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Train driver rostering is the process of creating work timetables for train drivers.
The train drivers are assigned to work shifts which usually consist of multiple
tasks, to meet the service demand of the organization. The final rosters have to
fulfill legal and contractual requirements, as well as take the work well-being
of the drivers into consideration.

This thesis describes a real-world application of train driver rostering. The
rostering problem faced by the Finnish state-owned railway company, VR
Group, is modeled as a network and solved using a novel heuristic approach.
The main goals of the rostering is to improve the utilization rate of the drivers
and to distribute the strenuous work tasks evenly among the drivers.

The algorithm operates in three phases and relies heavily on shift removal
and insertion heuristics, which are used to guide the search. The algorithm’s
performance is analyzed using three real-world test problems. The test results
are of high quality and display the capabilities of the solution approach.

The optimization approach was taken into production soon after the devel-
opment was finished. The practical effects of the automatized solution have
been substantial. The utilization rate has improved, while taking the work
well-being of the drivers into consideration in a more structured manner. Also,
the planning time has reduced considerably.
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Skapandet av tjänstgöringsscheman för tågförare handlar om att tilldela ar-
betsskift till arbetare. Alla arbetsskift i organisationen måste fyllas av någon
arbetare. De planerade tjänstgöringsscheman måste uppfylla lagliga och kon-
traktsbaserade krav samt ta arbetarnas välbefinnande i beaktande.

Denna avhandling beskriver en tillämpning av planering av tjänstgöringssche-
man för tågförare. Planeringen har varit en utmaning för det finska, statligt
ägda järnvägsbolaget VR Group. Problemet modelleras som ett nätverk och
löses med hjälp av en ny heuristisk metod. Det huvudsakliga målet med den
automatiserade lösningen är att förbättra användningsgraden av förarna och
att distribuera de ansträngande arbetsuppgifterna jämnt bland förarna.

Algoritmen fungerar i tre skeden och bygger starkt på heuristik som tar bort
arbetsskift och lägger dem tillbaka med syftet att förbättra lösningen. Algorit-
mens prestanda analyseras med hjälp av tre verkliga testproblem. Testresulta-
ten, som är av hög kvalitet, visar bra vad som är möjligt med algoritmen.

Optimeringsmetoden togs i användning snabbt efter att utvecklingen var färdig.
De praktiska effekterna av den automatiserade lösningen har varit betydande.
Utnyttjandegraden har förbättrats, samtidigt som arbetets välbefinnande tas i
beaktande på ett mer detaljerat sätt. Även tiden som krävs till planeringen har
minskat avsevärt.

Nyckelord: Tjänstgöringsschema, heuristik, tågtransport, nätverk, per-
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Chapter 1

Introduction

1.1 Background

VR Group (VR, for short) is a Finnish state-owned railway company. It
employs around 8000 people and has a turnover of about 1200 million
euros.1 Out of its employees, approximately 900 people work as train
drivers in freight and long distance train traffic. These drivers have irreg-
ular work times and regulations that determine feasible work schedules
they can follow. The efficient use of the drivers is essential for producing
high-quality services at a competitive price.

The planning of the work schedules for the drivers starts with the planning
of work shifts. After the shifts have been planned, they are assigned to
the drivers to produce work rosters. The rosters are three week long work
schedules that have to be planned up to one minute accuracy. Traditionally
the rosters are planned manually, but there are several challenges with
manual planning. First, finding high quality solutions from the large set
of possible shift combinations is difficult and requires problem-specific
knowledge. Second, it has been difficult to modify the rosters manually
in case of sudden changes, because small changes in the input data can
shift the optimal solution far away from the original optimum. Third, with
manual planning it is not possible to plan multiple alternative rosters for
an individual depot. This would be beneficial, because it would enable the
planners to emphasize different aspects in the rosters, and thus provide a
set of solutions for the representatives of the train drivers’ union to choose

1www.vrgroup.fi/en, visited August 21, 2017
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CHAPTER 1. INTRODUCTION 7

from.

An automatized solution would also help planners increase the utilization
rate of the drivers and take the drivers’ work well-being into consideration
already at the outset. There have been previous attempts to automatize
the planning of the rosters at VR using a Mixed Integer Linear Program
model. However, the results were not satisfactory. Thus, there was still a
need for an optimization model that would perform up to the standards
required by the planning department and that would have the potential to
include multiple driver-specific requirements in the future.

1.2 Research objectives

The objective of this thesis is to develop an optimization model for train
driver rostering. The rosters, which have to fulfill legal and contract based
requirements, consist of two types of train drivers: "regular drivers" and
"extra drivers". The extra drivers can be used flexibly during the work
period to perform work on short notice, whereas the rosters for the regular
drivers cannot be modified after the rosters have been published. Thus, the
utilization rate of the regular drivers should be maximized in the rosters
to minimize the amount of work planned for the extra drivers.

The work well-being of the drivers should be supported by ensuring suffi-
cient rest periods during the work periods and by distributing strenuous
shifts evenly among the drivers. The distribution needs depend on the
depots, because the depots have different amounts and types of strenuous
shifts.

The optimization model should produce feasible solutions quickly as the
rosters for the next work period have to be planned in a few days. Also,
having the possibility to produce new solutions after sudden changes and
after receiving driver feedback would make the planning process more
robust, increase driver satisfaction and improve the dialogue between the
employer and the employees.

Prior to this thesis the rosters have been planned manually using a pro-
prietary software. The integration of the software and the optimization
model was not a focus of this thesis. The integration may however become
relevant in the future in case the optimization model proves to be success-
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ful in practice as the software is used company wide and the final rosters
are stored there.

1.3 Structure of the thesis

The remaining part of the thesis is structured as follows. A literature
survey of personnel scheduling with focus on crew rostering is given
in Chapter 2. In Chapter 3 the train driver rostering problem of VR
is presented in detail and an optimization model is formulated. The
optimization algorithm is introduced in Chapter 4 and the results are
presented in Chapter 5. In Chapter 6 practical experiences from using the
automatized rostering approach are discussed. Finally, ideas for future
research are discussed in Chapter 7, which also concludes the thesis.



Chapter 2

Literature survey

The number of publications on train driver rostering in the literature is
not large, while there has been more work on other personnel rostering
applications, such as nurse rostering and airline crew rostering. Section
2.1 contains an overview of personnel rostering and the abovementioned
application areas are presented in Sections 2.2 – 2.4.

2.1 Personnel scheduling

Personnel scheduling involves creating work timetables for the staff to
satisfy the demand of the goods or services provided by the organization
(Ernst et al., 2004). This can be viewed as the process of assigning staff
members to shifts to meet the service demand. The resulting rosters have
to fulfill workplace agreements, which set rules for the scheduling process.
The competences of the individual staff members have to be taken into
consideration, because certain shifts may require skills not everyone has.
To increase the work well-being of the personnel further constraints may
be imposed (Van den Bergh et al., 2013). For example, the organization
may want to try to fulfill the day off requests of the staff members, or try
to take personal preferences, such as preferences concerning night and
day shifts, into consideration. An example roster from VR can be seen in
Figure 2.1.

Personnel scheduling can roughly be divided into cyclic and non-cyclic
scheduling (Ernst et al., 2004). In cyclic scheduling, the same rosters are
used for multiple scheduling periods, whereas in non-cyclic scheduling

9



CHAPTER 2. LITERATURE SURVEY 10

new rosters are created for each new scheduling period separately (Cheang
et al., 2003). At VR, there has been a history of using both cyclic and non-
cyclic scheduling, but the importance of non-cyclic scheduling is increasing
in the company. Non-cyclic rostering makes it easier to take period-specific
constraints into account, such as changes in the shifts or in the availability
of the workers.

