → y′, that is, “the preference difference for x′ over x is greater than

or equal to the preference difference for y′ over y”. Measurable value functions are unique up

to positive affine transformations. Hence, the rank-orderings of values and value differences

do not depend on how the value function is normalized.

The form of a value function depends on the DM’s preferences. If the requisite conditions

– most notably mutual preference independence (Keeney and Raiffa 1976) and difference

independence (Dyer and Sarin 1979) – hold, then the DM’s preferences can be captured by

a measurable additive value function V (x) =
∑n

i=1 vi(xi), in which vi is the attribute-specific
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value function for the i-th attribute. The additive value function is often represented in the

normalized form V N(x) =
∑n

i=1 wiv
N
i (xi), in which positive attribute weights wi reflect the

value differences between predefined achievement levels x◦
i and x∗

i , and vN
i are normalized so

that vN
i (x◦

i ) = 0 and vN
i (x∗

i ) = 1.

2.2 Preference elicitation and incomplete information

The assumptions of the additive value representation make it possible to elicit attribute-

specific value functions independently of each other; for elicitation methods, see Keeney and

Raiffa (1976) and Von Winterfeldt and Edwards (1986). The elicitation of attribute weights

can be carried out by constructing pairs of equally preferred alternatives. These statements

imply trade-offs between the attributes (Keeney and Raiffa 1976). Technically, these state-

ments lead to a system of linear equalities from which weight ratios wi/wj can be solved.

Methods that elicit weight ratios directly have also been proposed, for example the SMART

method by Edwards (1977) and the subsequent SMARTS method by Edwards and Barron

(1994), and the SWING method by Von Winterfeldt and Edwards (1986). The weights can be

normalized to sum up to one, for example, to come up with numerical values for the weights.

Yet, complete specification of the value function parameters can be time-consuming (White

et al. 1982) or require knowledge that is not available (Weber 1987). The DM may also be

unable or unwilling to provide precise trade-off statements that are required for such a com-

plete specification (Hazen 1986) or he may feel uncomfortable with giving them (Sage and

White 1984). Complete specification can even be unneccessary, if less information would lead

to an unequivocal decision recommendation. These reasons, among others, have motivated

the development of methods that derive decision recommendations based on incomplete char-

acterization of preferences and alternatives (e.g., White et al. 1982, 1983, 1984, Kirkwood

and Sarin 1985, Weber 1985, Hazen 1986, Salo and Hämäläinen 1992, 2001; for reviews, see

Weber 1987, Salo and Hämäläinen 2010).

Most of the methods for dealing with incomplete information build on two assumptions.

First, the DM is able provide complete trade-off statements between alternatives that differ

along a single attribute (Hazen 1986), that is, specify the attribute-specific value functions.

Second, the DM is able to provide preference information about the relative importance of
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the attributes through statements x � y, in which x and y are different with regard to

two attributes (e.g., White et al. 1984, Kirkwood and Sarin 1985, Weber 1985, Hazen 1986,

Pearman 1993, Malakooti 2000, Salo and Hämäläinen 2001). Also methods that employ

incomplete weight or other value difference ratios (such as v2(x
∗
2)−v2(x

◦
2) ≤ [v1(x

∗
1)−v1(x

◦
1)] ≤

2[v2(x
∗
2)−v2(x

◦
2)]; e.g., Salo and Hämäläinen 1992, 2001, Mustajoki et al. 2005), and methods

that admit any kind of linear constraints on the weights (e.g., 0.4 ≤ w1 ≤ 0.6) or allow the

DM to adjust the alternatives’ achievement levels so that one becomes preferred to the other

(e.g., Sage and White 1984, Park et al. 1996, Malakooti 2000) have been developed.

Incomplete information about the alternatives leads to constraints for feasible charac-

terizations of the alternatives. Theoretically, such information corresponds to incompletely

characterized achievement levels, for example, through intervals (10 ≤ x1 ≤ 15; e.g., Sage

and White 1984, Weber 1985, Salo and Hämäläinen 1992), direct evaluation of the alter-

natives’ normalized attribute-specific values through intervals (0.15 ≤ vN
1 (x1) ≤ 0.2; e.g.,

White et al. 1982), or ordinal pairwise comparisons of alternatives’ attribute-specific values

(v1(x1) ≥ v1(y1); e.g., Salo and Hämäläinen 2001).

Some methods elicit mostly ordinal information about the DM’s preferences and alterna-

tives. For example, the ZAPROS-LM method by Larichev and Moshkovich (1995) captures

attribute-specific preferences by eliciting a ranking of a finite number of possible achievement

levels, and admits preference information about the relative importance of the attributes

through ordinal comparisons of hypothetical alternatives. The method of Kirkwood and Sarin

(1985) admits a rank-ordering of hypothetical alternatives, whose overall values correspond

to attribute weights (e.g., w1 ≥ w2 ≥ . . . ≥ wn). In the ordered metric method of Pearman

(1993), the DM ranks differences between these weights, too (e.g., w1 −w2 ≥ w3 −w4 ≥ . . .).

Park et al. (1996) extend this model to evaluation of alternatives. The models by Cook

and Kress (1996, 2002) complement ordinal information by discrimination factors between

attribute weights and alternatives’ normalized attribute-specific values (e.g., w1 ≥ w2 +0.02).

2.3 Decision recommendations under incomplete information

White et al. (1982) propose that alternatives should be compared based on (pairwise) domi-

nance so that an alternative dominates another if all its feasible characterizations are preferred
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to all of those of the latter one, with all value functions that are consistent with the preference

information (see also Hannan 1981, Kirkwood and Sarin 1985, Hazen 1986, Salo and Hämäläi-

nen 1992). Because the dominance relation is irreflexive, asymmetrical, and transitive (e.g.,

Weber 1987), the dominance relations among the alternatives under analysis can shown as a

domination digraph (White et al. 1982).

Mathematically, incomplete information leads to linear inequalities on the attribute

weights wi, and the alternatives’ normalized attribute-specific values vN
i (xi) and defines a

convex feasible region of these model parameters. Based on this idea of set inclusion (White

et al. 1982), the feasible region includes the parameters that correspond to the DM’s ‘true’

value function and alternatives’ true achievement levels. The dominance relations can be

solved by examining the alternatives’ minimum and maximum value difference over the fea-

sible region. Several algorithms for computing dominance relations have been developed.

Especially the early ones are based on enumerating the extreme points of the feasible region

(e.g., Kirkwood and Sarin 1985, Hazen 1986, Carrizosa et al. 1995, Cook and Kress 2002,

Mustajoki and Hämäläinen 2005), but due to the recent growth in computational power the

emphasis has shifted towards formulations of linear programs (LPs; see e.g., Ahn et al. 2000,

Salo and Hämäläinen 2001, Kim and Han 2000, Park 2004).

With incomplete information, there can be several non-dominated alternatives. White

et al. (1982, 1984) show that with the specification additional statements, there are fewer

value functions or characterizations of alternatives which are compatible with the statements,

and that this, in turn, can lead to fewer non-dominated alternatives. Liesiö et al. (2007)

present conditions under which the set of non-dominated alternatives cannot be enlarged as a

result of additional information. Some interactive preference elicitation methods – such as the

PAIRS method by Salo and Hämäläinen (1992) – provide guidance to the DM in keeping new

preference statements consistent with earlier ones. Some methods even suggest preference

statements that could efficiently reduce the set of nondominated alternatives (Mustajoki and

Hämäläinen 2005).

Potentially optimal alternatives, too, have been proposed as good candidates (see e.g.,

Hazen 1986, Weber 1987, Rios Insua and French 1991). For these alternatives there exists

a feasible characterization of alternatives so that they have the highest value for some value

function that is consistent with the DM’s preference statements. LPs can be used to solve
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the potentially optimal alternatives (e.g., Hazen 1986, Rios Insua and French 1991, Lee et al.

2001, 2002, Park 2004).

In addition to identification of non-dominated and potentially optimal alternatives, deter-

mination of alternatives’ rankings over the feasible region have been proposed. The model of

Kämpke (1996) solves rank variability for a set of alternatives, when preferences are captured

through holistic comparisons among these alternatives. Butler et al. (1997) simulate random

value functions to explore the robustness of the alternatives’ rankings. The flexible ranking

approach by Köksalan et al. (2010) first estimates precise achievement levels for the alterna-

tives and then determines the most favorable rankings for them, when attribute weights are

constrained by linear inequalities.

To support the selection of a single (non-dominated or potentially optimal) alternative,

heuristic decision rules and ‘tighter’ dominance concepts have been proposed. These rules

include the domain criterion by Eiselt and Laporte (1992) (cf. acceptability index of Lahdelma

et al. 1998), weak dominance by Park and Kim (1997) (equal to minimax regret rule by

Salo and Hämäläinen 2001), quasi-dominance by Dias and Clímaco (2000) and related quasi-

optimality and quasi-dominance rules by Sarabando and Dias (2009), and maximax, maximin,

and central values rules by Salo and Hämäläinen (2001). Moreover, following the ideas of

outranking methods, Ahn et al. (2000) propose the net dominance value to be used as a

measure for a decision rule. Sarabando and Dias (2009) provide a comparison of such decision

rules. In a related stream of proposed decision rules, heuristics have been developed to obtain

‘representative attribute weights’ from the feasible region, based on which the alternatives are

then compared; see Stillwell et al. (1981) and Barron and Barrett (1996) for comparisons of

such methods.

2.4 Ratio-based data envelopment analysis

The seminal work of Charnes et al. (1978) has preceded the development of a variety of data

envelopment analysis (DEA) methods to compare decision making units (DMUs) that differ

in the amounts of outputs they produce, and the amounts of inputs they use to produce

the outputs. The original CCR-DEA method proposed by Charnes et al. (1978) models the

efficiency of a DMU by its efficiency ratio, the ratio of additive virtual output value and
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additive virtual input value. It thus assumes constant returns to scale; DEA methods that

assume variable returns to scale have been developed by Banker et al. (1984) and Charnes

et al. (1985).

The CCR-DEA method is non-parametric in the sense that it identifies efficient (poten-

tially optimal in MAVT literature) and inefficient DMUs based on the output and input

data of the DMUs that are included the analysis. Yet, several models accommodate pref-

erence information through weight constraints (i) to provide results which are not based on

weights that reflect too large a compensation of one output (or input) over another output

(input) (Thompson et al. 1986), and (ii) to add discrimination among the DMUs by obtaining

fewer efficient DMUs (e.g., Adler et al. 2002). In their review, Allen et al. (1997) distinguish

between (i) assurance regions type I (Thompson et al. 1986), which are constraints on the

relative values among different outputs or inputs, (ii) assurance regions type II, which apply

constraints also between outputs and inputs (Thompson et al. 1990, Khalili et al. 2010), and

(iii) absolute weight restrictions (Dyson and Thanassoulis 1988).

Technically, such preference information imposes linear constraints on the output and

input weights, and thus resembles incomplete preference specification for additive value func-

tions. Cooper et al. (1999, 2001) develop models that allow use of intervals in describing the

DMUs’ inputs and outputs. Other similarities between DEA and MCDA or MCDM have been

discussed by several authors (e.g., Doyle and Green 1993, Stewart 1996, Athanassopoulos and

Podinovski 1997, Joro et al. 1998). These observations have underpinned the development of

methods that compare DMUs with the help of value functions, for example (e.g., Halme et al.

1999, Gouveia et al. 2008, de Almeida and Dias 2012).

In conventional CCR-DEA, the DMUs’ efficiencies are characterized by evaluating them

with the output and input weights that are most favorable to them, in the sense that their

efficiency ratio divided by that of the most efficient DMU is maximized over the set output

and input weights. As a result, the efficient DMUs are assigned an efficiency score of one,

and inefficient DMUs’ efficiency scores are between zero and one. The conventional DEA

concepts thus do not discriminate among the efficient DMUs. According to Adler et al. 2002,

this has partly motivated the development of models and efficiency measures that provide a

full ranking for the DMUs. Of these, for example super-efficiencies indicate how much more

efficient a DMU can be than the most efficient of other DMUs (Andersen and Petersen 1993).

Benchmark ranking by Torgersen et al. (1996) is based on the extent to which a DMU affects
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other DMUs’ efficiency scores. Cross-efficiency analysis by Sexton et al. (1986) differs from

other concepts in that it evaluates DMUs’ efficiency ratios with several combinations of output

and input weights, and uses the average of these ratios in comparing the DMUs (see also Doyle

and Green 1994). Cross-efficiency analysis indeed differs from the other above concepts in

that it employs several different weights to evaluate the efficiency of a DMU. However, these

weights are determined based on which specific DMUs are included in the analysis.

3 Results

3.1 Incomplete ordinal information in preference modeling

Paper [I] introduces the notion of incomplete ordinal information for capturing preference

information. This information is obtained through paired statements of attributes and rank-

ings; for example, the DM can state that attributes cost and environmental aspects are among

the three most important attributes; or that either cost or environmental aspects is the most

important attribute. The paper shows how the feasible region of attribute weights can be re-

duced by revising the provided preference statements. It also presents conditions under which

this feasible region is non-convex. To compute decision recommendations over a non-convex

feasible region, Paper [I] develops an algorithm to enumerate those attribute weights whose

convex hull is equal to that of the feasible region, and shows how dominance relations can be

determined by computing the alternatives’ value differences at these points. This computa-

tional algorithm can be applied also in presence of common, absolute lower bounds for the

attribute weights, and when alternatives’ achievement levels are specified through intervals.

Paper [II] develops a computational model which makes it possible to give incomplete

ordinal preference statements also about the alternatives’ performance with regard to any set

of attributes. For example, the DM can state that alternative A is among the two most pre-

ferred ones with regard to environmental aspects; or that either alternative A or B is the most

preferred one in view of attributes cost and environmental aspects together. The correspond-

ing feasible region is modeled with a set of linear constraints on the model parameters and
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auxiliary binary variables. This makes it possible to complement incomplete ordinal state-

ments by any incomplete cardinal preference statements which correspond linear constraints

on the model parameters. As a result, it is possible to admit incompletely specified attribute

weight ratios or ordinal comparisons between alternatives’ achievement levels in preference

specification, for example. The number of binary variables employed in the mixed integer

linear programs (MILPs) developed for solving decision recommendations depends on the

given preference statements. For example, if the feasible region is convex, the optimization

problems simplify from MILPs to LPs.

3.2 Rank-based results for value trees and CCR-DEA based effi-

ciency analysis

Paper [III] focuses on ordinal results of value tree analysis under incomplete information.

First, it shows that recommendations of some comparison concepts and decision rules that

compare preference differences across value functions that describe different preferences (e.g.,

Eiselt and Laporte 1992, Park and Kim 1997, Dias and Clímaco 2000, Ahn et al. 2000,

Salo and Hämäläinen 2001, Sarabando and Dias 2009) as well as sensitivity analysis results

based on the size of the feasible region or distances within it (Rios Insua and French 1991,

Lahdelma et al. 1998) can depend on how the additive value functions are normalized. These

recommendations and results can thus exhibit rank reversals (Belton and Gear 1983) in the

sense that changing the normalization of the value functions can change the relative ranking of

two non-dominated alternatives. Furthermore, for maximax, maximin and weak dominance

decision rules Paper [III] presents sufficient conditions, under which the normalization can

always be selected so that a non-dominated alternative is favored over another.

Second, as a partial solution to this problematic phenomenon, Paper [III] develops MILPs

for computing all rankings that the alternatives can attain over a convex feasible region of

all those model parameters that correspond to the DM’s incompletely specified preferences

and incompletely characterized alternatives. Like dominance relations, the resulting ranking

intervals do not depend on the selected normalization of the value functions.

Paper [IV] develops the Ratio-based Efficiency Analysis (REA) methodology, which follows
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the CCR-DEA method in that it models DMUs’ efficiencies with their efficiency ratios. It

differs from earlier methods in that it derives results based on, and for all feasible output and

input weights, which fulfill possible statements about the relative values of different inputs and

outputs in terms of assurance regions type I statements. REA extends conventional efficiency

scores by developing LPs to compute efficiency bounds, which communicate how efficient a

DMU can be related to a benchmark group of DMUs, for all feasible output and input weights.

In addition to this generalization, REA adopts the ordinal comparison concepts of dominance

and ranking intervals from the MCDA literature and develops MILPs and LPs for computing:

• What rankings can a DMU attain in comparison with other DMUs, based on the com-
parison of their efficiency ratios for all feasible output and input weights?

• Does a DMU dominate another DMU in the sense that its efficiency ratio is higher than
or equal to that of the other for all feasible output and input weights?

The results provided by the REA methodology coincide with some well-known results of

CCR-DEA-based methods as special cases. Specifically, (i) the best ranking of an efficient

DMU is one, and, conversely, a DMU whose best ranking is one has efficiency score of one,

(ii) if all DMUs are in the benchmark group, the upper efficiency bound of a DMU is equal to

its efficiency score, (iii) if all other DMUs are in the benchmark group, the upper efficiency

bound of a DMU is equal to its super-efficiency. The REA results offer new possibilities to

set performance targets for the DMUs. For example, Paper [IV] develops MILPs to compute

the smallest radial improvement in outputs required for a DMU to improve its best or worst

ranking to some target ranking.

4 Discussion

Incomplete ordinal preference information has been used in modeling the relative importance

of attributes in many applications, for example by Ojanen et al. (2005), Salo and Liesiö (2006),

Mild and Salo (2009), and Mild (2006) (in Finnish; a very similar case study is found in Liesiö

et al. 2007). In all of the above applications, the preference information has represented the
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preferences of a group of DMs (or, stakeholders). Indeed, incomplete ordinal information

makes it possible to construct preference statements even from group members who disagree.

For example, each DM can be asked to specify the two most preferred alternatives with regard

to an attribute, after which the group’s preferences are expressed by a statement that the two

most preferred alternatives are among the ones specified by the group members.

If the DMs cannot agree on the attributes’ numerical measurement scales, or if natural

scales do not exist, one way to describe preferences between the alternatives is to divide them

into classes for which numerical values – perhaps together with verbal expressions describing

preferences between these classes – are assigned (e.g., Salo and Liesiö 2006, Könnölä et al.

2007). Such preference information ranks the classes, but the fixed numerical values do not

necessarily reflect strength of preference between the classes. In addition, the DMs may be

prepared to provide additional preference statements between the alternatives in the same

class for example through pairwise comparisons. Incomplete ordinal information helps model

such classification as ordinal information, yet making it possible to define bounds for the

values associated with the classes and to constrain value differences between the classes. This

way, incomplete ordinal information can be used to perform ex ante sensitivity analysis on

the values associated with the classes, and to allow alternatives in the same class to differ

in values. Such possibilities for preference elicitation can be particularly beneficial in large

problems with dozens alternatives in which data is available for only some attributes. In

these settings, the available data together with incomplete ordinal information with regard to

the other attributes can be sufficient to establish dominance relations that reduce the set of

non-dominated alternatives. This, in turn, can lead to resource savings as fewer alternatives

need be thoroughly evaluated.

Ranking intervals are suitable for this kind of screening of alternatives, especially if the aim

is to choose several alternatives (referred to as ‘pick k out of n’ by Stillwell et al. 1981). Indeed,

Butler et al. (1997) note that multi-criteria analysis is often performed in order to select a

subset of alternatives, and they suggest that the ranking intervals should be examined to get

insights about the robustness of the alternatives’ rankings. Specifically, the ranking intervals

identify which alternatives are among the K most preferred ones (i) for all, (ii) for some, and

(iii) for no combinations of feasible parameters. These results are obtained simultaneously

for all ‘budgets’ K, thus making it possible to analyze how decision recommendations change

as a function of the budget. The above categorization is closely connected to recent advances
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in multi-criteria portfolio decision analysis (Salo et al. 2011). More precisely – following the

terminology of the robust portfolio modeling (Liesiö et al. 2007, 2008) – if feasible portfolios are

characterized only by the number of alternatives they include, the ranking intervals identify

core, borderline and exterior alternatives among all potentially optimal portfolios. Paper [III]

illustrates this connection by revisiting an application by Könnölä et al. (2007).

Some fifteen years ago, Butler et al. (1997) noted that exploration of all feasible parameter

combinations to compute ranking intervals would be “extremely tedious”. In this regard,

the MILPs developed in Paper [III] are computationally effective as they can compute the

ranking intervals among hundreds of alternatives, as shown in the sensitivity analysis of

university rankings in Paper [III]. The use of ranking intervals as a tool for multi-parameter

sensitivity analysis is supported by the observation in Paper [III] that ranking intervals do

not depend on the selected normalization of the value functions, unlike many other results.

From the perspective of decision support, practitioners can be given a holistic view through

these intervals, independently of the number of attributes.

The ranking intervals and efficiency bounds are novel concepts in CCR-DEA based effi-

ciency analysis in that in addition to communicating how ‘good’ a DMU can be at best, they

also provide information about how ‘bad’ it can be at worst. They can be used to compare

efficient DMUs, unlike conventional efficiency scores, for example. More specifically, they can

help identify (i) those efficient DMUs, which perform ‘well’ compared to other DMUs across

the entire set of feasible weights, and (ii) those inefficient DMUs, which do not perform ‘ex-

tremely badly’ compared to other DMUs for any feasible weights. On the other hand, the

results can help identify the ones, whose relative efficiency varies ‘much’ in the set of feasible

weights. This may help identify the outputs and inputs that should be bettered in order to

improve the worst possible ranking, for example.

Many efficiency measures, such as efficiency scores, cross efficiencies, and super-efficiencies,

are computed relative to the other DMUs included in the analysis. These measures discrim-

inate between the efficiencies of the DMUs only on the condition that the number of DMUs

is large enough compared to the number of outputs and inputs (Cooper et al. 2000). Fur-

thermore, they can exhibit rank reversals, if the set of DMUs included in the analysis is

manipulated. These concerns do not apply to dominance relations which compare pairs of

DMUs independently of any other DMUs
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Although the proposed concepts for ratio-based efficiency analysis are new, efficiency

scores, super-efficiencies, and division into efficient and inefficient DMUs are obtained as

special cases of the new results. They are also intuitive in that additional preference informa-

tion in terms of new weight constraints (i) keeps previous dominance relations intact, but can

establish new ones, (ii) does not widen the ranking intervals or the intervals bound by the

efficiency bounds, but can make them narrower. These appealing features together with the

relations to earlier efficiency measures can catalyze the adoption of the REA methodology by

researchers and practitioners.

The thesis suggests some future research directions. First, preference elicitation procedures

that accommodate incomplete ordinal information should be designed and tested. These

procedures should give the DMs the possibility to express their preferences with the accuracy

they feel confident with, but deploy also more discriminative numerical information to obtain

decision recommendations. One possibility could be to extend the classification procedure

discussed in Section 4 so that it would admit incomplete assignments; for example, when

evaluating research proposals, a proposal’s attribute-specific performance could be evaluated

to belong to either class ‘excellent’ or to class ‘very good’.

Second, the REA methodology could be extended to admit interval-valued data about the

DMUs (Cooper et al. 1999, 2001). Furthermore, some of the proposed results for REA could

be applied to DEA models with other returns-to-scale assumptions, such as the BCC model

by Banker et al. (1984).

Third, the observation that comparing value differences’ magnitudes across value functions

that describe different preferences can result in rank reversals has implications outside the

scope of this thesis. For example, many simulation studies have used the average loss of value

(or, utility) – which is effectively a sum of value differences over different value functions – to

evaluate the quality of decision recommendations in comparing (i) attribute weight (Barron

and Barrett 1996) and multi-attribute utility function approximations (Durbach and Stewart

2012) and (ii) multi-attribute value function elicitation procedures that are based on incom-

plete preference information (Salo and Hämäläinen 2001, Paper [I], Mustajoki et al. 2005).

Furthermore, in the context of resource allocation, Liesiö et al. (2008) suggest that budgeting

decisions could be based on the minimum value of the portfolio suggested by the maximin

decision rule over different budgets. Thus, one research question raised by this thesis is how

– if at all – should strengths of preferences between different value functions be measured?
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And, subsequently, if such a measure were to be found, can it be used (i) to evaluate the

robustness of the alternatives, (ii) to act as a basis for decision rules, and (iii) to characterize

incompleteness of preference specification? Or is rank-based information all there is, when

we are comparing alternatives across different value functions?
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Abstract

This paper presents a method called Rank Inclusion in Criteria Hierarchies (RICH) for the analysis of incomplete

preference information in hierarchical weighting models. In RICH, the decision maker is allowed to specify subsets of

attributes which contain the most important attribute or, more generally, to associate a set of rankings with a given set

of attributes. Such preference statements lead to possibly non-convex sets of feasible attribute weights, allowing

decision recommendations to be obtained through the computation of dominance relations and decision rules. An

illustrative example on the selection of a subcontractor is presented, and the computational properties of RICH are

considered.
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1. Introduction

Methods of multiple criteria decision making

(MCDM) are widely employed in problems char-

acterized by incommensurate objectives. Numer-

ous successful MCDM applications have been

developed in fields such as energy policy, envi-

ronmental decision making and comparison of

industrial investment opportunities (see, e.g.,

Corner and Kirkwood, 1991; H€am€al€ainen, 2004;
Keefer et al., 2004). In MCDM applications, the

decision problem is structured by associating

measurable attributes with the objectives that are

relevant to the decision maker (DM). In most
methods––such as the Analytic Hierarchy Process

(AHP; Saaty, 1980) and value tree analysis (Kee-

ney and Raiffa, 1976)––the DM is also requested

to supply weights as a measure for the relative

importance of attributes.

In practice, the elicitation of precisely specified

attribute weights may be difficult. This may be due

to the urgency of the decision, lack of resources for
completing the elicitation process, or conceptual

difficulties in the interpretation of intangible

objectives (see, e.g., Weber, 1987). In group set-

tings, difficulties in determining attribute weights

for the group�s joint preference model may arise

from differences in the group members� level of

knowledge or their interpretation of what the

relevant objectives mean (H€am€al€ainen et al., 1992).
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However, complete information about attribute
weights is not always necessary in order to produce

a decision recommendation. Together with the

difficulties of producing a complete model specifi-

cation, this realization has motivated the devel-

opment of methods for dealing with incomplete

information in hierarchical weighting models (see,

e.g., Kirkwood and Sarin, 1985; Hazen, 1986;

Weber, 1987; Salo and H€am€al€ainen, 1992; Salo,
1995; Kim and Han, 2000). Even though these

methods differ in their details, they all (i) accom-

modate incomplete information about attribute

weights and possibly other model parameters as

well and (ii) provide more or less conclusive

dominance relations concerning which alternatives

are preferred to others.

In this paper, we extend the earlier literature on
incomplete preference information by allowing the

DM to specify subsets of attributes which contain

the most important attribute or, more generally, to

associate several rankings with a given set of

attributes. Resulting method––called Rank Inclu-

sion in Criteria Hierarchies (RICH)––generalizes

the use of ordinal preference information in attri-

bute weighting. In view of our theoretical and
computational results, we believe that the RICH

method is especially suitable for decision contexts

where only rather few and easily elicited preference

statements can be obtained before preliminary

decision recommendations must be pro-

duced. Also, inspired by positive experiences from

the deployment of internet-based decision aiding

tools (e.g., Web-HIPRE; see Mustajoki and
H€am€al€ainen, 2000; Lindstedt et al., 2001), we have
already proceeded with the development of a user-

friendly decision support tool for the RICH

method. This tool––entitled RICH Decisions––is

available free of charge to academic users (see

http://www.decisionarium.hut.fi; Li-

esi€o, 2002).
The remainder of this paper is structured as

follows. Section 2 reviews earlier approaches to the

analysis of incomplete information in hierarchical

weighting models. Section 3 considers the use of

incomplete ordinal information in the elicitation of

attribute weights and the properties of resulting

feasible weight regions. Section 4 presents a mea-

sure for the size of feasible regions, and Section 5

discusses the development of decision recommen-
dations. Section 6 summarizes results from a sim-

ulation study on the computational properties of

RICH. An illustrative example is given in Section

7, followed by concluding remarks in Section 8.

2. Earlier approaches to the analysis of

incomplete information

In an early contribution on the modeling of

incomplete information, Arbel (1989) discusses

how the precise articulation of preferences through

ratio statements can be extended to capture

incomplete information about the relative impor-

tance of attributes. He models incomplete prefer-

ence information through lower and upper bounds
on the relative importance of attributes. These

bounds correspond to linear constraints of linear

programming (LP) problems from which the lower

and upper bounds on the weight of each attribute

can be obtained.

The PAIRS method (Preference Assessment

by Imprecise Ratio Statements; Salo and

H€am€al€ainen, 1992) extends Arbel�s concepts to
attribute hierarchies in which lower and upper

bounds on the relative importance of attributes

define a region of feasible weights at each higher-

level attribute. Combined with possibly incomplete

score information, such ratio-based information is

processed by solving a series of hierarchically

structured LP problems, in order to obtain bounds

on the alternatives� overall values. The decision
recommendations are based on the (pairwise)

dominance criterion according to which alternative

xi is preferred to xj if the overall value of xi is

higher than that of xj, no matter how the weights

are chosen from the feasible regions. If the avail-

able preference information does not lead to suf-

ficiently conclusive dominance relations, the DM

is requested to supply additional preference state-
ments. PAIRS supports the consistency of the

preference model through so-called consistency

bounds which are presented to the DM before the

elicitation of each new preference statement.

Analogous to PAIRS in many ways, the pref-

erence programming approach of Salo and

H€am€al€ainen (1995) provides an ambiguity index

A. Salo, A. Punkka / European Journal of Operational Research 163 (2005) 338–356 339



which measures the incompleteness of a preference
model. Salo (1995) extends the preference pro-

gramming approach to group decision settings

where several decision makers can supply incom-

plete preference information about (i) how the

alternatives perform on the lowest-level attributes

and (ii) how important the attributes are to the

different DMs. These statements lead to linear

constraints so that value intervals and dominance
relations for the alternatives can be computed

from LP problems. The potential of this approach

has been explored in a study on traffic planning by

H€am€al€ainen and P€oyh€onen (1996), for instance.

The PRIME method (Preference Ratios

in Multi-Attribute Evaluation; Salo and

H€am€al€ainen, 2001) allows the DM to provide

preference statements through holistic compari-
sons between alternatives, ordinal strength of

preference judgments or ratios of value differences.

Like PAIRS, PRIME provides information about

the consistency of the DM�s preference statements

and dominance relations. Full support for PRIME

is provided by the decision support tool PRIME

Decisions which is available at http://

www.decisionarium.hut.fi. PRIME Deci-
sions employs value intervals and dominance

structures to show intermediate results to the DM.

It has been applied to the valuation of a high-

technology firm, among others (Gustafsson et al.,

2001).

Park and Kim (1997) give an extensive taxon-

omy of alternative ways to the elicitation of

incomplete preference information in hierarchical
weighting models. In particular, they distinguish

between the following statements:

1. weak ranking: fwi Pwjg,
2. strict ranking: fwi � wj P aig,
3. ranking with multiples: fwi P aiwjg,
4. interval form: fai 6wi 6 ai þ �ig,
5. ranking of differences: fwi � wj Pwk � wlg for

j 6¼ k 6¼ l,

where ai; �i P 0 8i. Furthermore, they consider

more general multi-criteria problems with incom-

plete probabilities, utilities and attribute weights.

Although these problems may involve non-convex

objective functions, approximate or even exact

solutions can often be obtained by solving a series

of LP problems.

M�armol et al. (1998) present an algorithm for

computing the extreme points of the region of

feasible attribute weights in two highly relevant

cases (i.e., linear inequalities and weight intervals).

They also examine the computational properties

of their algorithm and establish conditions for
introducing further linear relations which preserve

the structure of the feasible region. A similar ap-

proach is taken by Puerto et al. (2000) who utilize

the extreme points of the set of feasible weights in

the implementation of three decision criteria (i.e.,

Laplace criterion, Wald�s optimistic/pessimistic

criterion, Hurwicz criterion).

Kim and Han (2000) extend the methods of
Park and Kim (1997) to hierarchically structured

attribute trees. In their model, the DM can place

several kinds of linear constraints at any level of

the attribute tree. These constraints are processed

by an algorithm which can be invoked to obtain

upper and lower bounds for the value of an

alternative with regard to any attribute, subject to

the assumption that the DM�s preference state-
ments remain consistent.

Fig. 1 presents a schematic diagram on the

consecutive phases of the RICH method. In effect,

this method is analogous to many others (e.g.,

PRIME; Salo and H€am€al€ainen, 2001) in that the

DM can (i) interactively introduce new preference

statements or revise earlier ones, and (ii) obtain

tentative decision recommendations and informa-
tion about the completeness of the currently

available preference information. The key differ-

ence lies in the elicitation of attribute weights

which are in the RICH method characterized

through incomplete ordinal preference statements.

At any phase of the process, results on (i) the

alternatives� possible overall values, (ii) (pairwise)

dominance structure of the alternatives, (iii) deci-
sion recommendations and (iv) information about

the possible rankings of the attributes can be ob-

tained from LP problems. After examining these

results, the DM may either choose to accept one of

the decision recommendations or continue with

the specification of further preference information.

Except for the work of Park and Kim (1997)––

in which combinations of incompletely specified

340 A. Salo, A. Punkka / European Journal of Operational Research 163 (2005) 338–356



weights, probabilities and utilities are consid-

ered––a common feature of all earlier approaches

is that the region of feasible attribute weights is

convex and bounded by linear constraints. As we

next move to the consideration of incomplete

ordinal preference information, there is a signifi-

cant difference in that the resulting feasible region

may not be convex.

3. Formalization of incomplete ordinal information

Let A ¼ fa1; . . . ; ang be the set of relevant

attributes in the decision problem. The importance

of attribute ai is measured by its weight wi 2 ½0; 1�.
By convention, the attribute weights are normal-
ized so that they add up to one, i.e.,

Pn
i¼1 wi ¼ 1.

Alternatives are denoted by xj, j ¼ 1; . . . ;m. The
performance of the jth alternative with regard to

attribute ai is measured by its score viðxjÞ 2 ½0; 1�.
The overall value of alternative xj is given by

V ðxjÞ ¼
Pn

i¼1 wiviðxjÞ.

3.1. Weak orders, linear orders and rankings

Following several other approaches, we assume

that the DM makes statements about the relative

importance of attributes. These preferences are

captured through a relation � on the set A� A, in
the understanding that ai � aj if and only if

attribute ai is at least as important as attribute aj.
The relation is a weak order if it is comparable

(i.e., 8ai; aj 2 A either ai � aj or aj � ai, or both)
and transitive (i.e., if ai � aj and aj � ak, then

ai � ak). If this relation is also antisymmetric (i.e.,

9= ai; aj 2 A; ai 6¼ aj such that ai � aj and aj � ai),
it is a linear order. In this case, each attribute a 2 A
can be assigned a unique ranking rðaÞ 2 N ¼
f1; . . . ; ng such that ai � aj if and only if rðaiÞ <
rðajÞ. Thus, the ranking of the most impor-

tant attribute is one, that of the second most

important is two, and so on, until the least

important attribute is reached, the ranking of

which is n.
If � is a weak order, there is a possibility that

two or more attributes are equally important. In

Consistent ?

Add or adjust a

preference statement

no

Compute and display results
• possible rankings for each attribute
• value intervals
• dominance relations
• decision recommendations

Interpret results

no

yes

Acceptable ?

yes

Make a decision

Fig. 1. Phases in the RICH method.
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this case, the attributes A can be partitioned into
sets Að1Þ; . . . ;AðkÞ such that (i) ai � aj, aj � ai if
attributes ai, aj are in the same subset (i.e., 9AðlÞ
such that ai; aj 2 AðlÞ) and (ii) ai � aj, aj†ai for
any ai 2 AðlÞ, aj 2 Aðlþ 1Þ. Nevertheless, the

attributes can still be given rankings in rðaiÞ, rðajÞ
such that ai � aj whenever rðaiÞ < rðajÞ; but these
rankings are not necessarily unique because per-

muting the rankings of attributes which belong to
the same partition would lead to different rankings

which still fulfil the above condition. Whatever the

case, the ranking rðaÞ implies that rðaÞ � 1 attri-

butes are at least as important as the attribute a.
Formally, a rank-ordering r is a function from

the set of attributes A ¼ fa1; . . . ; ang onto the set

N . The set of all possible rank-orderings r is

denoted by R. Because each rank-ordering r is a
bijection, the attribute with the ranking k is given

by the inverse function r�1, i.e., ai ¼ r�1ðkÞ ()
rðaiÞ ¼ k. For example, if attribute a3 is the second
most important attribute, the ranking of a3 is

rða3Þ ¼ 2 and r�1ð2Þ ¼ a3.
While linear and weak orders correspond to

rank-orderings as indicated above, rank-orderings

can be used directly in the elicitation of incomplete
preference information. This can be helpful in

situations where the DM does not provide a linear

or weak order when considering the relative

importance of the attributes: for example, if

there are three attributes, the DM may state that

the most important one is either the first or the

second attribute, without taking a stance on which

one of the two is the most important one. Among
the six possible rank-orderings, four (i.e., r ¼
ðrða1Þ; rða2Þ; rða3ÞÞ ¼ ð1; 2; 3Þ; ð1; 3; 2Þ; ð2; 1; 3Þ or

(3,1,2)) are compatible with this statement which

rules out the remaining two (i.e., (2,3,1) and

(3,2,1)).

