
Aalto University

School of Science

Degree Programme in Mathematics and Operations Research

Ville Pohjalainen

Predicting service contract churn with

decision tree models

Master’s Thesis

Espoo, December 9, 2016

Supervisors: Professor Ahti Salo

Advisor: Olli Hänninen M.Sc. (Tech.)

The document can be stored and made available to the public on the open

internet pages of Aalto Univeristy. All other rights are reserved.

Aalto University

School of Science

Degree Programme in Mathematics and Operations Research

ABSTRACT OF

MASTER’S THESIS

Author: Ville Pohjalainen

Title:

Predicting service contract churn with decision tree models

Date: December 9, 2016 Pages: vii + 53

Major: Systems and Operations Research Code: SCI3055

Supervisors: Professor Ahti Salo

Advisor: Olli Hänninen M.Sc. (Tech.)

Customer attrition is a central problem in sectors, whose revenue depend on

customer relationships and it is more costly to acquire new customers than it is

to retain current ones. Thus, targeted approaches are useful to reduce customer

churn, given that the churning customers are correctly identified early enough.

The objective of this thesis is to model the attrition of service contracts, which

can be described as customers and to predict their risk of being cancelled.

Furthermore, causal reasons for predicting a contract for being risky and the pre-

dictive power of models are the key focus area. Understanding the reasons behind

unsatisfactory customers is also important and can be used in the development

of future business practices. However, this is only considered to a limited degree

due to the proprietary and sensitive nature of the used data.

The modeling is done by applying Classification and regression trees, Random

forests, Extremely randomized trees and XGBoost algorithms. It is found that

XGBoost algorithm produces the best model in terms of accuracy, while we also

gain an aggregate picture of the model’s structure and related reasons for loosing

service contracts. Rest of the models conform to these results and thus the models

are capable of separating between risky and non-risky contracts.

Keywords: customer churn, decision trees, CRM, random forests, XG-

Boost, machine learning

Language: English

ii

Aalto-yliopisto

Perustieteiden korkeakoulu

Matematiikan ja operaatiotutkimuksen maisteriohjelma

DIPLOMITYÖN

TIIVISTELMÄ

Tekijä: Ville Pohjalainen

Työn nimi:

Palvelusopimusten poistuman ennustaminen päätöspuumalleilla

Päiväys: 9. joulukuuta 2016 Sivumäärä: vii + 53

Pääaine: Systeemi- ja operaatiotutkimus Koodi: SCI3055

Valvojat: Professori Ahti Salo

Ohjaaja: Diplomi-insinööri Olli Hänninen

Asiakaspoistuma on keskeinen ongelma aloilla, joiden liikevaihto määräytyy asia-

kassuhteista ja on kannattavampaa säilyttää jo olemassa olevat asiakassuhteet

kuin hankkia uusia. Tämän takia kohdennetut kampanjat asiakaspoistuman

vähentämiseksi ovat tärkeitä, jotta ne asiakkaat, jotka ovat aikeissa poistua voi-

daan tunnistaa tarpeeksi ajoissa. Työn tarkoituksena on mallintaa palvelusopi-

musten poistumaa ja ennustaa niiden peruuntumisen riskiä. Palvelusopimukset

voidaan rinnastaa asiakassuhteisiin.

Työssä korostetaan mallien ennustekykyä ja niiden antamia syy-seuraussuhteita

sopimusten peruuntumisille. Mallien antamaa tietoa voidaan tulevaisuudessa

hyödyntää yritystoiminnan kehittämisessä. Mallien tulkittavuudessa ei kuiten-

kaan pureuduta syvälle yksityiskohtiin, koska käytetty data on luottamuksellista

yksityisdataa yrityksen asiakastietojärjestelmistä.

Mallinnus tehdään käyttämällä Classification and regression tree, Random fo-

rests, Extremely randomized trees ja XGBoost algoritmeja. Jokainen malli ky-

kenee erottelemaan peruuntumiselle riskialttiit sopimukset, minkä lisäksi niiden

rakenteesta ja poistumaan vaikuttavista tekijöistä saadaan muodostettua koko-

naiskuva. Käytetyistä päätöspuualgoritmeista XGBoost tuotti parhaan mallin,

kun hyvyyttä tarkastellaan ennustetarkkuudella.