Personnel rostering methods have been utilized in multiple lines of busi-
ness. Mehrotra (1997) and Grossman et al. (1999) provide reviews dis-
cussing the use of operations research techniques for call centre problems.
Talarico and Duque (2015) describe an application of personnel scheduling
for a retail chain. Rasmussen et al. (2012) present the problem of allocating
home carers to patients’ home with the goal of maximizing the overall
service level. Li and Womer (2009) address the crew scheduling problem
on a ship where the crew is required to handle various onboard tasks. An
optimization problem where schedules need to be created for Australian
navy boats and their crews is presented by Horn et al. (2007). Sabar et al.
(2009) discuss the scheduling of personnel to work stations in an assembly
center. A personnel scheduling problem where the workforce needs to be
assigned to check-in counters at airports is described by Stolletz (2010).
Qi and Bard (2006) develop a simulation model for solving personnel
scheduling challenges related to mail handlers. Airline crew and nurse
rostering are among the most common practical implementation areas of
personnel rostering. These subjects are discussed more thoroughly in the
subsections 2.2 and 2.3.
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2.2 Nurse rostering problem

Many publications discuss nurse rostering problems. The nurse rostering
problem, also known as the nurse scheduling problem, involves assigning
nurses to shifts. The review by Burke et al. (2004) describes the typical
variants of the nurse rostering problem as well as the methods for solving
them. The authors present detailed tables of various constraints and
objectives found in nurse rostering problems and also the papers which
have included them in their models. The hard constraints can, for example,
determine the minimum number of consecutive days off (Warner, 1976;
Aickelin and Dowsland, 2000), or whether or not there has to be a free day
after a night shift (Ikegami and Niwa, 2003; Bellanti et al., 2004).

Burke et al. (2004) divide the methods for solving the nurse rostering prob-
lems into mathematical programming, multi-criteria approaches, artificial
intelligence methods, heuristics, and metaheuristic scheduling. They de-
scribe mathematical programming approaches suitable for finding optimal
solutions, but state that usually these approaches cannot handle complex
real world models. Millar and Kiragu (1998) utilize the fact that in a special
case of the nurse rostering problem the nurses’ schedules are made up of
alternating sequences of work and off days. They formulate the problem
as a network problem, which is in essence a shortest path problem with
side constraints, and solve it using IBM ILOG CPLEX Optimizer.

Artificial intelligence methods include constraint programming, as well
as expert systems (Burke et al., 2004). Burke et al. (2004) describe expert
systems as methods that utilize the knowledge of the specific domain’s ex-
perts to provide interactive decision support. Abdennadher and Schlenker
(1999) present an application of constraint programming to the nurse
rostering problem. Their semi-automatic rostering tool utilizes constraint
programming to provide decision support to the end users.

Heuristics and metaheuristics can be applied to nurse rostering problems
to obtain high quality solutions in a relatively short time (Burke et al.,
2004). Ikegami and Niwa (2003) and Bellanti et al. (2004) take advantage
of tabu search for creating the rosters, whereas Aickelin and Dowsland
(2000) use genetic algorithms. Aickelin and Dowsland (2000) describe
a genetic algorithm that utilizes problem specific knowledge of a nurse
rostering problem to overcome issues related to conflicting objectives and
constraints, which are commonly found in nurse rostering problems.
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From a managerial perspective, the rostering of hospital staff can be
performed using three approaches: departmental rostering, team rostering,
and self-rostering. In departmental rostering, the responsibility of planning
the rosters is given to a single person, whereas in team rostering the staff
is split up into teams, which plan rosters for themselves. The teams have
a specific person that is responsible for planning the rosters with the help
of the rest of the team members. Self-rostering enables the individual
staff members to plan the schedules for themselves. Usually the rosters
resulting from team rostering and self rostering need to be accepted by
a senior manager. The preferred rostering approach depends on the
complexity of the problem. For simple problems, self-rostering seems
to produce high quality results. With increasing complexity one should
choose team rostering and departmental rostering (Silvestro and Silvestro,
2000).

Silvestro and Silvestro (2000) list several aspects of the nurse rostering
problem that affect the problem complexity. Among these are the staff size,
as well as the amounts of work-specific skills that have to be taken into
consideration. The complexity is also affected by how well the personnel
demand can be predicted and by the demand variability.

2.3 Airline crew rostering

Airline crew rostering is the process of assigning crew pairings and other
tasks, such as ground shifts, to rosters. In crew pairing, a sequence of
flights are joined together and for each flight in the pairing all the crew
requirements have to be satisfied. There are many different strategies for
creating rosters from the crew pairings. The bidlines approach starts by
creating anonymous rosters, which the crew members bid on. Based on
these bids, the anonymous rosters are assigned to the crew members. The
European airlines favor strategies that create directly personalized rosters,
which can take personal preferences and quality criteria into consideration.
Even though the different strategies approach the airline crew rostering
problem from different perspectives, the models are quite similar and the
key differences are found in the problem objectives (Kohl and Karisch,
2004).

The focus in crew pairing is usually to create efficient pairings that mini-
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mize costs, whereas in crew rostering work well-being is also a relevant
factor, which may be one reason why there been more research conducted
on crew pairing than on rostering. The typical constraints for the airline
crew rostering usually originate from law requirements, or agreements
between the airline and employee unions. The constraints can be divided
into three categories: horizontal, vertical and artificial rules (Kohl and
Karisch, 2004).

Horizontal rules are specific for each crew member. For example, some
shifts can only be assigned to crew members with the right qualifications.
Vertical rules depend on the attributes of multiple crew members. For
example, in some cases it can be infeasible to assign two inexperienced
crew members to the same pairing. Artificial rules originate usually
from the airline itself. The airline may for example wish to create robust
solutions, which do not easily become infeasible in case of delays or other
changes.

Gopalakrishnan and Johnson (2005) list three reasons why the airline crew
rostering problem can be difficult to solve:

1. The number of crew pairings can be extremely large. For example,
for a moderate size fleet the number of pairings can be 100 million,
whereas for the large North American fleets the number of pairings
can be tens of times larger.

2. There are complex safety regulations and work rules that have to be
satisfied.

3. Crew costs are nonlinear and difficult to model.

Multiple solution approaches have been applied to the airline crew roster-
ing problem. Campbell et al. (1997) apply the bidlines method at FedEx,
and Christou et al. (1999) describe a bidlines application developed for
Delta Air Lines. Kohl and Karisch (2004) present a method based on set
partitioning for the personalized crew rostering problem. Cappanera and
Gallo (2001) apply mathematical programming methods to the airline
crew rostering problem, where the problem is formulated as a 0-1 multi-
commodity flow. Dawid et al. (2001) and König and Strauss (2000a,b)
describe heuristic algorithms that have been applied to a few European
airlines.
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2.4 Train and bus crew rostering

Railway crew management can be split into two categories, namely crew
scheduling and crew rostering. Crew scheduling is the process of creating
shifts that cover all the train trips. In crew rostering these shifts are then
assigned to the crews. Caprara et al. (1997) present three reasons for
decomposing the railway crew management into crew scheduling and
crew rostering

1. Crew scheduling involves constraining the starting and ending lo-
cations of the shifts based on the home depots of the crews. Thus,
it seems natural to first create shifts for the depots, and then create
rosters for the depots independently.