The above approach to preference elicitation

can be formalized through (i) an attribute set

I � A and (ii) a set of rankings J � N such that the
rankings of attributes in I belong to J (subject to

some qualifications discussed below). For in-

stance, the example above corresponds to I ¼
fa1; a2g and J ¼ f1g. Moreover, if I contains

several attributes while the only ranking in J is

one, it follows that the most important attribute

must belong to I .

The attribute set I and the set of rankings J
need not be equal in size. If the number of attri-

butes is at least as large as that of possible rank-

ings (i.e., jI jP jJ j), the specification of these two

sets is interpreted as the requirement that all

attributes whose rankings belong to J are in the

attribute set I . On the other hand, if there are

fewer attributes than rankings (i.e., jI j < jJ j), we
require that for each attribute in I , the corre-
sponding ranking is in the set J .

If a rank-ordering meets the above require-

ments, it is said to be compatible with the sets I and
J . For example, if there are three attributes and the

DM states that attribute a2 is either the most

important or the second most important attribute,

then we have I ¼ fa2g and J ¼ f1; 2g. The four

rank-orderings that are compatible with these two
sets are (2,1,3), (3,1,2), (1,2,3) and (3,2,1). For-

mally, rank-orderings that are compatible with an

attribute set I and a set of rankings J are defined as

follows:

Definition 1. If I � A ¼ fa1; . . . ; ang and J � N ,

the set of compatible rank-orderings is

RðI ; JÞ ¼ fr 2 Rjr�1ðjÞ 2 I 8j 2 Jg; if jI jP jJ j;
fr 2 RjrðaiÞ 2 J 8ai 2 Ig; if jI j < jJ j:

�

3.2. Feasible regions

Because the attribute weights are non-negative

and add up to one, they belong to the set

Sw ¼ w

(
¼ ðw1; . . . ;wnÞ

Xn

i¼1

wi

����� ¼ 1;

wi P 0 8i 2 N

)
: ð1Þ

The weight vector w 2 Sw is consistent with the

rank-ordering r if wi Pwj whenever rðaiÞ < rðajÞ.
Thus, the feasible region associated with r 2 R can

be defined as

SðrÞ ¼ fw 2 Swjwi Pwj

for any i; j such that rðaiÞ < rðajÞg: ð2Þ
For example, the feasible region implied by

r ¼ ð4; 2; 1; 3Þ is SðrÞ ¼ fw 2 Swjw3 Pw2 Pw4 P
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w1g. Fig. 2 illustrates the feasible region for
r ¼ ð1; 3; 2Þ.

The region that corresponds to RðI ; JÞ is defined
as the union of feasible regions that are associated

with compatible rank-orderings, i.e.,

SðI ; JÞ ¼
[

r2RðI ;JÞ
SðrÞ:

In general, for a given R0 � R, the corresponding

feasible region is defined as SðR0Þ ¼ S
r2R0 SðrÞ. For

example, Fig. 3 shows the feasible region associ-

ated with R0 ¼ fð3; 1; 2Þ; ð1; 3; 2Þg, based on the

statement that a3 is the second most important one

among three attributes (i.e., I ¼ fa3g, J ¼ f2g).
An important special case is obtained when the

DM specifies an attribute set I which contains the
p6 jI j most important attributes. For brevity, we

use SpðIÞ to denote the corresponding feasible re-

gion, SpðIÞ ¼ SðI ; f1; . . . ; pgÞ. In view of (1) and

(2), this region is

SpðIÞ ¼ fw 2 Swj9I 0 � I ; jI 0j ¼ p;

such that wk Pwi 8ak 2 I 0; ai 62 I 0g: ð3Þ
It immediately follows that SpðIÞ can be written as

SpðIÞ ¼
S

fI 0 jI 0�I^jI 0 j¼pg SpðI 0Þ. For example, Fig. 4

illustrates that in a case with three attributes,

S1ðfa1; a2gÞ can be built as the union of S1ðfa1gÞ
and S1ðfa2gÞ.

3.3. Properties of feasible regions

We next examine several interesting properties

of the feasible region based on attribute set I and

the rankings J . Proofs are in Appendix A, unless

otherwise stated.

w3

w2

w1

S((1,3,2))

(0,0,1)

(1,0,0)

(0,1,0)

w3 = w2

w3 = w1

w2 = w1 

Fig. 2. The feasible region for r ¼ ð1; 3; 2Þ.

w3

w2

w1

S((1,3,2))

S((3,1,2))

(0,0,1)

(1,0,0)

(0,1,0)

w3 = w2

w3 = w1

w2 = w1 

Fig. 3. The third attribute as the second most important one.
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The feasible region SpðIÞ may not be convex (see

Fig. 4). In fact, the feasible region is convex if and
only if the number of rankings p is equal to the

number of attributes in the set I ; this result is stated
in Theorem 1. Fig. 5 gives an example of the

set S2ðfa1; a2gÞ in the case of three attributes.

Here (and throughout this paper) ��� denotes a

proper subset.

Theorem 1. Let I � A and p6 jI j. Then SpðIÞ in (3)
is convex if and only if jI j ¼ p.

Theorem 1 holds also when I ¼ A. In this trivial

case, SpðIÞ ¼ Sw for p6 n, because knowing that

the p most important attributes come from the set

of all attributes does not contain any preference

information.

If two attribute sets I1, I2 are different but
contain equally many attributes (p), the two fea-

sible regions SpðI1Þ, SpðI2Þ––based on the require-

ment that the attributes in the sets I1, I2 are the p
most important ones––have disjoint interiors.

Lemma 1. If I1; I2 � A such that jI1j ¼ jI2j ¼ p and

I1 6¼ I2, then
intðSpðI1ÞÞ \ intðSpðI2ÞÞ ¼ ;:

For a given attribute set I and a set of rankings

J , the resulting feasible region is the same as that

defined by the complement sets of I and J . Taking
the feasible region in Fig. 4 as an example, the

statement that the most important attribute is a1
or a2 (i.e., Sðfa1; a2g; f1gÞ) is equivalent to stating

that attribute a3 is either the second or third most

important one (i.e., Sðfa3g; f2; 3gÞ).

Theorem 2. Assume that I and J are non-empty

proper subsets of A ¼ fa1; . . . ; ang and N , respec-

tively. Then

SðI ; JÞ ¼ SðI ; JÞ;
where I ¼ A n I and J ¼ N n J are the complement

sets of I and J .

Several comparative results about feasible re-

gions can be obtained. If there are more rankings in

J than attributes in I , then, as stated in Theorem 3,

increasing the number of attributes that are asso-
ciated with these rankings reduces the size of the

feasible region. Conversely, if there are more attri-

butes in I than rankings in J , reducing the number

of attributes in I makes the feasible region smaller.

Theorem 3. Let I1 and I2 be non-empty attribute

sets such that jI1j, jI2j < n and jJ j < n.

(a) If jI1j; jI2j6 jJ j, then I1 � I2 () SðI2; JÞ �
SðI1; JÞ.

S1({a2})

S1({a1})

w3

w2

w1

(0,0,1)

(1,0,0)

(0,1,0)

w3 = w2

w3 = w1

w2 = w1 

Fig. 4. A non-convex feasible region.

S2({a1,a2})

w3

w2

w1

(0,0,1)

(1,0,0)

(0,1,0)

w3 = w2

w3 = w1

Fig. 5. A convex feasible region.
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(b) If jI1j; jI2jP jJ j, then I2 � I1 () SðI2; JÞ �
SðI1; JÞ.

If there are fewer rankings in J than attributes

in I , increasing the number of rankings leads to a

feasible region that is a proper subset of the ori-

ginal one. Conversely, if there are more rankings

in J than attributes in I , the feasible region be-
comes smaller if rankings are removed from the set

J .

Theorem 4. Let J1 and J2 are non-empty sets such

that jJ1j; jJ2j < n and jI j < n.

(a) If jJ1j; jJ2j6 jI j, then J1 � J2 () SðI ; J2Þ �
SðI ; J1Þ.

(b) If jJ1j; jJ2jP jI j, then J2 � J1 () SðI ; J2Þ �
SðI ; J1Þ.

The above results can be applied to examine

how the feasible region SpðIÞ––based on the

requirement that the p6 jI j most important attri-

butes are in the set I––changes due to incremental

changes in the set I or the number p. That is, the
feasible region SpðIÞ becomes smaller if

1. the attribute set I is extended to contain a larger

number of the most important attributes; this

means that p becomes larger (i.e., in Theorem

4, the set J1 is extended to its proper superset

J2 � J1), or
2. some attributes are removed from I without

changing the number p; this means that the attri-

butes that are removed from I are not among the

p most important ones (i.e., in Theorem 3, the

set I1 is reduced to its proper subset I2 � I1).

The above results do not provide information

on how �large� the feasible regions are. We next

turn to this issue, in order to provide guidance for
eliciting statements which help reduce the size of

the feasible region.

4. Measuring the completeness of information

Definition 1 and Eq. (2) suggest that a measure

for the size of the feasible region SðI ; JÞ can be

based on the number of compatible rank-orderings
in the set RðI ; JÞ. An appealing property of such a

measure is that this number can be readily com-

puted, as shown by Lemma 2 (here, we use the

convention 0!¼ 1).

Lemma 2. The number of rank-orderings that are

compatible with sets I and J is

jRðI ; JÞj ¼
jIj!ðn�jJ jÞ!
ðjIj�jJ jÞ! ; if jI jP jJ j;
jJ j!ðn�jI jÞ!
ðjJ j�jI jÞ! ; if jI j < jJ j:

8<
:

Proof. If jI jP jJ j, there are
jI j
jJ j

� �
¼ jI j!

jJ j!ðjI j�jJ jÞ!

different ways of choosing jJ j attributes from I .
These jJ j attributes can be arranged in jJ j! ways
while the remaining ones can be arranged in

ðn� jJ jÞ! ways, implying that there is a total of

jIj!ðn�jJ jÞ!
ðjIj�jJ jÞ! different rank-orderings. If jI j < jJ j, the

proof is similar, with the roles of I and J inter-

changed. h

The above lemma suggests a measure which is

formally defined in the following theorem.

Theorem 5. Let PðRÞ be the power set which con-

tains all subsets of R. Then the function uð	Þ,
defined for any R0 2 PðRÞ as uðR0Þ ¼ jR0 j

n! , is a

measure which maps the elements of PðRÞ onto the

range [0,1].

Table 1 shows the size of the feasible region (as

measured by uð	Þ) for 10 attributes as a function of

possible combinations of jI j and jJ j. The feasible
region is smallest when (i) the attribute set and the

ranking set are of equal size and (ii) they both

contain (about) half as many elements as there are

attributes (i.e., jI j ¼ jJ j 
 n
2
). This means that

bisecting the attributes into two sets––one which

contains the n
2
most important attributes and one

which contains the remaining n
2
less important

attributes––effectively reduces the size of the fea-
sible region.

Lemma 2 and Theorem 5 can be combined to

obtain the following expression for the size of the

feasible region SpðIÞ.
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Corollary 1. For any I � A such that jI jP p,

unðRðI ; f1; . . . ; pgÞÞ ¼
jI j!ðn� pÞ!
ðjI j � pÞ!n! ¼

jI j
p

� �
n
p

� � :

The measure uð	Þ can be used for the purpose of
analyzing how the size of SpðIÞ changes when

attributes are removed from the set I . It turns out
that the resulting comparative change is larger, the

more attributes there are in I .

Lemma 3. Assume that the attribute set I2 is ob-

tained from the set I1; jI1j ¼ k > p by removing one

of the attributes in I1 (i.e., I2 ¼ I1 n fakg for some

ak). Then the size of the revised feasible

region SpðI2Þ, relative to the initial feasible region

SpðI1Þ, is

Qð1; k; pÞ ¼ uðRðI2; f1; . . . ; pgÞÞ
uðRðI1; f1; . . . ; pgÞÞ ¼

k � p
k

:

Proof. Corollary 1 leads to the quotient

Qð1; k; pÞ ¼ uðRðI2; f1; . . . ; pgÞÞ
uðRðI1; f1; . . . ; pgÞÞ

¼ ðk � 1Þ!ðn� pÞ!
ðk � 1� pÞ!n!

n!ðk � pÞ!
k!ðn� pÞ!

¼ k � p
k

: �

Lemma 3 can also be applied to examine

changes in the size of the feasible region when

several attributes are removed from the initial set

of attributes. That is, if the DM chooses to remove

l6 k � p attributes from I , consecutive application
of Lemma 3 gives

Qðl; k; pÞ ¼
Yl�1

i¼0

k � p � i
k � i

¼ ðk � pÞ!ðk � lÞ!
ðk � p � lÞ!k!

¼ k � p
l

� ��
k
l

� �
:

For example, if p ¼ 2 and the DM removes four

attributes from an initial set of seven attri-

butes, the revised feasible region is ½ð7� 2Þ!ð7�
4Þ!�=½ð7� 2� 4Þ!7!� ¼ ½5!3!�=½1!7!� ¼ 1=7 of the size

of the initial feasible region.

5. Computation of decision recommendations

The elicitation of preferences through the

specification attributes and corresponding rank-
ings would usually take place iteratively so that

each new statement is combined with the earlier

ones to obtain a reduced feasible region (see Fig.

1). The feasible regions implied by these state-

ments, i.e. intersections of the sets SðI ; JÞ, are un-

ions of elementary sets that correspond to

complete rank-orderings (i.e., SðrÞ for some r 2 R).
This has implications for the computational anal-
ysis of incomplete ranking information.

Table 1

Size of the feasible region (n ¼ 10)

jIj jJ j
1 2 3 4 5 6 7 8 9 10

1 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

2 0.2000 0.0222 0.0667 0.1333 0.2222 0.3333 0.4667 0.6222 0.8000 1.0000

3 0.3000 0.0667 0.0083 0.0333 0.0833 0.1667 0.2917 0.4667 0.7000 1.0000

4 0.4000 0.1333 0.0333 0.0048 0.0238 0.0714 0.1667 0.3333 0.6000 1.0000

5 0.5000 0.2222 0.0833 0.0238 0.0040 0.0238 0.0833 0.2222 0.5000 1.0000

6 0.6000 0.3333 0.1667 0.0714 0.0238 0.0048 0.0333 0.1333 0.4000 1.0000

7 0.7000 0.4667 0.2917 0.1667 0.0833 0.0333 0.0083 0.0667 0.3000 1.0000

8 0.8000 0.6222 0.4667 0.3333 0.2222 0.1333 0.0667 0.0222 0.2000 1.0000

9 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 1.0000

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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The development of decision recommendations
based on dominance relations and decision rules

does not presume that the feasible regions are un-

ions of the elementary sets SðrÞ; r 2 R. Thus, in

Sections 5.1 and 5.2 we only assume that the fea-

sible region S is some non-empty subset of Sw in (1).

5.1. Dominance structures

Following Salo and H€am€al€ainen (1992), domi-

nance relations for the alternatives can be estab-

lished on the basis of (i) the value intervals that the

alternatives can assume, subject to the requirement

that the attribute weights belong to the feasible

region, and (ii) the minimization of value differ-

ences between pairs of alternatives, as computed

from the pairwise bounds

l0ðxk; xlÞ ¼ min
w2S

½V ðxkÞ � V ðxlÞ�

¼ min
w2S

Xn

i¼1

wi½viðxkÞ � viðxlÞ�: ð4Þ

If the minimum in (4) is non-negative, the value of

alternative xk is greater than or equal to that of

alternative xl, no matter how the feasible weights

are chosen. In this case, alternative xk dominates xl
in the sense of pairwise dominance.

The computation of dominance relations does

not presume that precise score information is

available. For instance, if incomplete information

about scores is available as intervals, the minimi-

zation problem (4) can be solved by first deter-

mining attribute-specific pairwise bounds liðxk; xlÞ
from the minimization problems

liðxk; xlÞ ¼ min½viðxkÞ � viðxlÞ�:
These bounds can be inserted into (4) to replace

the bracketed differences. In hierarchically struc-

tured value trees with attributes on several levels,

the computation of pairwise bounds proceeds

from the lower levels towards the topmost attri-
bute (for details see Salo and H€am€al€ainen, 1992).

In many problems, it is plausible to require that

all attributes are essential in the sense that they

influence the alternatives� overall values. This can
be modelled by requiring that the weight of each

attribute is greater than some fixed lower bound

� < 1
n (i.e., wi P � 8i 2 N ): for example, if––for the

sake of convenience––the weight of each attribute
is required to be at least one third of the average

weight of an attribute, then � would be 1=½3n�.
With the requirement of lower bounded attribute

weights, the set Sw in (1) becomes

Swð�Þ ¼ fw ¼ ðw1; . . . ;wnÞ 2 Swjwi P � 8i 2 Ng:
ð5Þ

These constraints help reduce the size of the fea-

sible region so that dominance results for alter-

natives are more likely obtained. In a somewhat

different but analogous setting, Cook and Kress

(1990, 1991) consider the use of lower bounds on

weight differences so that the weight of attribute ai
with ranking rðaiÞ ¼ k exceeds the weight of the

attribute aj with ranking k þ 1 by a certain gap �;
in this case, the inequality wi � wj P � must hold.

5.2. Decision rules

Throughout the analysis, the DM can be offered

tentative decision recommendations based on dif-
ferent decision rules (Salo and H€am€al€ainen, 2001).
These rules are procedures for extrapolating a

decision recommendation from a preference spec-

ification which is not complete enough to establish

dominance results. Alternative decision rules in-

clude, among others, (i) the choice of an alterna-

tive with the largest possible overall value (i.e.,

maximax rule), (ii) the choice of an alternative for
which the smallest possible value is largest (i.e.,

maximin rule), (iii) the choice of an alternative

such that the maximum value difference to some

other alternative is minimized (i.e., minimax re-

gret), and (iv) the comparison of central values,

computed for each alternative as the average of its

smallest and largest possible values. Formally,

these decision rules can be defined as follows:

maximax : argmaxxi max
w2S

V ðxiÞ
� �

;

maximin : argmaxxi min
w2S

V ðxiÞ
� �

;

minimax regret : argminxi max
xk 6¼xi

max
w2S

½V ðxkÞ
�

�V ðxiÞ�
�
;

central values : argmaxxi max
w2S

V ðxiÞ
�

þmin
w2S

V ðxiÞ
�
:
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Because these decision rules are based on the

analysis of alternatives� overall values, the recom-

mendations depend on the scores (i.e., viðxjÞ). It is
also possible to offer decision recommendations by

choosing representative vectors from the feasible

region S without considering scores. Here, possi-

bilities include the computation of (i) central

weights, defined by normalizing the vector
w0

i ¼ maxw2S wi þminw2S wi, and (ii) the point of

gravity of feasible region S. Also, the use of equal

weights (i.e., wi ¼ 1=n) offers a benchmark against

which the performance of any decision rule can be

contrasted (Salo and H€am€al€ainen, 2001).

5.3. Computational issues

Because the feasible region SðI ; JÞ is not neces-
sarily convex, the computation of dominance re-

sults may lead to linear optimization problems over

non-convex sets. In principle, these problems can

be solved by branch-and-bound algorithms or

other suitable approaches (see, e.g., Taha, 1997). In

particular, if the DM states that the p most

important attributes are in the attribute set I ,
Lemma 1 implies that SpðIÞ can be decomposed into

jI j!=½p!ðjI j � pÞ!� convex subsets with disjoint inte-

riors. Each of these subsets could be dealt with as a

separate subproblem, allowing dominance struc-

tures and decision recommendations to be derived

by combining results from these subproblems.

Because the objective functions in the compu-

tation of value intervals, dominance structures and
decision rules are linear, solving these optimization

problems over the convex hull of the feasible re-

gion SðI ; JÞ leads to the same result as solving

these problems over the feasible region. This ap-

proach is not attractive, however, because the

determination of a minimal set of constraints

through which this convex hull is characterized

entails an additional computational effort.
An efficient approach to the determination of

dominance relations and decision rules can be

based on the realization that each feasible region

SðI ; JÞ is the union of the sets SðrÞ, r 2 RðI ; JÞ. By
construction, each such set is convex, and its ex-

treme points are related to the rank-orderings r as
stated in the following lemma (for the proof, see,

e.g., Carrizosa et al., 1995).

Lemma 4. Let r 2 R be a rank-ordering. Then the

extreme points of the feasible region SðrÞ in (2),

X ðrÞ, are

X ðrÞ ¼ extðSðrÞÞ ¼ w 2 Swj9k 2 f1; . . . ; ng s:t:

�

wi ¼ 1

k
8rðaiÞ6 k; wi ¼ 0 8rðaiÞ > k

	
:

Lemma 4 can be adapted to obtain the extreme

points of S�ðrÞ ¼ SðrÞ \ Swð�Þ:

extðSðrÞ \ Swð�ÞÞ ¼ w 2 Swj9k
�

6 n s:t:

wi ¼ 1� ðn� kÞ�
k

8rðaiÞ6 k;

wi ¼ � 8rðaiÞ > k
	
:

Based on this result, the extreme points can be

enumerated at the outset (on condition that the

number of attributes is not too large). Then, as the

DM supplies preference statements, the resulting

list can be shortened by removing those extreme
points that are not compatible with the DM�s
statements. At any stage of the analysis, value

intervals, dominance structures and decision rules

can be computed by inspection. For instance, the

pairwise bound for alternatives xk; xl is obtained

from l0ðxk; xlÞ ¼ minr2R0 minw2X ðrÞ
Pn

i¼1 wi½viðxkÞ�
viðxlÞ�, where R0 is the set of rank-orderings that

are compatible with the DM�s preference state-
ments.

6. A simulation study on the computational

properties of RICH

To examine the computational properties of

RICH, we carried out a simulation study in which
the number of attributes was n ¼ 5, 7, 10 and the

number of alternatives was m ¼ 5, 10, 15. The

attribute weights were generated by assuming a

uniform distribution over the set Sw. Because in

many cases it is realistic to assume that the weight

of each attribute is greater than some lower bound,

simulation results are presented for the case where
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this bound was � ¼ 1=½3n�, which seemed plausible
enough.

Following Salo and H€am€al€ainen (2001), scores

for the alternatives were defined under each attri-

bute by (i) generating random numbers from a

uniform distribution over [0,1] and by (ii) nor-

malizing the resulting numbers under each attri-

bute. This normalization was carried out through

a linear mapping in which the random number of
the best performing alternative was set to one and

that of the worst performing alternative was set to

zero.

Five thousand problem instances were gener-

ated for each problem type (as characterized by the

number of attributes (n) and alternatives (m)).
Each problem instance consisted of a full combi-

nation of weights and scores in an additive pref-
erence model. The alternative with the highest

overall value, i.e.,

argmaxxV ðxÞ ¼
Xn

i¼1

wiviðxÞ

will be referred to as the correct choice.

The simulation study was based on the follow-
ing preference statements:

• A: The DM specifies the most important attri-

bute only.

• B: The DM specifies the two most important

attributes (without taking a stance on which

one is more important than the other).

• C: The DM specifies a set of three attributes
which contains the two most important attri-

butes.

Even though other kinds of preference state-

ments are also worth studying, these three state-

ments are nevertheless indicative of different ways

of expressing incomplete preference information

through rank inclusion. The sizes of the respective
feasible regions (see Table 2) indicate that state-

ment B leads to a preference specification which is

more informative than statement A or statement

C. This is also in keeping with the theoretical re-

sults of Sections 3 and 4.

The preference statements––and corresponding

feasible regions of attribute weights––were derived

from the randomly generated weights as follows.

Starting from the randomly generated weight
vector w, the corresponding rank-ordering r was

first derived. For instance, if the simulated weights

of the five attributes were w1 ¼ 0:09, w2 ¼ 0:30,
w3 ¼ 0:18, w4 ¼ 0:20 and w5 ¼ 0:23, the resulting

rank-ordering was r ¼ ð5; 1; 4; 3; 2Þ.
For preference statement A, the feasible region

was set equal to S1ðfr�1ð1ÞgÞ. For preference

statement B, the feasible region was defined anal-
ogously as S2ðfr�1ð1Þ; r�1ð2ÞgÞ. For the third

preference statement C, the set of three attributes

was defined by taking the union of the two most

important attributes (i.e., r�1ð1Þ, r�1ð2Þ) and a

third attribute from the remaining n� 2 attributes.

This third attribute ai was selected at random by

assuming a uniform distribution over the set

N n fr�1ð1Þ; r�1ð2Þg, whereafter the feasible region
was defined as S2ðfr�1ð1Þ; r�1ð2Þ; aigÞ.

Results based on the above preference state-

ments were compared to those obtained on the use

of (i) equal weights (i.e. wi ¼ 1=n, 8i 2 N ) and (ii)

complete rank-ordering (where the feasible region

was set equal to SðrÞ \ Swð1=½3n�Þ). The compari-

sons were made using four decision rules (maxi-

max, maximin, central values and minimax regret)
in conjunction with two measures of efficiency, i.e.,

(i) the average expected loss of value relative to the

correct choice and (ii) the percentage of problem

instances in which the decision rule lead to the

identification of the correct choice. We also com-

puted the average number of non-dominated

alternatives that would remain after (i) the speci-

fication of the above three statements A, B, and C
and (ii) the use of complete rank-ordering infor-

mation.

Among alternative measures of efficiency, ex-

pected loss of value is arguably the most important

as it indicates how great a loss of value the

DM would incur, on the average, if he or she were

to follow a particular decision rule (Salo and

Table 2

Size of the feasible region

n A B C Complete

rank-ordering

5 0.200 0.100 0.300 8.33· 10�3

7 0.143 0.048 0.143 1.98· 10�4

10 0.100 0.022 0.067 2.76· 10�7
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H€am€al€ainen, 2001). For a given problem instance,
the corresponding loss of value is obtained from

LV ¼
Xn

i¼1

wi½viðx�Þ � viðx0Þ�;

where wi is weight of attribute ai, x� is the correct

choice and x0 is the alternative that is recom-

mended by a particular decision rule. In our sim-
ulation study, averaging these terms over the entire

sample lead to an estimate for the expected loss of

value.

In the simulation results, the use of central

values as a decision rule outperformed the other

decision rules, wherefore the results are presented

using this decision rule only (see also Salo and

H€am€al€ainen, 2001). In particular, an analysis of
the results in Table 3 supports the following con-

clusions:

• Among the three statements, statement B is the

most efficient and C is the least efficient one

with regard to all measures of efficiency. All

the three preference statements A, B and C give

better results than the use of equal weights.
• Changes in the number of attributes or alterna-

tives do not reveal consistent trends in the ex-

pected loss of value. In comparative terms,

statement A performs best when there are few

attributes and alternatives, while the opposite

holds for statement C. For preference statement

B and complete rank-ordering information,

changes in the expected loss of value are rela-
tively small across the full range of problems.

• The percentage of problem instances in which

the application of decision rules leads to the

identification of the correct choice tends to de-

crease as the number of alternatives or attri-

butes grows; this is because there is a higher

chance that some other alternative (i.e., other

than the correct choice) will be favored. The
share of problem instances where the correct

choice is identified increases with about 5%

units when complete rank-ordering information

is used instead of information about the two

most important attributes only (i.e., statement

B). For statement C, the corresponding differ-

ence is about 15% units.

• The percentage of non-dominated alternatives

decreases as the number of alternatives in-

creases. Increasing the number of attributes

leads to a larger number of non-dominated

alternatives. Statement B has the smallest per-

centage of non-dominated alternatives across

the entire spectrum of problems, because the

size of the feasible region is smallest for this
statement.

7. An illustrative example

To further exemplify the application of RICH,

we assume there is a main contractor who is about

to choose a subcontractor for an engineering
project at a construction site. The contractor

chooses among competing subcontractors on the

basis of five attributes: (i) ability to finish the

project on schedule (i.e., punctuality), (ii) quality of

work, (iii) overall cost of the contract, (iv) refer-

ences from earlier engagements with the respective

subcontractor, and (v) possibilities for introducing

changes into the subcontract. These attributes are
essential in the sense that the weight of each is

greater than a positive lower bound �, which in this

example is set equal to 1=½3n� ¼ 1=15 
 0:0667.
The main contractor invites tenders from three

potential subcontractors. Among these, the first

(x1) is a large firm which is punctual and offers its

services at a reasonable cost. The second one (x2) is
a small entrepreneur who has had difficulties in
completing the project tasks on schedule. The third

subcontractor (x3) is a medium-sized firm which is

in many ways similar to the entrepreneur, except

that it is more punctual.

Score information for the three subcontractors

is generated as follows. Using the first attribute

(i.e., punctuality) as a benchmark, the main con-

tractor assigns 1.00 points to the best performance
level and 0.00 to the worst performance level.

Then, scores reflecting incomplete information

about the subcontractors are generated using these

ranges as a point of reference: thus, for the first

attribute, the score of the large firm is given by the

interval [0.80,1.00] while the score interval for the

entrepreneur is [0.00,0.20]. For the other subcon-

tractors and attributes, scores in the [0.00,1.00]
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range are generated in the same way, recognizing
that this range is used in interpreting the attribute

weights (see Table 4). The subcontractors� scores
of are assumed independent, i.e., the performance

of a given subcontractor may assume all the scores

within its respective interval, regardless of the

other subcontractors� scores.
Assume that the DM confirms that the two

most important attributes are among the three first
attributes, i.e., punctuality (a1), quality (a2) and

cost (a3). Using the notation of Section 2, we have
p ¼ 2 and I ¼ fa1; a2; a3g so that the feasible

region is S2ðfa1; a2; a3gÞ. According to Lemma 2

and Theorem 5, the size of this region is

uðS2ðfa1; a2; a3gÞ ¼ ½3!ð5� 2Þ!�=½1!5!� ¼ 3=10, i.e.,

it covers 30% of the entire weight space Swð�Þ in

(5).

To derive dominance results, the pairwise

bounds l0ðxi; xjÞ in (4) are computed. Towards this
end, the pairwise bounds lið	; 	Þ are first computed

Table 3

Simulation results

n m Equal weights A B C Complete

rank-ordering

Expected loss of value

5 5 0.065 0.021 0.025 0.050 0.013

10 0.062 0.024 0.023 0.048 0.014

15 0.059 0.027 0.022 0.043 0.015

7 5 0.060 0.024 0.021 0.045 0.013

10 0.061 0.027 0.023 0.041 0.015

15 0.060 0.029 0.022 0.042 0.014

10 5 0.054 0.025 0.021 0.038 0.015

10 0.054 0.030 0.023 0.039 0.015

15 0.056 0.031 0.023 0.038 0.016

Percentage of correct choices

5 5 61% 76% 76% 64% 81%

10 53% 67% 70% 57% 76%

15 50% 62% 66% 55% 72%

7 5 60% 72% 75% 64% 81%

10 50% 63% 67% 57% 73%

15 47% 59% 64% 53% 72%

10 5 58% 70% 72% 64% 77%

10 49% 58% 65% 55% 71%

15 44% 54% 60% 51% 66%

n m A B C Complete

rank-ordering

Percentage of non-dominated alternatives

5 5 54% 53% 65% 41%

10 37% 36% 49% 26%

15 30% 27% 40% 19%

7 5 69% 62% 74% 46%

10 52% 46% 60% 30%

15 45% 37% 51% 23%

10 5 84% 75% 85% 51%

10 71% 61% 75% 35%

15 64% 53% 68% 28%
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with regard to each attribute (see Table 5). For

example, because the score intervals of the first

two subcontractors on the first attribute are

[0.80,1.00] and [0.00,0.20], respectively, the pair-
wise bound l1ðx1; x2Þ is 0.80) 0.20¼ 0.60.

Next, for each pair of subcontractors, the

weighted sum of pairwise bounds (4) is minimized

over the feasible region S2ðfa1; a2; a3gÞ which

consists of three convex sub-regions S2ðfa1; a2gÞ,
S2ðfa1; a3gÞ and S2ðfa2; a3gÞ. The results indicate

that the first alternative (large firm) is better than

the third (medium-sized enterprise), because the
value difference

P5

k¼1 wk½vkðx1Þ � vkðx3Þ� is positive
over the entire feasible region (see Table 6). No

dominance relations are obtained for the two first

subcontractors because the pairwise bounds

l0ðx1; x2Þ, l0ðx2; x1Þ are negative. Thus, the DM

would be asked to supply further preference

information, or to accept one of the recommen-

dations based on decision rules.

Further insights can be obtained by examining
the recommendations of three decision rules, i.e.,

maximax, maximin, and maximization of central

values. For the maximax criterion, the decision

recommendation is based on the comparison of

largest possible values for each subcontractor,

obtained as solutions to the linear problems

VmaxðxiÞ ¼ max
P5

k¼1 wkvmax
k ðxiÞ subject to the

requirement that w 2 S2ðfa2; a3gÞ and wi P 1=15,
i ¼ 1; . . . ; 5. The analysis is based on S2ðfa2; a3gÞ,
since elsewhere in the feasible region dominance

relations are already obtained. Similarly, the

minimum possible values are computed from

VminðxiÞ ¼ min
P5

k¼1 wkvmin
k ðxiÞ subject to the same

Table 4

Score intervals for the alternatives

a1 a2 a3 a4 a5

viðx1Þ [0.80,1.00] [0.70,0.90] 0.80 0.40 0.70

viðx2Þ [0.00,0.20] [0.50,0.70] [0.40,0.60] [0.20,0.60] [0.30,0.90]

viðx3Þ 0.60 [0.50,0.70] 0.60 [0.20,0.40] [0.30,0.90]

Table 5

Attribute-specific pairwise bounds

a1 a2 a3 a4 a5

min½viðx1Þ � viðx2Þ� 0.60 0.00 0.20 )0.20 )0.20
min½viðx2Þ � viðx1Þ� )1.00 )0.40 )0.40 )0.20 )0.40
min½viðx1Þ � viðx3Þ� 0.20 0.00 0.20 0.00 )0.20
min½viðx3Þ � viðx1Þ� )0.40 )0.40 )0.20 )0.20 )0.40
min½viðx2Þ � viðx3Þ� )0.60 )0.20 )0.20 )0.20 )0.60
min½viðx3Þ � viðx2Þ� 0.40 )0.20 0.00 )0.40 )0.60

Table 6

Pairwise bounds l0

S2ðfa1; a2gÞ S2ðfa1; a3gÞ S2ðfa2; a3gÞ Min

l0ðx1; x2Þ 0.060 0.093 )0.007 )0.007
l0ðx2; x1Þ )0.827 )0.827 )0.560 )0.827
l0ðx1; x3Þ 0.040 0.013 0.013 0.013

l0ðx3; x1Þ )0.373 )0.373 )0.373 )0.373
l0ðx2; x3Þ )0.520 )0.520 )0.387 )0.520
l0ðx3; x2Þ )0.187 )0.160 )0.253 )0.253
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constraints. Finally, central values for the three

subcontractors are obtained as the average
Vave ¼ ½VmaxðxiÞ þ VminðxiÞ�=2.

Table 7 indicates that the maximum possible

value for the large firm is greater than that for the

small entrepreneur (0.920> 0.689): thus, the large

firm would be recommended by the maximax rule.

The application of the maximin rule leads to the

same conclusion (0.649> 0.093). Because both

maximax and maximin rules support it, the large
firm outperforms the small entrepreneur according

to the maximization of central values as well.

Thus, it would be offered as a tentative decision

recommendation.

Finally, we illustrate sensitivity analyses by

assuming that (i) the DM states that quality and

cost are the two most important attributes and that

(ii) the DM wishes to know how large a weight the
first attribute (i.e., punctuality) should have to

establish a dominance relationship between the

first two alternatives. The revised feasible region

thus becomes S2ðfa1; a2gÞ, in which no dominance

relations between the two first alternatives were

obtained. The feasible region is now defined by

I ¼ fa2; a3g, J ¼ f1; 2g, the size of which is

uðS2ðfa2; a3gÞÞ ¼ 1=10, i.e., one third of the origi-
nal feasible region S2ðfa1; a2; a3gÞ. The question

about the lower bound for the weight of the first

attribute can be answered by maximizing w1, sub-

ject to the constraint that the value of the large firm

is not smaller than that of the small entrepreneur,

i.e., l0ðx1; x2Þ ¼ 0. Thus, we have a maximization

problem maxw1 subject to the constraints

l0ðx1;x2Þ ¼ 0:6w1 þ 0:2w3 � 0:2w4 � 0:2w5 ¼ 0, w 2
S2ðfa2; a3gÞ, and wi P 1=15 8i ¼ 1; . . . ; 5. The

solution to this problem is w1 
 0:0769, which

indicates that even a small increase in the lower

bound for the weight of the first attribute (i.e.,

punctuality) would ensure that the large firm be-

comes preferred to the small entrepreneur.