Asiasanat: asiakaspoistuma, päätöspuut, CRM, random forest, XGBoost,

koneoppiminen

Kieli: Englanti

iii

Acknowledgements

I am truly thankful to both, my supervisor Ahti Salo and instructor Olli

Hänninen. Without their guidance and patience I do not believe this thesis

would have seen the daylight. Also a big thank you for my good friend Vesa

with helping to proofread this thesis and giving valuable feedback.

Espoo, December 9, 2016

Ville Pohjalainen

iv

Abbreviations and Acronyms

CART Classification and Regression Tree

CLV Customer Lifetime Value

CRISP-DM Cross Industry Standard Process for Data Mining

CRM Customer Relations Management

CV Cross-validation

ERT Extremely Randomized Trees

FN False Negative

FP False Positive

FPR False Positive Rate

LOOCV Leave-one-out cross-validation

Lasso Least absolute shrinkage and selection operator

LIME Local Interpretable Model-Agnostic Explanations

MDG Mean Decrease Gini

OOB Out-of-bag error

RF Random Forests

SKF Stratified k-fold cross-validation

TN True Negative

TP True Positive

TPR True Positive Rate

XGB XGBoost

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Objectives and structure . 2

2 Case formulation 4

2.1 Churn prediction . 4

2.2 Data overview and preprocessing 5

3 Methodological approaches 12

3.1 Decision tree learning . 12

3.1.1 Classification and regression trees 15

3.1.2 Random forests and Extremely randomized trees . . . 16

3.1.3 Gradient boosted trees 19

3.2 K-fold cross-validation . 20

3.3 Metrics for model performance 21

3.3.1 F-score . 22

3.3.2 Logarithmic loss . 23

3.3.3 Receiver operating characteristic and lift curve 23

3.4 Model interpretability . 24

3.4.1 Eliciting feature importances from trees 25

3.4.2 Local interpretable model-agnostic explanations 26

4 Implementation 28

4.1 Model training . 28

vi

4.2 Model evaluation . 30

4.2.1 Model accuracy . 30

4.2.2 Importance of features 32

5 Computational results and model evaluation 33

5.1 Resulting model performance 33

5.2 Prominent variables . 36

5.3 Predictive capability and model explanations 40

6 Discussion and conclusions 47

vii

Chapter 1

Introduction

1.1 Background

Customer service related businesses rely on the volume of customers in order

to generate revenue and income. To maximise revenues, it has been suggested

that it may be more profitable to emphasize efforts in retaining the current

customer base at the expense of hunting for new customer relationships [2]

from the cost perspective. Thus, to prevent customers from churning, good

customer relations management (CRM) practices must be in place and pre-

dictive modelling can be used as one of the tools, helping decision making

on identifying the most likely customers to churn.

Churn modelling has been done across many fields including, but not

limited to the financial [23, 33], online gambling [10] and telecom sectors

[1, 19]. The modelling approaches vary greatly, and many algorithms have

been used for the analysis, such as neural networks, decision trees, support

vector machines, logistic regression and various others. Out of these algo-

rithms, decision tree based algorithms like random forests have often per-

formed the best [29] along other ensemble methods [10]. Relatively complete

and comprehensive listings of applied approaches on various customer churn

management studies are given in [17, 29, 32].

In addition to helping reduce customer retention, the ability to assign

1

CHAPTER 1. INTRODUCTION 2

churn probabilities is helpful to customer lifetime value (CLV) analysis [17].

Unlike in churn prediction, the purpose of CLV is to directly maximize the

value of a customer to a company during its life cycle.

From a broader point of view, a project format known as Cross Industry

Standard Process for Data Mining (CRISP-DM) [30] is often applied to data

mining projects. Kurgan and Musilek [22] refer to a poll in which 42% of

the correspondents confirmed using CRIPS-DM in related projects. This

also applies to churn prediction, because it is of paramount importance to

understand what implications the implementation of targeting models has,

what kind of data can be used, and how reliable this data is.

1.2 Objectives and structure

As mentioned in Section 1.1, by decreasing customer churn rate companies

can gain increases in revenue more easily than by simply trying to attract

new customers. Within the underlying framework, this thesis focuses on

the development and analysis of suitable models for the prediction of service

contract churn risks of a global industrial company. Albeit the setup differs

slightly from the usual customer churn prediction, same predictive techniques

commonly associated with the field of machine learning, can ne applied here.

Although being an important and an interesting factor, CLV modelling is

omitted in this study.