2. The constraints for crew scheduling are of different type than those
used for crew rostering. The authors clarify this with examples from
an Italian railway company: the crews have to have at least a few
minutes of spare time to change trains between two consecutive trips
in a shift, whereas the rest time between two consecutive shifts has
to be between 18 and 22 hours. Thus the required rest times are of
completely different orders of magnitude.

3. Combining and solving the two problems together is extremely
difficult, because even the individual problems are challenging.

The objective of railway crew management is generally to minimize the
number of crews needed to cover the trips of the work period. The
final costs depend both on the shifts created in crew scheduling and
the rosters planned during crew rostering. Clearly, as the problems are
inherently related to each other, one has to take the rostering problem into
consideration already during scheduling (Caprara et al., 1997).

Caprara et al. (1997) approach a real-world crew rostering problem of the
Italian railways using a construction heuristic that utilizes the solution
of a relaxed problem. The construction heuristic and the relaxation are
presented in detail by Caprara et al. (1998). The length of the rosters
described by Caprara et al. (1997) are generally between 30 and 60 days.
The shifts have multiple attributes. For example the shifts can contain a
rest, and there are two types of night shifts depending on when the night
work occurs. There are also two types of work times, out of which one
contains additional paid time. The constraints are typical to the problem
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type. Examples of the constraints included in the model are upper limits
for the total work time during the work period and lower bounds for
the minimum number of week rests. Their solution approach is able to
find the optimal solution to 6 out of 7 test problems. Solving the largest
problem with 525 shifts took 1185 seconds using a PC with a Pentium 90

CPU.

Bianco et al. (1992) describe a heuristic algorithm for solving the crew
rostering problems of mass transit systems. Their approach is based on a
heuristic that solves a multi-level bottleneck assignment problem at each
iteration. In addition to the shift covering constraints, the model includes
constraints that restrict the minimum rest time between two consecutive
shifts. The model also aims at balancing the total work times of the drivers.
The algorithm solves problems with up to 130 shifts and a planning period
of seven days.

Borndörfer et al. (2017) integrate the shift scheduling and rostering parts
for a public transport application. They integrate the problems using shift
templates, instead of individual shifts, to reduce the problem complexity.
They solve the model using an approach based on Benders decomposition.
Valdes and Andres (2010) present a set covering model used to solve the
crew scheduling and crew rostering problems simultaneously. The test
instances are based on real-world bus systems.

Xie and Suhl (2015) present a crew rostering model for public bus transit.
The model, which is formulated as a multi-commodity network flow,
can be used to solve both cyclic and non-cyclic crew rostering problems.
Yunes et al. (2005) compare the hybrid column generation algorithms to
mathematical programming and constraint logic programming approaches
for solving the crew scheduling and rostering problems faced by urban bus
transit. In their experiments, which are based on real-word data from Belo
Horizonte, Brazil, the hybrid algorithms are able to find optimal solutions
for more problem cases than the solution methodologies solely based on
mathematical programming or constraint logic programming.



Chapter 3

Problem formulation

In this section the characteristics of the train driver rostering problem are
discussed. The problem constraints are first presented using examples
to clarify the concepts. Some background information is also given to
show the importance and origins of the constraints. Based on the informal
description, a network model of the problem is formulated in Section
3.2.

3.1 Problem description

The train driver rostering problem is solved independently for each of the
25 depots in Finland. Each train driver has a home depot, where his/her
shifts have to start from and end at. As each work shift is assigned to a
depot, the rostering problem can be solved depot by depot.

The problem includes both soft and hard constraints. Hard constraints,
which originate from union agreements and law requirements, define the
feasibility of a solution, whereas the soft constraints affect the solution
quality and aim at increasing the work well-being of the drivers.

3.1.1 Hard constraints

The work time that includes the work time compensations is called artificial
work time, whereas real work time does not include work time compensa-
tions. Drivers earn work time compensations from shifts that contain

17



CHAPTER 3. PROBLEM FORMULATION 18

evening or night work: for every hour a shift contains work between 21.00

and 06.00 the drivers get twenty minutes of work time compensations in
addition to the real work time. Also, if the shift starts at 04.00 or earlier
the drivers earn similar work time compensations until they have an at
least two hour long continuous break, or until the clock strikes 12.

In each three week work period the drivers cannot have more than 114

hours and 45 minutes of artificial work time. For periods that contain
public holidays, such as Christmas or Easter, the artificial work time limit
is lower. The artificial work hour limit is driver-specific, because vacations
and other absences also affect the limit. The maximum amount of night
work, i.e., work between 22.00 and 06.00, is limited to 42 hours during the
work period. This limit is not affected by public holidays.

The maximum number of real work hours in a work cluster, which is the
period of work between two consecutive double week rests, is limited to
45 hours for each driver. Double week rests are defined as at least two
consecutive calendar days that do not contain any work, i.e., no shifts end
or start during the day. The maximum number of calendar days between
two double week rests is five. If, for example, a driver has a double week
rest on the weekend and work on Monday, Tuesday, Thursday and Friday,
then he has been working on five consecutive work days on Friday, even
though there would not be work on Wednesday. Thus he has to have a
double week rest on the coming weekend.

The shifts can be classified as day or night shifts. Shifts that are not classified
as night shifts are considered as day shifts. Nights shifts can be divided
into two classes. Night shifts of type B contain work between 02.00 and
05.00 during a night, whereas night shifts of type A contain at least three
hours of work between 22.00 and 06.00 during a single night. The number
of consecutive nights with night work (the night contains a shift that has
work of type A or B during the night) a driver can be assigned to is
constrained to two. However, a driver cannot have nights that contain
night work of type B on consecutive nights.

The drivers can only be assigned to shifts they have proper training for.
The drivers cannot be assigned to shifts that that contain work during
agreed vacations or absences. These constraints are driver-specific, because
they depend on the skills and schedules of the drivers.

To summarize, a feasible 3-week roster satisfies the following hard con-
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straints

HC1. Driver-specific upper bound on artificial work time during the work
period (usually 114 hours and 45 minutes)

HC2. At most 42 hours of night work during the work period

HC3. At most five calendar days between two consecutive double week
rests

HC4. No more than 45 hours of between two consecutive double week
rests

HC5. At least ten hours of rest between two consecutive shifts

HC6. No night shifts of type B on consecutive nights

HC7. Three consecutive nights with night shifts is not allowed

HC8. The drivers can only be assigned to shifts for which they have the
required skills

HC9. The drivers cannot be assigned to any shifts during absences

HC10. Each shift is assigned to a driver

3.1.2 Soft constraints

Work hours between 00.00 and 24.00 on Sundays, church holidays, on the
Independence Day, or on May day are classified as Sunday work. The work
hours between 18.00 and 24.00 on the previous day are also considered as
Sunday work. For every Sunday work hour the drivers get a higher salary,
which is the main reason why it is desirable to constrain the amount of
Sunday work a single driver can have and to divide the Sunday work more
equally between the drivers.

Shifts with rest are shifts that contain a period of time inside the shift itself
that is not counted as work time, and the driver only gets a fixed monetary
compensation for each rest. Such rest time is usually spent away from the
home depot, which together with the lower salary, make it relevant to limit
the maximum number of shifts with rest that a driver can be assigned
to.
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Night shifts are considered more strenuous than day shifts, which is why
distributing the night shifts evenly among the drivers is relevant. In the
night shift distribution rules no distinction is made between night shifts
of type A and B.