8. Conclusion

The elicitation of precise statements about the

relative importance of attributes can pose difficul-

ties in the development of multi-attribute decision

models. To some extent, these difficulties can be

alleviated by allowing the DM(s) to provide

incompletely specified rank-ordering information.
In a natural way, such information constrains the

attribute weights so that partial dominance results

can be obtained even in the absence of complete

preference information. An essential feature of

such an approach is that the application of decision

rules makes it possible to offer decision recom-

mendations even when dominance concepts do not

allow the most preferred alternative to be inferred.
Oneof the featuresof the proposedRICHmethod

is that the DMs need not submit preference state-

ments thatwouldbemore explicit thanwhat they feel

confident with. Thus, the DMs may remain ambig-

uous about their �true� preferences. This, in turn,may

lead to a decision support process which is more

acceptable from the viewpoint of group dynamics

than approacheswhere full preference information is
solicited and communicated among the group

members. For example, the decision recommenda-

tion can be produced under the assumption that the

most important attribute in the group�s aggregate

preference model is an attribute that is regarded as

the most important one by some group member.

From the viewpoint of applied work, the deci-

sion support tool RICH Decisions �––which
is available free-of-charge for academic users

at http://www.decisionarium.hut.fi––is

important because it provides full support for the

RICH method and thus enables the development

of case studies based on the proposed method.

Such studies will be instrumental in assessing the

benefits and disadvantages of incomplete ordinal

preference information in challenging decision
contexts, which in turn helps set directions for

further theoretical research.
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Appendix A

Proof of Theorem 1. �(�: Let k 2 ½0; 1�, choose any
w1 ¼ ðw1

1;w
1
2; . . . ;w

1
nÞ;w2 ¼ ðw2

1;w
2
2; . . . ;w

2
nÞ 2SpðIÞ,

and define wk ¼ kw1 þ ð1� kÞw2. We need to show

that wk 2 SpðIÞ. Because w1
i ;w

2
i P 0, it follows that

wk
i ¼ kw1

i þ ð1� kÞw2
i P 0. Likewise,

Pn
i¼1 w

1
i ¼ 1,Pn

i¼1 w
2
i ¼ 1 imply that

Pn
i¼1 w

k
i ¼

Pn
i¼1 ðkw1

iþ
ð1� kÞw2

i Þ ¼ k
Pn

i¼1 w
1
i þ ð1� kÞPn

i¼1 w
2
i ¼ 1. Fi-

nally, because w1
k Pw1

i and w2
k Pw2

i for all ak 2 I ,
ai 62 I , it follows that wk

k ¼ kw1
k þ ð1� kÞw2

k P
kw1

i þ ð1� kÞw2
i ¼ wk

i if ak 2 I , ai 62 I . Thus,

wk 2 SpðIÞ.
�)�: Assume that p < jI j and choose some I 0 � I

such that jI 0j ¼ p. Since jI j < n, there exists an

attribute ak 62 I . Put I1 ¼ I 0 [ fakg define the

weight vector w1 by letting w1
l ¼ 1=ðpþ

1Þ; al 2 I1;w1
l ¼ 0; al 62 I1. Next, choose attributes

ai 2 I n I 0, aj 2 I 0 and define the attribute set
I2 ¼ ðI 0 n fajgÞ [ faig [ fakg and define w2 by let-

ting w2
l ¼ 1=ðp þ 1Þ, al 2 I2, w2

l ¼ 0, al 62 I2. By

construction, w1;w2 2 SpðIÞ because they contain p
elements in I that are greater than or equal to all

the other elements. However, this is not true for

the vector w3 ¼ ð1=2Þw1 þ ð1=2Þw2 where w3
l ¼ 1=

ðpþ 1Þ;al 2 fakg [ ðI 0 n fai;ajgÞ;w3
l ¼ 1=ð2ðpþ 1ÞÞ;

al 2 fai; ajg;w3
l ¼ 0, otherwise. Thus, w3 contains

only p � 1 elements in I that are larger than the

other elements so that it does not belong to SpðIÞ,
which implies that SpðIÞ is not convex. h

Proof of Lemma 1. By assumption, there exist at-

tributes ak, al such that ak 2 I1 n I2, al 2 I2 n I1. Let
a > 0 and define the vector d so that dk ¼ a, dl ¼
�a, di ¼ 0, i 6¼ k; l. If 9w 2 intðSpðI1ÞÞ\ intðSpðI2ÞÞ,
then for some e > 0 the weight vectors w1 ¼ wþ ed
and w2 ¼ w� ed are also in intðSpðI1ÞÞ\ intðSpðI2ÞÞ.
In particular, since w1 2 SpðI2Þ, it follows

that wl � eaPwk þ ea ) wl � wk P 2ea > 0. Also,

since w2 2 SpðI1Þ, it follows that wk � eaPwl þ
ea ) wk � wl P 2ea > 0, in contradiction with the

earlier inequality wl � wk > 0. h

Proof of Theorem 2. The cases jI jP jJ j and

jI j < jJ j can be dealt with separately. First, if

jI jP jJ j and w 2 SðI ; JÞ, then w 2 SðrÞ for some

r 2 RðI ; JÞ. Thus, for some I 0 � I ; jI 0j ¼ jJ j we have
rðI 0Þ ¼ J . But then rðI 0Þ ¼ J . Since I � I 0, we have

rðIÞ � J and r 2 RðI ; JÞ. Second, if jI j < jJ j and

w 2 SðI ; JÞ, then w 2 SðrÞ for some r 2 RðI ; JÞ such
that rðIÞ � J . Because jI j < jJ j, there exists a set I 0

such that I � I 0; jI 0j ¼ jJ j and rðI 0Þ ¼ J . Thus we

have rðI 0Þ ¼ J . By construction, jI 0j ¼ jJ j and

I 0 � I so that r 2 RðI ; JÞ. This far it has been

shown that w 2 SðI ; JÞ ) w 2 SðI ; JÞ. Since I ¼ I ,
w 2 SðI ; JÞ ) w 2 SðI ; JÞ. h

Proof of Theorem 3. Item (a). �)�: If w 2 SðI2; JÞ,
there exists a rank-ordering r 2 RðI2; JÞ such that
w 2 SðrÞ and rðI2Þ � J . But since I1 � I2, it follows
that rðI1Þ � J . In addition, by Definition 1 this

implies that r 2 RðI1; JÞ and w 2 SðI1; JÞ. To prove

that SðI2; JÞ is a proper subset of SðI1; JÞ, we con-

struct a rank-ordering r0 such that r0ðI1Þ � J and

r0ðakÞ 62 J for some ak 2 I2, ak 62 I1 (such an order

exists because jJ j < n). Then r0 2 RðI1; JÞ, but

r0 62 RðI2; JÞ.
�(�: Take any w 2 SðI2; JÞ. Then there exists

some r 2 RðI2; JÞ such that w 2 SðrÞ and rðI2Þ � J .
Because SðI2; JÞ � SðI1; JÞ, it follows that

r 2 RðI1; JÞ and hence rðI1Þ � J . Now, if I1 6� I2,
there exists some ak 2 I1, ak 62 I2. Because ak 2 I1,
we have ik ¼ rðakÞ 2 J . Also, since jJ j < n, there is
some al such that il ¼ rðalÞ 62 J . By construction,

this al is not in I1 or I2. Next, construct the
rank-ordering r0 so that r0ðakÞ ¼ il, r0ðalÞ ¼ ik
and r0ðaiÞ ¼ rðaiÞ, 8i 6¼ k; l. Then r0 2 RðI2; JÞ
but r0 62 RðI1; JÞ. But this violates the as-

sumption SðI2; JÞ � SðI1; JÞ, leading to a contra-

diction.

Item (b): By Theorem 2, SðI ; JÞ ¼ SðI ; JÞ. Thus,
we have to prove that I2 � I1 () SðI2; JÞ �
SðI1; JÞ, which is equal to I1 � I2 () SðI2; JÞ �
SðI1; JÞ; but this follows from item (a) above. h

Proof of Theorem 4. Item (a). �)�: If w 2 SðI ; J2Þ,
then there is a rank-ordering r 2 RðI ; J2Þ and an

attribute set I 0 � I such that jI 0j ¼ jJ2j and

rðI 0Þ ¼ J2. Next, define the set I 00 ¼ fai 2
I 0jrðaiÞ 2 J1g. Because J1 � J2, we have jI 00j ¼ jJ1j
so that r 2 RðI ; J1Þ; hence w 2 SðI ; J1Þ as well.

354 A. Salo, A. Punkka / European Journal of Operational Research 163 (2005) 338–356



�(�: Assume that SðI ; J2Þ � SðI ; J1Þ. By Theo-
rem 2, this is equivalent to SðI ; J2Þ � SðI ; J1Þ. From
the assumptions it also follows that jI j6 jJ1j; jJ2j.
Choose a w 2 SðI ; J2Þ. There then exists a rank-

ordering r such that w 2 RðI ; J2Þ, i.e. rðIÞ � J2.
Since SðI ; J2Þ � SðI ; J1Þ, r 2 RðI ; J1Þ so that rðIÞ �
J1, too. Contrary to the claim J1 � J2, assume that

there is an ik such that ik 2 J1; ik 62 J2. Then the

rank-ordering associates ik with an attribute ak 2 I
(because rðIÞ 2 J1 and rðIÞ 2 J2Þ. Also, choose an

al 2 I and define il ¼ rðalÞ; by construction,

il 62 J1, il 62 J2. Next, define a rank-ordering r0 so
that r0ðakÞ ¼ il, r0ðalÞ ¼ ik and r0ðaiÞ ¼ rðaiÞ,
8i 6¼ k; l. Then r0 2 RðI ; J2Þ, but r0 62 RðI ; J1Þ, which
violates the assumption SðI ; J2Þ � SðI ; J1Þ.

Item (b): According to Theorem 2,

SðI ; JÞ ¼ SðI ; JÞ. Thus, we have to show that
J2 � J1 () SðI ; J 2Þ � SðI ; J 1Þ, which is equal to

J1 � J2 () SðI ; J2Þ � SðI ; J1Þ. This follows di-

rectly from item (a) above. h

Proof of Theorem 5. Clearly, uð;Þ ¼ 0. Assume

that R0 2 PðRÞ and that R1; . . . ;RM 2 R are disjoint

sets of rank-orderings such that R0 ¼ UM
i¼1 Ri. By

construction, the intersection of any Ri and
Rj; i 6¼ j is empty; thus, jR0j ¼ PM

i¼1 jRij, which

implies that uðR0Þ ¼ jR0 j
n! ¼

PM
i¼1

jRi j
n! ¼

PM
i¼1 uðRiÞ.

Finally, since the total number of different rank-

orderings is n!, we have uðRÞ ¼ 1. h
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Abstract:

This paper extends possibilities for analyzing incomplete ordinal infor-

mation about the parameters of an additive value function. Such information

is modeled through preference statements which associate sets of alternatives

or attributes with corresponding sets of rankings. These preference statements

can be particularly helpful in developing a joint preference representation for

a group of decision-makers who may find difficulties in agreeing on numerical

parameter values. Because these statements can lead to a non-convex set of

feasible parameters, a mixed integer linear formulation is developed to estab-

lish a linear model for the computation of decision recommendations. This

makes it possible to complete incomplete ordinal information with other forms

of incomplete information.

Keywords: value tree analysis, incomplete information, ordinal information
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1 Introduction

The exact specification of attribute weights and scores of an additive multiattribute value

function (Keeney and Raiffa 1976) can be challenging due to many reasons, such as

urgency of the decision or lack of resources (e.g. Weber 1987). A complete specification of

parameters may not be needed, if less information would produce the same unequivocal

decision recommendation or if the aim of the analysis is to discard inferior alternatives to

establish a smaller set of good decision candidates. A complete specification can even be

undesirable if the model seeks to capture multiple decision-makers’ (DMs’) preferences,

for example. Indeed, several Preference Programming methods accommodate incomplete

preference information through intervals of weight ratios or scores, for example. They

thus allow the DMs to characterize their preferences with the degree of accuracy they are

confident with. The resulting set of feasible parameters then contains the ‘true preferences’

(e.g., White et al. 1982, 1984, Salo and Hämäläinen 1992).

The assessment of multi-attribute alternatives usually requires subjective evaluations

(Moshkovich et al. 2002). According to Larichev (1992), numerical evaluation can even

affect negatively the reliability of the analysis. Indeed, Moshkovich et al. (2002) argue that

ordinal statements – as ordinal comparisons of actual or hypothetical alternatives – tend

to be more reliable, less time-consuming and better understood by the DMs. Thus, they

are widely used in the elicitation of scores and attribute weights. One benefit of ordinal

information is that it does not necessitate a quantitative measurement scale; for example,

stakeholders’ disagreements about appropriate quantitative measures can be resolved by

using ordinal information, as in the application by Grushka-Cockayne et al. (2008). There

are several methods which first elicit a rank-ordering for the attribute weights or apply

Likert-type scales to classify alternatives, and then convert these ordinal statements into

numerical point estimates (see Barron and Barrett 1996). The decision recommendations

provided by such conversions can, however, be sensitive to the selected numerical point

estimates.

The Preference Programming methods avoid these conversions by modeling pairwise

comparisons between attribute weights (e.g., Kirkwood and Sarin 1985, Hazen 1986) and

scores (Salo and Hämäläinen 2001) as constraints on the model parameters. Most of these

methods assume that the DM provides either a full rank-ordering of the alternatives or

the attributes, or that she makes several individual separate pairwise comparisons among
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them. In the RICH method (Salo and Punkka 2005), the relative importance of the

attributes is modeled with incomplete ordinal information. The DM can, for example,

state that attributes cost and environmental aspects are among the three most important

ones. The method, however, does not capture other forms of preference statements about

the relative importance of attributes and the alternatives’ attribute-specific values can be

evaluated through score intervals, only.

The Preference Programming model developed in this paper captures incomplete or-

dinal information about both the alternatives’ scores and the attribute weights. Such

information is elicited through statements which associate a set of alternatives or at-

tributes with a set of rankings. For example, the DM can specify three alternatives of

which one has the ranking one (i.e., it is the most preferred) with regard to attribute

environmental aspects; or she can specify the two most important attributes; or state that

a given alternative is among the three least preferred ones. Such preference statements

can be particularly helpful in modeling a joint preference representation for a group of

DMs who cannot agree on exact numerical parameter values. For example, if each group

member is asked to specify the most preferred alternative with regard to environmental

aspects, the group’s preferences can be expressed by a statement that the most preferred

alternative is among the ones that are specified by the group members. Similarly, for ex-

ample the group’s statement concerning an alternative’s ranking can be formed by taking

the union of its members’ opinions. The form of the statements is flexible in that the

statements can be given with regard to any subset of attributes and within any set of

alternatives (or attributes). Taken together, incomplete ordinal information can be used

to classify attributes or alternatives without assigning exact numerical values to these

classes, for example.

Mathematically, the set of weights and scores that are consistent with incomplete

ordinal statements can be non-convex, as shown by Salo and Punkka (2005) in the con-

text of attribute weights. In this paper, the computational challenges caused by this

non-convexity are resolved by employing binary variables to retain the linearity of the

model. The decision recommendations can therefore be computed efficiently; in addition,

it is possible to introduce even other forms of incomplete information about the alterna-

tives’ scores and the attribute weights. This possibility to incorporate both ordinal and

numerical information in the same model improves possibilities for capturing the DM’s

preferences. For example, it makes it possible to exclude extreme realizations of model
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parameters so that the preference information model better matches the DM’s true inten-

sions, as noted by Sage and White (1984). Indeed, if only ordinal information about the

alternatives is used, these extreme parameters can rule out dominance relations between

alternatives.

The possibility to use both incomplete ordinal and numerical preference statements

can be particularly helpful in problems which involve attributes without a natural mea-

surement scale and are therefore difficult to evaluate numerically, or in ‘large’ problems

in which the first phase of the decision support process is to screen the initial set of al-

ternatives. In such cases, even a statement like “these 2 alternatives are among the 5

best ones” may help discard many alternatives through dominance relations so that not

all alternatives need to be considered, thus leaving fewer alternatives for more detailed

evaluation.

The rest of this paper is organized as follows. Section 2 discusses Preference Program-

ming methods. Section 3 formalizes incomplete ordinal information and constructs the

corresponding mixed integer linear formulation. Section 4 considers uses of incomplete

ordinal information in decision support. An example is presented in Section 5. Section 6

concludes.

2 Preference Programming

The difficulties of specifying the parameters of an additive value function
∑

wjvj(xj) have

led to the development of elicitation approaches that accommodate incomplete informa-

tion about the attribute weights or the alternatives’ attribute-specific scores. In these

approaches, incomplete information is often modeled through set inclusion, whereby the

DM’s preferences are captured through preference statements which impose constraints

on the model parameters. These statements – such as intervals of scores, weights and

weight ratios (e.g., Kirkwood and Sarin 1985, Salo and Hämäläinen 1992, 2001) and ordi-

nal statements (e.g., White et al. 1984, Kirkwood and Sarin 1985, Hazen 1986, Pearman

1993) – lead to linear constraints on the scores and weights (for reviews, see Weber 1987,

Salo and Hämäläinen 2010).

In Preference Programming, the (pairwise) dominance relation is used for the com-

parison of alternatives. Specifically, alternative xi dominates xk if its value is higher than
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or equal to that of xk for all feasible parameters and strictly higher for some feasible

parameters (e.g., White et al. 1982, Kirkwood and Sarin 1985, Hazen 1986). A domi-

nated alternative should not be selected, because the alternative that dominates it yields

a higher or equal value for all feasible parameters. A rational DM is thus interested in

non-dominated alternatives. The set of non-dominated alternatives can become smaller,

if the model parameters are further constrained (White et al. 1982). Many early meth-

ods provide tailored algorithms which examine the relevant extreme points of the feasible

region to resolve dominance relations (e.g., White et al. 1982, Kirkwood and Sarin 1985,

Hazen 1986). More generally, the non-dominated alternatives can be computed through

linear programming.

Ordinal information consists of comparisons in which numbers are not used to describe

strength of the preference. Kirkwood and Sarin (1985) present dominance conditions when

strict or weak ordinal statements about the relative importance of the attributes are given.

Pearman (1993) extends this work by presenting a computational model which uses an

ordered metric that rank-orders attribute weight differences, too. Park et al. (1996) extend

this approach by applying the ordered metric for scores.

Hazen (1986) establishes a mathematical relation between the non-dominated and the

potentially optimal alternatives which have the greatest overall value with some feasible

parameters. He also shows how the consistency of preference statements, dominance

relations between alternatives, and potentially optimal alternatives can be solved when the

preferences are expressed through strict ordinal comparisons of hypothetical alternatives.

The RICH method (Salo and Punkka 2005) introduces the notion of incomplete ordinal

information to the elicitation of attribute weights. This information is elicited through

statements, which associate a set of rankings with a set of attributes. These sets do not

have to be equal in size; statements like “the two attributes a1 and a2 are among the

three most important ones” or “either a1 or a2 is the most important among the three

attributes” can be captured. Incomplete ordinal information has been applied for weight

elicitation in several applications (e.g., Ojanen et al. 2005, Salo and Liesiö 2006, Liesiö

et al. 2007, Mild and Salo 2009).

Because the feasible region for the attribute weights may be non-convex, the com-

putation of decision recommendations in RICH is based on the enumeration of extreme

points. This approach has limitations in that only ordinal information can be used to
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characterize the attribute weights while the alternatives’ (normalized) scores can only be

modeled as intervals or point estimates.

In the next section, the use of incomplete ordinal information is extended by developing

a model for the evaluation of both attributes and alternatives. This model eliminates

the above limitations and can therefore be used in conjunction with any other forms of

incomplete information that correspond to linear inequalities on the model parameters.

3 Modeling incomplete ordinal information

3.1 Additive value, incomplete information and dominance

There are m alternatives X∗ = {x1, . . . , xm} which are evaluated with regard to n at-

tributes A = {a1, . . . , an}. Each alternative xi ∈ X∗ is described by a vector of achieve-

ment levels (xi
1, . . . , x

i
n). If the DM’s preferences fulfill certain conditions, such as mutual

preference independence and difference independence (Keeney and Raiffa 1976, Dyer and

Sarin 1979), the alternatives’ overall values can be modeled with a measurable additive

value function

V (xi) =
n∑

j=1

vj(x
i
j), (1)

in which vj(x
i
j) is the value of alternative xi with regard to attribute aj (i.e., score).

It is customary to choose the most and least preferred achievement levels x∗
j and

x◦
j , respectively, for each attribute aj so that the scores of the alternatives in X∗ fulfill

vj(x
◦
j) ≤ vj(x

i
j) ≤ vj(x

∗
j) in which at least the other of the inequalities is strict. We follow

the usual convention and normalize the value function so that vj(x
◦
j) = 0, j = 1, . . . , n

and V (x∗) =
∑n

j=1 vj(x
∗
j) = 1.

After this normalization, the overall value (1) can be expressed

V (xi) =
n∑

j=1

vj(x
i
j) =

n∑
j=1

[vj(x
∗
j) − vj(x

◦
j)]

vj(x
i
j)

[vj(x∗
j) − vj(x◦

j)]
=

n∑
j=1

wjv
N
j (xi

j), (2)

in which the value difference wj = vj(x
∗
j) − vj(x

◦
j) = vj(x

∗
j) is the attribute weight of

aj and vN
j (xi

j) = vj(x
i
j)/vj(x

∗
j) ∈ [0, 1] is the normalized score of xi with regard to
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this attribute. The multiplication of these two terms in (2), however, leads to non-

linearities and consequently poses computational challenges when analyzing incomplete

preference information about the weights and scores. The following formulations are

therefore based on representation (1), in the recognition that attribute weights and nor-

malized scores are consistent with this representation through (2). For notational pur-

poses, the set X∗ includes all hypothetical alternatives that are employed in preference

elicitation. Specifically, X∗ ⊃ {x1∗, . . . , xn∗} for which xi∗
j = x∗

j , if i = j and xi∗
j = 0

otherwise, because the overall values of these alternatives are equal to the attribute

weights: V (xj∗) = vj(x
j∗
j ) +

∑
l �=j vl(x

j∗
l ) = vj(x

∗
j) = wj. The scores sij = vj(x

i
j) are

recorded in the matrix

s =

⎛
⎜⎜⎜⎝

s11 · · · s1n

... . . . ...

sm1 · · · smn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

v1(x
1
1) · · · vn(x1

n)

... . . . ...

v1(x
m
1 ) · · · vn(xm

n )

⎞
⎟⎟⎟⎠ .

The above normalization conditions are satisfied by scores that belong to the set

S0 = {s ∈ Rm×n | 0 ≤ sij ≤ wj, i = 1, . . . ,m, j = 1, . . . , n,
n∑

j=1

sj∗j = 1},

in which wj = vj(x
∗
j) = sj∗j.

In Preference Programming, incomplete information leads to constraints on feasible

scores. For example the statement “the normalized score of x1 with regard to attribute

a1 is between 0.5 and 0.6” would lead to the constraint 0.5s1∗1 ≤ s11 ≤ 0.6s1∗1. Even

hypothetical alternatives can be utilized in preference statements: “overall, a hypothetical

alternative x3 with normalized scores vN(x3
j) ∈ [0.5, 0.6] for all j = 1, . . . , n is at least

as preferred as x2, but not preferred to x1” leads to constraints
∑n

j=1 s2j ≤ ∑n
j=1 s3j ≤∑n

j=1 s1j and 0.5sj∗j ≤ s3j ≤ 0.6sj∗j ∀ j = 1, . . . , n. The statement “the weight of

attribute a2 is not higher than the weight of attribute a1” can be modeled with the

constraint V (x2∗) = s2∗2 = w2 ≤ w1 = s1∗1 = V (x1∗). Such statements reduce the set of

feasible scores to S ⊂ S0.

Generally, the alternatives’ overall values are different for different feasible scores in S.

The concept of dominance compares the overall values of two alternatives with all feasible

scores (e.g., White et al. 1982):
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Definition 1 Let xi, xk ∈ X∗ and ∅ �= S ⊆ S0. Alternative xi dominates xk if and only

if V (xi) ≥ V (xk) ∀ s ∈ S and ∃s′ ∈ S such that V (xi) > V (xk).

By definition, the alternatives in X ⊆ X∗ that are not dominated by any alternative in

X are non-dominated alternatives (among X). It is not advisable to choose a dominated

alternative, because the values of those alternatives that dominate it are at least as high

for all feasible scores. If xi dominates xk with feasible scores S, then xi dominates xk

also with feasible scores S ′ ⊂ S, unless their overall values are equal throughout S ′.

Thus, as a rule, dominated alternatives will remain dominated, even if further preference

information is obtained (White et al. 1982). Dominance relations can be checked by linear

programming. If the minimum of [V (xi)−V (xk)] =
∑n

j=1[sij−skj] over S is negative, then

xi does not dominate xk. If it is positive, then xi dominates xk. If it is zero, computing

the maximum of [V (xi) − V (xk)] over S reveals whether there also exists a feasible score

such that V (xi) > V (xk).

The DM need not define all the alternatives that are used in preference elicitation or

compared at the outset of the analysis. Introduction of a new alternative xh, for which the

normalization conditions vj(x
◦
j) ≤ vj(x

h
j ) ≤ vj(x

∗
j) hold, introduces new score variables

shj, j = 1, . . . , n, but does not constrain the other scores sij, i �= h. Thereby also all

dominance relations between pairs of alternatives in X �� xh remain unchanged if xh is

added to X∗. Preference statements that involve xh can then result in new dominance

relations also between the alternatives in X.

Because the set X∗ includes alternatives whose overall values are equal to the attribute

weights, all the results on capturing statements about the alternatives’ values in Sections

3.2–3.5 can also be applied to the elicitation of attribute weights.

3.2 Incomplete ordinal information

Complete ordinal information of alternatives X is a full rank-ordering that associates a

unique ranking with each alternative xi ∈ X. Formally, if X ⊆ X∗ is a non-empty set

of alternatives, a rank-ordering is a bijection r : X �→ {j ∈ Z | 1 ≤ j ≤ |X|} (Salo and
Punkka 2005; throughout the paper |B| denotes the number of elements in the set B).

Rank-orderings are denoted by the convention r(X) = (r1, . . . , r|X|) in which rk = r(xl; X)
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is the ranking of the alternative with the k-th smallest index in X (i.e., |{xi ∈ X | i < l}| =

k − 1). We use rank-orderings such that if the ranking of alternative xk is smaller than

that of xi, then xk is either strictly preferred to xi or they are equally preferred. For

example, if X = {x1, x4, x5}, then the rank-ordering r(X) = (1, 3, 2) corresponds to

rankings r(x1; X) = 1, r(x4; X) = 3 and r(x5; X) = 2, meaning that x1 is the most

preferred alternative of the three (or, more specifically, no other alternative is preferred

to x1), followed by x5 and then x4. The rank-orderings can be defined with regard to any

non-empty attribute set A′ ⊆ A.

Incomplete ordinal information refers to ordinal statements which associate a set of

alternatives (denoted by I) with a set of rankings (J) (cf. attribute weight elicitation

proposed by Salo and Punkka 2005). For example, if I = {x1} and J = {1}, then the
ranking of alternative x1 is one. Thus one such a statement does not specify unique

rankings for all alternatives if there are more than two alternatives.

Definition 2 (I, J,X,A′) is an incomplete ordinal statement (IOS), if ∅ �= A′ ⊆ A,

∅ �= I ⊆ X ⊆ X∗, and ∅ �= J ⊆ {j ∈ Z | 1 ≤ j ≤ |X|}.

In Definition 2, the set X includes the alternatives under comparison and A′ is the set

of attributes with regard to which this comparison is made. Whenever there is no risk

of confusion, references to these sets are omitted by adopting the notational conventions

r(X) = r and (I, J) = (I, J,X,A′).

Definition 2 does not assume that sets I and J have equally many elements. Indeed,

if the number of alternatives in I is equal to or less than the number of rankings in J

(that is, |I| ≤ |J |), then the ranking of each alternative in I is in J . For example, the

statement that x1 is either the best or the second best one of {x1, x2, x3} with regard to
attribute a4 is captured by the IOS (I, J,X,A′) = ({x1}, {1, 2}, {x1, x2, x3}, {a4}). This
statement is compatible with four rank-orderings r = (r(x1; X), r(x2; X), r(x3; X)), that

is, (1, 2, 3), (1, 3, 2), (2, 1, 3) and (2, 3, 1).

On the other hand, if |I| > |J |, it is assumed that the rankings in J are attained by

alternatives that are in I. For example, stating that some two alternatives among x1, x4

and x7 are holistically the two most preferred alternatives in the set X = {x1, . . . , x10}
can be modeled as (I, J,X,A′) = ({x1, x4, x7}, {1, 2}, {x1, . . . , x10}, A).
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The rank-orderings that are compatible with an IOS (I, J,X,A′) are denoted by

R(I, J,X,A′) (or R(I, J) for short) and defined as follows (Salo and Punkka 2005).

Definition 3 Let (I, J,X,A′) be an IOS. The set of compatible rank-orderings is

R(I, J) =

⎧⎨
⎩ {r(X) ∈ R(X) | ∀ j ∈ J ∃ xk ∈ I s.t. r(xk; X) = j}, if |I| ≥ |J |

{r(X) ∈ R(X) | r(xk; X) ∈ J ∀ xk ∈ I}, if |I| < |J |
, (3)

in which R(X) is the set of all rank-orderings defined on X.

3.3 Characterizing the feasible region

Statements about the alternatives’ rankings constrain feasible scores. Let v(xi, A′) =

v(xi) =
∑

{j | aj∈A′} vj(x
i
j) denote the value of alternative xi with regard to attributes

A′. The alternative with ranking 1 cannot have a lower value than the alternative with

ranking 2, and so on: r(xi) < r(xk) ⇒ v(xi) ≥ v(xk). In other words, the ranking r(xi)

implies that there are r(xi) − 1 alternatives in X whose value is not strictly smaller and

|X| − r(xi) alternatives, whose value is not strictly higher than that of xi.

The scores that are consistent with a single rank-ordering r(X) are

S(r(X)) = {s ∈ S0 | v(xi) ≥ v(xj) if r(xi; X) < r(xj; X), xi, xj ∈ X}, (4)

and the scores that fulfill statement (I, J,X,A′) are

S(I, J) =
⋃

r∈R(I,J)

S(r(X)). (5)

The set S(I, J) is not necessarily convex (Salo and Punkka 2005) and consequently

cannot be modeled through linear constraints on scores. We therefore develop a charac-

terization of S(I, J) that employs binary variables yj(x
i) to constrain compatible rank-

orderings R(I, J) such that yj(x
i) = 1 ⇒ r(xi) ≤ j and yj(x

i) = 0 ⇒ r(xi) > j for

any r ∈ R(I, J). Binary variables yj(x
i) are defined for all xi ∈ X, but the indices

j ∈ {1, . . . , |X| − 1} that are employed depend on the statement.
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First, assume that J consists of consecutive rankings: J = {j | j ≤ j ≤ j}, j ≤ j. If

|I| < |J |, the ranking of each alternative xi ∈ I is in J . Because J consists of consecutive

rankings, this implies that the ranking of any xi ∈ I is at most j, but not smaller than

j. With the above interpretation of the binary variables, this can be captured with

constraints yj(x
i) = 1 and yj−1(x

i) = 0, which can be written yj(x
i)− yj−1(x

i) = 1 ∀ xi ∈
I. For example, if I = {x1}, and J = {2, 3}, then the ranking of x1 is two or three. That

is, it is at most three (y3(x
1) = 1), but not smaller than two (y1(x1) = 0).

If |I| ≥ |J |, according to Definition 3 each ranking in J is attained by an alternative

in I. Therefore, alternatives that are not in I have rankings that are either smaller than

j or greater than j. Thus, if the ranking of xi ∈ I = {xi ∈ X | xi /∈ I} is at most j

(i.e., yj(x
i) = 1), it must also be smaller than j (i.e., yj−1(x

i) = 1). If, on the contrary,

the ranking of xi ∈ I is higher than j (i.e, yj(x
i) = 0), then it is also bigger than j (i.e.,

yj−1(x
i) = 0). Constraints yj(x

i) = yj−1(x
i) ∀ xi ∈ I capture this inference. For example,

the statement (I, J) = ({x1, x2}, {2}) imposes the requirement that the ranking of xi,

i /∈ {1, 2}, is not 2. If it is at most 2 (i.e., y2(x
i) = 1), then it must also be smaller than 2

(i.e., y1(x
i) = 1); but if it is higher than 2 (i.e., y2(x

i) = 0), then it cannot simultaneously

be smaller than 2 (i.e., y1(x
i) = 0). Ranking 2 is then attained by x1 or x2, because r is

a bijection. Figure 1 illustrates the above inference.

Figure 1: Modeling an IOS with the binary variables, when J consists of consecutive

integers

To model the scores S(I, J), we introduce a real-valued milestone variable zj to dis-

tinguish between the values of alternatives with rankings j and j + 1. In view of (4), (5)

and the above interpretation of the binary variables, if yj(x
i) = 1, then v(xi) ≥ zj; and

if yj(x
i) = 0, then v(xi) ≤ zj. Lemma 1 presents a mixed integer linear characterization
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for S(I, J) under the assumption that J consists of consecutive integers. All proofs are

in the Appendix.

Lemma 1 Let (I, J) be an IOS such that J = {j | j ≤ j ≤ j}, j ≤ j, and let constant

M > 1. Then s ∈ S(I, J) if and only if s ∈ S0 such that constraints

zj ≤ v(xi) + (1 − yj(x
i))M ∀ xi ∈ X (6)

v(xi) ≤ zj + yj(x
i)M ∀ xi ∈ X (7)∑

xi∈X

yj(x
i) = j (8)

hold for v(xi) and some zj ∈ [0, 1], yj(x
i) ∈ {0, 1}, j ∈ {j − 1, j} \ {0, |X|} so that⎧⎨

⎩ yj(x
i) = yj−1(x

i) ∀xi ∈ I, if |I| ≥ |J |
yj(x

i) − yj−1(x
i) = 1 ∀xi ∈ I, if |I| < |J |

(9)

also hold (with notational conventions y0(x
i) = 0, y|X|(xi) = 1).

For example, the statement “alternatives x2 and x3 are the two most preferred among

{x1, x2, x3, x4} with regard to attribute a1” is modeled with the IOS (I, J,X,A′) =

({x2, x3}, {1, 2}, {x1, x2, x3, x4}, {a1}) and can be characterized by constraints

z2 ≤ si1 + (1 − y2(x
i))M, si1 ≤ z2 + y2(x

i)M, y2(x
i) ∈ {0, 1} ∀ i = 1, 2, 3, 4

y2(x
1)+y2(x

2)+y2(x
3)+y2(x

4) = 2, z2 ∈ [0, 1], y2(x
1) = y0(x

1) = 0, y2(x
4) = y0(x

4) = 0.

Because the only feasible solution for the binary variables is

(y2(x
1), y2(x

2), y2(x
3), y2(x

4)) = (0, 1, 1, 0), the above constraints simplify to z2 ≤ s21,

z2 ≤ s31, z2 ≥ s11 and z2 ≥ s41. Indeed, Lemma 1 does not employ binary variables to

model convex feasible regions. According to Salo and Punkka (2005), S(I, J) is convex

if and only if J = {1, . . . , |I|} or J = {|X| − |I| + 1, . . . , |X|}. With such sets J , the

constraints (6)–(9) simplify to

z|I| ≤ v(xi) ∀ xi ∈ I, z|I| ≥ v(xi) ∀ xi ∈ I if J = {1, . . . , |I|} or

z|X|−|I| ≥ v(xi) ∀ xi ∈ I, z|X|−|I| ≤ v(xi) ∀ xi ∈ I, if J = {|X| − |I| + 1, . . . , |X|}.
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The rationales for modeling S(I, J) with J = {j, . . . , j} can be applied to model
a general S(I, J). Any set J can be partitioned into subsets Jk, which each consist of

consecutive rankings. The min-partition of set J is the unique division of J into a minimal

number of such sets Jk.

Definition 4 Sets Jk, k = 1, . . . ,K, are the min-partition of non-empty J ⊂
{1, . . . , |X|}, if J = ∪K

k=1Jk, ∅ �= Jk = {j | jk ≤ j ≤ jk} for some jk, jk, for all

k = 1, . . . ,K, and jk < jk+1 − 1 ∀ k = 1, . . . ,K − 1.

For example, the min-partition of J = {1, 2, 4, 5, 7} is J1 = {1, 2}, J2 = {4, 5}, J3 = {7}.