Further considerations are given to the evaluation scheme of the mod-

els and how they relate to business management. Ideally the model would

predict the churn of a contract as early as possible, but in reality we have

to set limits on the appropriate forecasting window. Business management

translates to the amount of actions that can executed to retain contracts and

to identify the optimal subset of risky contracts for retention efforts.

This thesis begins by explaining the underlying case in Section 2 and

describing the data used. The prediction problem and data used, will be

described in a sufficiently detailed manner, to give the reader a clear overall

CHAPTER 1. INTRODUCTION 3

picture. Some properties of the data will not be covered in detail, because

the data is confidential and sensitive CRM data.

In section 3 employed methods and algorithms are discussed in detail.

This includes all the algorithms used for modeling, while also covering some

possible ways to interpret the models. Section 4 details the practicalities of

setting up the actual modeling and analysis.

Sections 5 and 6 present the most relevant results and splits analysis into

two distinguishably separate cases. First, models are purely evaluated in the

selected validation scheme, whereafter how the model is assessed in CRM

through the lens of providing actionable insights. The latter is narrowed down

to a very broad view, because the data is proprietary and thus prevents the

presentation of in depth analysis. However, in the final section this considered

to a degree and potential directions for future work are given.

Overall, this thesis aims to achieve the goals:

1: Identifying the most likely service contracts to churn and ranking them

accordingly.

2: Providing high level explanations for the churn risks.

Chapter 2

Case formulation

2.1 Churn prediction

The fundamental goal is to build a predictive models and analyze their perfor-

mance and respective properties in predicting service contract cancellations.

Essentially, a predictive model tries to identify contracts which have a high

probability of being canceled, in order to focus retention efforts on the ap-

propriate subset of contracts early enough to reduce churn. Ideally, this is

achieved by cyclically scoring the whole portfolio of contracts with the chosen

model, while the scores or probabilities given by the model reflect the actual

risk behind the contracts.

The modeling is done by developing decision tree models, which have

presented good performance on similar tasks, as noted in Chapter 1 and have

some favorable properties. A more in depth description about the models

and model evaluation are given in sections 3 and 4. In the end, identifying

contracts for retention efforts is not always as straightforward as selecting

a certain portion of the riskiest contracts, because it is possible that some

higher risk contracts cannot be salvaged. Hence, another important aspect

is to lay rudimentary ground work on how to identify the optimal set of

contracts for retention efforts.

Because prediction is conducted for service contracts, which can be owned

4

CHAPTER 2. CASE FORMULATION 5

by a single customer or a customer may hold a portfolio of contracts, there is a

complex system of interlinked variables. For instance, given a customer with

a portfolio of contracts, the model should distinguish between risks associated

with a single contract versus overall customer dissatisfaction, which could

lead to the cancellation of multiple contracts. The problem is alleviated by

introducing variables on both at the contract and customer level. Some model

paradigms also produce readily interpretable models, but not all, which is

why data engineering and generating good understandable features is crucial.

Even on a high level of only looking at the overall feature importance of a

model may lead into new data insights, thus helping key personnel to apply

targeted campaigns or other actions on the chosen contract owners.

An important aspect is to separate between customers with varying at-

tributes and contracts with different scopes. A portion of the customer groups

are already filtered out from the modeling process, so that the model can be

aimed at specific groups, in which the model has most potential value. This is

not to say it can not be used to predict the behavior of those not included in

the modeling stage, however, the predictive accuracy may suffer. No explicit

choices are made regarding the selected groups, because all of the targeted

ones are predefined by business executives in advance.

Because there are multiple customer groups and the customer decides

whether or not to continue a contract, further considerations regarding op-

timal subset of contracts to be targeted by retention efforts must be made.

Analyzing contract cancellations rather than predicting customer churn, gets

past the issue of having to clearly define what constitutes customer churn,

because a lost contract can now be flagged straightforwardly as a churned

one due to contractual terms.

2.2 Data overview and preprocessing

Data used in this thesis is real customer relations and contract level data, re-

trieved from several different sources, typically referred to as CRM systems.

CHAPTER 2. CASE FORMULATION 6

Customer level data includes information on events such as customer com-

plaints and satisfaction, whereas contract level detail focuses on the contract

scope and on operational procedures during the contract’s period of validity.