To summarize, a preferred roster takes the following aspects into consider-
ation

SC1. Balance the amount of Sunday work evenly among the drivers

SC2. Balance the number of night shifts evenly among the drivers

SC3. Balance the number of shifts with rest evenly among the drivers

3.1.3 Objectives

The main objective of the rostering process is to increase the utilization rate
of the regular drivers by maximizing the number of artificial work hours
planned for them. A secondary objective is to make the rosters compact.
In a compact roster the rest between two consecutive shifts should be as
close to ten hours as possible if there is not a double week rest between
the shifts. The number of work clusters should also be minimized. This is
because most drivers prefer having as much work as possible in a work
cluster, which enables them to have many consecutive days off during the
double week rests.

3.2 Formal definition

The train driver rostering problem is modeled using a shift graph. Let
the set S contain m shifts, which all start during the work period that
is nd days long. The shifts do not need to end during the work period:
they can continue until the first day of the next period, i.e., day nd + 1.
The starting and ending day for shift i ∈ S can thus be denoted by
sd(i) ∈ {1, ...,nd} and ed(i) ∈ {1, ...,nd + 1}, correspondingly. To store the
starting and ending minute of the shift we define a set F so that it contains
all the minutes in the work period. As each day contains 1440 minutes
and the work period is nd days long, F = {1, 2, ..., 1440nd}. The starting
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minute of shift i is denoted by sm(i) ∈ F and the ending minute by
em(i) ∈ F∪ {1440nd + 1, ..., 1440(nd + 1)}.

In the shift graph G = (S,E) each shift is represented by a node. The edge
(i, j) between the nodes i, j ∈ S belongs to E if and only if em(i) − sm(j) > ∆,
where ∆ = 600 is the minimum rest time between two consecutive shifts
(HC5). The set of nodes that can be reached from node i is denoted by
A(i) = {j ∈ S : (i, j) ∈ E}. The graph is directed and acyclic, because the
starting times define an order in which the shifts have to be completed.
A path P denotes a sequence of nodes in the shift graph G, which can be
seen from Figure 3.1. Each path will be assigned to a driver d, which is
why driver-specific information needs to be taken into consideration when
creating the paths, thus P = P(d). In a feasible roster R each shift must be
assigned to one path P that belongs to R (HC10).

Figure 3.1: The figure displays a shift graph that consists of
nodes and edges. The path P is a sequence of directed edges
((1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)) between the nodes. The directed edges
exist only if the resting time between the the nodes, i.e., shifts, is at least
ten hours (HC5).

3.2.1 Night shift constraints

The time difference between the starting time and the ending time of a
shift cannot exceed 24 hours. Thus a shift can contain work on at most two
consecutive nights. The work period contains nd days, but nd + 1 nights.
A night is defined as the period between 22:00 and 06:00 on the following
day. However the first night corresponds to the hours 00:00 - 06:00 on
day one. Let H = {1, ...,nd + 1} denote the set of all the nights. Each night
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h ∈ H is defined by a starting minute sm(h) and ending minute em(h). The
minutes shift i spans is denoted by F(i) = {sm(i), ..., em(i)}. In a similar
manner we denote the minutes night h spans by F(h) = {sm(h), ..., em(h)}.
To define nights of type B we have a set FB(h) ⊂ F(h) that contains the
minutes belonging to the time interval 02:00 - 05:00 on night h. We can
determine the type of night work of shift i during night h in the following
manner

(a) We define H(i) ⊂ H to contain the nights h for which shift i has work
on, i.e., |F(i)∩ F(h)| > 1 holds. Further, let HAB(i) ⊆ H(i) be the nights
i has night work of type A or B on, and HB(i) ⊆ HAB(i) as the nights
i has night work of type B on. Now if F(i)∩ FB(h) 6= ∅, then i contains
h as type B. Thus h ∈ H(i), h ∈ HAB(i), and HB(i) = {h}.

(b) If |F(i)∩ F(h)| > 180 and h /∈ HB(i), then h ∈ H(i) and h ∈ HAB(i).

If neither (a) or (b) holds then i does not contain night work of any type on
night h. A shift cannot contain two nights of type B, and thus |HB(i)| 6 1.
On the other hand, as a shift cannot span more than two nights |H(i)| 6 2
holds for all shifts i.

It is noteworthy to remember that a single night h of a single driver cannot
contain two shifts during one night because the break between two shifts
has to be at least ten hours long, i.e., ∆ = 600.

To express the night shift constraints we define two cumulative variables,
NAB(P) and NB(P). The variable NAB(P) stores the number of consecutive
nights of type A or B at the last shift of path P, while NB(P) stores the
number of consecutive nights of type B at the last shift of P.

Let h−1i ∈ H be the night before the start of shift i, that is

h−1i =

{
sd(i) if sd(i) 6∈ H(i)
sd(i) − 1 otherwise.

(3.1)

If we add shift j after the current last shift i in the path P 6= ∅, we get
NAB(P

′) and NB(P ′) for the new path P ′ in the following manner

NAB(P
′) =

{
NAB(P) + |HAB(j)| if h−1j ∈ HAB(i) or h−1i = h−1j

|HAB(j)| otherwise
(3.2)

NB(P
′) =

{
NB(P) + |HB(j)| if h−1j ∈ HB(i) or h−1i = h−1j

|HB(j)| otherwise.
(3.3)
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Examples of the conditions h−1j ∈ HB(i) and h−1i = h−1j are given in Figures
3.2 and 3.3. The path P ′ satisfies the night constraints if NB(P ′) 6 1 (HC6)
and NAB(P ′) 6 2 (HC7).

In case j is added to an empty path P = ∅ the cumulative variables
are computed as NAB(P ′) = |HAB(j)|+ pAB(d,h−1j ) and NB(P

′) = |HB(j)|+

pB(d,h−1j ), where pAB(d,h−1j ) denotes the number of consecutive night
of type A or B at night h−1j for driver d, and pB(d,h−1j ) the number of
consecutive nights of type B at night h−1j for driver d. The driver d is
the that is associated with the path P ′. pAB(d,h−1j ) and pB(d,h−1j ) are
computed based on the last shifts driver d is planned to have during the
previous working period.

Figure 3.2: Shift i contains work of type B on the night previous to the
start of shift j, i.e., h−1j ∈ HB(i). As j contains night work of type B on night
3, there are two consecutive nights with night work of type B on. Thus the
driver cannot be assigned to both i and j (HC6).

Figure 3.3: The night before the start of shifts i and j is the same night, and
thus h−1i = h−1j . As i does not contain night work of any type, assigning i
and j to the same driver does not violate the night shift constraints.

3.2.2 Work cluster constraints

A path P = (i1, ..., ip) with p shifts spans the days starting from the starting
day of the first shift sd(i1) until the ending day of the last shift ed(ip). Days
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w that do not contain work, i.e., there does not exist a shift i ∈ P ending
on that day sd(i) = w or starting on that day ed(i) = w, are known as rest
days. A double week rest consists of at least two consecutive rest days.
The days that are not rest days are known as work days.

For the path P two cumulative variables are used to impose the work time
constraints for a work cluster:

(a) D(P): the number of consecutive work days on day ed(ip) since the
last double week rest of P, or the days since the ending day of the
last shift in the previous work period if d(P) does not contain any
double rest days.