Let sets Jk be the min-partition of J . If |I| ≥ |J |, the rankings of xi ∈ I are not in the

sets Jk. Therefore, if the ranking of xi ∈ I is at most jk, it must also be smaller than jk.

If |I| < |J |, the ranking of xi ∈ I is in Jk for some k ∈ {1, . . . ,K}. Thus, if it is smaller
than jk, it must at most jk−1. However, the ranking of xi ∈ I cannot be smaller than j1

or larger than jK . Theorem 1 presents a mixed integer linear formulation of S(I, J) for a

general IOS.

Theorem 1 Let (I, J) be an IOS, sets Jk, k = 1, . . . ,K the min-partition of J and

j∪(J) = ∪K
k=1{jk − 1, jk}\{0, |X|}. Then, s ∈ S(I, J) if and only if s ∈ S0 such that

constraints (6)–(8) hold for v(xi) and some zj, yj(x
i) ∈ {0, 1}, for all j ∈ j∪(J) so that⎧⎨

⎩ yjk
(xi) − yjk−1(x

i) = 0 ∀k = 1, . . . ,K, ∀xi ∈ I, if |I| ≥ |J |
yjk−1

(xi) − yjk−1(x
i) = 0 ∀k = 1, . . . ,K + 1,∀xi ∈ I, if |I| < |J |

(10)

holds (with notational conventions y0(x
i) = 0, y|X|(xi) = 1, yj0

(xi) = 0, yjK+1−1(x
i) = 1).

For example, the statement “alternative x2 is either the most preferred or the

least preferred with regard to a1, among X = {x1, . . . , x5}” is modeled with the IOS
({x2}, {1, 5}, X, {a1}). The min-partition of J = {1, 5} is J1 = {1}, J2 = {5} and the in-
dex set j∪(J) = {j1 − 1, j1, j2 − 1, j2}\{0, |X|} = {0, 1, 4, 5}\{0, 5} = {1, 4}. By Theorem
1, the constraints (6)–(8) become

z1 ≤ si1 + (1 − y1(x
i))M, si1 ≤ z1 + y1(x

i)M ∀ xi ∈ X,
5∑

i=1

y1(x
i) = 1

z4 ≤ si1 + (1 − y4(x
i))M, si1 ≤ z4 + y4(x

i)M ∀ xi ∈ X,

5∑
i=1

y4(x
4) = 4.
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Because |I| < |J |, (10) yields the constraint
yj1

(x2) − yj2−1(x
2) = y1(x

2) − y4(x
2) = 0

with k = 2 and the redundant equations yj0
(x2)−y0(x

2) = 0 and y5(x
2)−yjK+1−1(x

2) = 0

with k = 1 and k = K + 1 = 3, respectively.

If there are P statements, the set of feasible scores is the intersection

∩P
p=1S(Ip, Jp, Xp, Ap) with independent variables zp

j , y
p
j (x

i) for the required indices j.

However, if in some of these statements both X and A′ are equal, the computational

effort required to solve dominance relations in ∩P
p=1S(Ip, Jp, Xp, Ap) can be decreased.

3.4 Computational considerations

If L > 1 statements (I l, J l, X,A′) are given among the same alternatives X, with regard

to the same attributes A′, these statements concern the same rank-orderings R(X) and

the same values vA′ . Then, the intended interpretation yj(x
i) = 1 if and only if r(xi) ≤ j

allows the binary and milestone variables related to these statements to be modeled to

depend on each other. This observation helps reduce the number of milestone and binary

variables and makes it possible to impose more constraints on the binary variables. These

modifications, in turn, improve computational performance.

More specifically, for any index j which is used in modeling statements (I l, J l, X,A′)

(that is, j ∈ ∪l=1...,Lj∪(J l)), only one set of variables zl
j and yl

j(x
i) is needed. Fur-

thermore, across all the L statements (I l, J l, X,A′) the binary variables can be assumed

non-increasing in the sense that yj(x
i) ≤ yj′(x

i) whenever j′ > j. For example, constraint

y1(x
i) ≤ y3(x

i) can be introduced for any xi, because violating this constraint would

require that the ranking of xi is one (y1(x
i) = 1) and simultaneously higher than three

(y3(x
i) = 0). Lemma 2 shows that for each s ∈ ∩l=1,...,LS(I l, J l), there exists a solution

zj, yj(x
i) for j ∈ ∪L

l=1j∪(J l), xi ∈ X that fulfills these conditions and constraints (6)–(8)

and (10).

Lemma 2 Let (I l, J l, X,A′), l = 1, . . . , L, be IOSs such that
⋂

l=1,...,L R(I l, J l, X,A′) �= ∅
and let Jind = ∪L

l=1j∪(J l). Let SL ⊂ S0 be a set of scores such that (6)–(8) hold for v(xi),

yj(x
i) ∈ {0, 1}, zj ∈ [0, 1] ∀ xi ∈ X, j ∈ Jind, so that constraints

yj1(x
i) ≤ yj2(x

i) ∀j1 ∈ Jind\{max Jind}, j2 = min{j ∈ Jind | j > j1} (11)

14



and (10) on statements (I l, J l), l = 1, . . . , L also hold. Then, ∩L
l=1S(I l, J l) = SL.

According to Lemma 2, monotonicity constraints can be introduced for binary variables

which relate to same sets X and A′, and each index j requires at most one set of variables

zj, yj(x
i). For example, the two statements (I1, J1) = ({x1, x2, x3}, {1, 2}), (I2, J2) =

({x4, x5, x6}, {3}) can be modeled with the two indices in Jind = j∪(J1) ∪ j∪(J2) =

{min J1 − 1, max J1} \ {0, |X|} ∪ {min J2 − 1, max J2} \ {0, |X|} = {2} ∪ {2, 3} = {2, 3}
instead of three. As a consequence, the number of binary variables drops from 3|X| to
2|X|. The constraints y2(x

i) ≤ y3(x
i) ∀ xi ∈ X also reduce the number of possible bi-

nary variable combinations. Furthermore, the introduction of monotonicity constraints

simplifies constraints (10) of Theorem 1 as follows.

Lemma 3 Let (I, J) be an IOS and let (11) hold for Jind = j∪(J). Then, constraints

(10) are equivalent to constraints⎧⎨
⎩
∑

xi∈I

∑K
k=1[yjk

(xi) − yjk−1(x
i)] = 0, if |I| ≥ |J |∑

xi∈I

∑K
k=1[yjk

(xi) − yjk−1(x
i)] = |I|, if |I| < |J |

.

3.5 Numerical statements and incomplete ordinal information

The feasible region that results from several incomplete ordinal statements (I l, J l, X l, Al′)

always includes score matrix s such that sij = skj = 0 for all j = 1, . . . , n. If sets X l do

not include alternatives whose values relate to the attribute weights, such equal scores

are feasible even if the attribute weights are completely specified. Consequently, the

minimum of the value difference V (xi) − V (xk) is not positive, and dominance relations

are not likely. For example, if the statements (I l, J l, X l, Al′) are consistent with each

other and each of them evaluates alternatives with regard to one attribute (that is, sets

Al include only one attribute each), then xi does not dominate xk unless (i) all attributes

are considered (∪lA
l = A) and (ii) xi is ranked better than xk with regard to all attributes.

Indeed, numerical statements are needed to complement ordinal information to exclude

such extreme realizations of parameters, as suggested by Sage and White (1984).

In practice, one often-used procedure to evaluate alternatives is to divide them into

classes so that alternatives in ‘class one’ (alternatives I1) are preferred to those in ‘class
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two’ (I2), and so on. Such classification into p classes can be modeled with p − 1 state-

ments (Ik, Jk) in which Jk = {j | ∑k−1
l=0 |I l| + 1 ≤ j ≤ ∑k

l=1 |I l|} for k = 1, . . . , p − 1,

|I0| = 0. Often this ordinal information is complemented by assigning equal values to

all alternatives in the same class to represent value differences between the classes (e.g.,

Lindstedt et al. 2007, Salo and Liesiö 2006, Könnölä et al. 2007, see also Corner and

Kirkwood 1991). Our framework makes it possible to relax the assumption that all alter-

natives in the same class have exactly the same value. Yet, it makes it possible to define

intervals for the values that the alternatives in a class can have and to constrain value

differences between the classes. Thus, incomplete ordinal information can be used for ex

ante sensitivity analysis on the values associated with the classes, for example.

Technically, the alternatives’ values and value differences can be bounded by con-

straints on the milestone variables. Variable zj is a lower bound on the value of the

alternative with ranking j – and consequently also on the values of alternatives with

rankings smaller than j – and, similarly, an upper bound on the value of the alternatives

with rankings j + 1, . . . , |X|. Specifically, the following numerical bounds help comple-
ment the above classification procedure, but they can technically be used to complement

other statements, too.

a) A statement that the value of the alternative with ranking j is at least bj can be

modeled with the constraint zj ≥ bj.

b) A statement that the value of the alternative with ranking k is at most bk can be

modeled with the constraint zk−1 ≤ bk.

c) A statement that the value difference between the alternatives with rankings j and

k (k > j) is at most dj,k can be modeled with the constraint zj−1 − zk ≤ dj,k.

d) A statement that the value difference between the alternatives with rankings j and

k (k > j) is at least dj,k can be modeled with the constraint zj − zk−1 ≥ dj,k,

if k − j > 1. If k − j = 1, then the constraints (7) can be transformed into

v(xi) + dj,k ≤ zj + yj(x
i)M .

If variables zj are not used to model any IOS and therefore not defined, a redundant

statement (I, J) = (X, {1, . . . , j}) can be introduced to allow numerical statements that
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employ zj and yj(x
i). The above bounds constrain the milestone variables and conse-

quently the scores of all alternatives in X, as well. Because this leads to a smaller feasible

region for scores, dominance relations hold also after the introduction of these constraints.

Therefore, the dominated alternatives can be ignored in the specification of these bounds

if the DM is not interested in how they compare with non-dominated ones.

4 Implications for decision support

The proposed model admits several kinds of ordinal preference statements as a comple-

ment to numerical information about the parameters of an additive value model. This

is useful, because multi-criteria decision analysis methods are often applied to problems

in which some attributes are described by numerical database entries, and for some at-

tributes natural measurement scales do not exist (e.g., Mild and Salo 2009). Although

numerical evaluation of the latter attributes is used and may even be required to reach

a single non-dominated alternative, the use of incomplete ordinal information on these

attributes can reflect the DM’s preferences better and help identify and discard domi-

nated alternatives. Indeed, screening is often the first task of a decision support process.

It reduces the set of relevant alternatives and guides further work on data collection: As

additional statements keep the already established dominance relations intact and may

establish new ones, all evaluations and assessments can be focused on non-dominated al-

ternatives. In effect, incomplete ordinal information offers novel possibilities for screening

when only some attributes are described by numerical data or statements (cf. the ex-

ample in Section 5). Discarding alternatives with incomplete ordinal information before

thorough numerical assessment or data collection can save time and costs, because fewer

alternatives need to be evaluated numerically.

In group settings, the DMs may have different opinions about the alternatives’ perfor-

mance or the relative importance of the attributes. In addition, their ability to understand

and to answer the elicitation questions can differ. If the group seeks to establish a joint

preference characterization, incomplete ordinal information can be used to model these

different opinions. First, despite of the DMs’ differences, they may still agree on ‘less

restrictive’ statements, such as “cost is among the three most important attributes”, or

“alternative x1 is not the most preferred”. If the group’s analysis is assisted by a facilitator,
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she can even suggest such statements based on the group’s discussion. Ordinal informa-

tion can even help the group focus its discussion on differences among their opinions

instead of arguing over numerical parameters.

Second, the flexibility of ordinal statements makes it possible to employ several prefer-

ence elicitation processes in group settings. For example, all group members k = 1, . . . ,K

can be asked to choose the three most preferred alternatives Ik, whereafter the group’s

preferences are described by the IOS (∪kIk, {1, 2, 3}) so that all alternatives with ‘votes’
can be among the three most preferred alternatives. This group’s statement can be then

specified by removing alternatives from the set I = ∪kIk – on the condition that more

than three alternatives have received votes. If an alternative is among the three most

preferred ones by all DMs, an additional statement (∩kIk, {1, 2, 3}) can be introduced.
Considering different attributes – or even all attributes holistically – with different sets J

leads to additional statements and consequently reduces the set of feasible scores.

5 An example

We consider an illustrative example in which a student uses an additive model to help

her select a business school for an MBA degree. The alternatives consist of the thirty

US business schools which ranked best in the 2009 The Financial Times (FT) ranking

(www.ft.com 2009). The student’s aim is to discard some of these schools with an additive

multi-attribute model and to then examine more closely the schools that remain non-

dominated after her analysis.

The model consists of seven attributes, five of which are based on the data and the

results of the FT 2009 annual business school ranking. The additional two non-educational

attributes account for possibilities to pursue her hobbies. The evaluations with regard to

these attributes have been added to this example to illustrate the application of subjective

incomplete ordinal statements.

The student performs the analysis in two phases. First, she makes use of the informa-

tion in the FT’s data and results, and provides incomplete ordinal statements with regard

to non-educational attributes. In the second phase, information on the non-educational
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attributes is further specified by acquiring more information about the schools that re-

main non-dominated after the preference statements in the first phase. The schools are

denoted by X = {x1, . . . , x30}. The attribute-specific evaluations are explained in the
following. The data is summarized in Table 1.

a1: FT overall ranking performance is evaluated using the interval of the schools’
overall rankings among X in 2007–2009 such that the best of the three rankings

defines the lower bound j1(x
i) and the worst ranking j1(x

i) defines the upper bound

of the ranking interval. This information is modeled with the preference statement

(I, J,X,A′) = ({xi}, {j | j1(x
i) ≤ j ≤ j1(x

i)}, X, {a1}) for each school. However,
if school xk outperforms school xi in each of the three rankings, an additional con-

straint v1(x
k
1) ≥ v1(x

i
1) is introduced even if the ranking intervals overlap.

School x1 outperforms all other schools in each of the three rankings and is assigned

a [0, 1]-normalized score 1. No school is worst in all three rankings, and the student

considers a fictitious school that ties ranking 30 each year to correspond to the least

preferred level. Thus, constraint z29 = 0 is introduced. Comparing to these two

points of reference, the student introduces two further milestones: all alternatives

which are ranked among the ten best ones have normalized score of at least 0.5 and

those outside of the top twenty cannot exceed score of 0.2. These statements lead

to constraints z10 ≥ 0.5 and z20 ≤ 0.2.

a2: Salary expectation is based on the average alumni salary three years after gradu-
ation (sA in Table 1) and the weighted salary (sW ) measures of the FT ranking. The

student models the salary expectation xi
2 as an interval bounded by these two mea-

sures. She uses a linear value function which is normalized so that the smallest of

the above measures among X, minxi∈X{SA(xi), SW (xi)}=$92863, gets a normalized
score of 0 and the largest, $173935, gets 1.

a3: Alumni recommendations are based on a query in which alumni were asked to
name three business schools which would be their primary sources of recruitment.

In the FT ranking, the results of this query have been converted into a rank-ordering

(r3). In this example, the student exploits this rank-ordering as ordinal information

about the scores v3(x
i
3) (see (4)). The best-ranked and worst-ranked schools define

the most and the least preferred levels, respectively.
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a4: Employment expectations are modeled in the FT ranking using the percent-

age of graduates that are employed within three months after graduation (p(xi)).

The share of students whose employment information is recorded in the FT data

(c(xi)) is known, but varies from school to school. The student does not make

assumptions about the employment of the alumni whose information is not avail-

able. She therefore accounts for all possibilities between the extreme cases that

none of them and all of them are employed. This assumption results in the intervals

xi
4 ∈ [c(xi)p(xi), c(xi)p(xi) + (1 − c(xi))]. She applies a linear value function such

that the smallest employment rate among the schools (60 %) corresponds to the

least preferred level and 100 % to the most preferred.

a5: Female students is measured through the share of female students xi
5 ∈ [0, 100%]

in the FT data. In all schools in X, the share of female students is below 50 %, and

the student focuses on modeling the value between 0 and 50 %. In this range, the

student prefers more female students to less. She is also indifferent between changes

from 0 % to 15 % and from 15 % to 50 %. She approximates her preferences with

vN
5 (x5) = axb

5 in which a and b are defined so that vN
5 (0.15) = 0.5 and vN

5 (0.5) = 1.

a6: Hobby 1 is evaluated by the student. She divides the schools into five classes and
constrains the normalized scores of the schools in these classes. Excellent schools are

referred to by ‘E’ in Table 1 and their normalized scores fulfill vN
6 ≥ 0.9. They are

preferred to very good (VG; vN
6 ≥ 0.6), which are preferred to good (G; vN

6 ≤ 0.8),

followed by fair (F; vN
6 ≥ 0.1) and finally poor (P; vN

6 ≤ 0.1). The schools that

belong to the same class can have unequal scores. The most and least preferred

levels are not necessarily achieved by any of the schools in X.

a7: Hobby 2 is evaluated by the student. Her evaluation is based on an article, in
which three persons familiar with this hobby have named ten best and five worst

universities of X with regard to this hobby. These lists are quite close to each

other: there are eight schools (schools IT10 ⊂ X) that belong to all three top ten

lists and four schools (IB5) that are assigned to bottom five in all three lists. Based

on agreed schools, the student introduces preference statements (IT10, {1, . . . , 10})
and (IB5, {26, . . . , 30}). To exclude equal scores among all alternatives, she bounds
the top ten schools’ normalized scores from below by 0.7, which also serves as an

upper bound for schools whose ranking is worse than ten. Similarly, the normalized

score 0.1 distinguishes between the five least preferred and the other schools. The
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most and least preferred levels are not necessarily achieved by any of the schools in

X.

The attribute weights are constrained by (i) two incomplete ordinal statements (I, J) =

({a1, a2, a3}, {1, 2, 3}) and ({a4, a5}, {4, 5}), (ii) ordinal statements w2 ≥ w1, w6 ≥ w7 and

(iii) lower bound wi ≥ 0.05 for all attributes.

Table 1: Business schools

a1 a2 a3 a4 a5 a6 a7

j1 j1 sA sW vN
2 (xi

2) vN
2 (xi

2) r3 p c vN
4 (xi

4) vN
4 (xi

4) xi
5 vN

5 (xi
5) xi

6 xi
7

x1 1 1 170210 169784 0.95 0.95 2 89 % 98 % 0.68 0.96 36 % 0.83 VG

x2 2 4 164783 163637 0.87 0.89 1 93 % 99 % 0.80 0.98 38 % 0.85 E T10

x3 2 3 168073 164310 0.88 0.93 6 92 % 93 % 0.64 0.84 32 % 0.77 VG T10

x4 3 4 173935 170340 0.96 1.00 3 93 % 99 % 0.80 0.98 36 % 0.83 F

x5 5 9 155811 156451 0.78 0.78 7 90 % 95 % 0.64 0.89 35 % 0.81 E

x6 6 7 147784 144125 0.63 0.68 8 93 % 96 % 0.73 0.91 41 % 0.89 P T10

x7 5 7 154340 150272 0.71 0.76 5 94 % 100 % 0.85 0.85 35 % 0.81 E B5

x8 7 8 158089 156124 0.78 0.80 9 94 % 100 % 0.85 0.85 33 % 0.79 E

x9 8 9 142948 140803 0.59 0.62 16 95 % 98 % 0.83 0.95 34 % 0.80 VG T10

x10 10 12 142378 142645 0.61 0.61 4 96 % 97 % 0.83 0.93 34 % 0.80 G

x11 11 14 128612 128692 0.44 0.44 12 92 % 97 % 0.73 0.93 39 % 0.87 VG B5

x12 12 13 132500 132522 0.49 0.49 11 90 % 93 % 0.59 0.84 34 % 0.80 E T10

x13 12 19 126320 126262 0.41 0.41 20 86 % 98 % 0.61 0.96 38 % 0.85 G

x14 14 16 135768 137215 0.53 0.55 13 91 % 100 % 0.78 0.78 29 % 0.73 G T10

x15 10 15 144949 141065 0.59 0.64 14 89 % 92 % 0.55 0.82 35 % 0.81 P

x16 14 16 138422 137699 0.55 0.56 10 91 % 98 % 0.73 0.95 30 % 0.75 P T10

x17 16 17 128056 127858 0.43 0.43 17 93 % 98 % 0.78 0.95 35 % 0.81 VG

x18 18 21 122386 121786 0.36 0.36 22 98 % 88 % 0.66 0.71 30 % 0.75 E

x19 19 23 101066 101066 0.10 0.10 29 60 % 100 % 0.00 0.00 27 % 0.70 P T10

x20 17 20 108404 108404 0.19 0.19 26 90 % 98 % 0.71 0.96 29 % 0.73 F

x21 18 21 118071 120198 0.31 0.34 15 86 % 99 % 0.63 0.98 28 % 0.72 P

x22 21 23 114618 115867 0.27 0.28 28 92 % 91 % 0.59 0.79 33 % 0.79 VG

x23 23 28 114189 114761 0.26 0.27 18 89 % 96 % 0.64 0.91 31 % 0.76 P B5

x24 22 24 116341 116773 0.29 0.29 19 96 % 99 % 0.88 0.98 21 % 0.61 E

x25 25 26 111254 109302 0.20 0.23 25 90 % 96 % 0.66 0.91 37 % 0.84 E

x26 26 30 95633 95633 0.03 0.03 30 89 % 95 % 0.61 0.89 33 % 0.79 G

x27 23 27 92863 92863 0.00 0.00 27 89 % 88 % 0.46 0.73 34 % 0.80 F B5

x28 26 28 109202 110768 0.20 0.22 24 90 % 98 % 0.71 0.96 25 % 0.67 P

x29 28 30 105532 105532 0.16 0.16 23 95 % 93 % 0.71 0.83 45 % 0.94 P

x30 24 30 98647 98647 0.07 0.07 21 98 % 100 % 0.95 0.95 21 % 0.61 P

With the above preferences, nine schools XND1 = {x1, x2, x3, x4, x5, x8, x9, x10, x12}
remain non-dominated, and the student examines them more closely. She first acquires

more information about the schools with regard to Hobby 2 (a7) and states that among

the non-dominated schools, x1 and x10 are the two least preferred. This is captured by
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the statement ({x1, x10}, {8, 9}, NND1, {a7}). She also thinks that x2 is much better than

other schools in XND1 and constraints the normalized score of x2 so that it exceeds those

of others by at least 0.1: vN
7 (x2

7) − vN
7 (xi

7) ≥ 0.1 for xi ∈ XND1 \ {x2}. After these
statements, the set of non-dominated schools is reduced to XND2 = {x1, x2, x3, x4, x5}.

After further examination of the schools XND2 with regard to Hobby 1 (a6), the

student is willing to tighten the bounds on variables zj. She bounds the fair schools’ (x4)

normalized score to be at most 0.12 and the normalized scores of the very good schools (x1

and x3) to be at least 0.15 smaller than the those of the excellent schools (x2, x5), which

are bounded from below by 0.98. After these specifications of preference information, x5

becomes dominated. The student decides to visit the four remaining schools.

6 Conclusion

In response to the difficulties in eliciting numerical preference information for additive

value models, we have developed a model for capturing incomplete ordinal information

about the alternatives’ values and the relative importance of attributes. Such information

can be elicited through paired sets of alternatives (or attributes) and associated rankings.

For example, statements like “alternatives 1 and 2 are among the three most preferred

alternatives with regard to cost”, or “alternative 1 is not the most preferred one with

regard to environmental factors” can be modeled. The statements lead to a set of feasible

scores.

Incomplete ordinal statements about the alternatives’ values are flexible in that they

can be given with regard to any set of attributes, among any set of alternatives. The DM

can also match the accuracy of the statements with the available information or the level

she considers appropriate in terms of how specific decision recommendations are needed

or what the costs of data collection are.

Because incomplete ordinal information can result in a non-convex set of feasible

scores, we have developed a mixed integer linear formulation to model these scores. In this

model, the number of binary variables employed depends on the preference statements.

For example, binary variables are not employed to model convex feasible regions.
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The linearity of the formulation makes it possible to complement incomplete ordinal

information by other statements that are modeled with linear constraints, such as point

estimates or intervals of normalized scores, weights, and weight ratios; or by numerical

bounds on the developed model’s milestone variables. These possibilities help rule out

unintended extreme realizations of the model parameters and thus help capture the DM’s

intended preference specification. Hence, the model treats numerical and ordinal informa-

tion jointly without transforming numerical information into ordinal information or vice

versa.

While the proposed model admits different kinds of incomplete ordinal statements,

some preference elicitation questions can be easier to answer to than others. Further-

more, the statements differ in how conclusive dominance relations they produce. Hence, a

possible direction for further research is to design elicitation procedures that address these

issues by exploiting the characteristics of incomplete ordinal information. To avoid striv-

ing for unnecessarily strict statements and to allow different opinions in group settings,

the elicitation procedures should admit ‘loose’ statements, which can be further specified

by tightening the given statements or by introducing complementary numerical informa-

tion along the lines discussed in Section 3.5. One specific elicitation procedure that could

be examined in more detail is the classification procedure discussed in Section 4. The

modeling ideas of incomplete ordinal information could be used in incomplete classifica-

tion, in which alternatives can be assigned to several classes, for example: “This research

proposal is either ‘good’ or ‘great’ with regard to international collaboration” (cf. e.g. Guo

et al. 2007).

APPENDIX

Proof of Lemma 1: ⊆: Take any s ∈ S(I, J). Then ∃ r ∈ R(I, J) such that s ∈ S(r),

i.e., v(xi) ≥ v(xj) whenever r(xi) < r(xj). Let zj−1 = v(r−1(j − 1)), zj = v(r−1(j)), and

yj(r
−1(k)) = 1 ⇐⇒ k ≤ j for j ∈ {j − 1, j}∩{1, . . . , |X|− 1}. We show that v, zj, yj(x

i)

satisfy constraints (6)–(9).

Take any xi ∈ X, j ∈ {j − 1, j} ∩ {1, . . . , |X| − 1}. If r(xi) ≤ j, then zj = v(r−1(j)) ≤
v(xi)+(1−yj(x

i)M) = v(xi) and thus (6) holds. Constraint (7) holds, because yj(x
i)M >
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1 ≥ v(xi). If r(xi) > j, then (7) holds because v(xi) ≤ v(r−1(j)) = zj. Constraint (6)

holds as well, because M > 1 ≥ v(r−1(j)). Constraint (8) holds by construction, because

|{xi ∈ X | r(xi; X) ≤ j}| = j.

To show that (9) holds, assume first that |I| ≥ |J |. Take any j ∈ [j, j] and xi ∈ I.

According to Definition 3, r−1(j) /∈ I. Thus, if r(xi) ≤ j then also r(xi) ≤ j − 1, in which

case yj(x
i) = yj−1(x

i) = 1. If r(xi) > j, yj(x
i) = yj−1(x

i) = 0 by construction. Thus

(9) is fulfilled. If |I| < |J |, take any xi ∈ I. According to Definition 3, r(xi) ∈ [j, j].

The above construction of binary variables yields yj(x
i) = 1, yj−1(x

i) = 0, whereby (9) is

fulfilled.

⊇:

Let v(xi), zj, yj(x
i) be a feasible solution to (6)–(9) for all xi ∈ X, j ∈ {j − 1, j} ∩

{1, . . . , |X| − 1}. We show (i) that there exists a rank-ordering r ∈ R(I, J), and (ii) that

v(xi) ≥ v(xj) if r(xi) < r(xj).

Partition X into four sets X(1, 1), X(0, 1), X(1, 0), X(0, 0) such that xi ∈ X(a, b) ⇐⇒
yj−1(x

i) = a, yj(x
i) = b for a, b ∈ {0, 1}. Strict inequality zj > zj−1 cannot hold, because

then (6)–(7) would yield to X(0, 1) = ∅. This would contradict the assumption j > j − 1

through (8). With zj ≤ zj−1, straightforward application of (6)–(7) leads to v(x11) ≥
zj−1 ≥ v(x01,10) ≥ zj ≥ v(x00) ∀x11 ∈ X(1, 1), x01,10 ∈ X(0, 1) ∪ X(1, 0), x00 ∈ X(0, 0).

Constraint (8) with j = j − 1 gives

|X(1, 1)| = j − 1 − |X(1, 0)| (12)

and (8) with j = j yields

|X(1, 1)| + |X(0, 1)| = j. (13)

Inserting (13) into condition |X| = |X(1, 1)| + |X(0, 1)| + |X(1, 0)| + |X(0, 0)| gives

|X(0, 0)| = |X| − j − |X(1, 0)|. (14)

If X(1, 1) �= ∅, assign rankings 1, . . . , j − 1 − |X(1, 0)| to alternatives in X(1, 1), and

rankings j + |X(1, 0)| + 1, . . . , |X| to those in X(0, 0) (if non-empty) such that r(xi) <

r(xk) ⇒ v(xi) ≥ v(xk).
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If |I| ≥ |J |, constraint (9) implies I ⊆ X(1, 1) ∪ X(0, 0) and therefore X(0, 1) ∪
X(1, 0) ⊆ I. Now, assign rankings |X(1, 1)| + 1, . . . , |X| − |X(0, 0)| to alternatives in
X(0, 1) ∪ X(1, 0) ⊆ I such that r(xi) < r(xk) ⇒ v(xi) ≥ v(xk). Because |X(1, 1)| + 1 =

j − |X(1, 0)| ≤ j by (12) and |X| − |X(0, 0)| = j + |X(1, 0)| ≥ j by (14), the rankings in

J are attained by alternatives in I and hence r ∈ R(I, J).

If |I| < |J |, I ⊆ X(0, 1) ∪ X(1, 0) by constraint (9). If X(1, 0) �= ∅, then zj−1 = zj,

because X(0, 1) �= ∅. Then all alternatives in X(0, 1) ∪ X(1, 0) have equal values, and

rankings j, . . . , j + |I| < j can be assigned to alternatives in I without violating condition

r(xi) < r(xk) ⇒ v(xi) ≥ v(xk). If X(1, 0) = ∅, the cardinalities in (12) and (14) are
|X(1, 1)| = j − 1, |X(0, 0)| = |X| − j, wherefore the rankings that have not been assigned

to X(1, 1) and X(0, 0) are exactly J . Thus each alternative in X(0, 1) ⊇ I can be assigned

ranking from J such that r(xi) < r(xk) ⇒ v(xi) ≥ v(xk). �

Proof of Theorem 1: ⊆: Assume K > 1, because case K = 1 is equal to Lemma 1.

Take any s ∈ S(I, J). Then ∃ r ∈ R(I, J) such that s ∈ S(r), i.e., v(xi) ≥ v(xj) whenever

r(xi) < r(xj). Let zj = v(r−1(j)), and yj(r
−1(p)) = 1 ⇐⇒ p ≤ j for all j ∈ j∪. We show

that v, zj, yj(x
i) satisfy constraints (6)–(8) and (10).

Showing that (6)–(8) hold can be done as in the proof of Lemma 1 and is there-

fore omitted. To show that (10) holds, assume first that |I| ≥ |J |. Take any

k ∈ {1, . . . ,K}, j ∈ [jk, jk] and xi ∈ I. Following the arguments of the proof of Lemma 1,

r−1(j) /∈ I. Thus, if r(xi) ≤ jk then r(xi) ≤ jk − 1, whereby yj(x
i) = yj−1(x

i), which also

holds if r(xi) > jk. Thus (10) is fulfilled. If |I| < |J |, take any xi ∈ I. Because r ∈ R(I, J),

r(xi) ∈ [jl, jl] for exactly one l ∈ L = {1, . . . ,K}. By construction, yjl
(xi) = 1, yjl−1 = 0

for this l. For k ∈ L \ {l}, yjk
(xi) − yjl−1 = 0 and thus (10) holds.

⊇: Assume |I| ≥ |J |. Then also |I| ≥ |Jk| for every k = 1, . . . ,K . Be-

cause (6)–(8) and (9) hold for all jk − 1, jk, k = 1, . . . ,K , consecutive applica-

tion of Lemma 1 yields that ∃r ∈ ∩K
k=1R(I, Jk) such that s ∈ S(r). By Def-

inition 3, r ∈ R(I, Jk) iff r−1(k) ∈ I ∀j ∈ Jk. Thus, r ∈ ⋂K
k=1 R(I, Jk) =⋂K

k=1 {r | r−1(jk) ∈ I ∀jk ∈ Jk} = {r | r−1(jk) ∈ I ∀jk ∈ Jk, k = 1, . . . ,K} ={
r | r−1(j) ∈ I ∀j ∈ ∪K

k=1Jk

}
= {r | r−1(j) ∈ I ∀j ∈ J} = R(I, J).

Case |I| < |J |: Recall from the proof of Lemma 1 that strict inequality zjk
> zjk−1

cannot hold for any k. Thus, if yjk
(xi) = 0, yjk−1(x

i) = 1 for some k ∈ {1, . . . ,K}, xi ∈ X,

(6)–(7) give v(xi) = zjk
= zjk−1. Thus, for xj with yjk

(xj) = 1, yjk−1(x
j) = 0, v(xj) =
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zjk
= zjk−1. There are jk−jk +1+|{xi ∈ X | yjk

(xi) = 0, yjk−1(x
i) = 1}| such alternatives,

because (8) holds for both jk and jk − 1.

If |I| < |J |, then |I| > |J |. According to Salo and Punkka (2005), R(I, J) = R(I, J).

We show that (6)–(8) and (10) imply that s ∈ S(I, J) = S(I, J).

Set

J = {j1, . . . , j1} ∪ {j2, . . . , j2} ∪ . . . ∪ {jK−1, . . . , jK−1} ∪ {jK , . . . , jK}

and thus its complement

J = {j | 1 ≤ j ≤ j1−1}∪{j1+1, . . . , j2−1}∪. . .∪{jK−1+1, . . . , jK−1}∪{j | jK+1 ≤ j ≤ |X|},

in which each of the subsets consists of consecutive integers. If 1 ∈ J (and/or |X| ∈ J),

then j1 = 1 (jK = |X|), and the first (last) set is empty. Constraints (10) imply yj0
(xi) =

0 = yj1−1(x
i), yjk−1

(xi) = yjk−1(x
i) ∀k = 2, . . . ,K and yjK

(xi) = yjK+1−1(x
i) = 1. Now

s ∈ S(I, J) based on the proof of case |I| ≥ |J |. �

Proof of Lemma 2:

Take any s ∈ ⋂L
l=1 S(I l, J l). Then there exists a rank-ordering r ∈ ⋂L

l=1 R(I l, J l)

such that s ∈ S(r) ⊆ ⋂L
l=1 S(I l, J l). Choose s′ ∈ S(r) such that s′ /∈ S(r′) for r′ �= r

(e.g., s′ such that v(xi, A′) = (1 − r(xi)−1
|X|−1

)
∑

{j|aj∈A′} wj ∀ xi ∈ X). We show that any

solution zl
j, y

l
j(x

i), l = 1, . . . , L, xi ∈ X such that (6)–(8) and (10) hold for s′, fulfills the

conditions yl
j(x

i) = yp
j (x

i), whenever j ∈ j∪(J l) ∩ j∪(Jp) for some {l, p} ⊆ {1, . . . , L} and
j < j ′ ⇒ yl

j(x
i) ≤ yp

j′(x
i) for any p, l ∈ {1, . . . , L}. Furthermore, we show that zp

j = zl
j

holds for some of these solutions and that such a solutions exists for all s ∈ S(r).

Because s′ /∈ S(r′) for r′ �= r, the values v(xi), v(xk) are unequal whenever k �= i.

Let j ∈ j∪(J l) ∩ j∪(Jp) for some statements l, p and assume contrary to the claim that

yl
j(x

i) = 1, yp
j (x

i) = 0 for some xi ∈ X. Then, because (8) holds for both yl
j and yp

j , there

exists xk such that yl
j(x

k) = 0, yp
j (x

k) = 1. Inserting these conditions to (6)–(7) leads

to v(xi) = v(xk), which is a contradiction with the assumption of unequal values. Thus,

yl
j(x

i) = yp
j (x

i) and we continue with the notational convention yj(x
i) := yl

j(x
i) = yp

j (x
i).

Assume contrary to the claim that yj(x
i) > yj′(x

i), j < j ′, for some xi ∈ X (indices

j, j ′ ∈ Jind). Then, zp
j ≤ v(xi) ≤ zl

j′ for some statements p, l, based on (6)–(7). Because
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(8) holds for j and j′, there also exist at least two other alternatives xk for which zp
j ≥

v(xk) ≥ zl
j′ , leading to zp

j = v(xk) = v(xi) = zl
j′ and thus violating the assumption

v(xi) �= v(xk). Hence, j < j ′ ⇒ yj(x
i) ≤ yj′(x

i) for all xi ∈ X.

Because v(xk) �= v(xi) and s′ ∈ S(r), the solution to the binary variables yj(x
i) is

unique.