Data is collected regularly, disregarding a few specific data sources, which are

only available on an annual level. Time horizon of the whole dataset spans

over five and a half years, though only a bit over four years worth of data is

used. The latter is due to data upkeep reasons which renders the other tail

of the data unreliable.

Because most data is uploaded manually to different databases and/or

flat file systems, it is susceptible to human error and extra care must be

taken to prune possible erroneous data entries. Thus, the first task is to

clean the data, which involves consulting a multitude of different experts

who are aware of the possible caveats present in the data, and can provide

assistance in the case of abnormalities or help understand them. To ensure

the integrity of the data sets, the following procedures are carried out in

applicable situations:

1: Removing corrupted and/or duplicate data (data cleansing)

2: Aggregation (data cleansing and variable creation)

3: Outliers and extreme values filtering (variable creation)

4: Impute missing values (variable creation)

5: Model output check (validation stage)

The first rule is applied in the initial phase of data cleansing, because there

are a number of aggregate rows, unnecessary fields or duplicate values. Also,

anything that cannot be verified by an expert or is deemed untrustworthy,

is removed or handled according to a predefined heuristic in this phase. A

portion of the contracts were split up into separate instances although all

carrying the same contract identifier, thus requiring a level of aggregation on

CHAPTER 2. CASE FORMULATION 7

their behalf. Nevertheless, most of the necessary aggregation is only carried

out while creating the predictors.

For the third step, some data entries clearly exhibited misusage of report-

ing systems or other bugs with them, which required either totally omitting

those entries or imputing them according to mean of the variables across all

the contracts. Note that not all of the values for the variables, which in a

traditional sense would be considered either outliers or extreme values were

filtered, because they were deemed representative and informative of the ac-

tual distribution. Imputation of missing values follows given guidelines for

all of the variables, i.e., they are set at a constant value, which reflects the

best estimate for the field of interest.

Although much effort is put into data cleansing, one must still remain

alert to data discrepancies. Because of this, the fifth and last step is required

to ensure that the model output is reliable. In short, it is checked that the

models’ predictions are sensible and there are no outliers or mishandled data

due to the ETL (extract, transform and load). Extra care is taken to ensure

there are no data leaks, where the algorithms could learn from the future

events. A data leak is a situation in which a contract is lost and some of its

historical values are then retrospectively changed even for the period it was

active.

In the process of variable derivation, a number of techniques are employed:

calculating rolling means or sums from the previous 12 months, aggregating

data and applying suitable transformations, comparing various proportions

within the contract scope and creation of flag variables based on set rules.

In order to make the features comparable across a range of small to big

customers, they must be normalized. For the contract level predictors, only

the contract scope is considered and used to scale everything according to

it’s size. Customer based attributes are scaled both on contract level and

customer level. The scaled variable V scaled
i is of the form:

V scaled
i =

Vi
f(CiSi)

, (2.1)

CHAPTER 2. CASE FORMULATION 8

Table 2.1: All the features used in modelling, categorized by the information
they contain and variable type, being either continuous or binary.

Operational Customer Costs
Variable Type Variable Type Variable Type

f1 Continuous f7 Continuous f8 Continuous
f4 Continuous f11 Binary f10 Continuous
f5 Continuous f12 Continuous f28 Continuous
f13 Continuous f25 Continuous
f23 Continuous f30 Continuous
f26 Continuous

Portfolio Contractual
Variable Type Variable Type

f2 Continuous f15 Binary
f3 Continuous f16 Binary
f6 Continuous f17 Binary
f9 Continuous f18 Binary
f14 Continuous f19 Binary
f24 Continuous f20 Binary
f27 Continuous f21 Binary
f29 Continuous f22 Binary

where Vi stands for the unscaled variable at month i, for example a rolling

sum of customer complaints, Ci and Si stand for customer size (how many

contracts he owns) and contract size, respectively. The function f(·) takes

care of the actual scaling, and most often maps the aforementioned variables

only to correspond to the aggregate contract size of a customer. Evidently

the scaled variable on the customer level converges with the contract level

variable, if the customer holds only a single contract. All the generated

features will be used in the modelling, where contributions and effects are

analyzed separately from the actual model performances.

Table 2.1 gives as detailed an account as possible on the features used,

with their types and information contained listed. One-hot encoding was used

for the binary variables, due to the limitations of the applied algorithms to

correctly identify categorical variables.