(b) R(P): the number of real work hours on day ed(ip) since the last
double week rest of P, or since the ending day of the last shift in the
previous work period if d(P) does not contain any double rest days.

The variables D(P) and R(P) are updated when a new shift j is added after
the currently last shift i ∈ P 6= ∅, resulting in path P ′

D(P ′) =

{
ed(j) − sd(j) + 1 if sd(j) − ed(i) > 2
D(P) + ed(j) − ed(i) otherwise

(3.4)

R(P ′) =

{
tr(j) if sd(j) − ed(i) > 2
R(P) + tr(j) otherwise,

(3.5)

where tr(j) is the real work time of shift j. Let the ending day of the last
shift of driver d in the previous work period be ed(d) 6 1. The cumulative
variables for the empty path P = ∅ are initialized as D(P) = pD(d) and
R(P) = pR(P), where pD(d) denotes the number of consecutive work days
on day ed(d) since the last double week rest, and pR(d) the number of real
work hours on day ed(d) since the last double week rest. When j is added
to the empty path P, the update formula 3.4 is used with the exception of
ed(i) = ed(d).

A feasible path P ′ satisfies the following properties: D(P ′) 6 5 (HC3), and
R(P ′) 6 45 (HC4).

3.2.3 Work period constraints

The shifts have various attributes associated with them: artificial driving
time ta(i), the amount of night work tn(i), and the amount of Sunday
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work ts(i). We also know if the shift is a night shift of any type, or if it
contains a rest within the shift. To express the constraints concerning these
attributes, we define a cumulative variable for each attribute. For path P
we get the following

(a) Ta(P): total accumulated artificial driving time of path P

(b) Tn(P): total accumulated night driving time of path P

(c) Ts(P): total accumulated Sunday time of path P

(d) Nn(P): the number of night shifts on path P

(e) Nr(P): the number of shifts with rest on path P.

For the empty path P0 = {} that does not contain any shifts we set Ta(P0) =
Tn(P0) = Ts(P0) = Nn(P0) = Nr(P0) = 0.

Adding a shift j to P results in path P ′. The values for the cumulative
variables are then given by

Ta(P
′) = Ta(P) + ta(j) (3.6)

Tn(P
′) = Tn(P) + tn(j) (3.7)

Ts(P
′) = Ts(P) + ts(j) (3.8)

Nn(P
′) =

{
Nn(P) + 1 if |HAB(j)| 6= 0
Nn(P) otherwise

(3.9)

Nr(P
′) =

{
Nr(P) + 1 if j contains a rest
Nr(P) otherwise.

(3.10)

The path P ′ is feasible in terms of these knapsack-like constraints if the
following hard constraints hold: Ta(P

′) + pTa(d) 6 Ua(d) (HC1), and
Tn(P

′) + pTn(d) 6 Un (HC2). Here pTa(d) and pTn(d) denote the num-
ber of artificial and night work hours coming from shifts that started
during the last work period and ended during the current work period,
respectively. The upper bound for the artificial work hours, Ua(d), is
driver-specific, whereas the upper bound for the night work hours is not.
The soft constraints related to the Sunday time, night shifts and shifts
with rest are expressed as: Ts(P ′) 6 Us (SC1), Nn(P ′) 6 Un (SC2), and
Nr(P

′) 6 Ur (SC3).



CHAPTER 3. PROBLEM FORMULATION 26

3.2.4 Other driver-specific constraints

When assigning drivers to shifts the skills of the drivers need to be taken
into consideration. The drivers need to have competence for the rolling
stock present in the shift, i.e., the path P of a driver d may only include
shifts i that driver d has a proper training for (HC8). In a similar manner,
the drivers can only be assigned to shifts that do not contain any work
during their absences (HC9).

During pre-processing we can identify the possible shifts the individual
drivers can be assigned to as we know the absences and the skills of the
drivers. Thus for each driver d we can create a set Sd ⊆ S that contains all
the shifts i the driver d can be assigned to. Now path P of driver d may
only include shifts that belong to Sd, i.e., if i ∈ P(d) then i ∈ Sd must be
true.

3.2.5 Compactness

There are three factors that are related with the compactness of a path P.
First, the rest time between two consecutive shifts, which are not separated
by a double rest, should be as little over ten hours as possible. The rest
time between two consecutive shifts is formulated as a cost cdi,j for each
edge (i, j) ∈ E

cdi,j =

{
sm(j) − em(i) −∆ sd(j) − ed(i) 6 2

0 otherwise,
(3.11)

where cdi,j represents the waiting time in excess to the minimum ∆ between
two consecutive shifts, which are not separated by a double rest. Even
though the formulation (3.11) of the cost cdi,j is linear, it could be nonlinear
too.

Second, the number of work clusters is minimized. In order to model the
compactness of a path in terms of clusters we associate a cost cci,j with
each edge (i, j) ∈ E

cci,j =

{
1 sd(j) − ed(i) > 2

0 otherwise.
(3.12)
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The cost cci,j in (3.12) is equal to one in case there exists a double week rest
between the consecutive shifts i and j, otherwise it is zero.

Finally, the number of shifts that have a double week rest before and after
the shift should be minimized. The goal is to avoid interrupting long rest
periods by single shifts. Formally, this can be expressed as the cost

csi,j,k =

{
1 sd(j) − ed(i) > 2 & sd(k) − ed(j) > 2

0 otherwise,
(3.13)

which holds for all edges (i, j), (j,k) ∈ E. The cost (3.13) is one, if there is a
double rest between i and j, and also between j and k.

3.2.6 Objective function

The total cost of the roster R is the sum of the costs of the individual
paths P that belong to R. The penalties for breaking the soft constraints
for the Sunday work time, night shifts and shifts with rest for path P are
computed as

Cs(P) =

{
Ts(P) −Us Ts(P) > Us

0 otherwise
(3.14)

Cn(P) =

{
Nn(P) −Un Nn(P) > Un

0 otherwise
(3.15)

Cr(P) =

{
Nr(P) −Ur Nr(P) > Ur

0 otherwise.
(3.16)

Thus the total cost for breaking the soft constraints can be expressed
as

fs(R) =
∑
P

(WsCs(P) +WnCn(P) +WrCr(P)) , (3.17)

whereWs,Wn, andWr are the weights that describe the relative importance
of the individual costs.

The main objective of maximizing the total artificial work hours of the
regular drivers is expressed as a problem of minimizing the total artificial
work hours of the extra drivers. Thereby the cost function associated with
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the minimization of the artificial working hours of the extra drivers in the
roster R is expressed as

Ce(P) =

{
Ta(P) P belongs to an extra driver in roster R
0 otherwise.

(3.18)

The secondary objective of minimizing the compactness cost, Cc(P), of
path P is defined as the weighted sum of the costs cdi,j, c

c
i,j and csi,j,k of

the shifts traversed by the path. Let the weights for cdi,j, c
c
i,j, and csi,j be

wd, wc, and ws, respectively. Then the objectives can be expressed as
fo(R) =

∑
P (WcCc(P) +WeCe(P)) and the total cost of a roster is

f(R) = fs(R) + fo(R). (3.19)
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Solution methodology

4.1 Background

The solution methodology is based on the algorithm by Ropke and Pisinger
(2006), which is modified to take advantage of the problem-specific charac-
teristics of the train driver rostering problem. In the Pickup and Delivery
Problem with Time Windows by Ropke and Pisinger (2006), the goal is
to construct routes for picking up goods and delivering them to their
corresponding destination locations. The time windows for pickups and
deliveries have to be satisfied, and the problem may also include capacity
constraints. The authors take advantage of multiple large neighborhood
insertion and removal heuristics to generate new solution candidates. The
Adaptive Large Neighborhood Search (ALNS) algorithm tries to take the prob-
lem characteristics into consideration by evaluating the heuristics based
on their past performance. The strategies that seem to offer better perfor-
mance have a higher probability of being used in later iterations.