Introduce further constraints zl
j = v(r−1(j)) for all j ∈ j∪(J l), for all l = 1, . . . , L.

This requirement is tighter than zp
j = zl

j, but it does not violate constraints (6)–(7), (8)

and (10). Acknowledging that the solution to the binary variables is unique, constraint

zl
j = v(r−1(j)) simplifies the constraints (6)–(7), (8) and (10) to

v(r−1(j)) ≤ v(xi) + (1 − yj(x
i)M)

v(xi) ≤ v(r−1(j)) + yj(x
i)M

for all xi ∈ X, j ∈ Jind. Inserting the values of yj(x
i) further simplifies the constraints

to

v(r−1(j)) ≥ v(r−1(k(j))), ∀ j ∈ Jind, j �= max Jind, k(j) = min
k

{k ∈ Jind | j < k}. (15)

The scores that fulfill (15) are a superset of S(r), because the constraints in the

definition of S(r) in (4) are equivalent to (15) with Jind = {1, . . . , |X| − 1}. Thus, even if
s is such that v(xi) = v(xk) for some alternatives, it belongs to set of scores characterized

by the (6)–(8) for v(xi), yj(x
i), zj ∀xi ∈ X, j ∈ Jind, (10) on the statements (I l, J l) and

(11).

Any s ∈ SL belongs to
⋂L

l=1 S(I l, J l), because the constraints that define SL are a

superset of those that characterize
⋂L

l=1 S(I l, J l). �

Proof of Lemma 3: If |I| ≥ |J |: because yjk
(xi)−yjk−1(x

i) ≥ 0, in
∑

xi∈I

∑K
k=1[yjk

(xi)−
yjk−1(x

i)] = 0 each of the summed terms must be zero.

If |I| < |J |: Due to the monotonicity of the binary variables, ∑K
k=1[yjk

(xi)−yjk−1(x
i)] ∈

{0, 1}. Because summation of |I| such terms equals |I|, each of them must equal 1.

Therefore, there exists k∗ ∈ {1, . . . ,K} such that yj∗k
(xi) = 1, yj∗k−1(x

i) = 0. But this

implies that for any k ≤ k∗, yjk−1
(xi) = 0, yjk−1(x

i) = 0 and for any k > k∗, yjk−1
(xi) =

1, yjk−1(x
i) = 1. �
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Abstract:

Decision rules can be employed to compare alternatives’ additive multi-

attribute values under incomplete preference information. We show that the

recommendations of decision rules that compare magnitudes of value differ-

ences across value functions that represent different preferences can depend

on how the value function is normalized. To overcome this problem, we pro-

pose ranking intervals which provide information on how alternatives compare

with all other alternatives for all value functions that are consistent with the

incomplete preference information. These intervals can be computed with

mixed integer linear programming models which admit several forms of prefer-

ence statements about the parameters of the value function. We demonstrate

uses of ranking intervals in the sensitivity analysis of university rankings and

discuss their uses in project portfolio selection.

Keywords: Multiple criteria decision analysis, ranking, incomplete information,

sensitivity analysis
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1 Introduction

The specification of an additive multi-attribute value function (Keeney and Raiffa 1976,

Dyer and Sarin 1979) is often based on the decision-maker’s (DM’s) subjective preference

statements. Difficulties in the exact specification of preferences, among other reasons,

have motivated the development of methods that allow the DM to provide incomplete

preference information (e.g., White et al. 1982, see also Weber 1987). The Preference

Programming methods compare pairs of alternatives with all additive value functions that

are consistent with the incomplete preference information. Specifically, if one alternative

is preferred to another for all these value functions, then it dominates the other alternative

(e.g., White et al. 1982, Salo and Hämäläinen 1992).

Because there can be several non-dominated alternatives under incomplete preference

specification, decision rules have been proposed to provide insights into how ‘good’ the

alternatives are. Some of these rules and related solution concepts compare the mag-

nitudes of alternatives’ numerical value differences within a class of representative value

functions, which include all value functions that are consistent with the stated preference

information but still fulfill predefined normalization conditions (e.g., Park and Kim 1997,

Dias and Climaco 2000, Salo and Hämäläinen 2001, among others). In this paper, we

show that the recommendations provided by these decision rules and, for example, the

results of sensitivity analyses that are based on distances between different value functions

(Rios Insua and French 1991) can depend on the normalization of value functions.

As a remedy to this problem, we determine all the rankings that the alternatives can

attain with those value functions that are consistent with the DM’s preference statements.

The resulting ranking intervals do not depend on the chosen normalization of the value

functions. They provide ordinal information about how the alternatives perform among

all alternatives and they can therefore be used to complement dominance relations for

the purpose of screening a large set of alternatives or to examine sensitivity of full rank-

orderings, such as priority listings of project proposals.

Our work is partly inspired by the work of Butler et al. (1997) who propose exploring

the attainable rankings to study the robustness of the alternatives’ rankings. Yet, earlier

models have focused on one specific form of preference information (Kämpke 1996), ap-

plied Monte Carlo simulation to compute a subset of these rankings (Butler et al. 1997), or
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computed only the best possible rankings of the alternatives over a set of feasible weights

(Köksalan et al. 2010). We extend these approaches by developing mixed integer linear

programming (MILP) models for computing all the rankings that the alternatives can

attain for all the additive value functions that are consistent with (i) the DM’s incom-

plete preference statements and (ii) the attribute-specific values that fulfill the incomplete

characterization of the alternatives.

The remainder of this paper is organized as follows. In Section 2 we show that the

recommendations provided by several decision rules and other related solution concepts

depend on what representative value functions are chosen to represent the preference

information. Section 3 develops models for the computation of the ranking intervals.

Section 4 gives an illustrative example on the sensitivity analysis of university rankings.

Section 5 provides some insights into how multi-criteria project portfolio selection under

incomplete preference information (e.g., Liesiö et al. 2007, 2008) can benefit from the

ranking intervals by revisiting a case study by Könnölä et al. (2007). Section 6 concludes.

2 Decision recommendations with incompletely defined

additive value functions

2.1 Additive value function and positive affine transformations

We assume that there are n attributes. Alternative x is represented by its achieve-

ment levels xi which belong to (measurement scale) sets Xi that are not singleton sets:

(x1, . . . , xn) ∈ X = ×n
i=1Xi.

The additive multi-attribute value of alternative x is

V (x) =
n∑

i=1

vi(xi), (1)

in which vi : Xi → R is the attribute-specific value function of attribute ai (Keeney

and Raiffa 1976). We assume that V is a measurable value function. It then measures

the strength of preference so that V (xb) − V (xa) > V (xd) − V (xc) if and only if xa is
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more preferred to xb than xc is to xd (Dyer and Sarin 1979). Measurable value functions

are unique up to positive affine transformations. Thus, any V ′(x) = αV (x) + β (in

which α > 0) represents the same preferences as V (x). Specifically, the preferences

captured by (1) can therefore be represented by the “weighted additive value function”

V N(x) =
∑n

i=1 wiv
N
i (xi), as discussed later in Subsection 2.5.

If the DM’s preferences are captured by an additive value function, attribute-specific

value functions vi can be elicited independently of other attributes. Many elicitation

methods are based on indifference judgements in which achievement levels xa
i , x

b
i , x

c
i , x

d
i ∈

Xi are specified so that vi(x
b
i) − vi(x

a
i ) = vi(x

d
i ) − vi(x

c
i) holds (see, e.g., von Winterfeldt

and Edwards 1986). We assume that all attributes are meaningful in the sense that

vi(xi) > vi(x
′
i) for some xi, x

′
i ∈ Xi, for all i = 1, . . . , n.

Similarly, the elicitation of preferences between attributes can be based on specifying

alternatives xa, xb, xc, xd ∈ X so that V (xb) − V (xa) = V (xd) − V (xc) holds. In such

preference elicitation, often all but one achievement level are fixed and the DM is requested

to specify this one level so that indifference holds. These methods based on indifference

judgements have been complemented by ratio-based methods, in which xa, xb, xc, xd ∈ X

are all fixed, and the DM specifies the ratio κ(xa, xb, xc, xd) so that

V (xb) − V (xa) = κ(xa, xb, xc, xd)[V (xd) − V (xc)] (2)

holds. Statements (2) are used for example in the SWING weighting method (von Winter-

feldt and Edwards 1986). In SWING, the DM estimates the ratio [vj(x
∗
j)−vj(x

◦
j)]/[vi(x

∗
i )−

vi(x
◦
i )], in which x◦ and x∗ are alternatives represented by the “least” and “most” preferred

levels on all attributes, respectively.

Once the attribute-specific value functions have been elicited and sufficiently many

consistent statements (2) have been obtained, the ratio κ(xa, xb, xc, xd) is known for any

xa, xb, xc, xd ∈ X (V (xd) �= V (xc)). This ratio is invariant under positive affine transfor-

mations of V . Consequently, there are infinitely many additive value functions (1) that

are consistent with the preference information, but which are all positive affine transfor-

mations of each other. Therefore, to compute a numerical value for V (xb), xb ∈ X, one

of these value functions is taken to be a representative value function. This choice can

be done by selecting any two alternatives x+, x− ∈ X so that x+ is preferred to x−, and

V (x+) and V (x−) are any real numbers so that V (x+) > V (x−). The value of xb is then

V (xb) = κ(x−, xb, x−, x+)[V (x+) − V (x−)] + V (x−). The selection of this representative
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value function is often referred to as normalization. Specifically, one popular way to nor-

malize is to choose x− = x◦ and x+ = x∗, and fix the overall values of these alternatives

to 0 and 1, respectively. Then the values of the alternatives whose achievement levels xi

fulfill vi(x
∗
i ) ≥ vi(xi) ≥ vi(x

◦
i ) are in the range [0, 1].

For example, assume that a DM is choosing a fruit basket of apples (x1) and oranges

(x2), (x1, x2) ∈ X = R2
+ ∪ (0, 0). His preference statements are: (i) v1 and v2 are linear

and increasing and (ii) V (1, 0) − V (0, 0) = V (0, 1) − V (0, 0). To compute a numerical

value for the fruit basket xb = (3, 0), it is necessary to choose one of the infinitely many

value functions that are consistent with these preferences. One possibility is to set x+ =

(2, 0), x− = (0, 1) and V (x+) = 2, V (x−) = −1. Then, the value of xb = (3, 0) is

V (3, 0) =
V (3, 0) − V (0, 1)

V (2, 0) − V (0, 1)︸ ︷︷ ︸
=[V (3,0)−V (1,0)]/[V (2,0)−V (1,0)]=2

· [V (2, 0) − V (0, 1)]︸ ︷︷ ︸
=2+1=3

+ V (0, 1)︸ ︷︷ ︸
=−1

= 5.

If another representative value function were to be chosen, the same preferences would

be represented by the value function V ′ = αV + β for some α > 0, β ∈ R. Yet, value

difference ratios, such as the above κ((0, 1), (3, 0), (0, 1), (2, 0))

=
V ′(3, 0) − V ′(0, 1)
V ′(2, 0) − V ′(0, 1)

=
αV (3, 0) + β − αV (0, 1) − β

αV (2, 0) + β − αV (0, 1) − β
=

V (3, 0) − V (0, 1)

V (2, 0) − V (0, 1)
= 2,

remain unchanged. The numerical value V ′(3, 0) = 2 · [αV (2, 0) + β − αV (0, 1) − β] +

αV (0, 1) + β = α[2 · V (2, 0) − V (0, 1)] + β, however, depends on the selection of the

representative value function.

2.2 Incomplete preference information

Because the exact specification of preferences can be difficult (e.g., Weber 1987), methods

for deriving decision recommendations from an incomplete preference specification have

been developed. In Preference Programming (e.g., White et al. 1982, Salo and Hämäläi-

nen 1992, 2001, 2010), the DM gives a series of incomplete preference statements about

the relative importance of the attributes. These statements lead to a finite number of

inequalities

V (xb) − V (xa) ≥ κ−(xa, xb, xc, xd)[V (xd) − V (xc)], xa, xb, xc, xd ∈ X. (3)
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We assume that attribute-specific value functions are known so that the ratio [vi(x
b
i)−

vi(x
a
i )]/[vi(x

d
i ) − vi(x

c
i)] can be computed for all alternatives that appear in the stated

preference statements (3). These statements can thus be employed to capture incompletely

defined ratios of value differences in different attributes [vi(x
b
i)−vi(x

a
i )]/[vj(x

d
j )−vj(x

c
j)] ≥

κ−(xa, xb, xc, xd) (Salo and Hämäläinen 1992), as in the interval versions of SWING and

SMARTS methods (Mustajoki et al. 2005). They can also capture ordinal statements

[vi(x
∗
i )−vi(x

◦
i )] ≥ [vj(x

∗
j)−vj(x

◦
j)] (e.g., Kirkwood and Sarin 1985) or holistic comparisons

V (xb) ≥ V (xd) (e.g., Salo and Hämäläinen 2001). Statements (3) can result in a complete

preference specification, because statement (2) is equal to statements V (xb) − V (xa) ≥
κ(xa, xb, xc, xd)[V (xd)− V (xc)] and V (xd)− V (xc) ≥ κ(xa, xb, xc, xd)−1[V (xb)− V (xa)] of

form (3).

The additive value functions V that are consistent with the a set of preference state-

ments (3) are denoted by V . In general, these functions are not all positive affine trans-
formations of each other. Formally, the set V is defined as follows.

Definition 1 Let attribute-specific value functions v′
i(·), i = 1, . . . , n, be defined. Then

V (x) =
∑n

i=1 vi(xi) ∈ V if (i) V (·) fulfills the set of stated preference statements (3), and
(ii) vi = αiv

′
i + βi for all i = 1, . . . , n for some αi > 0, βi ∈ R.

Pairwise dominance (White et al. 1982) can be used to compare alternatives with all

value functions in V , and, more specifically, to examine whether the overall value of an
alternative is at least as high as that of another for all value functions and strictly higher

for some (see e.g., Kirkwood and Sarin 1985, Hazen 1986, Rios Insua and French 1991,

Salo and Hämäläinen 1992, 2001, Salo and Punkka 2005).

Definition 2 Alternative xj ∈ X dominates xk ∈ X among V, if V (xj) ≥ V (xk) for all

V ∈ V and V (xj) > V (xk) for some V ∈ V.

2.3 Representative value functions and value comparisons under

incomplete preference information

With an incomplete preference specification, there can be several non-dominated alter-

natives. As a result, proposals to provide recommendations about which non-dominated
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alternative is the most preferred have been made. Many of these compare the magnitudes

of value differences V (xj) − V (xk) among the alternatives, across the value functions V ,
and then seek to answer questions like “can alternative xj be more preferred to xk than

xk to xj?”

Because V includes all positive affine transformations of the value functions in it

(V ∈ V , then αV + β ∈ V , α > 0, β ∈ R), the value differences V (xj) − V (xk) are not

bounded. For example, if the preference statement of form (2) is replaced by incomplete

preference statements V (2, 0) ≥ V (0, 1) and V (0, 2) ≥ V (1, 0) in the fruit basket exam-

ple introduced in Subsection 2.1, then the value functions that are consistent with the

preference statements are

V = {V (x1, x2) = α(x1 + rx2) + β | α > 0, β ∈ R, r ∈ [0.5, 2]} . (4)

The value difference of fruit baskets (1, 2) and (2, 1) is V (1, 2) − V (2, 1) = V (0, 1) −
V (1, 0) = α(r − 1). Because this difference can be both positive and negative, the fruit

baskets do not dominate each other. Furthermore, this difference is not bounded by the

preference statements; it can be arbitrarily small or large depending on the choice of α.

As a result, decision recommendations based on the magnitude of this value difference

would be, in a sense, arbitrary.

The lack of unequivocal numerical value differences has been eluded by considering only

a subset of value functions in V (e.g., Park and Kim 1997, Dias and Climaco 2000, Salo and
Hämäläinen 2001). In particular, value difference comparisons have been applied to what

we call a set of representative value functions V ′ ⊂ V , defined so that any value function in
V is represented in V ′ by one of its positive affine transformations. Conversely, any value

function in V is a positive affine transformation of a value function in V ′. Following the

normalization approach in Subsection 2.1, the set V ′ is typically defined by choosing two

reference alternatives x− and x+ whose values are taken to be constant throughout V ′.

Due to this condition, V ′ does not include two different value functions that are positive

affine transformations of each other and consequently alternatives in X have unequivocal

overall values for any V ∈ V ′.

Definition 3 V ′ represents V if

(i) ∀ V ∈ V ∃α > 0, β ∈ R so that αV + β ∈ V ′
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(ii) there exist x+, x− ∈ X, V +, V − ∈ R such that V (x+) = V + > V (x−) = V − ∀ V ∈
V ′.

Again, one possibility to choose the representative value functions is to assign values 0

and 1 to the hypothetical alternatives x◦ and x∗. Representative value functions V ′ exist

for any non-empty V , because if V ∈ V , then αV (x+) + β = V + and αV (x−) + β = V −

by choosing α = [V + − V −]/[V (x+) − V (x−)] (which is by definition positive), and β =

V + − αV (x+).

In the fruit basket example, if we choose V ′ so that V (x+) = V (1, 0) = 1 and V (x−) =

V (0, 0) = 0, we measure value differences in apples. This choice is fulfilled by value

functions (4) for which α = 1 and β = 0. For any V ′ that represents (4), value difference

V (1, 2) − V (2, 1) is maximized with V ∗ ∈ V ′ so that r = 2. With the above choice of V ′,

the biggest value difference V (1, 2) − V (2, 1) = α(r − 1) is thus equal to 1 (apple), while

the biggest value difference in favor of (2, 1) is V (2, 1) − V (1, 2) = α(1 − r) = 0.5 (with

r = 0.5). Thus, (1, 2) can be more preferred to (2, 1) than vice versa in the sense that

maxV ∈V ′ [V (1, 2) − V (2, 1)] > maxV ∈V ′ [V (2, 1) − V (1, 2)].

The opposite conclusion would be reached if value differences were measured in oranges

by choosing V ′ = Ṽ ′ so that Ṽ (0, 1) = 1, Ṽ (0, 0) = 0 for all Ṽ ∈ Ṽ ′ (leading to α = 1/r,

β = 0 for value functions of form (4)). Because ratios of value differences are invariant

to the selection of V ′ and Ṽ (0, 1) − Ṽ (0, 0) = 1 for all Ṽ ∈ Ṽ ′, the value differences

Ṽ (1, 2) − Ṽ (2, 1) can be expressed with value functions V ∈ V ′ as follows:

Ṽ (1, 2) − Ṽ (2, 1) =
Ṽ (1, 2) − Ṽ (2, 1)

Ṽ (0, 1) − Ṽ (0, 0)
=

V (1, 2) − V (2, 1)

V (0, 1) − V (0, 0)
=

V (1, 2) − V (2, 1)

r
.

Each value function in V ′ is indeed a positive affine transformation of a value function in

Ṽ ′, but this transformation depends on the parameter r.

Value difference Ṽ (1, 2) − Ṽ (2, 1) is maximized when r = 2; with this value of r,

V (1, 2) − V (2, 1) = 1. Inserting these into the above ratio gives maxṼ ∈Ṽ′ [Ṽ (1, 2) −
Ṽ (2, 1)] = 0.5. If r = 0.5, then V (2, 1) − V (1, 2) = 0.5 and thus Ṽ (2, 1) − Ṽ (1, 2) = 1

indicating that (2, 1) can be more preferred to (1, 2) than vice versa.

Figure 1 presents the values of (1, 2) and (2, 1) with two choices of V ′ that follow the

convention of assigning values 0 and 1 to the “least” and “most” preferred alternatives.
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Figure 1: Values of (1, 2) and (2, 1) as a function of r with two representations V ′ of

preference information V in (4) so that V (x+) = 1, V (x−) = 0.

2.4 Decision rules and rank reversals

Comparisons of values and value differences are employed in many decision rules which

recommend a non-dominated alternative from the set X̃ = {x1, . . . , xm} ⊆ X. For ex-

ample, the weak dominance rule (Park and Kim 1997) or the equivalent minimax re-

gret rule (Dias and Climaco 2000, Salo and Hämäläinen 2001) recommends xk ∈ X̃

for which maxV ∈V ′,xl∈X̃ [V (xl) − V (xk)] is the smallest. The maximax rule (Salo and

Hämäläinen 2001) recommends xk ∈ X̃ for which maxV ∈V ′ V (xk) is the highest. The

maximin rule (Salo and Hämäläinen 2001) recommends xk ∈ X̃ for which minV ∈V ′ V (xk)

is the highest. The central values rule (Salo and Hämäläinen 2001) recommends xk ∈ X̃

for which minV ∈V ′ V (xk) + maxV ∈V ′ V (xk) is the highest. In the example of Figure 1,

all these decision rules provide different recommendations with x+ = (12, 2) than with

x+ = (2, 4). Thus, the recommendations depend on which V ′ is chosen to represent

V . Quasi-dominance (Dias and Climaco 2000) and the related decision rules (Sarabando
and Dias 2009), absolute dominance (Salo and Hämäläinen 2001), the domain criterion

(Eiselt and Laporte 1992; and the closely related measure acceptability index by Lahdelma

et al. 1998) as well as sensitivity analyses based on computing the closest competitor (Rios

Insua and French 1991) are further examples of concepts that provide results which depend

on the choice of V ′, as illustrated in Appendix A.
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Indeed, decision rules based on comparing the magnitudes of these value differences

can exhibit rank reversals (Belton and Gear 1983) in the sense that changing x+ and

x− can change the recommendations. The next theorem provides sufficient conditions

under which the recommendations of weak dominance, maximin and maximax rules can

be altered by a suitable choice of x+ and x−. All proofs are in Appendix B.

Theorem 1 Let vi(xi) : Xi = [li, ui] → R, i = 1, . . . , n be continuous and let x1, x2 ∈ X

and V be such that V 1(x1) > V 1(x2), V 2(x2) > V 2(x1) for some V 1, V 2 ∈ V.

a) Let x ∈ {xj ∈ X | V (xj) > max{V (x1), V (x2)} ∨ V (xj) < min{V (x1), V (x2)} ∀ V ∈
V}. Then there exists V ′ that represents V so that

max
V ∈V ′

[V (x1) − V (x)] > max
V ∈V ′

[V (x2) − V (x)].

b) Assume that for any pair (i, j) ∈ {1, . . . , n} × {1, . . . , i − 1, i + 1, . . . , n}, there exist
achievement levels xi, x

′
i ∈ Xi, vi(xi) < vi(x

′
i) and xj, x

′
j ∈ Xj, vj(xj) < vj(x

′
j), so that

vi(x
′
i) + vj(xj) ≥ vi(xi) + vj(x

′
j) ∀ V ∈ V. Then there exists V ′ that represents V so that

max
V ∈V ′

[V (x1) − V (x2)] > max
V ∈V ′

[V (x2) − V (x1)].

Part a) of Theorem 1 states that it is possible to make maximax and maximin rules

recommend either one of two non-dominated alternatives through some normalization

V ′ if the attribute-specific value functions are continuous. Part b) assumes continuous

attribute-specific value functions, too, and states that weak dominance can recommend

any of the two alternatives, if for any pair of attributes there exist improvements (xi → x′
i)

and (xj → x′
j) such that the DM prefers the first improvement to the second one, and

examples of such improvements can be derived from the preference statements that define

V . This condition is not strong; it is implicitly assumed by all methods that elicit com-
plete preference information and for example in interval SMARTS/SWING (Mustajoki et

al. 2005).

In view of the above, comparing the magnitudes of values or value differences across

different value functions in V ′ does not provide meaningful results. However, because

the relative ordering of the alternatives’ values remains invariant across positive affine

transformations of the value function, dominance relations that compare the order of

two alternatives’ values in V do not depend on the selection of V ′. This idea can be
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extended to complete rank-orderings of the alternatives: by rank-ordering the alternatives

for all value functions that are consistent with the DM’s preferences, the intervals of the

alternatives’ attainable rankings can be obtained. In order to compute these ranking

intervals also when alternatives’ achievement levels are incompletely characterized (e.g.,

Salo and Hämäläinen 2001), we first define the concept of feasible region.

2.5 Incompletely characterized alternatives and feasible regions

In the rest of this paper, we consider a discrete set of alternatives X̃ = {x1, . . . , xm} ⊆ X.

It is customary to choose x◦, x∗ ∈ X so that vi(x
∗
i ) > vi(x

◦
i ) and vi(x

∗
i ) ≥ vi(xi) ≥ vi(x

◦
i )

for all x ∈ X̃, i = 1, . . . , n. We can then select αi > 0, βi ∈ R so that (1) can be written
V (x) =

∑n
i=1[αiv

N
i (xi) + βi], in which vN

i (x◦
i ) = 0 and vN

i (x∗
i ) = 1. A positive affine

transformation of V (x) to V N(x) = [V (x) −∑n
i=1 βi]/

∑n
i=1 αi leads to

V N(x) =
n∑

i=1

[αi/
n∑

i=1

αi]v
N
i (xi) =

n∑
i=1

wiv
N
i (xi), (5)

in which the attribute weights wi sum up to one and reflect the relative importance of the

attributes. Statements (2) and (3) then correspond to linear constraints on the weights.

All information is contained in matrix s so that [s]ji = vi(x
j
i ), j = 1, . . . ,m, [s](m+1)i = wi

in recognition that the normalized scores fulfill vN
i (xj

i ) = vi(x
j
i )/wi. Matrices s are in

S0 =

{
s ∈ R(m+1)×n | 0 ≤ vi(x

j
i ) ≤ wi,

n∑
i=1

wi = 1

}
. (6)

The attribute weights and the alternatives can be characterized by statements that lead to

linear inequalities on the scores and weights. These constraints can result from preference

statements of form (3), intervals of achievement levels xb
i ∈ [xb

i , x
b
i ] which correspond to

constraints wi · min{vN
i (xb

i), v
N
i (xb

i)} ≤ vi(x
b
i) ≤ wi · max{vN

i (xb
i), v

N
i (xb

i)} and ordinal
comparisons of attribute-specific values vi(x

b
i) ≥ vi(x

c
i) (Salo and Hämäläinen 2001), for

example. The constraints define the feasible region S ⊆ S0, which is a convex polyhedron.

The dominance relation of Definition 2 is modified so that xj dominates xk, if dominance

holds for all characterizations of these alternatives.

Definition 4 Let S ⊆ S0. Alternative xj ∈ X̃ dominates xk ∈ X̃ with information S,

denoted by xj �S xk, if V N(xj) ≥ V N(xk) ∀s ∈ S and V N(xj) > V N(xk) for some s ∈ S.
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3 Ranking intervals

For any s ∈ S, the alternatives can be ranked based on their overall values so that the

alternative with the highest value is assigned ranking one, the one with the second highest

value is assigned ranking two, and so on. By rank-ordering the alternatives for all s ∈ S,

we obtain the rank-orderings (Salo and Punkka 2005) that are compatible with S. We

work with the representation (5) of V but omit the superscript ‘N ’ from V N to highlight

that the results do not depend on the selection of V ′.

Definition 5 Let X̃ = {x1, . . . , xm} ⊆ X, ∅ �= S ⊆ S0 and assume that r(·; X̃) : X̃ →
{1, . . . ,m} a bijection. The rank-ordering r is compatible with S (denoted by r ∈ R(S)),

if r(xj) < r(xk) ⇒ V (xj) ≥ V (xk) for some s ∈ S. Rank-ordering r respects dominance

in S (denoted by r ∈ R�(S)), if r ∈ R(S) and r(xj) < r(xk) ⇒ ¬ (xk �S xj
)
.

The sets R(S) and R�(S) treat ties differently. In R(S), if the value of xj is equal to that

of xk for some s ∈ S, then xj can have a smaller (that is, better) ranking than xk. In

R�(S), xj can have a smaller ranking than xk only if its value is higher than that of xk

for some s ∈ S or equals the value of xk throughout S.

These two sets of rank-orderings are suitable for different settings. In decision sup-

port, it is not rational to prefer a dominated alternative to the one it is dominated by.

Consequently, the DM could focus on the rank-orderings in R�(S). But if the objective is

to examine what rankings an alternative can attain with different, complete preferences

s∗ ∈ S, it can be meaningful to report ties also in favor of the dominated alternative.

As an example, consider alternatives x1, x2, x3 and x4 with normalized scores

vN(x1) = (1/2, 1/2), vN(x2) = (1, 0), vN(x3) = (2/5, 1), vN(x4) = (5/8, 5/8), and as-

sume the weights to be constrained by w2 ≤ w1 ≤ 2w2. The overall values in Fig-

ure 2 show that x2, x3 and x4 are non-dominated, and they all dominate x1. The

rank-ordering r = (r(x1), r(x2), r(x3), r(x4)) = (3, 4, 1, 2) is compatible with S, because

V (x3) = 7/10 > V (x4) = 5/8 > V (x1) = 1/2 = V (x2) if w = (w1, w2) = (1/2, 1/2), but

this rank-ordering does not respect the dominance relation x2 �S x1. Among the other

rank-orderings, (4, 3, 1, 2) is the only compatible one for weights such that w1 < 5/8 and

(4, 1, 3, 2) for weights such that w1 > 5/8. If w1 = 5/8, the values of x2, x3 and x4 are all

5/8, and thus also (4, 1, 2, 3), (4, 2, 1, 3), (4, 2, 3, 1) and (4, 3, 2, 1) are in R�(S).
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Figure 2: Overall values

The number of compatible rank-orderings can be very large. The rankings that the

alternatives can attain provide a more concise way to communicate rank-based results. Let

the minimum and maximum rankings of xk among R(S) be denoted by rS(xk) and rS(xk),

respectively. Similarly, r�S (xk) and r�S (xk) refer to the minimum and maximum rankings

among R�(S). The next lemma shows that attainable rankings are sets of consecutive

integers, ranking intervals.

Lemma 1 Let S ⊆ S0 be a convex set. Then

a)
⋃

r∈R(S) r(xk) = {rS(xk), . . . , rS(xk)}, b) ⋃r∈R�(S) r(xk) = {r�S (xk), . . . , r�S (xk)}.

By Lemma 1, the attainable rankings of an alternative can be determined from its

extremum rankings. Among R(S), these can be described in terms of V and they are

solutions to MILP models (cf. Kämpke 1996, Köksalan et al. 2010).

Theorem 2 Let S ⊆ S0 be a convex polyhedron, xk ∈ {x1, . . . , xm} = X̃ ⊆ X, y =

(y1, . . . , ym) and constant M > 1. Then,

a) rS(xk) = 1 + mins∈S

∣∣{j ∈ {1, . . . ,m} | V (xj) > V (xk)}∣∣, which is equal to the opti-
mum of
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min
s∈S,

y∈{0,1}m

{
m∑

j=1

yj | V (xj) ≤ V (xk) + yjM ∀j ∈ {1, . . . ,m}, yk = 1

}
, (7)

b) rS(xk) = maxs∈S

∣∣{j ∈ {1, . . . ,m} | V (xj) ≥ V (xk)}∣∣, which is equal to the optimum
of

max
s∈S,

y∈{0,1}m

{
m∑

j=1

yj | V (xk) ≤ V (xj) + (1 − yj)M ∀j ∈ {1, . . . ,m}, yk = 1

}
. (8)

To compute ranking intervals in R�(S), dominance relations among alternatives X̃ are

determined first. If the optimum of the linear program mins∈S[V (xj)−V (xk)] is positive,

then xj �S xk. If it is negative, then xj ��S xk. If it is zero, then xj �S xk if and only if

maxs∈S[V (xj) − V (xk)] > 0.

The interpretation of the binary variables in Theorem 2 is that yj = 1 if and only if

r(xj) < r(xk), for k �= j. In view of this interpretation, the constraints

yl = 1 ∀ l ∈ {j ∈ {1, . . . ,m} | xj �S xk} (9)

guarantee that an alternative that dominates xk has a smaller ranking than xk and

yl = 0 ∀ l ∈ {j ∈ {1, . . . ,m} | xk �S xj} (10)

impose the requirement that xk has a smaller ranking than the alternatives it dominates.

Lemma 2 Let S ⊆ S0, xk ∈ X̃, y = (y1, . . . , ym) and constant M > 1. Then

a) r�S (xk) is equal to the optimum of (7) subject to (9),

b) r�S (xk) is equal to the optimum of (8) subject to (10).

4 Sensitivity analysis of university rankings

In the Academic Ranking of World Universities (ARWU; http://www.arwu.org/), over

1000 universities are evaluated with an additive model. Table 1 presents the attributes

14



and the weights wi applied in ARWU model (see Liu and Cheng 2005 for details). For

each attribute ai, the universities xj = (xj
1, . . . , x

j
6) have non-negative normalized scores

vN
i (xj

i ) = 100xj
i/x

∗
i in which x∗

i is the achievement level of the university that performs

best with regard to attribute ai. The variability in the size of the universities is accounted

for by attribute a6. Attribute a6 is normalized so that the best-performing university has

a score of 100 and vN
6 = 0, if the scores for other attributes a1–a5 are zero.

Table 1: Attributes, measurement scales and weights. SSCI=Social Science Citation

Index, SCIE=Science Citation Index-expanded

attribute measure xj
i weight wi

a1 Quality of education Alumni of an institution winning Nobel Prizes and Fields Medals 0.10

a2 Quality of faculty 1 Staff of an institution winning Nobel Prizes and Fields Medals 0.20

a3 Quality of faculty 2 Highly cited researchers in 21 broad subject categories 0.20

a4 Research output 1 Articles published in Nature and Science 0.20

a5 Research output 2 # of Articles in SCIE + 2 times # of Articles in SSCI 0.20

a6 Size
∑5

l=1 wlv
N
l (xj

l )/M(xj), M(xj) = # of full-time equivalent academic staff 0.10

The ARWU web site gives complete data on 498 of the 500 best universities in 2010.

Using this data, we perform sensitivity analysis on the ARWU weights w to get insights

in the following questions: How much can the universities’ rankings change, if weights

other than wi are used? For which universities are these weights optimal, in the sense

that their rankings can only become worse as a result of ‘small’ weight perturbation in

these weights? Which universities perform well across a wide range of weights?

The attribute weights wi have stayed the same for many years and they do not reflect

how the attributes’ scales [0, x∗
i ] have changed. Thus, for example, the value of a single

article published in Nature compared to the value of a Nobel prize winning staff member can

differ from one year to another. We do not seek to capture the sensitivity of such valuations

across the attributes, but merely treat weights as numerical parameters. Technically, we

consider subsets of S0
w = {s ∈ S0 | sji = vi(x

j
i ) = wiv

N
i (xj

i )/100 ∀ i = 1, . . . , 6, j =

1, . . . , 498} and, more specifically, feasible weight regions S1–S5 that are subsets of each

other so that Sk ⊂ Sk−1:

• No weight information: S1 = S0
w.
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• Weights are bounded from below by 0.02: S2 = {s ∈ S0
w | wi ≥ 0.02 ∀ i = 1, . . . , 6}.

• Weights are bounded from below by 0.02 and the weights of attributes a1 and a6

are smaller than or equal to those of a2–a5:

S3 =
{
s ∈ S0

w | wi ≥ wj ≥ 0.02 ∀ i = 2, 3, 4, 5,∀ j = 1, 6
}

.

• Weights are allowed to vary within 30 % and 10% intervals around the ARWU

weights wi:

S4 =
{
s ∈ S0

w | 0.7wi ≤ wi ≤ 1.3wi ∀ i = 1, . . . , 6
}

,

S5 =
{
s ∈ S0

w | 0.9wi ≤ wi ≤ 1.1wi ∀ i = 1, . . . , 6
}

.

We focus on rank-orderings which respect dominance. The universities are indexed so

that xj is ranked j-th in the ARWU. Table 2 presents the data and the ranking intervals

of universities x1–x50 among all 498 universities. The university x334 illustrates how much

the choice of weights can influence the rankings; with no weight information, all rankings

from 10 to 498 are in its ranking interval, as seen in Figure 3.

The results show that:

• Some universities’ rankings are more robust to the weights than others’. For ex-
ample, x1 is among the top two no matter what the weights are. The rankings of

x10 and x21 can drop only by 10 to 20 and by 15 to 36, respectively, while x7 can

attain ranking 126 and x19 ranking 210 for some non-negative weights (set S1). The

ranking of x34 is quite sensitive even to ‘small’ weight perturbation (sets S4–S5),

while the ranking of x14 is sensitive to ‘large’ (S1–S3), but not ‘small’ weight pertur-

bation. The rankings of the top ten universities are at most 12 with weights from

S4; but with weights from S3, universities x6, x7 and x9 can attain rankings above

50, while the other top ten universities’ maximum rankings are below 20. Pairwise

comparisons are possible, too: x44 is ranked behind x43 in ARWU, but its maximum

rankings are smaller than those of x43 for all weight sets S1–S5.