CHAPTER 2. CASE FORMULATION 9

Overall, there are 30 different variables, of which 17 belong to contract

level and 13 to customer level predictors; these can be further broken down

into 5 distinct categories based on the information provided by each of the

features1. Essentially the customer level predictors are formed by the portfo-

lio and customer based ones, whereas the others are considered as contract

level predictors. Out of all the features, 21 are continuous and 9 are bi-

nary or flag variables, denoting some categorical feature associated with the

contract or customer. The amount of categorical variables used to describe

the contracts had to be limited to avoid the curse of dimensionality, because

each one of them has to be one-hot encoded, thus increasing the number of

dimensions exponentially relative to the amount of categories. In total, for

the time period covered by the data set used for modeling, there are 28,600

unique contracts and 9,500 unique customers, which equates to 570,000 rows

of data considering the time series associated with each contract. A quick

summary is given in Table 2.2.

Table 2.2: Data and variable summary.

Variables
Total 30
Contract level 13
Customer level 17

Unique ids
Contracts 28,600
Customers 9,500

Table 2.3 gives a general overview of how the data frame is setup, where

the terms ”timestamp” and ”date” are interchangeable, and are both mea-

sured in months. The data frame also conveys the idea of how multiple

contracts may be owned by a single customer over varying time periods. The

target value is always a binary value, indicating whether or not the contract

was canceled at the given month. It takes a value of 1 for a cancellations and

0 for non-cancellation. The target date is always offset by a given amount of

1Contract level predictor means that the feature is directly linked to the contract,
contrary to a customer level variable, where the customer key acts as a link between a
contract and the customer level feature.

CHAPTER 2. CASE FORMULATION 10

time units - should a cancellation occur - preventing the models from using

future data in predicting churn. In this context, a month refers to a single

row in the data frame, and each time series is cut after the contract has

been canceled. However, offsetting cannot be done to an arbitrary extent, as

it reduces the amount of available data entries. Chapter 4 gives a detailed

account on how this is implemented and taken into account in the modeling

stage.

Churn

No churn

1.07

98.93

% of contracts per month

Service contract churn rate

Figure 2.1: Distribution of cancelled and continued service contracts over the
whole data set.

Defining the data frame in this way does give rise to a problem known

as rare event prediction, because the monthly churn rates are largely off-

set by the amount of non-churning contracts per month. It directly affects

the modelling paradigm and sets the ground for how the models should be

evaluated. Further details are presented in the later chapters. Just to give a

reference point of the actual distributions between churned and non-churned

service contracts, Figure 2.1 shows the distribution of cancelled contracts

versus retained ones per month.

CHAPTER 2. CASE FORMULATION 11

Table 2.3: Data frame visualization. ID 1 refers to the contract and ID 2 to
the customer.

Data frame

ID 1 ID 2 Date
Variable

X
Variable

Y
... Target

1 A

i Xi Yi ... 0
i+ 1 Xi+1 Yi+1 ... 0
i+ 2 Xi+2 Yi+2 ... 0
i+ 3 Xi+3 Yi+3 ... 0

2 A
i+ 2 Xi+2 Yi+2 ... 0
i+ 3 Xi+3 Yi+3 ... 1

3 B
i Xi Yi ... 0

i+ 1 Xi+1 Yi+1 ... 0
i+ 2 Xi+2 Yi+2 ... 1

...
...

...
...

...
...

...

ID N ID M

i− 1 Xi−1 Yi−1 ... 0
i Xi Yi ... 0

i+ 1 Xi+1 Yi+1 ... 0
i+ 2 Xi+2 Yi+2 ... 0
i+ 3 Xi+3 Yi+3 ... 0

Chapter 3

Methodological approaches

3.1 Decision tree learning

Decision trees are generally used under a supervised setting (supervised learn-

ing) and can be trained both, either as regression trees or classification trees.

Because they fall into the category of supervised learning algorithms, they

require known output values or labels to be trained on, depending on which

of the aforementioned learning situations they are exposed to.

Although there are a many methods for constructing decision trees, they

all share a few core principles, namely, their structure and the nature of how

they are trained. Training is based on recursively splitting the data into

smaller and smaller subsets, which can be depicted as child nodes emerging

from their respective parent nodes. Each split is defined by a set measure

or rule and the tree is grown until a certain criterion is met or it cannot

be grown any further. The criterion for stopping tree growth are in place

to avoid it from overfitting to the training data, and could be as simple as

setting a maximum tree depth, at a certain pre-defined level.