We implemented the ALNS for the train driver rostering problem due
to its robustness and promising benchmark results in routing problems,
which have similar properties as the rostering problem. Both problems
can be viewed as network problems in which the goal is to find feasible
and cost efficient paths in the network. Also, as presented in Section 2.4,
heuristics are widely used within the domain of mass transit systems.
Our approach assumes that the removal of a shift from a driver can never
make the roster of the driver infeasible, which eliminates the possibility
of having hard lower bound constraints for the number of night shifts a

29
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driver must have, for example.

4.2 Description

The solution procedure operates in three stages. In the first stage a
Construction Heuristic is used to create an initial solution by assigning as
many shifts as possible to the drivers. In the second stage, we try to find a
feasible solution that does not contain any unassigned shifts. Finally, in
the third stage the goal is to improve the solution quality by taking the
objective function into consideration.

4.2.1 Initial solution

The heuristic used in the second stage requires an initial roster to operate
on. This roster should be feasible in terms of the hard constraints, but it
does not need to contain all the shifts of the problem. The initial roster is
created using the following Construction Heuristic

1. Compute the time difference between the starting and the ending
minute of each shift i ∈ S, i.e., em(i) − sm(i), and sort the shifts in a
descending order based on this value.

2. Traverse the list from start to end. Try to insert the shift in turn to
the drivers in a random order and accept the first feasible insertion.
Keep list of the shifts that could not be assigned to any driver.

The motivation behind the sorting is that generally it is harder to insert
the long shifts than the short shifts into the roster.

Let us call the roster produced by the Construction Heuristic as R.

4.2.2 Search for a feasible solution

We try to create a feasible roster that contains all the shifts using the
Large Neighborhood Search (LNS) algorithm presented in Algorithm 1. The
algorithm works by removing shifts from the roster and then inserting
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the removed shifts back to the roster in search of new, potentially better
solutions, as can be seen from Figures 4.1 – 4.3.

On each iteration of the algorithm we determine the number of shifts to
be removed, which can be seen on line 5. The value q is chosen randomly
from a discrete uniform distribution U(qmin,qmax), where qmin > 1 and
qmax 6 m are the minimum and maximum number of shifts to be removed,
respectively. We always remove at least one shift and we cannot remove
more than all of the m shifts in the roster R. Next we determine if we
should try to insert one of the unassigned shifts to the roster together with
the removed shifts. Let the probability of trying to insert one unassigned
shift be pins. The heuristics used for shift removal and insertion are pre-
sented in subsections 4.2.2.1 and 4.2.2.2, respectively. If the shift insertion
is successful for all the shifts, we continue to the next iteration; otherwise,
we revert back to the previous solution R ′. We continue this procedure
until we find a roster that contains all the shifts or we reach the run time
limit.

Algorithm 1 Large Neighborhood Search (LNS)
1: initial roster R
2: repeat
3: R ′ ← R

4: remove q ∈ {qmin, ...,qmax} shifts from roster R
5: insert one unassigned shift with probability pins and

the q removed shifts to R
6: if we were not able to insert all the shifts to R then
7: R← R ′

8: until the stopping criterion is met
9: R is a feasible solution if all shifts were assigned
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Figure 4.1: Three shifts (1-3) are chosen at random for removal from the
current paths. In the example all the shifts are part of different paths.

Figure 4.2: The shifts are removed and the paths are connected to produce
feasible paths. The three shifts are left unassigned.

Figure 4.3: A new solution is computed by inserting the removed shifts. In
the new solution, the shifts 1 and 3 are part of path 2, and shift 2 belongs
to path 3.
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4.2.2.1 Random removal

In random removal, we iteratively remove the required number of shifts,
q, from the roster. Let us say that after i iterations we have removed
qr < q shifts. Thus, the maximum number of shifts we can remove during
iteration i + 1 is qi+1 = q − qr. Let p1 and p2 be parameters that have
to fulfill the condition p1 + p2 6 1. Let also Ns(d) denote the number of
shifts assigned to driver d. The removal procedure for iteration i+ 1 is
described in Algorithm 2. The procedure is repeated until q shifts have
been removed.

Algorithm 2 Random removal iteration
1: roster R
2: choose randomly a driver d from the roster R
3: choose a random number r from the uniform distribution U(0, 1)
4: if Ns(d) = 0 then
5: no shifts can be removed from the driver
6: else if (Ns(d) = 1) or (qi+1 = 1) or (r 6 p1) then
7: remove one shift randomly from driver d
8: else if (Ns(d) = 2) or (qi+1 = 2) or (r 6 p1 + p2) then
9: remove randomly two consecutive shifts from d

10: else
11: remove randomly three consecutive shifts from d

The motivation for the emphasis of removal of consecutive shifts comes
from practical experience. Usually the rosters require changing larger por-
tions of the paths of the individual drivers in order to find new solutions,
which we can emphasize by tuning the parameters p1 and p2.

4.2.2.2 Random insertion

Random insertion is a simple strategy to insert shifts to a roster. We try
to insert each of the removed shift to the drivers in a random order. We
accept the first driver we can assign the shift to. If we can assign all the
shifts to the drivers the insertion has been successful.
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4.2.3 Solution improvement

In the previous stage, the goal was to produce a feasible roster. The objec-
tive in the third and final stage is to maintain feasibility, while taking the
costs of the individual paths (see Section 3.2.6) into consideration in order
to minimize the overall cost of the roster. This is done using an adaptive
version of the Large Neighborhood Search. In the adaptive version, we
utilize four insertion strategies instead of one, namely greedy random
insertion, greedy insertion, regret-2 insertion, and regret-3 insertion. These
strategies are described in more detail in Sections 4.2.3.1 – 4.2.3.3.

The Adaptive Large Neighborhood Search, which is presented in Algo-
rithm 3, reuses most of the ideas from the LNS algorithm introduced
in Algorithm 1. At each iteration we remove q shifts using the random
removal strategy, but the insertion strategy is chosen based on the past
performance of the strategies. Inferior, but feasible solutions, may be
accepted as solutions with probability pacc. The probability depends on
the relationship between the new solution R and the old solution R ′, i.e.,
pacc = pacc (f(R), f(R ′)). A higher probability pacc reduces the chances that
the algorithm cannot escape a local optimum, but it can also slow the
convergence down.

Algorithm 3 Adaptive Large Neighborhood Search (ALNS)
1: feasible roster R
2: Rbest ← R

3: repeat
4: R ′ ← R

5: choose a random number r from the uniform distribution U(0, 1)
6: remove q ∈ {qmin, ...,qmax} shifts from roster R
7: choose insertion strategy s
8: insert the q removed shifts back to R using strategy s
9: if insertion did not result in a feasible roster then

10: R← R ′

11: else if (f(R) > f(R ′)) and (pacc (f(R), f(R ′)) < r) then
12: R← R ′

13: else if f(R) < f(Rbest) then
14: Rbest ← R

15: until the stopping criterion is met
16: Rbest contains the best feasible solution found
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4.2.3.1 Greedy random insertion

The q shifts to be inserted to the roster are assigned sequentially in random
order to the drivers. Let fi,d be the change in the objective function value
when shift i is assigned to d ∈ {1, ...,n}, where n denotes the number of
drivers. If the insertion is infeasible, then let fi,d =∞. Using this metric,
we assign i to the driver that corresponds to the value di = arg mind

{
fi,d
}

.
If we cannot assign i to any of the drivers then the insertion has failed and
we terminate.