• The rankings of some universities do not drop, if ‘slightly’ different weights are used.
For example, the ranking interval of x13 is [11, 13] with weights from S4. On the

contrary, a ‘small’ change in weights would not improve the ranking of x17 as it is in
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Table 2: Data and ranking intervals for 51 universities

xj vN
1 (x

j
1) vN

2 (x
j
2) vN

3 (x
j
3) vN

4 (x
j
4) vN

5 (x
j
5) vN

6 (x
j
6) S1 S2 S3 S4 S5

1 100 100 100 100 100 69.2 [1, 2] [1, 2] [1, 1] [1, 1] [1, 1]

2 67.6 79.3 69 70.9 70.6 54.2 [2, 9] [2, 7] [2, 7] [2, 4] [2, 3]

3 40.2 78.4 87.6 68.4 69.7 50.1 [2, 15] [2, 14] [2, 8] [2, 5] [2, 4]

4 70.5 80.3 66.8 70.1 61.4 64.5 [2, 31] [2, 19] [2, 19] [2, 5] [3, 4]

5 88.5 92.6 53.9 54.3 65.7 53.1 [2, 18] [2, 13] [2, 13] [2, 6] [5, 5]

6 50.3 68.8 56.7 64.8 46.9 100 [1, 108] [1, 66] [5, 66] [5, 7] [6, 6]

7 56.4 84.8 61.1 43.3 44.3 65.5 [2, 126] [3, 91] [3, 91] [6, 9] [7, 8]

8 70.7 67.4 56.2 47.6 69.9 32.1 [3, 28] [3, 20] [5, 15] [6, 8] [7, 8]

9 65.5 83.9 50.9 39.8 50.5 40 [3, 82] [3, 57] [4, 57] [9, 12] [9, 10]

10 56.2 57.6 48.8 49.8 68.5 41.1 [5, 20] [6, 19] [7, 19] [8, 11] [9, 10]

11 48.6 44.9 58.5 56.3 62 37 [5, 28] [5, 22] [6, 22] [9, 11] [11, 11]

12 42.3 51.1 54.3 49.9 59.5 38.1 [9, 41] [9, 30] [9, 30] [12, 13] [12, 13]

13 27.2 42.6 56.9 49.2 75.1 31.2 [4, 38] [4, 37] [4, 16] [11, 13] [12, 13]

14 15.1 35.8 60.2 54.6 65.1 37.9 [5, 114] [5, 89] [5, 21] [14, 16] [14, 14]

15 32.9 34.3 57.1 46.9 68.6 28.5 [8, 48] [9, 36] [9, 22] [14, 17] [15, 16]

16 24.4 31.7 53.9 51.6 72.5 28.1 [6, 53] [8, 41] [8, 28] [14, 16] [15, 16]

17 36.5 35.4 51.9 40.2 66.1 25.7 [13, 81] [13, 53] [14, 26] [17, 21] [17, 20]

18 43.6 32.1 42 49.4 64 27.2 [10, 61] [11, 44] [15, 28] [17, 21] [17, 20]

19 0 40.1 53.4 51.8 60.7 33.6 [9, 210] [10, 204] [10, 31] [17, 24] [17, 21]

20 33.3 14.1 42 52 80.4 34.5 [2, 107] [2, 88] [2, 88] [16, 24] [17, 20]

21 32.9 32.1 39.4 44.6 67 31.6 [13, 36] [14, 35] [14, 35] [19, 23] [21, 22]

22 36.5 0 59.8 43.4 79.8 26.3 [2, 155] [2, 138] [2, 138] [17, 28] [20, 24]

23 34.1 36.1 36.3 43.6 53.6 47.1 [8, 60] [8, 53] [17, 53] [19, 28] [22, 24]

24 33.7 34.7 38.1 36 67.6 31 [13, 42] [14, 40] [14, 40] [21, 25] [23, 24]

25 35.4 36.5 42.6 37.1 58.6 27.8 [15, 57] [16, 43] [18, 37] [21, 28] [25, 26]

26 17.7 37.2 41.4 36.9 62.3 33 [16, 91] [17, 73] [17, 33] [23, 28] [26, 27]

27 23.8 19.2 38.8 38.3 80.3 27.9 [2, 71] [3, 60] [3, 60] [23, 29] [25, 27]

28 30.6 16.2 50.4 36.1 66.6 23.9 [13, 107] [16, 82] [16, 80] [25, 32] [28, 28]

29 18.5 18.9 48.3 35.9 59.7 28.4 [20, 84] [21, 68] [21, 64] [29, 34] [29, 31]

30 21.3 25.9 38.8 41 54.8 26.7 [23, 68] [24, 55] [24, 52] [29, 33] [29, 31]

31 32.4 24.4 40.7 36.2 54.4 22.4 [22, 131] [24, 109] [28, 55] [29, 34] [30, 34]

32 14.1 30.7 38.8 41.7 44.7 33.5 [20, 134] [21, 115] [24, 115] [29, 37] [32, 34]

33 16 35.1 42 33.3 42.6 37.3 [15, 148] [16, 129] [22, 129] [29, 36] [31, 34]

34 19.2 58.4 28.8 42.3 21 35.6 [10, 477] [11, 450] [11, 450] [26, 52] [29, 38]

35 17.7 0 45.8 42.2 62 24.4 [20, 190] [22, 147] [22, 139] [31, 50] [34, 38]

36 17.7 18.9 32.2 30.8 65.7 23.7 [18, 111] [20, 95] [20, 67] [33, 42] [35, 38]

37 22 19.9 41.4 29 53.6 26.2 [29, 74] [30, 64] [31, 61] [34, 40] [35, 38]

38 18.5 16.6 46.1 28.4 54.4 24.7 [22, 95] [22, 84] [22, 82] [33, 43] [36, 39]

39 34.8 23.5 24.9 28.8 59.9 21.9 [20, 144] [21, 113] [29, 82] [32, 46] [36, 39]

40 26.1 24.1 26 26 56.4 32.3 [23, 83] [25, 76] [34, 76] [36, 47] [40, 43]

41 10.7 16.2 39.4 27.7 60.6 23.9 [30, 183] [31, 167] [31, 86] [38, 53] [40, 43]

42 26.1 27.2 31.4 20.5 49.9 38.1 [14, 102] [15, 87] [33, 87] [35, 49] [40, 44]

43 11.9 0 46.6 37.4 56.1 23.2 [22, 239] [22, 167] [22, 149] [36, 64] [40, 50]

44 23.2 18.9 27.9 28 59.1 23.1 [31, 118] [33, 110] [35, 71] [40, 53] [43, 48]

45 31.7 46 12.5 20.8 49.9 23.6 [13, 237] [14, 206] [14, 206] [34, 66] [41, 52]

46 0 29.3 36.7 26.3 49.3 26.9 [28, 240] [28, 209] [28, 89] [38, 59] [43, 51]

47 0 0 47.2 31.7 63 26 [20, 247] [22, 232] [22, 143] [37, 70] [42, 56]

48 0 26.7 38.8 26.3 53.1 20 [29, 278] [32, 225] [32, 64] [39, 59] [43, 51]

49 20.6 33.1 30.5 29.9 38.4 23.5 [25, 208] [28, 182] [28, 182] [39, 62] [44, 52]

50 26.1 20.9 27.9 30.4 48.2 26.1 [35, 98] [35, 92] [39, 92] [43, 55] [46, 50]

334 0 0 14.4 5.7 16.4 44.7 [10, 498] [12, 498] [212, 498] [252, 450] [306, 371]
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Figure 3: Ranking intervals for 51 universities

[17, 21] for all weights in S4. The ranking intervals also show whether the ranking

can improve or drop more as a result of perturbing weights: The ranking of x37 can

drop by 24 to 61, but improve only by 6, if weights in S3 are considered. The largest

corresponding drop for x26 is 7, but the biggest possible improvement is 9.

• Incomplete ordinal information and lower bounds (set S3) can narrow the ranking

intervals effectively. For example, the maximum ranking of x19 improves from 210 to

31 as a result of introducing this preference information. Focusing on rank-orderings

that respect dominance can narrow the intervals, too. For example, the value of x19

is zero with weights (1, 0, 0, 0, 0, 0), but 498 /∈ R�(x19, S1), because x19 dominates
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288 universities.

5 Ranking intervals in project portfolio selection

5.1 Additive-linear portfolio value

Multi-criteria methods are extensively employed to select subsets of projects from a large

set of proposals X̃. Several applications use an additive value function to model the

positive value that would be gained if the project was selected, and define the value of

the portfolio as the sum of its constituent projects’ values (e.g., Golabi et al. 1981, Ewing

et al. 2006, Kleinmuntz and Kleinmuntz 1999). Optimization models can then be applied

to solve the portfolio p ⊆ X̃ that maximizes this additive-linear value

V (p) =
∑
xj∈p

V (xj) =
∑
xj∈p

n∑
i=1

wiv
N
i (xj

i ) (11)

subject to resource and other possible portfolio-level constraints as well as possible inter-

actions among the projects (e.g., Stummer and Heidenberger 2003). These constraints are

typically modeled with linear inequalities which characterize feasible portfolios PF ⊆ 2X̃ .

We first revisit a case study by Könnölä et al. (2007) and show how ranking inter-

vals can be used to support multi-criteria portfolio selection when feasible portfolios are

constrained only by the maximum number of projects they can contain and there are no

project interactions. Second, we discuss how ranking intervals can be used in the early

stages of project portfolio selection.

5.2 Ranking intervals in screening of innovation ideas

Könnölä et al. (2007) use an additive-linear model of portfolio value (11) to support the

screening of innovation ideas. Their model accommodates numerical evaluations on a scale

from 1 to 7, provided by dozens of experts with regard to novelty (a1), feasibility (a2), and

relevance (a3) of each innovation idea. Of the three approaches for using these numerical
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evaluations, we consider the one in which the normalized score of an innovation idea is

essentially the average of the participants’ evaluations. Feasible portfolios are constrained

by the ‘budget’, defined by the number of projects to be included in the portfolio.

Könnölä et al. (2007) used the RPM method (Liesiö et al. 2007), which accommodates

incomplete preference information and uses dominance (see Definition 4) to compare fea-

sible portfolios. Project-level decision recommendations are based on the analysis of the

non-dominated portfolios. A project (an innovation idea in this context) that is included

in all of them is a core project and should be selected; exterior projects do not belong to

any of them and should be discarded; the rest are borderline projects. Figure 4 presents

this categorization and the ranking intervals for the 28 innovation ideas in ‘Health care

and societal services’ without any information about the attribute weights. The ‘budget’

is ten ideas.

#24 #18 #3 #4 #8 #25 #7 #2 #23 #22 #26 #5 #12 #13 #1 #6 #16 #10 #17 #15 #28 #11 #27 #9 #21 #14 #20 #19
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Figure 4: Ranking intervals of the innovation ideas. The horizontal line highlights the

budget of ten. The vertical dashed lines separate core, borderline and exterior projects.

The results show that (i) only the core projects have maximum rankings that are at

most ten, (ii) the minimum rankings of the exterior projects are greater than ten, and (iii)

there is one borderline project, #28, whose minimum ranking exceeds ten. Indeed, the
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ranking intervals identify core, borderline and exterior projects among potentially optimal

portfolios

PPO(S) = {p ∈ PF | V (p) ≥ V (p′) ∀ p′ ∈ PF for some s ∈ S}

simultaneously for all budgets K = 1, . . . ,m − 1, when there are no other portfolio-level

constraints or project interactions.

Theorem 3 Let S ⊆ S0 be convex, K ∈ {1, . . . ,m − 1}, V (p) as in (11), and PF =

{p ⊆ X | |p| ≤ K}. Then p ∈ PPO(S) if and only if there exists r ∈ R(S) so that r(xj) ≤
K for all xj ∈ p.

A non-dominated portfolio is not necessarily potentially optimal. For example, project

#28 belongs to a non-dominated portfolio which is not potentially optimal. But, as a

rule, a potentially optimal portfolio p is non-dominated: it is dominated by p′ only, if

the values of these portfolios are equal for all those scores with which p maximizes V in

addition to the requirement that the dominance conditions – V (p′) ≥ V (p) for all feasible

scores and V (p′) > V (p) for some feasible scores – hold (for more detailed discussion, see

Hazen 1986 and Rios Insua and French 1991).

Theorem 3 states that if feasible portfolios are constrained only by the number of

projects, then choosing the projects with the highest values leads to a value-maximizing

portfolio. Furthermore, the ranking intervals identify the projects which are among the K

most high-valued ones, no matter how the weights and scores are selected from the feasible

region. This is useful, because the budget can be a ‘soft constraint’ (Liesiö et al. 2008,

see also Phillips and Bana e Costa 2007), and the ranking intervals can thus be used

to analyze how the recommendations change as a function of the budget. Specifically,

if r−S (xk) > K, then xk is an exterior project, if r−S (xk) ≤ K < r+
S (xk), then xk is a

borderline project, and if r+
S (xk) ≤ K, then xk is a core project among the potentially

optimal portfolios. In this way, ranking intervals provide decision support even if the

budget is incompletely defined as an interval K− ≤ K ≤ K+.

Könnölä et al. (2007) set the budget to approximately one third of the total number of

innovation ideas. The ranking intervals in Figure 4 suggest that the decision recommen-

dations are in this case study robust to budget selection: because there are no innovation

ideas with maximum rankings between 7 and 14, ideas #18 and #24 are the only core
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projects among the potentially optimal portfolios for any budget between 6 and 14. A

budget reduction of one innovation idea would not change the set of exterior projects ei-

ther, but increasing the budget by one to 11 would change the status of #11 from exterior

to borderline project.

5.3 Ranking intervals in project proposal screening

Often, the task is to select a portfolio of projects with different costs such that the total

cost of the portfolio is limited by a budget. One widely used approach to support such

portfolio decisions is to rank the proposals in terms of their value-to-cost ratios V (xj)/cj

(e.g., Kirkwood 1997). In comparison with many methods for portfolio decision analy-

sis, the benefit of these ratios is that several budgets can be considered simultaneously

(Kleinmuntz and Kleinmuntz 1999) so that cost differences are transparently accounted

for. However, if the preferences are incompletely defined, then the proposals’ value-to-cost

ratios generally take values over intervals. Comparisons of these intervals involve the same

difficulties as comparing alternatives’ value intervals (see Section 2), which suggests that

it maybe better to focus on the rankings that these value-to-cost ratios can have. The

project proposals’ value-to-cost ratio ranking intervals can be computed with the linear

models of Theorem 2 and Lemma 2 by replacing the overall values V (xj) by these ratios,

if the cost estimates cj are crisp numbers.

The ranking intervals can be especially useful in the early phases of portfolio deci-

sion analysis. Even if additive value function represented the DM’s preferences between

project proposals, the additive-linear portfolio value (11) requires additional preference

independence conditions to hold (Golabi et al. 1981). If some other value function than

(11) is used, linear models to compute value-maximizing or non-dominated portfolios

(Liesiö et al. 2007, 2008) cannot be used. Indeed, for example, Stummer and Heiden-

berger (2003) and Grushka-Cockayne et al. (2008) enumerate all 2m possible portfolios

before portfolio-level analysis. Because this is a tractable approach only if the number

of proposals is small, Stummer and Heidenberger (2003) propose that a screening phase

should be conducted first to compare individual projects and to discard ‘inferior’ ones

so that some 20–30 proposals qualify for the portfolio-level analysis. Similarly, Linton et

al. (2002) divide projects into categories discard, consider further, and also accept before

modeling interdependencies among the projects and imposing portfolio-level constraints.
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The ranking intervals help such screening, because they identify ‘inferior’ and ‘very

good’ project proposals also under incomplete preference information. In addition to

making it possible to enumerate all project portfolios, decreasing the number of proposals

reduces the effort needed (i) to evaluate interdependencies among the proposals, and (ii)

to evaluate the proposals in more detail, if the data or the evaluations that describe the

proposals is inaccurate or incomplete at the outset: it can be useless to evaluate proposals

that perform well (poorly) even if the most pessimistic (optimistic) characterization of

the proposal is applied, as they would be selected (discarded) even if more accurate infor-

mation was available. The RPM method, too, can benefit from such a screening phase,

because the computation of the non-dominated portfolios becomes computationally de-

manding if the number of proposals is very large. In addition, the algorithms of the RPM

method assume that the projects are evaluated through score intervals vij ≤ vN
i (xj

i ) ≤ vij,

which are not necessarily readily available at the early stages of the analysis.

6 Conclusion

We have shown that several decision rules and other solution concepts for the compari-

son of alternatives with incompletely defined preferences provide results which depend on

the normalization of the additive value function. Towards this end, we propose ranking

intervals which show what rankings the alternatives can attain under incomplete prefer-

ence information, to complement dominance relations as a means of characterizing which

alternatives are better than others. These ranking intervals are easy to understand, take

all alternatives into account simultaneously and can be visualized in an understandable

format no matter how many criteria there are. The ranking intervals can be efficiently

computed by solving MILP problems, even when there are hundreds of alternatives.

Ranking intervals can be particularly useful when conducting sensitivity analyses of

ranking lists or rank-orderings, and when screening alternatives. Screening can be useful

especially in multi-criteria project portfolio selection, where there may be hundreds of

project proposals. In such settings, ranking intervals can be used to discard weak project

proposals or to select very good ones already in the early phases of the decision process.

This leaves fewer projects for further consideration, so that less resources are needed

for more detailed project evaluation before good portfolios are computed in view of the
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available preference information.

A Examples of results that depend on normalization

Alternative x1 quasi-dominates x2 ifmaxV ∈V ′ [V (x2)−V (x1)] ≤ μ, in which μ is a “small”

predefined parameter (Dias and Climaco 2000). If μ = 0.05, then (1, 2) quasi-dominates

(2, 1) but not vice versa in the example illustrated in Figure 1 with choice x+ = (12, 2).

However, if x+ = (2, 12), then (2, 1) quasi-dominates (1, 2) but not vice versa. Decision

rules quasi-optimality and quasi-dominance by Sarabando and Dias (2009) are based
on the concept of quasi-dominance and thus exhibit rank reversals in the same way.

Absolute dominance between alternatives xj and xk holds, if minV ∈V ′ V (xj) >

maxV ∈V ′ V (xk) (Salo and Hämäläinen 2001). If value functions (4), and the two choices of

V ′ illustrated in Figure 1 are considered, then V (1, 2) = 0.5 and V (0.99, 1.98) = 0.495 for

all V ∈ V ′ with x+ = (2, 4) and thereby x1 dominates (0.99, 1.98) in the sense of absolute

dominance. But if x+ = (12, 2), thenminV ∈V ′ V (1, 2) ≈ 0.1538 < maxV ∈V ′ V (0.99, 1.98) ≈
0.31 and absolute dominance does not hold.

The domain criterion (Eiselt and Laporte 1992) and the acceptability index
(Lahdelma et al. 1998) measure the “share of attribute weights” for which a particu-

lar alternative is recommended. Value functions of form (5) that represent (4) can be

written

V N(x) =
x∗

1 − x◦
1

x∗
1 − x0

1 + r(x∗
2 − x0

2)︸ ︷︷ ︸
=w1

x1 − x◦
1

x∗
1 − x◦

1︸ ︷︷ ︸
=vN

1 (x1)

+
r(x∗

2 − x◦
2)

x∗
1 − x0

1 + r(x∗
2 − x0

2)︸ ︷︷ ︸
=w2

x2 − x◦
2

x∗
2 − x◦

2︸ ︷︷ ︸
=vN

2 (x2)

, (12)

in which r ∈ [0.5, 2]. Now V N(1, 2) ≥ V N(2, 1) ⇐⇒ 2 ≥ r ≥ 1 ⇐⇒

[x∗
1 − x◦

1]/[x
∗
1 − x◦

1 + 2(x∗
2 − x◦

2)] ≤ w1 ≤ [x∗
1 − x◦

1]/[x
∗
1 − x◦

1 + x∗
2 − x◦

2],

V N(1, 2) ≤ V N(2, 1) ⇐⇒ 1 ≥ r ≥ 0.5 ⇐⇒
[x∗

1 − x◦
1]/[x

∗
1 − x◦

1 + x∗
2 − x◦

2] ≤ w1 ≤ [x∗
1 − x◦

1]/[x
∗
1 − x◦

1 + 0.5(x∗
2 − x◦

2)].

If x∗ = (2, 4), x◦ = (0, 0), these conditions are V N(1, 2) ≥ V N(2, 1) ⇐⇒ 1/5 ≤ w1 ≤ 1/3,

V N(2, 1) ≥ V N(1, 2) ⇐⇒ 1/3 ≤ w1 ≤ 1/2. The acceptability index of (1, 2) is thus
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(1/3−1/5)/(1/2−1/5) = 4/9 which is smaller than 5/9, the acceptability index of (2, 1).

If x∗ = (12, 2), x◦ = (0, 0), the acceptability index of (1, 2) is 13/21 > 8/21.

Rios Insua and French (1991) consider completely defined (5) and propose sensitiv-

ity analysis to be based on computing the closest competitor of the alternative that
maximizes (5) among X̃. This closest competitor (xclosest) is the one for which the

‘smallest change’ in attribute weights – measured for example in Euclidean distance –

is required so that V N(xclosest) ≥ maxxk∈X̃{V N(xk)}. Let the DM’s value function be
(12) with r = 1, and consider X̃ = {x1, x2, x3} = {(1, 1), (0.9, 1.05), (1.05, 0.8)}. Then
V N(x1) > max{V N(x2), V N(x3)}.

Choice x◦ = (0, 0), x∗ = (1.05, 1.05) leads to attribute weights w = (w1, w2) =

(0.5, 0.5). Then, V N(x2) ≥ max{V N(x1), V N(x3)} ⇐⇒ w2 ≥ 2/3 (i.e., r ≥ 2), and

V N(x3) ≥ max{V N(x1), V N(x2)} ⇐⇒ w2 ≤ 1/5 (i.e., r ≤ 1/4). In terms of Euclidean

distance, x2 is the closest competitor of x1, because√
(1/2 − 1/3)2 + (1/2 − 2/3)2 =

√
2/6 < 3

√
2/10 =

√
(1/2 − 4/5)2 + (1/2 − 1/5)2.

But if x◦ = (0, 0), x∗ = (10.5, 1.05), then w = (10/11, 1/11) and x3 is the clos-

est competitor because V N(x3) ≥ max{V N(x1), V N(x2)} ⇐⇒ w2 ≤ 1/41 (i.e.,

r ≤ 1/4), V N(x2) ≥ max{V N(x1), V N(x3)} ⇐⇒ w2 ≥ 1/6 (r ≥ 2), and√
(10/11 − 40/41)2 + (1/11 − 1/41)2 <

√
(10/11 − 5/6)2 + (1/11 − 1/6)2.

B Proofs

Proof of Theorem 1: a) Let xmin
i = argminx∈[li,ui]

vi(x) and xmax
i = argmaxx∈[li,ui]

vi(x).

Because V is increasing in vi, i = 1, . . . , n, for example (xmin
1 , . . . , xmin

n ), (xmax
1 , . . . , xmax

n ) ∈
{x ∈ X | V (x) > max{V (x1), V (x2)}∨V (x) < min{V (x1), V (x2)} ∀ V ∈ V} so this set is
not empty. Choose C �= 0 so that it is positive, if V (x) > V (x1) and negative otherwise

and V ′ so that V (x) = C, V (x2) = 0 for all V ∈ V ′. By assumption there exists V ∈ V ′ so

that V (x1) > V (x2) = 0, whereby maxV ∈V ′ [V (x1) − V (x)] = maxV ∈V ′ [V (x1)] − C > −C.

b) Because for any pair (i, j) ∈ {1, . . . , n}×{1, . . . , i−1, i+1, . . . , n} there exist xi, x
′
i ∈ Xi,

vi(xi) < vi(x
′
i) and xj, x

′
j ∈ Xj, vj(xj) < vj(x

′
j), so that V (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) ≥
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V (x1, . . . , xj−1, x
′
j, xj+1, . . . , xn) ∀ V ∈ V , and vi are continuous, ratio∑

i: x1
i�ix2

i
[vi(x

1
i ) − vi(x

2
i )]∑

i: x2
i�ix1

i
[vi(x2

i ) − vi(x1
i )]

(13)

has extrema values over V . Let the minimum and maximum of (13) be K− and K+,

respectively. Maximum K+ is greater than one, because otherwise V (x2) ≥ V (x1) ∀ V ∈
V . Similarly K− < 1. The maximum (minimum) of ratio (13) over V ∈ V is equal to its
maximum (minimum) over V ∈ V ′, for any V ′ that represents V .

If K+ +K− < 2, choose μa, μb so that min{1, μbK
+ +(K+ −K−)(K+ − 1)/(2−K−−

K+)} > μa > μbK
+ > 0. If K+ + K− = 2, choose them so that 1 > μa > K+μb > 0.

Otherwise, set μb = 0, and choose μa ∈ (0, 1).

For all i so that x1
i �i x2

i , set x+
i = x2

i and xb
i so that vi(x

b
i) = μb[vi(x

1
i )−vi(x

2
i )]+vi(x

2
i ).

Such xb
i exists, because there exists xb

i ∈ [x2
i , x

1
i ] ⊆ Xi, for any vi(x

b
i) so that vi(x

2
i ) ≤

vi(x
b
i) ≤ vi(x

1
i ), because vi is continuous. For all i so that x1

i ≺i x2
i , set x−

i = x1
i and xa

i

so that vi(x
a
i ) = μa[vi(x

2
i ) − vi(x

1
i )] + vi(x

1
i ). Now

V (x+) − V (x−) = −μb

∑
i: x1

i�ix2
i

[vi(x
1
i ) − vi(x

2
i )] + μa

∑
i: x2

i�ix1
i

[vi(x
2
i ) − vi(x

1
i )] (14)

is (strictly) positive for all V ∈ V , because the attribute-specific value differences in (14)
are positive and μa > K+μb ≥ 0.

max
V ∈V

V (x1) − V (x2)

V (x+) − V (x−)
= max

V ∈V

∑
i: x1

i�ix2
i
[vi(x

1
i ) − vi(x

2
i )] −

∑
i: x2

i�ix1
i
[vi(x

2
i ) − vi(x

1
i )]

−μb

∑
i: x1

i�ix2
i
[vi(x1

i ) − vi(x2
i )] + μa

∑
i: x2

i�ix1
i
[vi(x2

i ) − vi(x1
i )]

= max
V ∈V

∑
i: x1

i
�ix2

i
[vi(x

1
i )−vi(x

2
i )]

∑
i: x2

i
�ix1

i
[vi(x2

i )−vi(x1
i )]

− 1

−μb

∑
i: x1

i
�ix2

i
[vi(x1

i )−vi(x2
i )]

∑
i: x2

i
�ix1

i
[vi(x2

i )−vi(x1
i )]

+ μa

=
K+ − 1

−μbK+ + μa

.

Define V ′ so that V (x+) = 1, V (x−) = 0. Then maxV ∈V ′ [V (x1) − V (x2)] = K+−1
−μbK++μa

.

Value difference (14) is now equal to one. Thereby

∑
i: x2

i�ix1
i

[vi(x
2
i ) − vi(x

1
i )] =

1

μa

+
μb

μb

∑
i: x1

i�ix2
i

[vi(x
1
i ) − vi(x

2
i )]. (15)
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Inserting (15) to minimal and maximal (13) leads to constraints

∑
i: x1

i�ix2
i

[vi(x
1
i ) − vi(x

2
i )] ≥

K−

μa − μbK− (16)

and ∑
i: x1

i�ix2
i

[vi(x
1
i ) − vi(x

2
i )] ≤

K+

μa − μbK+
.

Inserting (15) to maxV ∈V ′ [V (x2) − V (x1)] gives

max

⎡
⎣ 1

μa

+

(
μb

μa

− 1

) ∑
i: x1

i�ix2
i

[vi(x
1
i ) − vi(x

2
i )]

⎤
⎦ (17)

Because μb < μa, the objective function of (17) is decreasing in
∑

i: x1
i�ix2

i
[vi(x

1
i )− vi(x

2
i )],

and the maximum is obtained when (16) is binding. Thus, maxV ∈V ′ [V (x2) − V (x1)] is

1

μa

+

(
μb

μa

− 1

)
K−

μa − μbK− =
1 − K−

μa − μbK− .

We can now compare the two maximal value differences:

max
V ∈V ′

[V (x1) − V (x2)] > max
V ∈V ′

[V (x2) − V (x1)] ⇐⇒ K+ − 1

−μbK+ + μa

>
1 − K−

μa − μbK− .

Because μa > μbK
+, (−μbK

+ +μa)(μa −μbK
−) is positive. Multiplying both sides of the

above inequality by this term leads to

μa(K
+ + K− − 2) + μb(K

+ + K− − 2K+K−) > 0.

If K+ + K− > 2, μb = 0 and the inequality holds. If K+ + K− < 2, then μa = K+μb + ε

for ε so that (K+ − K−)(K+ − 1)/(2 − K− − K+) > ε > 0. Replacing μa by K+μb + ε

and dividing both sides by μb > 0 leads to

(K+ + ε)(K+ + K− − 2) + (K+ + K− − 2K+K−) =

(K+ − K−)(K+ − 1) − ε(2 − K− − K+) >

(K+ − K−)(K+ − 1) − (K+ − K−)(K+ − 1)(2 − K− − K+)

2 − K− − K+
= 0.

If K+ + K− = 2, then it suffices to show that K+ + K− − 2K+K− > 0. Inserting

K+ = 2 − K− to this inequality gives

2 − 2(K−(2 − K−)) > 0 ⇐⇒ 2(1 − K−)2 > 0,
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which holds because K− < 1. �

Proof of Lemma 1: Let R(xk, S) = ∪r∈R(S){r(xk)}, R�(xk, S) = ∪r∈R�(S){r(xk)},

R�(s, S) = R�(S) ∩ R({s}) (18)

and R(xk, s, S) = {r(xk) | r ∈ R�(s, S)}. We first show that R(xk, s, S) is non-empty

and both R(xk, s, S) and R(xk, {s}) consist of consecutive integers.

Take any s ∈ S and define sets

I>(s) = {j ∈ {1, . . . ,m} | V (xj) > V (xk)}, (19)

I=(s) = {j ∈ {1, . . . ,m} | V (xj) = V (xk)}, (20)

I<(s) = {j ∈ {1, . . . ,m} | V (xj) < V (xk)}. (21)

Assign rankings 1, . . . , |I>(s)| to alternatives {xj ∈ X̃ | j ∈ I>(s)} and rankings
|I>(s)| + |I=(s)| + 1, . . . ,m to alternatives {xj ∈ X̃ | j ∈ I<(s)} so that V (xj) >

V (xl) ⇒ r(xj) < r(xl), xj �S xl ⇒ r(xj) < r(xl). Such assignment is possible, be-

cause (i) V (xj) > V (xl) ⇒ xl ��S xj and (ii) alternatives that have equal values (de-

noted by index set X ′) can be assigned rankings in the following way: let Xp contain

the indices of alternatives that are non-dominated among X ′ \ ∪p−1
i=0 Xi, X0 = ∅. As-

sign rankings |{j ∈ {1, . . . ,m} | V (xj) > V (x′), x′ ∈ X ′}| + 1 +
∑

0≤i<p |Xi|, . . . , |{j ∈
{1, . . . ,m} | V (xj) > V (x′), x′ ∈ X ′}| +∑

1≤i≤p |Xi| to xl so that l ∈ Xp, p = 1, . . . , P in

which P = min{i ∈ {1, . . . ,m} | Xi+1 = ∅}.

As there are |I>(s)| alternatives with strictly higher value than xk and |I<(s)| with
strictly lower value than xk, set

B(s) = {b ∈ Z | |I>(s)| + 1 ≤ b ≤ |I>(s)| + |I=(s)|} (22)

is equal to R(xk, {s}).

Partition I=(s) so that I=
� (s) includes indices of the alternatives that dominate xk,

I=
≺ (s) those that xk dominates and I=

∼ (s) = I=(s) \ (I=
� (s) ∪ I=

≺ (s)). Assign rankings

|I>(s)| + 1, . . . , |I>(s)| + |I=
� (s)| to alternatives {xj | j ∈ I=

� (s)}, and rankings |I>(s)| +
|I=

� (s)| + |I=
∼ (s)| + 1, . . . , |I>(s)| + |I=(s)| to alternatives {xj | j ∈ X=

≺ (s)} so that xj �S

xl ⇒ r(xj) < r(xl).
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Among R�(s, S), the ranking of alternative xk is not smaller than |I>(s)| + |I=
� (s)| +

1 because there exist |I>(s)| alternatives whose value is higher than that of xk, and

additional |I=
� (s)| that dominate xk. Similarly, it is at most |I>(s)| + |I=

� (s)| + |I=
∼ (s)|.

No alternative xi, i ∈ I=
∼ (s) dominates xj, j ∈ X=

� (s), because xi �S xj �S xk would

lead to xi �S xk which violates i ∈ I=
∼ (s). Similarly, no alternative xl, l ∈ I=

≺ (s) dominates

xi, because then xk �S xl �S xi, violating i ∈ I=
∼ (s). Take any z in

B�(s) = {b ∈ Z | |I>(s)| + |I=
� (s)| + 1 ≤ b ≤ |I>(s)| + |I=

� (s)| + |I=
∼ (s)|} (23)

and assign it to xk, and other rankings B�(s) \ {z} to the alternatives I=
∼ (s) \ {k} so that

xj �S xl ⇒ r(xj) < r(xl). Thus, R(xk, s, S) consists of consecutive integers B�(s).

If s−, s+ ∈ S and λ ∈ [0, 1], then sλ = λs+ + (1 − λ)s− ∈ S, because S is

convex. Because V is linear, (i) if j ∈ I≡(s−, s+) = {j ∈ {1, . . . ,m} | V (xk) =

V (xj) for both s− and s+}, then V (xk) = V (xj) for any s = sλ and (ii) if j ∈ {1, . . . ,m}\
I≡(s−, s+), then Λj(s

−, s+) = {λ ∈ [0, 1] | V (xj) = V (xk) for s = sλ} is either empty
or a singleton. Let Λ(s−, s+) = ∪j∈{1,...,m}\I≡(s−,s+)Λj(s

−, s+) = {λ ∈ [0, 1] | V (xk) =

V (xj) for some j ∈ {1, . . . ,m} \ I≡(s−, s+)}. By construction, 0 ≤ |Λ(s−, s+)| ≤ m − 1.

If Λ(s−, s+) = ∅, then the sets I>(sλ), I<(sλ), I=
� (sλ), X=

∼ (sλ) and I=
≺ (sλ) do not

depend on λ ∈ [0, 1]. Consequently R(xk, {sλ}) and R(xk, sλ, S) do not depend on λ. If

Λ(s−, s+) �= ∅, index the items of Λ(s−, s+) in an ascending order, i.e., λi < λj ⇐⇒ i < j,

for any λi, λj ∈ Λ(s−, s+). Take λ′ ∈ [0, 1] so that λ′ /∈ Λ(s−, s+). Then, I=(sλ′
) =

I≡(s−, s+) by construction. If λ′ < λ1, set i = 0. If λ′ > λ|Λ|, set i = |Λ(s−, s+)|.
Otherwise, set i so that λi < λ′ < λi+1. Take l ∈ {i, i + 1}. Then,

j ∈ I>(sλ′
) ⇒ j /∈ (I<(sλl) ∪ I=

≺ (sλl)) ⇐⇒ j ∈ (I>(sλl) ∪ I=
� (sλl) ∪ I=

∼ (sλl)),

j ∈ I<(sλ′
) ⇒ j /∈ (I>(sλl) ∪ I=

� (sλl)) ⇐⇒ j ∈ (I<(sλl) ∪ I=
≺ (sλl) ∪ I=

∼ (sλl)),

j ∈ I=
∼ (sλ′

) ⇒ j ∈ I=
∼ (sλl), j ∈ I=

� (sλ′
) ⇒ j ∈ I=

� (sλl), j ∈ I=
≺ (sλ′

) ⇒ j ∈ I=
≺ (sλl).

Hence, |I>(sλl)| ≤ |I>(sλ′
)| and |I<(sλl)| ≤ |I<(sλ′

)|. The cardinalities fulfill |I>(s)|+
|I=(s)| = m − |I<(s)|, whereby using the notation of (22) gives

B(sλ′
) ⊆ B(sλl). (24)
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Similarly, |I>(sλl)|+ |I=
� (sλl)| ≤ |I>(sλ′

)|+ |I=
� (sλ′

)| and |I<(sλl)|+ |I=
≺ (sλl)| ≤ |I<(sλ′

)|+
|I=

≺ (sλ)|. Using the notation of (23) gives

B�(sλl) ⊇ B�(sλ′
). (25)

a) Take s− ∈ S so that rS(xk) ∈ R(xk, {s−}) and s+ ∈ S so that rS(xk) ∈ R(xk, {s+}).
If Λ(s−, s+) = ∅, then R(xk, S) = R(xk, {sλ}), a set of consecutive integers.