A common practice is to use binary splits in the tree growing phase, which

is the case with all the algorithms used in this thesis, namely Classification

and regression trees (CART), Random forests (RF), Extremely randomized

trees (ERT) and XGBoost (XGB). For non-binary splits, other methods such

12

CHAPTER 3. METHODOLOGICAL APPROACHES 13

as Chi-Square Automatic Interaction Detector [20] (CHAID) can be applied.

Figures (3.1) and (3.2) give an example of how a decision tree might split

the underlying space into separate rectangular areas. The fact that the de-

cision trees are limited to splitting the space into rectangular areas can be

a hindrance, especially in the case when the true decision boundary does

not follow such a shape. This is partly remedied by other techniques, such

as Random Rotational Ensembles (RRE) [4], which acts similarly to e.g.,

Random forests, except that it performs a random rotation on the data set

prior to growing any tree in the ensemble. For a more extensive discussion

on RREs, please refer to [4].

Pros Cons

-Computationally efficient [26]

-Interpretability [18]

-Non-parametric method

-Can capture higher order interac-
tions amongst variables [18]

-No guarantees of global optimum

-Additive structure hard to cap-
ture [18]

-Loss of interpretability with tree
ensembles

Table 3.1: Decision tree learning advantages and disadvantages.

Some of the main benefits and drawbacks of decision tree algorithms

are listed in Table 3.1. A notable advantage of decision trees over regular

discriminators such as logistic regression, are their ability to split the hyper-

space into multiple brackets, instead of simply cutting it in half, portrayed

in Figure 3.2.

The subsequent sections describe the splitting process in more detail in

the following notational form. A single observation is described by the pair

(xi, yi), with a total of i = 1, 2, ..., N samples. A feature vector is represented

by xi = [xi1 xi2 ... xiM], which consists of M different predictor variables. All

features are either real or binary valued, assuming there are no missing data

elements, that is, xij ∈ R and xik ∈ {0, 1} ∀k 6= i, for each i = 1, 2, ..., N , j =

1, 2, ...,M . The response variable takes on either continuous or categorical

CHAPTER 3. METHODOLOGICAL APPROACHES 14

Predictor X1

R1 Predictor X2

Predictor X1 R2

R3 R4

X1 ≤ a X1 > a

X2 ≤ b X2 > b

X1 ≤ c X1 > c

Figure 3.1: Example of a decision tree, where two variables (X1 and X2)
recursively split the underlying space into four separate regions Ri.

a c

b

R3

R1

R4

R2

X
2

X1
a c

b

X
2

X1

Figure 3.2: The image on the left depicts variable space of X1 and X2 split
according to the decision tree in figure 3.1. On the right, “x” and “o” mark
the different observations, e.g., churning and non-churning customers, falling
into separate regions of the input space, as dictated by the same decision
tree.

CHAPTER 3. METHODOLOGICAL APPROACHES 15

values, depending on whether one deals with a regression or a classification

model - ordinal targets versus categorical ones. Finally, per tree, the data is

split into H different regions R1, R2, ..., RH .

3.1.1 Classification and regression trees

Originally introduced in 1984 by Breiman et al.[8], CART is a decision tree

learning algorithm, capable of performing both, regression and classification.

It also serves either directly as the backbone of some the other introduced

algorithms [9] or have elements of it heavily incorporated in them [7].

On a general level, a CART is grown, irrespective whether or not it is

used for regression or classification, by a greedy algorithm. Thus, the tree

finding locally optimal splits at each node, as long as the tree is grown.

However, there are no guarantees of a globally optimal solution, and thus the

model might get stuck in a local optimum. Due to computational resources,

finding the globally optimal solution is often infeasible, with a large amount

of variables and data.

To describe how the algorithm functions, let t denote the current parent

node. Now arriving at a node t, and splitting it by the optimal variable j

and split point x∗ separates the underlying space into two half-planes, as

indicated by equation (3.1)

R
(t)
h (j, x∗) = {X |Xj ≤ x∗} and R

(t)
h+1(j, x

∗) = {X |Xj > x∗}. (3.1)

Note that X ⊆ X is assumed to be all the data arriving at the selected

node, and should it be the first split, then the equality holds. Further-

more, depending on whether a classification or a regression tree is grown,

a corresponding measure is then used for finding the locally optimal splits.