4.2.3.2 Greedy insertion

The greedy insertion assigns at each step the shift that corresponds to the
best change in objective function value to the roster R. Let the set L ⊆ Q
be a collection of the removed shifts that have not yet been reinserted.
The change in the objective function value when i ∈ L is assigned to
the corresponding best driver di ∈ {1, ...,n} is fi = mind

{
fi,d
}

. If fi = ∞
for any i we terminate, otherwise we continue. Out of all the shifts
imin = arg mini {fi} has the overall lowest insertion cost. Thus imin is
assigned to driver dimin

. If |L| > 1, this insertion process is continued using
the set L ′ = L \ {imin}.

4.2.3.3 Regret heuristic for insertion

In the k-regret we try to compute value that measures how much it is
worth to assign a shift to the driver that corresponds to the best change in
objective function value. The procedure works in the following manner.
We compute the change in the objective function value of assigning the
shift i to each of the drivers d ∈ {1, ...,n}. This is done for all the shifts
which have not yet been assigned. Let the smallest objective function value
corresponding to i be f1i , the second smallest f2i , and the k:th smallest
fki . Also let di be the driver that corresponds to the smallest cost of i,
f1i . If f1i = ∞ for any i we terminate, otherwise we continue. In the
general k-regret heuristic with k ∈ {1, ...,n}, the shift i that maximizes∑k
j=1

(
∆f

j
i −∆f

1
i

)
is assigned to di. This process is continued until all the

shifts have been assigned, or until one of the still unassigned shifts cannot
be assigned to any driver. In the latter case the insertion has failed.
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The parameter k determines the complexity of the selection criteria: the
larger k is, the more we look ahead in the insertion process and try to
estimate the best way to assign all the shifts, not only the individual shifts.
In the ALNS we use the two most simple strategies: 2-regret and 3-regret
heuristics.



Chapter 5

Results

5.1 Pre-processing

Pre-processing involves capturing the essential characteristics of the shifts
from the raw data and formulating these characteristics into a format
that can be easily read by the optimization algorithm. The raw data is
gathered from the planning software in the form of a text file. This text
file is exported separately for each planning period, such as the shifts are
subject to changes depending on driver feedback, transportation needs
and driver availability. The export contains the shift data for all the depots.
The data for a specific depot can easily be filtered using the corresponding
depot id.

The data for an individual depot contains all the shifts of the depot and all
the tasks the shifts consist of. Based on the information of the individual
tasks, we can compute the necessary characteristics of the shifts. For
example, the starting time of the shift is determined by the starting time
of the earliest task that belongs to the shift. In a similar manner, the
ending time of the shift is the ending time of the last task. The approach
of building shift attributes from task level information makes it possible to
associate robustly new, possibly complex, attributes with the shifts.

Various driver-specific data needs to be collected before the optimization
algorithm can be called. Most of the data can be computed from the rosters
of the previous work period based on the ending time of the drivers’ last
shift. The drivers’ current training status and their future absences can be
gathered from the company’s internal human resource software. Based on
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the data about driver absences we can compute the artificial work hour
limits of the drivers and the possible shifts the drivers can be assigned
to.

5.2 Test cases

The solution methodology is implemented in C++. The executable file of
the algorithm loads in the data processed by R, as described in Section
5.1, and creates a text file that contains the solution. The solution can then
be visualized using an R function implemented for creating simple and
readily understandable figures of the rosters.

Three different problem cases are used to evaluate the performance of
algorithm. The test cases, which are presented in Table 5.1, consist of
real world shift data from three different depots in Finland. The smallest
problem contains 111 shifts compared to the 747 shifts in the largest
problem. There are also differences in the other attributes of the test
cases, for example in the amount of night work. Having benchmark
problems with different characteristics gives a clear picture of the overall
performance of the optimization algorithm. The test problems are solved
using a computer with Intel Core i5-6200U processor and 8GB of RAM.
The maximum frequency of the processor is 2.80 GHz.

Table 5.1: The problem characteristics of the three different test cases. The
problems differ in size as well as in other attributes, such as night work.

Attribute small medium large

Shifts 111 217 747

Night shifts 43 129 413

Shifts with rest 35 131 119

Total artificial work hours 1155 2797 7516

Night work hours 148 613 2425

Sunday work hours 189 510 889

The solution quality is evaluated using the following statistics. First, we
check how close the average artificial work hours of the regular drivers
are to the upper limit. We also check how well we can limit the number
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of night shifts, shifts with rest, and Sunday work hours of the individual
drivers. We measure the compactness roster using the number of days off
at the double week rests.

For each test problem, the total computation time was set to 60 seconds.
No other convergence criteria were used apart from the time limit. The
time limit was set low to determine how good solutions the algorithm is
able to find in short time spans.

5.2.1 Small problem

The small optimization problem was solved using eleven drivers, out of
which two were extra drivers. The final results are in Table 5.2. As the total
amount of work assigned to the extra drivers is minimized, all the result
attributes presented in the table are only for the regular drivers.

Table 5.2: Result statistics for the small rostering problem solution.

Attribute min max mean upper limit

Shifts 10 12 10.89

Night shifts 3 5 4.11 5

Shifts with rest 2 4 3.56 4

Artificial work hours 113.5 114.45 114.44 114.75

Night work hours 12.78 18.18 14.53 42

Sunday work hours 13.35 24.75 18.72 25

Total days off at double week rests 6 8 7.11

To balance the strenuous shifts, the maximum number of night shifts and
shifts with rest was set to five and four, correspondingly. The upper bound
for the Sunday work hours was set to 25. The limits for the artificial
work hours and for the night work hours are those defined by the union
contracts. The model does not include any limits for the maximum number
of shifts. The lower limit for the total consecutive days off at the week
rests is six in a three week work period, because the maximum number of
consecutive work days is five.

A part of the roster created by the algorithm can be seen from Figure 5.1.
The green boxes represent the shifts, the numbers on the columns are the
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day numbers and the rows correspond to the drivers. Starting from the
top of each shift we have the starting time of the shift, the id of the shift,
and, finally, the ending time of the shift. The shifts with the light green
colour are day shifts, the bright green shift is a night shift of type A, and
the dark green shifts are night shifts of type B. The day numbers with grey
background represent weekends.

Figure 5.1: A snippet of the roster created for the small test problem.

The result looks excellent in that the mean artificial work hours are only
eighteen minutes from the upper limit and the strenuous shifts are well
distributed among the drivers. On average, the drivers also have a three
day week rest during the three week long work period.

5.2.2 Medium sized problem

The medium sized problem is a step up from the small problem with an
increase of almost 100% in the number of shifts and an increase of over
250% in the total artificial work hours. Thus, solving the problem requires
more drivers. The final solution contains 23 regular drivers and 6 extra
drivers.

As in the small problem, the results for the medium sized problem are
good. The average artificial work hours are not as close to the upper
limit as for the small problem, which can be seen from the Table 5.3. The
mean number of night shifts and shifts with rest are close to the upper
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limits, which signals that the upper limits are meaningful and actually
constrain the solution space. The total consecutive days off at week rest
is 0.65 calendar days over the six calendar days required by the union
contract.