Assume that λ1 > 0. Then if λ = 0, (24) becomes B(s−) ⊆ B(sλ1), whereby

R(xk, {s−}) ∩ R(xk, {sλ1}) �= ∅ (if λ1 = 0, then s− = sλ1 , and the above holds). For

any i ∈ {1, . . . , |Λ(s−, s+)| − 1}, it holds that λ = (λi + λi+1)/2 /∈ Λ(s−, s+). Thereby,

B(sλi+1) ⊇ B(s(λi+λi+1)/2) ⊆ B(sλi), and consequently R(xk, {sλi}) ∩ R(xk, {sλi+1}) �= ∅.
Finally, setting λ = 1, i = |Λ(s−, s+)| gives R(xk, {s+}) ∩ R(xk, {sλ|Λ(s−,s+)|}) �= ∅.

Thus, R(xk, S) = ∪|Λ(s−,s+)|
i=1 R(xk, {sλi}), a union of sets B(sλi). As a union of two

intersecting sets of consecutive integers, any B(sλi)∪B(sλi+1) also consists of consecutive

integers. By induction, ∪|Λ(s−,s+)|
i=1 R(xk, {sλi}) consists of consecutive integers, too.

b) Choose s−, s+ ∈ S so that r(xk, s−, S) = r�S (xk) and r(xk, s+, S) = r�S (xk).

With the same selection of parameters λ as above and the application of (25),

R(xk, s−, S) ∩ R(xk, sλ1 , S) �= ∅, R(xk, sλi , S) ∩ R(xk, sλi+1 , S) �= ∅ and R(xk, s+, S) ∩
R(xk, sλ|Λ(s−,s+)| , S) �= ∅. Because R�(S) = ∪s∈SR�(S) ∩ R({s}), then R�(xk, S) =

∪|Λ(s−,s+)|
i=1 R(xk, sλi , S). As above in a), this set consists of consecutive integers. �

Proof of Theorem 2: a) Using the partition (19)–(21), rS(xk)

= min
r(xk)∈R(xk,S)

r(xk) = min
s∈S,

r∈R({s})
r(xk) = 1 + min

s∈S,
r∈R({s})

|{j ∈ {1, . . . ,m} | r(xj) < r(xk)
} |

= 1 + min
s∈S

r∈R({s})

(|I>(s)| + ∣∣{j ∈ I=(s) | r(xj) < r(xk))
}∣∣) = 1 + min

s∈S
|I>(s)| .

Let constant M > 1, greater than value difference of any two alternatives. Then, rS(xk)

= 1 + min
s∈S

|I>(s)| = 1 + min
s∈S

∣∣{j ∈ {1, . . . ,m} | V (xj) > V (xk)}∣∣
= min

s∈S,
y∈{0,1}m

{
m∑

j=1

yj | V (xj) ≤ V (xk) + yjM ∀ j ∈ {1, . . . ,m}
}

+ 1 (26)

= min
s∈S,

y∈{0,1}m

{
m∑

j=1

yj | V (xj) ≤ V (xk) + yjM ∀ j ∈ {1, . . . ,m}, yk = 1

}
. (27)
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In (26), V (xj) > V (xk) ⇒ yj = 1. If V (xj) ≤ V (xk), both yj ∈ {0, 1} are feasible, but
the minimization of

∑
yj guarantees that such binary variables, including yk, are zero at

the optimum. Thus, the number of indices j so that V (xj) > V (xk) is
∑m

j=1 yj. Because

the selection of yk ∈ {0, 1} does not affect the feasiblity of the solution (the respective
constraint is 0 ≤ ykM), constant 1 in (26) can be replaced by setting yk = 1 to get

representation (27).

b) like in a), rS(xk) = maxr(xk)∈R(xk,S) r(xk) =

1 + max
s∈S

r∈R({s})

(|I>(s)| + |{j ∈ X=(s) | r(xj) < r(xk)}|) = max
s∈S

(|I>(s)| + |I=(s)|) .

For each rank-ordering r, define an inverse rank-ordering rinv so that r(xj) = z ⇐⇒
rinv(xj) = m − z + 1. By Definition 5, rinv(xk) > rinv(xl) ⇐⇒ r(xk) < r(xl) ⇒ V (xk) ≥
V (xj) ⇐⇒ −V (xk) ≤ −V (xj). Then, the maximum of r(xk), r ∈ R(S) can be obtained

by applying the result of part a) to rinv(xk):

rS(xk) = max
r

{
r(xk) | r ∈ R(S)

}
= min

rinv

{
m + 1 − rinv(xk) | r ∈ R(S)

}
= m + 1 − min

s∈S,
y∈{0,1}m

{
m∑

j=1

yj | − V (xj) ≤ −V (xk) + yjM ∀ j ∈ {1, . . . ,m}, yk = 1

}
.

By defining y′
j = 1 − yj, applying the property min f = −max(−f), and rearranging

terms, the above problem becomes

rS(xk)

= m + 1 + max
s∈S,

y′∈{0,1}m

{
−m +

m∑
j=1

y′
j | V (xk) ≤ V (xj) + y′

jM ∀ j ∈ {1, . . . ,m}, y′
k = 0

}

= max
s∈S,

y′∈{0,1}m

⎧⎪⎨
⎪⎩1 + y′

k︸ ︷︷ ︸
=1

+
m∑

j=1
j �=k

y′
j | V (xk) ≤ V (xj) + y′

jM ∀ j ∈ {1, . . . ,m}, y′
k = 0

⎫⎪⎬
⎪⎭

= max
s∈S,

y′∈{0,1}m

⎧⎪⎨
⎪⎩0 + y′

k︸ ︷︷ ︸
=1

+
m∑

j=1
j �=k

y′
j | V (xk) ≤ V (xj) + y′

jM ∀ j ∈ {1, . . . ,m}, y′
k = 1

⎫⎪⎬
⎪⎭

= max
s∈S,

y′∈{0,1}m

{
m∑

j=1

y′
j | V (xk) ≤ V (xj) + y′

jM ∀ j ∈ {1, . . . ,m}, y′
k = 1

}
.

Above, it has been acknowledged that with j = k, the respective constraint 0 ≤ (1−y′
k)M

does not affect the solution independently of y′
k ∈ {0, 1}.�
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Proof of Lemma 2: a) Let R�(s, S) and I=
� (s) like in the proof of Lemma 1. Then,

min
r∈R�(S)

r(xk) = 1+ min
s∈S,

r∈R�(s,S)

|{j ∈ {1, . . . ,m} | r(xj) < r(xk)
} | = 1+min

s∈S
|I>(s) ∪ I=

� (s)| .

Divide I>(s) into I>
� (s) and I>

�� (s), indices of alternatives that dominate and do not

dominate xk in S, respectively. Set I� = I>
� (s) ∪ I=

� (s) contains the indices of the

alternatives that dominate xk in S. Then,

min
r∈R�(S)

r(xk) = 1 + min
s∈S

|I>
�� (s) ∪ I>

� (s) ∪ I=
� (s)| = |I�| + 1 + min

s∈S
|I>

�� (s)|. (28)

By Theorem 2, the term 1 + mins∈S |I>
�� (s)| in (28) is the minimum ranking of xk among

X �� = X̃\{xj | j ∈ I�} and thus equal to

1 + min
s∈S

y′′∈{0,1}m

{
m∑

j=1

y′′
j | V (xj) ≤ V (xk) + y′′

j M ∀ xj ∈ X ��, y′′
j = 0 ∀ j ∈ I�}. (29)

Set I� is the same for any s ∈ S, and thus we can write

|I�| = min
s∈S

y′∈{0,1}m

{
m∑

j=1

y′
j | y′

j = 1 ∀ j ∈ I�, y′
j = 0 ∀ j ∈ I ��}, (30)

in which I �� = {j | xj ∈ X ��}. In (29) and (30), the variables y′ and y′′ are independent

of each other. Inserting (29) and (30) into (28) gives minr∈R�(S) r(xk) = 1+

min
s∈S

y′,y′′∈{0,1}m

{
m∑

j=1

[y′′
j + y′

j] | y′
j = 1, y′′

j = 0 ∀ j ∈ I�, y′
j = 0, V (xj) ≤ V (xk) + y′′

j M ∀ j ∈ I ��}.

Substitution yj = (y′′
j + y′

j) ∈ {0, 1} simplifies this expression to

1 + min
s∈S

y∈{0,1}m

{
m∑

j=1

yj | yj = 1 ∀ j ∈ I�, V (xj) ≤ V (xk) + (y − y′
j︸︷︷︸

=0

)M ∀ j ∈ I ��}.

b) The proof is similar to that of a) and therefore omitted. �

Proof of Theorem 3: Take any s ∈ S and p ∈ PPO({s}) such that |p| = K. Then,

�xj ∈ X̃ \ p such that V (xj) > V (xk), xk ∈ p, because otherwise V ((p ∪ {xj}) \ {xk}) >

V (p) and p would not be potentially optimal in {s}. Because no such xj exists, there

exists a rank-ordering r ∈ R({s}) such that r(xk) < r(xj), xk ∈ p, xj /∈ p.

Take any s ∈ S, r ∈ R({s}). Let p = {xk | r(xk) ≤ K}. Then, ∑xk∈p V (xk) ≥∑
xj∈p′ V (xj), p �= p′ ∈ PF , because V (xj) ≤ V (xk) for any xj /∈ p, xk ∈ p. �
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We develop comparative results for ratio-based efficiency analysis (REA) based on the decision-making
units’ (DMUs’) relative efficiencies over sets of feasible weights that characterize preferences for input

and output variables. Specifically, we determine (i) ranking intervals, which indicate the best and worst efficiency
rankings that a DMU can attain relative to other DMUs; (ii) dominance relations, which show what other DMUs
a given DMU dominates in pairwise efficiency comparisons; and (iii) efficiency bounds, which show how much
more efficient a given DMU can be relative to some other DMU or a subset of other DMUs. Unlike conventional
efficiency scores, these results are insensitive to outlier DMUs. They also show how the DMUs’ efficiency ratios
relate to each other for all feasible weights, rather than for those weights only for which the data envelopment
analysis (DEA) efficiency score of some DMU is maximized. We illustrate the usefulness of these results by
revisiting reported DEA studies and by describing a recent case study on the efficiency comparison of university
departments.
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1. Introduction
The seminal paper of Charnes et al. (1978) has
spawned a growing literature on data envelopment
analysis (DEA) which offers numerous methods for
examining the efficiency of decision-making units
(DMUs) (see, e.g., Cooper et al. 2007). These meth-
ods are often employed in contexts where information
about the unit prices of input and output variables is
not readily available, but where it is still possible to
elicit subjective information about how valuable these
variables are relative to each other (Thompson et al.
1986, Allen et al. 1997; cf. Thanassoulis et al. 2004).
This is the case in contexts such as higher education,
health care, and technology management, among oth-
ers (see, e.g., Sarrico and Dyson 2000).
Technically, the Charnes-Cooper-Rhodes-DEA

(CCR-DEA; Charnes et al. 1978) computes efficiency
scores for the DMUs relative to an efficient frontier,
characterized by the DMUs that have the highest
efficiency ratio between the aggregate value of their
outputs and aggregate value of their inputs for some
feasible input/output weights. By definition, an
efficient DMU will have a score of one. For inefficient
DMUs, the score is typically less than one and serves
as a measure of how close to the efficient frontier
a DMU can be when its inputs and outputs are
aggregated with weights that are most favorable to this
DMU. However, a concern with these scores is that

they do not convey information about how the effi-
ciency ratio of the DMU compares with the efficiency
ratios of other DMUs for other input/output weights
even though other weights reflect relevant preference
information. This recognition has motivated the
development of cross-efficiency (CE) methods where
the efficiency score for every DMU is computed
based on the weights for which the efficiency of some
DMU is maximized (see Sexton et al. 1986, Doyle and
Green 1994). Yet the consideration of these weights
only does not show how the DMUs’ efficiency ratios
change relative to each other for all feasible weights.
A second concern with conventional efficiency

scores is that they can be sensitive to which DMUs
are included in or excluded from the analysis: for
instance, the introduction or removal of a single out-
lier may shift the efficient frontier drastically and thus
disrupt efficiency scores, which may be perplexing
to users (see, e.g., Seiford and Zhu 1998a, b; Zhu
1996). A third concern with conventional scores is
that they call for returns-to-scale assumptions, which
may be difficult to justify. In effect, these three con-
cerns can be addressed by focusing on pairwise one-
on-one comparisons of efficiency ratios among DMUs
because such comparisons (i) account for all feasi-
ble input/output weights, (ii) are less sensitive to the
presence of outlier DMUs, and (iii) do not necessi-
tate assumptions about what the set of production
possibilities is beyond the DMUs that are included in
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the analysis (see, e.g., Galagedera and Silvapulle 2003,
Dyson et al. 2001).
Motivated by the above considerations, we de-

velop efficiency results in response to the following
questions:
• What are the best and worst rankings that a

given DMU can attain in comparison with other
DMUs based on the comparison of DMUs’ efficiency
ratios for all feasible weights?
• Given a pair of DMUs, does the first DMU dom-

inate the second one (in the sense that the efficiency
ratio of the first DMU is higher than or equal to that of
the second for all feasible weights and strictly higher
for some weights)?
• How much more/less efficient can a given DMU

be relative to some other DMU or, more generally,
relative to the most and least efficient DMU in some
subset of DMUs?
The first question is partly motivated by the popu-

larity of ranking lists, as exemplified by the ranking
of “best” universities by the Shanghai Jiao Tong Uni-
versity (cf. Liu and Cheng 2005, see also Köksalan
et al. 2010). The resulting ranking intervals—defined
by the DMUs’ best/worst rankings over all feasi-
ble input/output weights—are robust, because the
integer-valued bounds of these intervals can change
at most by one when a single DMU is introduced or
removed. The second question establishes dominance
relations based on pairwise comparisons between two
DMUs at a time. The third question (which is related
to superefficiency; see, e.g., Andersen and Petersen
1993) yields efficiency bounds that provide informa-
tion about the relative efficiency differences among
the DMUs. All of these results can be employed in
the specification of performance targets. With more
preference information, the results become usually
more conclusive in terms of narrower ranking inter-
vals, additional dominance relations, and tighter effi-
ciency bounds. Furthermore, ratio-based results can
be presented even when the number of DMUs is
small, because the results are not computed rela-
tive to an efficient frontier for the reliable estima-
tion of which the number of DMUs would have to
large compared with the number of input and output
variables.
The rest of this paper is organized as follows.

Section 2 discusses earlier methods for ratio-based
efficiency analysis and their applications in selected
application domains. Section 3 formulates ratio-based
efficiency results, considers their uses in target set-
ting, and contrasts them with cross-efficiency analy-
sis. Section 4 illustrates these results in the context
of reported DEA studies and describes a case study
where they were employed in the comparison of uni-
versity departments. Section 5 concludes.

2. DEA Methods and Their
Applications

In the DEA literature, there are numerous meth-
ods for analyzing the relative efficiencies of DMUs
that transform multiple inputs into multiple outputs
(see, e.g., Cooper et al. 2007). Early approaches for
incorporating preference information in these meth-
ods include the specification of assurance regions
(Thompson et al. 1990) and cone ratios (Charnes
et al. 1990). Subsequently, relationships between DEA
models and multicriteria decision-making methods
have been explored extensively (Stewart 1996, Joro
et al. 1998, Bouyssou 1999). These relationships also
underpin the value efficiency analysis method (Halme
et al. 1999, Halme and Korhonen 2000, Korhonen
et al. 2002), which makes inferences about the DMUs’
value efficiencies with the help of an implicit value
function. Recent advances include approaches based
on the explicit construction of the decision maker’s
(DM’s) value function (Gouveia et al. 2008) and the
specification of context-sensitive assurance regions for
input/output weights (Cook and Zhu 2008).
Instead of seeking to survey DEA applications (see,

e.g., Cooper et al. 2007, Emrouznejada et al. 2008,
Avkiran and Parker 2010), we only provide some
pointers to selected DEA models in the three decision
contexts—higher education, technology management,
and health care—for which we provide numerical effi-
ciency results in §4.
First, higher education is an attractive domain for

DEA, because universities consume many inputs and
produce multiple outputs to which prices may be dif-
ficult to attach. As a result, DEA has been employed
extensively in higher education by treating univer-
sities, departments, research units, or even students
as DMUs. For instance, Ahn et al. (1988) analyze
the production behavior of higher education institu-
tions and compare the relative efficiencies of pub-
lic and private doctoral-granting universities in the
United States. Johnes (2006) discusses the role of
DEA in higher education and analyzes more than 100
higher educational institutions in the United King-
dom. Tauer et al. (2007) examine the efficiencies of
the 26 academic departments at Cornell University
when specifying performance targets. Korhonen et al.
(2001) establish efficiency scores for research units
at the Helsinki School of Economics and present
an approach for allocating resources to support the
attainment of higher aggregate efficiency. Sarrico and
Dyson (2000) describe a DEA-based planning tool for
the formulation of strategic options at the University
of Warwick.
Second, comparative analyses in technology man-

agement involve subjective preferences about the
inputs that are needed to develop and deploy tech-
nologies with the aim of generating desired outputs.
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For example, Shafer and Bradford (1995) compare
alternative machine group solutions based on DEA
efficiencies. Baker and Talluri (1997) provide deci-
sion support for screening robots based on cross-
efficiency analysis. Talluri and Yoon (2000) evaluate
robots using an extended cone-ratio DEA approach.
Eilat et al. (2008) integrate DEA models with a bal-
anced scorecard approach and evaluate research and
development projects in different stages of their life
cycle. Farzipoor (2009) supports technology selection
decision by developing a framework that captures
preferences through assurance regions and accommo-
dates both cardinal and ordinal information about
the DMUs.
Third, DEA models in health care give insights into

which DMUs are more efficient than others when
health indicators are viewed as outputs and when
inputs consist of health-care investments and possi-
bly contextual factors as well. For instance, Garcia
et al. (2002) analyze the efficiency of primary health
units and explore how sensitive the DEA results are to
the selection of output variables. Hollingsworth et al.
(1999) review DEA applications in health care with
a particular emphasis on the efficiency evaluation of
hospitals. In his comprehensive book, Ozcan (2008)
discusses uses of DEA models across a broad range
of health-care planning problems.

3. Comparative Results for
Ratio-Based Efficiency Analysis

3.1. Efficiency Ratios
Assume that there are K DMUs that consume M
types of inputs and produce N types of outputs.
The kth DMU (DMUk for short) consumes xmk ≥ 0
units of the mth input and produces ynk ≥ 0 units of
the nth output. The input consumption and output
production vectors are xk = �x1k� � � � � xMk�

T and yk =
�y1k� � � � � yNk�

T , respectively.
Preference information about the relative values

of inputs and outputs is captured by nonnega-
tive weights v = �v1� � � � � vM�T and u = �u1� � � � �uN �

T ,
respectively. These weights are assumed to sat-
isfy homogeneous linear constraints (cf. Podinovski
2001, 2005)

Sv = �v= �v1� � � � � vM�T �= 0 � v≥ 0�Avv≤ 0�� (1)

Su = �u= �u1� � � � �uN �
T �= 0 � u≥ 0�Auu≤ 0�� (2)

where Av and Au are coefficient matrices derived
from the DM’s preference statements about how valu-
able different amounts of inputs and outputs are.
These statements can be elicited with well-known
techniques for the specification of assurance regions
(see, e.g., Thompson et al. 1986, 1990); for instance,
if the DM states that one unit of output 1 is at least

as valuable as a unit of output 2 but not more valu-
able than two units of output 2, then the constraints
u2 ≤ u1 ≤ 2u2 must hold. If such statements are elicited
from several DMs, a group preference representation
for these DMs can be built by forming convex com-
binations of those weights that satisfy the constraints
of some DM (Salo 1995).
For any feasible input weights v ∈ Sv, the virtual

input of DMUk is vT xk =
∑M

m=1 vmxmk. Similarly, the
virtual output for u ∈ Su is uT yk = ∑N

n=1 unynk. We
assume that the virtual inputs and the virtual out-
puts are strictly positive for all feasible weights (i.e.,∑

m vmxmk > 0, ∀v ∈ Sv, and
∑

n unynk > 0, ∀u ∈ Su, for
all k= 1� � � � �K). This assumption holds, for example,
if all inputs and outputs have strictly positive weights
and if there is at least one input (output) that is con-
sumed (produced) by every DMU. It also holds if all
DMUs consume/produce some positive amounts of
all inputs/outputs. The assumption of positive virtual
inputs/outputs implies that the (absolute) efficiency
ratio (cf. Podinovski 2001) of DMUk, defined as

Ek�u�v�=
∑

n unynk∑
m vmxmk

� (3)

is well defined for any u ∈ Su�v ∈ Sv (see also Dyson
et al. 2001).

3.2. Ranking Intervals
For any feasible input/output weights, the DMUs
can be ranked based on their efficiency ratios (3).
The resulting rankings can change relative to each
other for different weights. We first determine what
is the best (highest) efficiency ranking that a DMU
can attain relative to other DMUs over the set of
input/output weights (1) and (2). For instance, this
ranking is three for a DMU if the least number of
other DMUs with a strictly higher efficiency ratio is
two. Similarly, we compute the worst (lowest) rank-
ing for a DMU. These two bounds establish a ranking
interval, which conveys information about the relative
efficiencies of the DMUs.
Toward this end, we define the sets

R>
k �u�v� = �l ∈ �1� � � � �K� � El�u�v� > Ek�u�v���

R≥
k �u�v� = �l ∈ �1� � � � �K�\�k� � El�u�v�≥ Ek�u�v���

which contain the indexes of those other DMUs
whose efficiency ratios are either strictly higher than
that of DMUk (for R>

k �u�v�) or at least as high as that
of DMUk (for R≥

k �u�v�). By construction, R>
k �u�v� ⊆

R≥
k �u�v�.
The corresponding efficiency rankings are defined

as r>k �u�v� = 1 + �R>
k �u�v�� and r≥k �u�v� = 1 +

�R≥
k �u�v�� (here, �R� denotes the cardinality of the

set R). For example, if the efficiency ratio of
DMUk is strictly higher than the efficiency ratios
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of all other DMUs for some �u�v� ∈ �Su� Sv�, then
r>k �u�v� and r≥k �u�v� equal one, because R>

k �u�v� =
R≥

k �u�v�=	. Yet these rankings treat ties differently:
if exactly two DMUs have same highest efficiency
ratio at �u′�v′� ∈ �Su� Sv�, then r>�u′�v′� ranks them
both as first, but r≥�u′�v′� ranks them as second.
The ranking interval for DMUk is now defined as

�rmin
k � rmax

k 	, where the best and worst rankings for
DMUk are given by

rmin
k = min

u�v
r>k �u�v��

rmax
k = max

u�v
r≥k �u�v��

and where the optimization problems are solved
over �u�v� ∈ �Su� Sv�. Both optimum solutions exist,
because r>k �u�v� and r≥k �u�v� assume values in the set
�1� � � � �K�.
Based on Theorems 1 and 2, the ranking interval

�rmin
k � rmax

k 	 can be determined from mixed integer lin-
ear programming problems where the weight sets are
closed and bounded by constraints (5) and (7), respec-
tively. In these and also later theorems, C denotes
a large positive constant. The proofs are in the
appendix.
If DMUk is CCR-DEA efficient, then for some feasi-

ble weights its efficiency ratio is higher than or equal
to the efficiency ratio of any other DMU, and thus its
best ranking in Theorem 1 will be one.

Theorem 1. The optimum of the minimization problem

min
u�v�z

1+∑
l �=k

zl

subject to
∑
n

unynl ≤
∑
m

vmxml +Czl�

l ∈ �1� � � � �K�� l �= k� (4)∑
n

unynk =
∑
m

vmxmk = 1� (5)

zl ∈ �0�1�� l �= k�

�u�v� ∈ �Su� Sv�

is rmin
k , the best (highest) efficiency ranking of DMUk.

Theorem 2. The optimum of the maximization problem

max
u�v�z

1+∑
l �=k

zl

subject to
∑
m

vmxml ≤
∑
n

unynl +C�1− zl��

l ∈ �1� � � � �K�� l �= k� (6)∑
n

unynk =
∑
m

vmxmk = 1� (7)

zl ∈ �0�1�� l �= k�

�u�v� ∈ �Su� Sv�

is the rmax
k , the worst (lowest) efficiency ranking of DMUk.

With the introduction of additional preference
information, the constraints on the feasible input/
output weights become tighter. In view of Theorems 1
and 2, such information may lead to narrower (but
not wider) ranking intervals.
In general, DMUs that are outliers in the sense

that their input/output profiles differ considerably
from what is consumed/produced by most DMUs are
likely to have wider ranking intervals. This is because
these outlier DMUs can have either good (high) or
bad (low) rankings at the extreme points of Su and Sv.
Conversely, DMUs whose profiles are more typical are
likely to have narrower ranking intervals.

3.3. Efficiency Dominance
Although ranking intervals provide information
about the relative efficiencies of the DMUs, they are
not well suited for the comparison of pairs of DMUs.
Specifically, even if two DMUs have overlapping
ranking intervals, it is possible that one of them has a
higher efficiency ratio (3) for all feasible input/output
weights.
To compare the efficiency ratios of DMUs on a one-

on-one basis, we build on concepts from preference
programming (see, e.g., Salo and Hämäläinen 1992,
2001) and define efficiency dominance between DMUs
as follows.

Definition 1. DMUk dominates DMUl (denoted
by DMUk �DMUl) if and only if

Ek�u�v� ≥ El�u�v� for all �u�v� ∈ �Su� Sv�� (8)

Ek�u�v� > El�u�v� for some �u�v� ∈ �Su� Sv�� (9)

If DMUk � DMUl, the efficiency ratio of DMUk

is at least as high as that of DMUl for all feasible
weights, and moreover, there exist some weights for
which its efficiency is strictly higher. By construction,
Definition 1 establishes a strict partial order that is an
irreflexive, asymmetric, and transitive binary relation
among the DMUs. This relation, however, may not be
total (i.e., it may be that neither DMUk � DMUl nor
DMUl � DMUk).
The dominance relation in Definition 1 can be deter-

mined based on the pairwise efficiency ratio

Dk�l�u�v�=
Ek�u�v�

El�u�v�
� (10)

By Lemma 1, this ratio is invariant subject to multipli-
cation of input/output weights by positive constants.

Lemma 1. Take any �u�v� ∈ �Su� Sv�, and let �u′�v′�
be vectors that are obtained from �u�v� by multiplying
them componentwise so that u′ = cuu�v

′ = cvv for some
cu > 0� cv > 0. Then, �u′�v′� ∈ �Su� Sv� and Dk�l�u�v� =
Dk�l�u

′�v′�.
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In view of Lemma 1, the ratio (10) remains invari-
ant even if weights are normalized through con-
straints such as

∑
n un = 1 and

∑
m vm = 1. After the

introduction of such constraints, the feasible sets Su
and Sv become closed and bounded. Because the ratio
Dk�l�u�v� is continuous in input/output weights, it
therefore achieves its maximum and minimum val-
ues, denoted by �Dk�l and Dk�l, respectively.

The relative efficiency ratio (10) is nonlinear
in weights �u�v�. Yet, by Theorem 3, this ratio
can be maximized and minimized through linear
programming.

Theorem 3. The optimum of the maximization (mini-
mization) problem

max
u�v

�min
u�v

�
∑
n

unynk (11)

subject to
∑
n

unynl =
∑
m

vmxml� (12)

∑
m

vmxmk = 1� (13)

�u�v� ∈ �Su� Sv� (14)

is the maximum (minimum) of Dk�l�u�v� over �Su� Sv�.

The optimization problems in Theorem 3 provide
upper and lower bounds on how efficient DMUk can
be relative to DMUl across feasible weights. For exam-
ple, if �Dk�l = 1�42, the efficiency ratio of DMUk can be
at most 42% greater than that of DMUl. Conversely,
if Dk�l = 1�10, the efficiency ratio of DMUk is at least
10% higher than that of DMUl. Thanks to Theorem 3,
the dominance structure can be computed efficiently
with linear programming. First, if the minimum Dk�l

is greater than one, DMUk dominates DMUl. Sec-
ond, if it is less than one, (8) is violated and domi-
nance does not hold. Third, if the minimum is exactly
one, the sufficiency condition (9) can be checked by
maximizing (11) subject to (12)–(14). If the resulting
maximum �Dk�l exceeds one, dominance does hold;
but if not, then DMUk and DMUl have the same effi-
ciency ratio (3) for all feasible weights, and there is
no dominance. Also, the transitivity and asymmetric-
ity properties of� can be exploited to further reduce
the number of pairs for which the dominance relation
must be explicitly computed.
A DMU is not necessarily dominated by another

DMU that has a higher CCR-DEA efficiency score. For
example, consider three DMUs, A, B, and C, that all
consume one unit of a single input and produce two
outputs so that A = �1�3�, B = �2�1�, and C = �3�1�.
For the weight information 1/3u1 ≤ u2 ≤ 3u1, there
are two CCR-DEA-efficient DMUs, A and C. Yet, for
feasible output weights such that u1/u2 > 2, the vir-
tual output of DMUB is higher than that of DMUA

so that DMUA does not dominate DMUB. Figure 1

Figure 1 The Efficiency Ratios for DMUs A, B, and C

0.5 1.0 1.5 2.0 2.5 3.0

0.5

0.6

0.7

0.8

0.9

1.0

u1/u2

A
B
C

shows how the DMUs’ efficiency ratios change rela-
tive to each other for feasible output weights when
the highest efficiency ratio is normalized to one. For
example, the efficiency ratio of DMUC is higher than
that of DMUB for all weights so that DMUC domi-
nates DMUB. The ranking intervals are �1�3	 for A,
�2�3	 for B, and �1�2	 for C.

With the introduction of additional preference
information, new dominance relations are often estab-
lished. Furthermore, existing dominance relations are
preserved, except in the unlikely case where both
DMUs have the same efficiency ratio for all weights
in the revised feasible set.

3.4. Efficiency Bounds
The analysis of relative efficiencies can be extended to
situations where the efficiency DMUk is benchmarked
simultaneously with a group DMUL = �DMUl � l ∈ L⊆
�1� � � � �K�� consisting of several DMUs. In this case,
the ratios

Dk� L̄�u�v�=
Ek�u�v�

maxl∈L El�u�v�
=min

l∈L
Ek�u�v�

El�u�v�
� (15)

Dk�L�u�v�=
Ek�u�v�

minl∈L El�u�v�
=max

l∈L
Ek�u�v�

El�u�v�
(16)

indicate how efficient DMUk is relative to the most
and least efficient DMUs in the benchmark group for
different input/output weights. The maximum and
minimum values of (15) over feasible weights are
denoted by �Dk� L̄ and Dk� L̄, whereas �Dk�L and Dk�L are
the corresponding maximum and minimum values
of (16). By Theorems 4 and 5, these bounds can be
solved with linear programming. It is worth noting
that if the benchmark set L contains all DMUs, then
�Dk� L̄ is equal to the CCR-DEA score. If DMUk is not
contained in the benchmark set L, the maximum �Dk� L̄
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gives the superefficiency of DMUk relative to this set
of DMUs (see, e.g., Zhu 1996).

Theorem 4. Dk� L̄ = minl∈L Dk�l. �Dk� L̄ is the optimum
of the maximization problem

max
u�v

∑
n

unynk (17)

subject to
∑
n

unynl ≤
∑
m

vmxml� l ∈ L� (18)

∑
n

vmxmk = 1�

�u�v� ∈ �Su� Sv��

Theorem 5. �Dk�L =maxl∈L �Dk�l. Dk�L is the optimum
of the minimization problem

min
u�v

∑
n

unynk (19)

subject to
∑
n

unynl ≥
∑
m

vmxml� l ∈ L� (20)

∑
n

vmxmk = 1�

�u�v� ∈ �Su� Sv��

3.5. Specification of Performance Targets
All of the above results can be employed to specify
performance targets. For example, one can introduce
targets such that DMUk will be among (i) the R∗

k most
efficient DMUs for some feasible weights or (ii) the
R�

k most efficient DMUs for all feasible weights. These
two cases are addressed by Theorems 6 and 7 for
the case where efficiency improvements are sought
through radial increases in output production.

Theorem 6. Assume that R∗
k < rmin

k . Then, the maxi-
mization problem

max
u�v�z

∑
n

unynk

subject to 1+∑
l �=k

zl ≤R∗
k� (21)

∑
n

unynl ≤
∑
m

vmxml +Czl� l �= k� (22)

∑
m

vmxmk = 1�

zl ∈ �0�1�� l �= k�

�u�v� ∈ �Su� Sv�

has an optimum 
∗ < 1 such that �∗ = 1/
∗ gives the least
radial output increase for which the best ranking of DMUk

is R∗
k or better.

Theorem 7. Assume that R�
k < rmax

k . Then, the mini-
mization problem

min
u�v�z

∑
n

unynk

subject to 1+∑
l �=k

zl ≤K−R�
k� (23)

∑
m

vmxml ≤
∑
n

unynl +Czl� l �= k� (24)

∑
m

vmxmk = 1�

zl ∈ �0�1�� l �= k�

�u�v� ∈ �Su� Sv�

has an optimum 
∗ ≤ 1 such that �∗ = 1/
∗ is the infimum
of those radial output increases for which the worst ranking
of DMUk is R�

k or better.

Differences in Theorems 6 and 7 reflect asymmetric
discontinuities when rankings improve. For instance,
let there be three DMUs, A, B, and C, which all con-
sume one unit of a single input and produce yA = 1
and yB = yC = 2 units of a single output. Then, when
A doubles its production, its best possible ranking
jumps to one, but its worst possible ranking remains
three until its production is strictly greater than two.
Neither the best nor the worst ranking of A will
be exactly two, no matter how much it increases its
production.
An increase in the production of outputs by a factor

of �> 1 corresponds to a decrease in the use of inputs
by a factor of 1/� < 1, because∑

n un��ynk	∑
m vmxmk

=
∑

n unynk∑
m vm�1/�	xmk

�

Thus, radial output targets can be translated into cor-
responding requirements on the input side. Similarly,
the overall target �∗ can be factored into a radial out-
put target �u and a radial input target �v such that
�u�v = �∗, y′

nk = �uynk, and x′
mk = �1/�v	xmk.

Dominance relations, too, can be employed in tar-
get setting. For example, one may ask by how much a
DMUk that does not dominate DMUl should increase
its output to reach the threshold level beyond which
it starts to dominate DMUl. Based on Dk�l ≤ 1 in
Theorem 3, DMUk achieves the efficiency level of
DMUl for all weights when it increases its produc-
tion by �∗

l = 1/Dk� l. If the target is to ensure that
DMUk begins to dominate several DMUs contained
in the index set L, the threshold level for the required
increase is �∗ =maxl∈L �∗

l . One may also ask by how
much DMUk that is dominated by DMUl needs to
increase its production so as not to be dominated.
In this case, 1 ≤ Dl�k, and the threshold level for the
required increase is �∗

l = Dl�k. Even bounds for bench-
mark sets in §3.4 can be used in target specification.

3.6. Comparisons with Cross-Efficiency Analysis
In cross-efficiency analysis, every DMU is assigned a
single CE score using those weights for which the effi-
ciency of some DMU is maximized. By design, this
approach recognizes that different weights are rele-
vant in efficiency evaluation, in contrast to the stan-
dard CCR-DEA approach where the efficiency score
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for a DMU is determined using only those weights
that are most favorable to it (see, e.g., Doyle and
Green 1994).
Specifically, the DMUs’ cross-efficiencies are com-

puted from a square matrix �l�k� k� l= 1� � � � �K, whose
lth row �l�k = �E1�u

l� vl�� � � � � EK�u
l�vl�	 contains the

efficiencies of DMUs with weights �ul� vl�, which
maximize the efficiency of DMUl subject to the con-
straint that the maximum efficiency of any DMU is
one. If there are multiple optima, alternative rules
may be applied in weight selection. In the aggressive
formulation, for example, weights are chosen by min-
imizing the relative efficiency of the aggregate DMU,
which is formed by summing the inputs and outputs
of all the other DMUs. In the benevolent formulation,
the relative efficiency of the same aggregate DMU
is maximized. Once the weights �ul� vl�� l = 1� � � � �K
have been chosen, the cross-efficiency of DMUk is
computed as

CEk =
1
K

K∑
l=1

�l�k =
1
K

K∑
l=1

Ek�u
l�vl�� (25)

DMUs can be ranked based on their cross-
efficiencies. If there are no ties, DMUk has a unique
CE ranking that is equal to one plus the number
of those DMUs that have a strictly higher cross-
efficiency, i.e., rCE�>k = 1 + ∣∣�CEl � CEl > CEk�

∣∣. In the
case of ties, the CE ranking can drop to rCE�≥k = 1+∣∣�CEl �CEl ≥CEk, l �= k�

∣∣ if DMUk is assigned the worst
ranking among all the DMUs that have the same
cross-efficiency. Except for the possibility of ties, a
major difference between CE rankings and ranking
intervals in §3.2 is that CE rankings typically assign
a single ranking to each DMU. In contrast, ranking
intervals show all the rankings that DMUs can attain
across the full set of feasible input/output weights.
We draw attention to three concerns with cross-

efficiency analysis. First, the CE rankings of any two
DMUs may depend on what other DMUs are included
in the analysis. Indeed, Theorem 8 shows that when-
ever there are two DMUs that do not dominate each
other and whose efficiency ratios differ for some
input/output weights, then it is possible to intro-
duce additional DMUs so that the CE ranking of the
first DMU becomes better than that of the second. By
Theorem 9, the nondominance assumption is neces-
sary so that a DMU that dominates some other DMU
will have a higher CE ranking than the DMU that it
dominates.