Considering a classification tree, a common choice for a measure is to use the

Gini impurity, defined as

CHAPTER 3. METHODOLOGICAL APPROACHES 16

Qh =
K∑
k=1

phk(1− phk), (3.2)

where phk = 1
Nh

∑
xi∈Rh

1(yi = k) is an indicator function for proportion of the

given class k in the group h. For binary target variables this can be further

reduced into the form

phk = 1−
K∑
k=1

p2hk = 2ph(1− ph).

At each node, observations are classified as belonging to the majority

class k(h) = argmax
k

phk. In order to find the actual optimal variable j and

split point x∗, classification tasks seek to maximize the decrease in impurity

when splitting the parent node, according to chosen impurity measure I(·)

∆I = I(t)− pLI(tL)− pRI(tR), (3.3)

where t is a reference to the parent node, tL and tR to the respective child

nodes. The terms pL and pR reflect the proportions of data arriving to either

of the child nodes from the parent node, namely p = Nchild/Nparent.

It is easy to expand the given formulation to cover regression trees simply

by switching the used impurity measure or use other measures for classifica-

tion, such as information gain. For the derivation of the regression algorithm

and further information on other possible impurity measures, a detailed ac-

count is given in [18].

Although CART is a non-parametric method, often implementations of

the algorithm contain some parameters governing the tree growing phase,

such as those affecting stopping criterion, sample weights and pruning.

3.1.2 Random forests and Extremely randomized trees

Random Forests and Extremely Randomized Trees - henceforth referred to

as either RF or ERT - are fundamentally very similar techniques with slight

CHAPTER 3. METHODOLOGICAL APPROACHES 17

differences, former being developed by Leo Breiman [7] and the second by

Pierre Geurts et al. [15]. In principle, both are ensemble methods which

combine the predictions from many decision trees and average over their

predictions in a set fashion. Formally, let T be a collection of decision trees

grown either by using the RF or ERT algorithm and Ti ⊆ T a single decision

tree grown on the ith iteration of said algorithm. Then, given an instance x

and number of models N , the corresponding prediction is

ŷ =
1

N

N∑
i=1

Ti(x). (3.4)

For classification trees, another option would be to let the single trees

cast their votes on a sample and then assign it the class with the majority of

the votes. However, averaging over the predicted class probabilities has the

advantages of reducing the variance in the expected generalization error and

retains the possibility of interpreting the prediction as a probability [24].

Although averaging models has been found to generally increase predic-

tive accuracy, it is worth noting if many predictions of the models are cor-

related, the effect of model averaging diminishes. This can been seen from

equation (3.5), which is the variance of the expected generalization error

of a point x with M different models, derived from the bias and variance

decomposition

V ar(x) = ρ(x)σ2(x) +
1− ρ(x)

M
σ2(x). (3.5)

Here ρ(x) and σ2(x) refer to the Pearson correlation coefficient and total

variance of all the single models, respectively. The full derivation and dis-

cussion of the bias variance decomposition is available in [24], which covers

RFs in detail.

Growing a RF or an ERT follows largely the principles of learning a

CART model. Even though both algorithms comprise many trees, they also

introduce slight modifications in the process of learning a single tree in the

ensemble. The biggest differences are when forming splits and they can be

CHAPTER 3. METHODOLOGICAL APPROACHES 18

summarized as follows:

RF: For each split, choose a random subset v of random variables

without replacement from the set V containing all the variables and

next choose the optimal split according to the selected impurity mea-

sure. A common choice for the amount of variables to choose, is to

limit the cardinality of the random subset |v| ≤
√
|V|. RF generally

uses bootstrapping in the process of growing multiple trees.

ERT: Choose possible splitting variables similarly as with RF, how-

ever, instead of finding the optimal split point for each of the chosen

variables, it is chosen uniformly at random from an interval, defined

by the minimum and maximum of the variable. Afterwards each of the

splits are scored and one with the best score is chosen as the splitting

variable. ERT does not make use of bootstrapping.

The bootstrapping which RF makes use of can be described as follows:

given a data set X used for training an algorithm, a random subset Di ⊆ X ,

called the bootstrap sample, is drawn uniformly and by replacement at each

iteration of the algorithm where a new tree is grown and added into the

ensemble. Learning an ensemble model this way is referred to either as

bootsrap aggregating, or simply bagging [5]. By using bootstrapping, one

can estimate the performance of the classifier by analyzing out-of-bag error

(OOB), which is a measure for prediction error. It is formed by evaluating

the predictive performance of all the models - herein the grown decision trees

of the ensemble - by letting them score all those observations they were not

trained on [6].