Table 5.3: Result statistics for the medium sized rostering problem solution.

Attribute min max mean upper limit

Shifts 7 10 8.61

Night shifts 3 6 5.00 6

Shifts with rest 3 6 5.48 6

Artificial work hours 110.20 114.70 113.51 114.75

Night work hours 11.28 35.02 23.35 42

Sunday work hours 14.80 24.80 21.93 25

Total days off at double week rests 6 9 6.65

Next we tried changing the upper limit for the number of shifts with
rest from six to seven to see if that would increase the mean artificial
work hours. We did see a relatively small increase of ten minutes in the
mean artificial work hours, which suggests that the upper bound for the
number of shifts with rest is not the only factor that constrains the problem
tightly.

5.2.3 Large problem

The largest problem contains a large amount of night work, which makes
the problem significantly more difficult, because there are multiple con-
straints concerning night shifts and night work overall. The problem
solution uses 71 drivers, out of which nine were extra drivers. The solu-
tion statistics are presented in Table 5.4.

The artificial work hours are only a few minutes from the upper limit,
even though the average of night work hours is over 36 hours, while the
upper limit is 42 hours. The mean Sunday work hours are close to the
upper limit, which is good. The same remark holds also for the night
shifts. Because the number of shifts with rest is quite low, the need for
balancing the shifts with rests is not of high importance.
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Table 5.4: Result statistics for the large rostering problem solution.

Attribute min max mean upper limit

Shifts 9 13 11.4
Night shifts 4 7 6.2 7

Shifts with rest 0 3 1.67 3

Artificial work hours 114.42 114.75 114.66 114.75

Night work hours 18.78 41.58 36.30 42

Sunday work hours 9.12 14.95 13.51 15

Total days off at double week rests 6 11 7.08
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Practical experiences

The optimization model, which has been in use since summer 2016 for
a major part of the depots, has been successful in that it has increased
the utilization rate of the drivers by 3− 5%. The results produced by the
model are excellent, especially because it considers several aspects of work
well-being already at the outset. Using the model the planning department
has been able to allocate the night work, Sunday hours and shifts with
rest more evenly among the drivers. The planners experience that they
are able to efficiently create rosters that are considered less strenuous by
adjusting the constraints, such as the minimum rest time between two
consecutive shifts or the maximum work hours in a work cluster.

The planners have on multiple occasions created and presented alternative
solutions to the union representatives based on the discussions between
the planners and the representatives. The solutions have been equally
good from the employer’s point of view, and thus the representatives have
been able to freely choose the solutions they prefer. However there have
been comments about the choices being too similar even though different
properties have been emphasized, which usually occurs due to the fact that
a high importance is given to maximizing the artificial work hours.

The time required to plan the rosters has reduced by several hours per
depot. When using the optimization model a large share of the planners’
time is occupied by collecting the input data for the model. However,
once the data has been collected, new solutions can be computed in a few
minutes and unexpected changes to the input data can thus be readily
taken into consideration comfortably. Using the model the planners have
considerably more time to focus on future improvements and development
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ideas regarding the rostering process, because the manual rostering does
not occupy such a large share of the planners’ time.

From a strategic perspective, the model has allowed the planners to exper-
iment whether certain constraints proposed by the union representatives
should be implemented in practice. There have been suggestions for ex-
ample to ban certain shift combinations, such as having a night shift and a
shift with rest on consecutive calendar days. Based on the results of the
experiments, the planners and the union representatives have assessed
whether the constraints should be included in the model and how the
constraints would affect the overall solution quality.

Apart from rostering, the model has also been used to simulate how
changes to the shifts affect the rosters. Based on the simulation results the
planners have been able to adjust the shifts with the hopes of improving
the rosters. The algorithm can also be used to plan future recruitments for
a depot, as it can be used to determine the minimum number of drivers
needed to take care of the workload of the depot.

Much feedback has been collected concerning the automatized solution.
The planners have experienced that the solutions provided by the algo-
rithm are difficult to modify manually without worsening the overall
solution quality significantly. The planners usually have to do manual
changes to the solutions after getting feedback from the union representa-
tives. The future goal is minimize the need for these manual changes by
focusing more on the major guidelines regarding the work well-being of
the drivers.

The planning department has adopted the new planning approach well.
The planners have been able to collect input data and run results without
the need of technical support. The planners have also provided essential
feedback on methods to improve the process further, especially the way
the input data is collected and stored. Based on the feedback, the process
has already been improved during the writing of this thesis.



Chapter 7

Conclusions

7.1 Summary

The primary goal of this project was to increase the utilization rate of
the regular drivers, thus minimizing the amount of work left for the
extra drivers. This goal was met with considerable success as the average
artificial work hours of the drivers have increased clearly compared to the
manually planned rosters, while the work load of the extra drivers has
reduced.

Increasing the work load of the regular drivers created a need to ensure
that the work well-being of the drivers is well taken care of. The algorithm
has enabled the planners to analyze and fix issues related to work well-
being by adjusting model constraints in a suitable manner.

A third goal of the thesis was to improve the efficiency of the planning
process by reducing the amount of sheer manual work. Based on feedback
from the planners, the rostering tool has sped up the planning process,
while increasing their capability to tackle sudden changes that affect the
rosters. By reducing the time spent on manual rostering the tool has also
enabled the planners to focus more on other tasks related to resource
planning.
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7.2 Future research

The development of the rostering tool is an ongoing process that will
see changes in the three different aspects of the tool: problem model,
optimization algorithm, and integration to existing software and databases.
The model needs to be modified if the underlying constraints that are
based on legislature or union contracts change, or if new constraints
related to the work well-being of the drivers are added. There are plans to
include multiple driver-specific constraints, other than the artificial work
time limit, so that the planners could use the model to create profiles
for each depot, or even for the individual drivers. For example, certain
drivers prefer having long rests between two consecutive shifts instead of
having over two rest days at the double week rests, while others prefer
the opposite. There are also drivers who prefer starting work early in
the morning, while others have no issues working late into the night.
Including driver-specific constraints to the model is not an issue, however
the constraints have to be evaluated thoroughly to find out if they produce
results that are of high quality both from the drivers’ and the employer’s
point of view. In the future new attributes will also be associated with the
shifts, for example how well received a shift is, with the goal of creating
a versatile and thorough description of the shifts. These new attributes
are then generally distributed evenly among the drivers to increase the
fairness of the roster.

Based on the complexity of the underlying problem model, certain perfor-
mance improvements may need to be implemented to the optimization
algorithm. The current performance of the model is excellent, especially
when taking into consideration that the model is ran on typical business
laptops. Thus the performance could easily be improved simply by run-
ning it on better performing hardware, for example on a server. It would
also be possible to parallelize multiple functions of the algorithm, e.g., the
feasibility check for the drivers, because the feasibility of a single driver’s
roster does not depend on any other driver. The need for performance im-
provements needs to be analyzed case by case. For example, performance
issues originating from badly formulated constraints may not require any
changes to the actual algorithm, while creating a high performing version
specifically for reducing the memory footprint would make it necessary to
modify the nature of the algorithm.
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There are ideas to create an integrated process around the algorithm
that would manage all tasks related to data input and output. Currently
collecting the required data involves multiple manual tasks, which is not
ideal, because these tasks could be automatized for the most part. Also
the rosters produced by the algorithm have to be inserted manually to the
planning software, which is an issue left to be solved.
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