Theorem 8. Assume that DMUk �� DMUl and
DMUl �� DMUk and ∃�u�v� such that El�u�v� �=
Ek�u�v�. There then exist DMUi� i = K + 1� � � � �K +K ′

such that CEk > CEl in the augmented set {DMUi � i =
1� � � � �K+K ′}.

Theorem 9. If DMUk � DMUl, then CEk ≥CEl.

The phenomenon addressed by Theorem 8 is
problematic because it means that cross-efficiency
analyses are, in principle, susceptible to purposeful
manipulation where the relative CE ranking of a non-
dominated DMU is altered by introducing appropri-
ately chosen DMUs. Here, there are parallels to the
contested rank reversal phenomenon where the intro-
duction of a new alternative to a multicriteria decision
problem changes the relative rankings of previously
analyzed alternatives. Rank reversals have aroused
plenty of controversy, and, for instance, they have
been widely regarded as a shortcoming of the ana-
lytic hierarchy process (Belton and Gear 1983; see also
Dyer 1990, Salo and Hämäläinen 1997).
A second concern is that the inequality in The-

orem 9 may not be strict, meaning that a domi-
nated DMU may have as high a CE score as the
DMU it is dominated by. For example, consider three
DMUs, A, B, and C, that consume one unit of a single
input and produce three outputs according to profiles
A = �3�3�2�, B = �3�2�2�, and C = �0�2�3�. Clearly,
A dominates B. If there are no constraints on output
weights, the efficiencies of DMUs B and C are maxi-
mized for weights uB = �1/3�0�0� and uC = �0�0�1/3�,
whereas DMUA achieves its maximum efficiency for
all convex combinations of weights uA�1 = �1/3�0�0�
and uA�2 = �0�1/3�0�. If the selection among the alter-
native optima is based on the aggressive formulation,
the value of the aggregate output vector uB+C = �3+
0�2 + 2�2 + 3� = �3�4�5� is minimized using output
weights uA�1 = �1/3�0�0�. In this case, the case the
cross-efficiency matrix becomes⎛

⎜⎜⎝
1 1 0

1 1 0

2/3 2/3 1

⎞
⎟⎟⎠ �

Here, the three rows contain the DMUs’ efficiencies
for weights uA�1�uB, and uC , respectively. The DMUs’
cross-efficiencies (25) are now obtained as column
averages �1+ 1+ 2/3	/3= 8/9=CEA =CEB and CEC =
�0 + 0 + 1	/3 = 1/3 = CEC , which show that DMUs
A and B have the same cross-efficiency although
DMUA dominates DMUB. An analogous conclusion
can be reached for the benevolent formulation by
replacing the output vector of DMUC by C ′ = �0�0�3�
and by choosing the output weights uA�1 = �1/3�0�0�
to maximize the virtual value of the aggregate output
vector uB+C ′ = �3�2�5�.
A third concern is that the CE ranking of a DMU

may lie outside the ranking interval �rmin
k ,rmax

k 	. For
example, consider three DMUs, A, B, and C, that pro-
duce a single output, yA = 26, yB = 19, and yC = 16,
and consume two inputs, xA = �13�9�, xB = �7�9�, and
xC = �16�1�. If there are no weight constraints, all
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three DMUs are efficient and achieve a DEA efficiency
of one for weights uk = 1/yk� k = A, B, C and vA =
�1/26�1/18�, vB = �1/7�0�, and vC = �0�1�, respec-
tively. With these weights, the cross-efficiency matrix
becomes ⎛

⎜⎜⎜⎜⎜⎜⎝

1
19
20

144
157

14
19

1
7
19

13
72

19
144

1

⎞
⎟⎟⎟⎟⎟⎟⎠
�

which yields the cross-efficiencies CEA ≈ 0�639 <
CEB ≈ 0�694<CEC ≈ 0�762. Thus, DMUA has the worst
CE ranking.
However, DMUA has the smallest efficiency ratio

only for weights �u�v� such that

EA�u�v�≤ EC�u�v� ⇐⇒ 26u
13v1 + 9v2

≤ 16u
16v1 + v2

⇐⇒ −1
2
v1 +

59
208

v2 ≥ 0� and

EA�u�v�≤ EB�u�v� ⇐⇒ 26u
13v1 + 9v2

≤ 19u
7v1 + 9v2

⇐⇒ 5
38

v1 −
63
494

v2 ≥ 0�

Multiplying the first inequality by 5/19 and sum-
ming up the inequalities gives −�11/208�v2 ≥ 0, which

Table 1 Efficiency Results for the Comparison of Robots

Robot Eff. rmin rmax Dominated by �Dk� L̄�
�Dk� L̄� CE FPI(%)

1 1 1 21 — �0�038�1�012� 0�58 72�41
2 0�90 3 24 14 �0�024�0�904� 0�48 88�28
3 0�53 7 23 11�15�19 �0�038�0�529� 0�30 76�28
4 1 1 27 — �0�004�1�100� 0�31 222�58
5 0�59 3 27 1�14�19 �0�001�0�592� 0�19 211�76
6 0�48 11 25 7�8�10�13�14�19�23�24 �0�017�0�482� 0�28 72�28
7 1 1 17 — �0�055�1�322� 0�70 42�86
8 0�78 5 15 — �0�063�0�783� 0�56 39�74
9 0�38 11 25 1�7�8�10�13�14�19 �0�029�0�378� 0�27 40�14
10 1 1 17 — �0�049�1�043� 0�70 42�86
11 0�67 3 19 19 �0�063�0�671� 0�42 59�84
12 0�10 18 27 1�3�7�8�10�11�13�14�15�16�19�23�25�26�27 �0�004�0�102� 0�06 70�61
13 1 1 15 — �0�061�1�091� 0�73 36�99
14 1 1 13 — �0�060�1�769� 0�82 21�95
15 0�61 3 22 — �0�038�0�613� 0�36 70�14
16 0�60 3 24 — �0�029�0�604� 0�34 77�50
17 0�40 17 26 3�7�8�10�11�13�14�15�19�23�25 �0�013�0�405� 0�19 112�92
18 0�37 12 25 1�7�8�10�13�14�19�25 �0�031�0�365� 0�26 40�47
19 1 1 10 — �0�064�1�021� 0�66 51�52
20 1 1 27 — �0�001�8�265� 0�34 194�12
21 0�85 2 25 — �0�023�0�852� 0�34 150�45
22 0�83 4 26 10�13�14 �0�005�0�829� 0�46 80�19
23 0�69 3 22 7�10 �0�039�0�694� 0�44 57�79
24 0�64 5 22 7�10�13�23 �0�036�0�636� 0�41 55�15
25 0�55 10 18 7�8�13�14�19 �0�054�0�553� 0�38 45�62
26 0�58 2 22 — �0�037�0�581� 0�36 61�40
27 1 1 25 — �0�014�3�880� 0�59 69�49

implies that v2 must be zero. But then the first
inequality gives v1 ≤ 0, violating the assumption that
v1 + v2 > 0. This proves that DMUA has the worst CE
ranking among the three DMUs although it is either
the most or the second most efficient DMU for all fea-
sible weights.

4. Applications of Ratio-Based
Efficiency Measures

We next illustrate uses of ratio-based efficiency mea-
sures by revisiting two reported studies and also by
describing a real case study where they supplied use-
ful insights.

4.1. Ratio-Based Efficiency Results for the
Evaluation of Robots

Baker and Talluri (1997) present an efficiency model
for screening 27 robots using velocity and load capac-
ity as outputs and cost and repeatability as inputs.
They do not elicit preference information about the
relative values of these input/output variables.
In Table 1, the CCR-DEA score of a robot is in

the second column, followed by its best and worst
efficiency rankings, a list of those robots it is dom-
inated by, and lower and upper bounds for the
robot’s efficiency ratio relative to the highest effi-
ciency ratio among all other robots over the set of fea-
sible weights. Here, the worst efficiency ranking rmax
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and the bounds Dk� L̄ show that for some weights the
efficiency ratios of even CCR-DEA-efficient robots are
quite low relative to the other robots. Moreover, the
bounds �Dk� L̄ show that CCR-DEA-efficient robots are
superefficient, meaning that for any one of them it
is possible to find feasible weights such that its effi-
ciency ratio is strictly higher than that of all other
robots. For example, the efficiency ratio of robot 4 can
be 1.1 times as high as the maximum efficiency ratio
of other robots.
The last two columns show the robots’ cross-

efficiency and so-called false positive index (FPI). The
FPI index (Baker and Talluri 1997) is an indicator of
how much the efficiency of the robot improves when
its efficiency ratio is evaluated using weights that are
most favorable to it rather than using also weights
that favor other robots. Thus, the smaller the FPI, the
less sensitive the efficiency of a robot is to the selec-
tion of weights.
There are 13 dominated robots that can be elim-

inated. Among the remaining 14 nondominated
robots, 4 and 20 can be the least efficient of all for
some weights, although they are efficient in the CCR-
DEA sense. In the same vein, robots 1, 15, 16, 21,
26, and 27—which have large FPI values in excess of
60%—can be among the seven least efficient robots
for some weights. Robots 7, 8, 10, 13, 14, and 19, in
contrast, are more robust and belong to the 17 most
efficient robots for all weights; they also have low FPI
values below 50%. Robots 14 and 19 have the best
ranking intervals. Robot 14 has a higher supereffi-
ciency value 1.769, whereas the ranking of 19 is never
below 10. In this way, dominance structures and rank-
ing intervals help identify nondominated DMUs like
robots 14 and 19 that are more efficient than others
across a broad range of weights. These results com-
plement cross-efficiencies and FPI indices, yet they are
based on a rigorous dominance concept and, in partic-
ular, the consideration of all feasible weights instead
of only those weights for which the efficiency of some
DMU is maximized.

4.2. Efficiency Comparison of Hospitals
Here, we revisit the example of Cooper et al. (2007,
p. 155) with 14 hospitals whose inputs consist of
nurses (x1) and doctors (x2), and whose outputs are
outpatients (y1) and inpatients (y2). In the first phase,
there is no preference information about the relative
values of these variables. In the second phase, assur-
ance regions for weights are introduced by stating
that (i) neither input can be more than five times as
valuable as the other and that (ii) neither output can
be more than five times as valuable as the other. These
statements correspond to the constraints 0�2v1 ≤
v2 ≤ 5v1 and 0�2u1 ≤ u2 ≤ 5u2.
Table 2 shows how the efficiency results change

because of this preference information. Initially,

hospitals H2, H3, H6, H8, and H10 are efficient in
view of their CCR-DEA scores. DMU H8 becomes
dominated when preference information is intro-
duced. In view of Table 2, DMU H10 appears more
efficient than others on several accounts, because (i) it
is among the three most efficient hospitals for all fea-
sible weights, (ii) all the dominated DMUs are dom-
inated by it, (iii) it has the highest superefficiency
(�Dk� L̄ = 1�04, i.e., for some weights it is up to 4%
more efficient than the next most efficient DMU), and
(iv) the bound Dk� L̄ = 0�98 means its efficiency ratio is
for all weights at least 98% of the highest efficiency
ratio among all DMUs.

4.3. A Case Study on the Comparison of
University Departments

This case study was carried out at a large technical
university consisting of 12 departments responsible
for research activities and educational degree pro-
grammes. The impetus for the study came from the
board, which asked the resource committee of the uni-
versity to consider alternative models for efficiency
analysis and resource allocation.
The outputs consisted of three-year departmental

averages in the university’s reporting system that
contained 44 outputs, structured under seven classes
(degrees and credits awarded, international publica-
tions, domestic publications, international mobility
of staff, other international scientific activities, other
domestic scientific activities, and student exchanges).
Statements about the relative values of these outputs
were elicited from 10 members of the resource com-
mittee using a spreadsheet tool. First, in each output
class, 10 points were associated with a reference out-
put (e.g., an MS degree), whereafter each respondent
was asked to assign points to the other outputs in
the same class. For instance, by giving 80 points to
a PhD degree the respondent could state that a sin-
gle PhD degree is as valuable as eight MS degrees.
Second, the respondent was asked to provide state-
ments about the values of these seven reference out-
puts through similar point allocations. From these
statements, the corresponding vector of normalized
weights was derived for every respondent. The feasi-
ble output weights consisted of convex combinations
of these weights, and thus contained the viewpoints
of all respondents.1

The two input variables were basic funding, which
is provided by the government and allocated to
the departments by the rector, and external funding,
which is acquired by research groups from external
sources. Only these two inputs were chosen because
most other inputs (e.g., annual person-years, office
space) are ultimately financed through these two

1 The original data are available from the authors upon request.
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Table 2 Results for Hospitals H1–H14 Without Preference Information (First Row) and With Preference Information 0�2≤ u1/u2� v1/v2 ≤ 5
(Second Row)

DMU Eff� rmin rmax Dominated by �Dk� L̄�
�Dk� L̄� �Dk�L�

�Dk�L�

H1 0�95 3 13 6 �0�75�0�95� �1�20�2�56�
0�93 6 11 2�3�6�9�10 �0�78�0�93� �1�32�2�15�

H2 1 1 10 — �0�80�1�06� �1�21�2�91�
1 1 7 — �0�83�1�02� �1�36�2�41�

H3 1 1 5 — �0�91�1�02� �1�45�2�72�
1 1 4 — �0�95�1�01� �1�58�2�36�

H4 0�7 11 14 1�2�3�6�7�8�9�10�11�12 �0�34�0�70� �0�71�1�27�
0�63 14 14 1�2�3�5�6�7�8�9�10�11�12�13�14 �0�40�0�63� �0�74�0�92�

H5 0�83 7 13 3�6�9�10 �0�59�0�83� �1�01�2�37�
0�82 7 12 2�3�6�9�10 �0�73�0�82� �1�16�2�03�

H6 1 1 6 — �0�91�1�08� �1�44�2�67�
1 1 5 — �0�91�1�00� �1�55�2�30�

H7 0�84 7 12 3�6�10�12 �0�56�0�84� �1�22�1�64�
0�8 10 12 1�2�3�6�8�9�10�11�12 �0�61�0�80� �1�27�1�53�

H8 1 1 12 — �0�66�1�00� �1�25�2�21�
0�87 6 11 3�6�9�10 �0�69�0�87� �1�31�1�81�

H9 0�99 2 10 10 �0�79�0�99� �1�26�2�87�
0�98 2 5 10 �0�90�0�98� �1�42�2�44�

H10 1 1 6 — �0�88�1�04� �1�41�2�88�
1 1 3 — �0�98�1�04� �1�56�2�48�

H11 0�91 5 11 3, 6 �0�69�0�91� �1�26�2�08�
0�85 8 10 2�3�6�9�10�12 �0�71�0�85� �1�32�1�79�

H12 0�97 3 10 3 �0�70�0�97� �1�40�2�03�
0�93 4 9 3�6�10 �0�75�0�93� �1�47�1�86�

H13 0�79 10 14 2�3�6�7�9�10�12 �0�38�0�79� �0�95�1�40�
0�74 13 13 1�2�3�5�6�7�8�9�10�11�12�14 �0�50�0�74� �1�09�1�35�

H14 0�97 3 14 3, 10 �0�43�0�97� �0�90�2�26�
0�93 4 12 3, 9, 10 �0�63�0�93� �1�16�2�00�

sources. Because the management of external fund-
ing involves more work, and because such funding
places constraints on its use, the respondents were
asked to state how much more “valuable” basic fund-
ing is compared with external funding. Most respon-
dents noted that basic funding is 1.25–2.00 times as

Figure 2 Efficiency Intervals for the 12 Departments
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valuable as funding from external sources (e.g., the
value of $100,000 of basic funding would be the same
as that of $125,000–$200,000 of external funding).
Based on Theorem 4, the efficiency bounds in

Figure 2 indicate the ranges within which the depart-
ments’ efficiency ratios vary relative to the highest
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Figure 3 Best and Worst Efficiency Rankings for the 12 Departments
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efficiency ratio among all departments. Specifically,
the upper bounds are the usual CCR-DEA efficiency
scores according to which there are three efficient
departments (A, J , and L), followed by the “nearly”
efficient department K (with an efficiency score of
0.97), then five departments with efficiency scores
in the range 0.60–0.90, and, finally, three inefficient
departments with scores less than 0.60. The lower
bounds show how low the departments’ efficiency
ratios can be relative to the highest efficiency ratio
over the set of feasible weights. Thus, for instance, the
efficiency ratio of department L is for all weights at
least 83% of the efficiency ratio of the most efficient
department.
The ranking intervals in Figure 3 complement effi-

ciency bounds. For instance, department L is among
the three most efficient departments for all feasi-
ble weights, whereas J and the CCR-DEA-inefficient
department K are among the four most efficient ones.
Department A is efficient, but its ranking drops to 7
for some weights, indicating that its efficiency is sen-
sitive to what input/output weights are employed.
Departments D, F , and H are the three least effi-
cient ones. Their ranking intervals show, for instance,
that for all weights these three departments are less
efficient than department G, although their efficiency
intervals overlap with that of G.
Dominance relations are shown in Figure 4, where

department X dominates Y if and only if there is
a directed path from X to Y . Thus, department L
dominates K, but K is not dominated by departments
A and J . Also, A does not dominate I , meaning that
for some weights the efficiency ratio of I is higher
than that of A even though its CCR-DEA efficiency is
lower than that of A. Moreover, department A dom-
inates fewer departments (5) than K (8), which also
indicates that the relative efficiency of A is more sen-
sitive to the choice of weights. Departments D, F , and

H do not dominate each other, but they are domi-
nated by all other departments.
The results in §3.5 can be applied to specify per-

formance targets. First, consider the three “midtier”
departments C, E, and I , whose rankings are in the
range from the fourth to the ninth most efficient. If
department C is challenged to become one of the three
most efficient departments for some feasible weights,
it needs to increase its output by 8.80%; and if it is to
be ranked as one of three most efficient departments
for all weights, it must increase it output by more
than 53.35%. Corresponding targets for departments
E and I are 6.80% and 10.72% (for some weights) and
42.65% and 47.97% (for all weights).
Similarly, the least efficient departments D, F ,

and H could be required to achieve a position
among the six most efficient departments. In this
case, department D would have to increase its out-
put by 25.97% to achieve such a position for some

Figure 4 Efficiency Dominance Relations Among the Departments
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weights. Moreover, it would have to increase its out-
put by more than 54.40% to secure this position for
all weights. Corresponding results for departments F
and H are 32.33% and 31.54% (for some weights) and
94.21% and 62.89% (for all weights).

5. Conclusion
We have developed ratio-based efficiency results
(ranking intervals, dominance relations, and effi-
ciency bounds) for comparing the relative efficien-
cies of DMUs for all feasible input/output weights.
Unlike conventional DEA efficiency scores or cross-
efficiencies, these results are robust in the sense that
they (i) reflect how the DMUs’ efficiency ratios change
relative to each other over the entire feasible set of
weights, (ii) tend to be insensitive to the introduc-
tion/removal of outlier DMUs, and (iii) do not neces-
sitate particular assumptions about what production
possibilities there are beyond the DMUs that are
included in the analysis. Furthermore, these results do
not exhibit rank reversals that may arise when rank-
ing DMUs with cross-efficiency analysis. These results
can also be employed to specify performance targets
for DMUs.
We have illustrated the usefulness of these effi-

ciency results by revisiting reported DEA studies and
by describing a case study on the comparison of uni-
versity departments. The encouraging feedback from
this case study, together with the applicability of our
efficiency results in many other contexts, leads us
to believe that these results are helpful across the
full range of decision contexts where ratio-based effi-
ciency comparisons are appropriate.
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Appendix

Proof of Theorem 1. Let the best ranking of DMUk

be attained at �u�v� ∈ �Su� Sv�. Then there exists L =
R>

k �u�v� ⊂ �1� � � � �K� so that El�u�v� > Ek�u�v�� l ∈ L and
Ek�u�v� ≥ El�u�v�� l �∈ L. Let v′

m = vm/�
∑

m vmxmk	 and
u′
n = un/�

∑
n unynk	. Then �u′�v′� ∈ �Su� Sv� and

∑
m v′

mxmk =∑
n u

′
nynk = 1.

For any l �= k, let zl = 1 if l ∈ L, and zl = 0 if l �∈ L. Then,
for any l �∈ L, we have

1≤ Ek�u�v�

El�u�v�
= Ek�u

′�v′�
El�u

′�v′�
=

∑
m v′

mxmk∑
n u

′
nynk

∑
m v′

mxml∑
n u

′
nynl

=
∑

m v′
mxml∑

n u
′
nynl

�

which gives
∑

n u
′
nynl ≤

∑
m v′

mxml. For l ∈ L, multiplying
zl = 1 by the large positive constant C implies that the con-
straint (4) is satisfied for l ∈ L too. Because 1 + ∑

l �=k zl =
1+ �L� = 1+ �R>

k �u�v�� = rmin
k �u�v�, the solution to the mini-

mization problem is not larger than the best ranking.
Conversely, let �u�v�z� be a solution to the minimiza-

tion problem. Let L = �l � l �= k�zl = 1�. Then introducing
zl = 0� l �∈ L into the first constraint in (4) gives

∑
n unynl ≤∑

m vmxml so that

Ek�u�v�

El�u�v�
=

∑
m vmxml∑
n unynl

≥ 1�

because Ek�u�v� = 1 due to (5). Thus, any l �∈ L
cannot belong to R>

k �u�v�. For l ∈ L, the inequality∑
n unynl ≤

∑
m vmxml ⇐⇒ Ek�u�v� ≥ El�u�v� cannot hold

because z is at optimum (otherwise, any such zl =
1 could be changed to zl = 0 without violating (4)
while reducing the value of the objective function);
hence l ∈ L ⊆ R>

k �u�v�. It follows that R>
k �u�v� = L and

rmin
k ≤ 1+ �R>

k �u�v�� = 1+ �L� = 1+∑
l �=k zl. �

Proof of Theorem 2. If the worst ranking of DMUk

is attained at �u�v� ∈ �Su� Sv�, there exists a subset L =
R≥

k �u�v�⊂ �1� � � � �K��k �∈ L such that El�u�v�≥ Ek�u�v�, l ∈ L
and Ek�u�v� > El�u�v�, l �∈ L. Let v′

m = vm/�
∑

j vmxmk	 so that∑
m v′

mxmk = 1 and u′
n = un/�

∑
n unynk	 so that

∑
n u

′
nynk = 1.

For any l �= k, let zl = 1 if l ∈ L, and let zl = 0 if l �∈ L. Then,
for any l ∈ L,

1≤ El�u�v�

Ek�u�v�
= El�u

′�v′�
Ek�u

′�v′�
=

∑
mu

′
nynl∑

mv
′
mxml

⇒ ∑
m

v′
mxml≤

∑
n

u′
nynl�

and thus (6) holds. For l �∈ L, multiplying �1− zl�= 1 by the
positive constant C implies that (6) is satisfied in this case
too. Now, 1+∑

l �=k zl = 1+ �L� = 1+ �R≥
k �u�v�� = rmax

k . Thus,
the solution to the maximization problem is at least as large
as the worst ranking.

Conversely, assume that �u�v�z� is a solution to the max-
imization problem, and let L= �l � l �= k�zl = 1�. For any l ∈ L
with zl = 1, the constraint

∑
m vmxml ≤

∑
n unynl implies

El�u�v�

Ek�u�v�
=

∑
n unynl∑
m vmxml

≥ 1�

because u and v satisfy (6)–(7); thus, L⊆R≥
k �u�v�. Because z

is at optimum, the inequality Ek�u�v�≤ El�u�v� cannot hold
for l �∈ L (otherwise, any such zl = 0 could be changed to zl =
1 without violating constraints while increasing the objec-
tive function). Thus, R≥

k �u�v� does not contain elements that
are outside of L. It follows that L = R≥

k �u�v� and rmax
k ≥

1+ �R≥
k �u�v�� = 1+∑

l �=k zl. �

Proof of Lemma 1. To prove that u′ ∈ Su, note that u ∈ Su
implies Auu ≤ 0 and, hence, Auu

′ = Aucuu = cu�Auu� ≤ 0;
similarly, v′ ∈ Sv. The last claim follows from

Dk� l�u
′�v′� = Ek�u

′�v′�
El�u

′�v′�

=
∑

n u
′
nynk∑

m v′
mxmk

∑
m v′

mxml∑
n u

′
nynl

= cu
∑

n unynk
cv

∑
m vmxmk

cv
∑

m vmxml

cu
∑

n unynl

=
∑

n unynk∑
m vmxmk

∑
m vmxml∑
n unynl

=Dk� l�u�v�� �
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Proof of Theorem 3. Choose �u∗�v∗� ∈ �Su� Sv� such
that Dk� l�u

∗�v∗� ≥ Dk� l�u�v�, ∀ �u�v� ∈ �Su� Sv�. Define v′

so that v′
m = v∗

m/�
∑

i v
∗
i xik	. By construction, v′ ∈ Sv and∑

m v′
mxmk = 1. Define u′

n = u∗
n�
∑

m v′
mxml	/�

∑
j u

∗
j yjl	. Then,∑

n u
′
nynl =

∑
m v′

mxml. The weights �u′�v′� satisfy constraints
(12)–(14), and the repeated application of Lemma 1 gives
Dk� l�u

∗�v∗� = Dk� l�u
∗�v′� = Dk� l�u

′�v′� = ∑
n u

′
nynk , proving

that the maximum of (11) over (12)–(14) is at least as high
as Dk� l�u

∗�v∗�.
Assume that the maximum of (11) is attained at �uo�vo�.

For these weights �uo�vo� ∈ �Su� Sv�, we have

Dk� l�u
o�vo�= Ek�u

o�vo�

El�u
o�vo�

=
∑

n u
o
nynk∑

m vo
mxmk

∑
m vo

mxml∑
n u

o
nynl

=∑
n

uo
nynk�

because the weights �uo�vo� satisfy (12)–(13). Thus, the max-
imum of Dk� l�u�v� over �Su� Sv� cannot be smaller than the
solution to the maximization problem in Theorem 3. The
minimization case can be shown analogously. �

Proof of Theorem 4.

min
u�v

Dk� L̄�u�v� = min
u�v

Ek�u�v�

maxl∈L El�u�v�

= min
u�v

min
l∈L

Ek�u� v�

El�u� v�

= min
l∈L

min
u�v

Dk� l�u�v�

= min
l∈L

Dk� l�u�v��

Let the maximum of (15) be 
∗ so that this optimum is
attained at �u∗�v∗�. There then exists some l∗ ∈ L such that
El∗ �u

∗�v∗� ≥ El�u
∗�v∗� ∀ l ∈ L. Choose v′ = v∗/�

∑
m v∗xmk	 so

that
∑

m v′
mxmk = 1. Also, choose a constant cu > 0 so that∑

n u
′
nynl∗ =

∑
m v′

mxml∗ for u′ = cuu
∗. For any l ∈ L, we have

1≥Dl� l∗ �u
∗�v∗�=Dl� l∗ �u

′�v′�= El�u
′�v′�

El∗ �u
′�v′�

=
∑

n u
′
nynl∑

m v′
mxml

so that the constraint (18) is satisfied by �u′�v′�. By construc-
tion, 
∗ =maxu�v Dk� L̄�u�v�=Dk� l∗ �u

′�v′�=∑
n u

′
nynk , which

shows that the maximum of (17) is at least as high as that
of (15).

Conversely, assume that the maximum of (17), 
 ′, is
attained at �u′�v′�, and choose l′ ∈ L so that the constraint
in (18) is binding (such l′ exists, for otherwise u′ could
be increased to improve the value of the objective func-
tion, which would be in violation of the optimality assump-
tion). Now,

max
u�v

Dk� L̄�u�v�≥
Ek�u

′�v′�
El′ �u

′�v′�
= 
 ′

so that the maximum (15) must be at least as high as that
of (17). �

Proof of Theorem 5.

max
u�v

Dk�L�u�v� = max
u�v

Ek�u�v�

minl∈L El�u�v�

= max
u�v

max
l∈L

Ek�u�v�

El�u�v�

= max
l∈L

max
u�v

Dk� l�u�v�

= max
l∈L

�Dk� l�u�v��

Let the minimum of (16), 
∗, be attained at �u∗�v∗�.
There then exists some l∗ such that El∗ �u

∗�v∗� ≤ El�u
∗�v∗�,

∀ l ∈ L, and 
∗ =minu�v Dk�L�u�v�= Ek�u
∗�v∗�/El∗ �u

∗�v∗�. As
in the proof of Theorem 4, use �u∗�v∗� in defining normal-
ized valuation vectors �u′�v′� such that

∑
m v′

mxmk = 1 and
El∗ �u

′�v′�= 1. The choice of l∗ guarantees that 1≤ El�u
′�v′�

so that constraint (20) holds for all l ∈ L. Because


∗ = Ek�u
∗�v∗�

El∗ �u
∗�v∗�

= Ek�u
′�v′�

El∗ �u
′�v′�

=∑
n

u′
nynk�

the minimum of (19) is at least as small as the minimum
of (16).

Assume that 
 ′, the minimum of (19), is obtained at
�u′�v′�. Choose l′ such that the constraint in (20) is binding
(such l′ must exist, for otherwise the assumption of opti-
mality would be violated). Then El′ �u

′�v′�= 1, whereas con-
straint (20) implies that El�u

′�v′� ≥ 1 for any other l ∈ L;
hence, El′ �u

′�v′�≤ El�u
′�v′�. It follows that

min
u�v

Dk�L�u�v�≤Dk�L�u
′�v′�= Ek�u

′�v′�
minl∈LEl�u

′�v′�
= Ek�u

′�v′�
El′ �u

′�v′�
=
 ′�

proving that the minimum of (16) is at least as small as the
optimum of (19). �

Proof of Theorem 6. Because u ∈ Su ⇒ cuu ∈ Su for any
cu > 0, there exists u ∈ Su so that the constraints (21) and (22)
are satisfied. The optimum 
∗ is attained at some weights
�u∗�v∗�, because v fulfills the normalization constraint and
assumes values in a compact set �v ∈ Sv �

∑
m vmxmk = 1�, and

u is maximized but bounded from above by constraint (22).
If the optimum 
∗ were equal to one, then according to
Theorem 1, DMUk could only reach ranking rmin

k and con-
straint (21) would be violated. Thus, 
∗ < 1.

For any feasible �u�v�z� that satisfy the constraints, the
constraint (22) gives zl = 0⇒ 1 ≥ El�u�v� so that El�u�v� >
1 > Ek�u� l� ⇒ zl = 1. By (21), there are therefore at most∑

l �=k zk other DMUs whose efficiency is higher than that of
DMUk. By (21), the best ranking of DMUk is therefore R∗

k or
better. By construction, 1/
∗ is the revised efficiency ratio of
DMUk.

For any 
 ′ > 
∗ and any feasible �u�v�, the optimality
of 
∗ implies that the constraint (21) will be violated when
zl are chosen by minimizing them so that (22) holds. But
then there will be more than R∗

k − 1 other DMUs with an
efficiency ratio that is strictly higher than that of DMUk,
meaning that the best ranking of DMUk is worse than R∗

k.
Similarly, if constraint (21) holds and 
 ′ > 
∗, con-

straint (22) is violated for some l′ �= k such that zl′ = 0
and El′ �u�v� > Ek�u�v�. We can assume that (21) holds
with equality, for else the violation of (22) for l′ could be
eliminated by setting zl′ = 1. Because El�u�v� > Ek�u�v�⇒
zl = 1 for the constraints that are satisfied, there are again
more than R∗

k − 1 other DMUs with a strictly higher effi-
ciency ratio, and thus DMUk does not attain the target
ranking R∗

k. �

Proof of Theorem 7. Because u ∈ Su ⇒ cuu ∈ Su for any
cu > 0, there exists u ∈ Su so that the constraints (23) and (24)
are satisfied. The optimum 
∗ is attained at some weights
�u∗�v∗�, because v fulfills the normalization constraint and
thus assumes values in a compact set �v ∈ Sv �

∑
m vmxmk = 1�,
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and u is minimized but bounded from below by
constraints (24).

According to Theorem 2, there exists a solution u�v�z′

such that
∑

m vmxmk =
∑

n unynk = 1,
∑

l �=k z
′
l = rmax

k − 1, and∑
m vmxml ≤

∑
n unynl + C�1 − z′l�. Solution u�v�z such that

zl = 1 − z′l ∀ l �= k is feasible because this substitution
yields directly the constraints (24) and also the constraint∑

l �=k zl = K − rmax
k ≤ K − R�

k − 1, whereby (23) is fulfilled.
Thus, 
∗ ≤ 1.

For any feasible �u�v�z�, the constraint (24) gives zl =
0 ⇒ El�u�v� ≥ Ek�u�v� so that Ek�u�v� > El�u�v� ⇒ zl = 1.
By (23), there are at most

∑
l �=k zk other DMUs whose effi-

ciency is lower than that of DMUk, and hence the worst
possible ranking is R�

k + 1 or worse.
We show that �∗ = 1/
∗ is the maximum increase in the

outputs of DMUk such that R�
k + 1 belongs to the rank-

ing interval of the revised DMU, DMUk� with xk� = xk,
yk� = �yk. For any increase greater than �∗, only better rank-
ings belong to the interval.

For any 
 < 
∗ and feasible �u�v�, the optimality of

∗ implies that constraint (23) must be violated if con-
straints (24) hold for all l �= k. But then the worst ranking of
DMUk� will be R�

k or better.
Conversely, if (23) holds and (24) is violated for DMUl′ ,

then El′ �u�v� < Ek��u�v� and zl′ = 0. Furthermore, the con-
straint (23) can be assumed to hold with equality, because
otherwise we could set zl′ = 1, and the constraint would
not be violated. This implies that the number of DMUs p
for which Ep�u�v� < Ek��u�v� is at least ��l ∈ �1� � � � �K� � l �=
k�zl = 1�� + 1= K −R�

k − 1+ 1= K −R�
k, and the ranking of

DMUk� must be R�
k or better.

Thus, for any �> 1/
∗, the ranking of DMUk� is R�
k or bet-

ter for all feasible �u�v�. The formulation thus provides the
infimum of the radial increases for which the worst ranking
is R�

k or better. �

Proof of Theorem 8. By assumption, Ek�u
′�v′� >

El�u
′�v′� for some �u′�v′� ∈ �Su� Sv�. Let constant M >

maxi=k� l�1/Di� L̄	, where L = �1� � � � �K�. Define DMUk′ and
DMUl′ so that yk′ = Myk�yl′ = �Dk� lMyl� xk′ = xk�xl′ = xl.
Then, (i) El′ �u�v� ≥ Ek′ �u�v� > Ei�u�v� for all i ∈ �1� � � � �K�,
and (ii) there exist �u′�v′� ∈ �Su� Sv� such that El′ �u

′�v′� =
Ek′ �u

′�v′� and for any such weights, Ek�u
′�v′� > El�u

′�v′�.
Consider DMUs DMUi, i ∈ �1� � � � �K� ∪ �l′� ∪ �K +

2� � � � �K+K ′� so that DMUi, i=K+ 2� � � � �K+K ′ are equal
to DMUk′ . Among these DMUs, �k′� k > �k′� l. Then, for a suf-
ficiently large K ′,

CEk −CEl

= 1
K+K ′

K+K′∑
i=1

��i�k − �i� l	

= 1
K+K ′

[ K∑
i=1

��i�k−�i�l	+��l′�k−�l′� l	+�K ′ −1���k′�k−�k′� l	

]

is positive, because
∑K

i=1��i�k − �i� l	+ �l′� k − �l′� l is bounded
from above by K+ 1. �

Proof of Theorem 9. Let �ui� vi�� i = �1� � � � �K� be the
weights that maximize the efficiency of DMUi in the
specification of the cross-efficiency matrix. Because DMUk

dominates DMUl, we have Ek�u
i�vi� ≥ El�u

i� vi� so that

�i�k ≥ �i� l. Summing this inequality over i = 1� � � � �K gives
CEk ≥CEl. �
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