Another common factor between RF and ERT is that neither of the said

algorithms use pruning, thus each tree is grown until stopping criteria are met

and are then left intact, fully grown. However, this may lead to overfitting

of single trees, which is partially remedied in the RF algorithm by applying

CHAPTER 3. METHODOLOGICAL APPROACHES 19

bootstrapping, which helps reduce it by subjecting each new tree in the

ensemble to slightly different data set.

3.1.3 Gradient boosted trees

Gradient boosted trees were first implemented in [13] and [14], with some

modifications, namely the stochastic variation of the algorithm. In principle,

the algorithm works by sequentially constructing decision trees and fitting

them against so called “pseudo”-residuals, which in turn can be interpreted

as gradients - hence the name. CART is mainly used for constructing the

base learners, with the added possibility of bootstrapping in order to induce

a form of regularization. The recently introduced XGBoost, a modification of

the gradient boosting algorithm, which in addition to exploiting parallelized

computing, also applies a separate form of regularization to the procedure.

Although the gradient descent algorithm in itself has to proceed sequen-

tially, growing a single tree can be parallelized - a key factor in the XGBoost

algorithm [9] - and the regularizing term may be simply added to the loss

function under optimization, punishing for model complexity. Regularization

is essential, as it reduces overfitting.

Formally as defined in [9] and following established notational conven-

tions, with the exception that yi ∈ R, a tree ensemble gives an output of

ŷi =
K∑
k=1

fk(xi), (3.6)

where fk belongs to the space of CART trees, F . In order to calculate the

gradients, one has to define an objective function, which in XGBoost is of

the form

Lt(yi, ŷi) =
∑
i=1

l(yi, ŷi,t) +
∑
k

Ω(fk) (3.7)

Ω(f) = γL+
1

2
λ||w||2, (3.8)

CHAPTER 3. METHODOLOGICAL APPROACHES 20

where L is the number of leaves, w the score or leaf weight and both, γ

and λ are regularization constants with t being a reference to the number

of trees fitted. Because gradient boosting proceeds sequentially fitting more

trees against the gradients, ŷi,t may at the i-th iteration be approximated by

another function ft

Lt(yi, ŷi) =
N∑
i=1

l
(
yi, ŷi,(t−1) + ft(xi)

)
+ Ω(ft). (3.9)

Here l(·) denotes the loss function which can be adjusted according to

the learning objectives. For instance, a common choice in classification is

to set it as the logarithmic loss discussed in Section 3.3.2. The rest of the

derivation for XGB progresses by taking a second order approximation of the

loss function l, and in turn deriving the optimal weights w and the value of

the objective function, given a tree structure.

3.2 K-fold cross-validation

The basis of cross-validation lies in partitioning the data set into multiple

training and testing blocks, as illustrated by the Figure (3.3). The algo-

rithm is fitted sequentially on each training set and then tested against a

hold out set overall ten times, which is referred to as 10-fold cross valida-

tion. Other cross-validation methods do exist, such as leave-one-out cross-

validation (LOOCV) [21], which equals K-fold cross-validation, if the number

of folds equals the size of the data set. One use case for cross-validation arises

should data be scarce, then it may prove useful to evaluate models under a

cross-validation setup, instead of splitting the data into single separate train-

ing and testing sets. Another application is the tuning of model parameters,

in which case the results from all the cross-validation rounds are averaged,

and the mean is used as an estimate for the algorithm’s predictive capabilities

with the given parameters.

A drawback in K-fold cross-validation is that its variance is hard to esti-

CHAPTER 3. METHODOLOGICAL APPROACHES 21

mate, because the test errors are dependent as they are all sampled from the

same data set. Although being an unbiased estimator for the expected predic-

tion error, it becomes biased when trying to estimate it’s variance. Thus, it is

difficult to form confidence intervals for the K-fold cross-validation schemes,

and may hinder the model selection procedure [3].

1st fold

Training data

Test data

2nd fold

10th fold

Figure 3.3: Example of a 10-fold cross-validation scheme, where the white
boxes indicate the training data used for modeling in each fold, and the black
box corresponds to the test set.

The stratified k-fold cross-validation (SKF) is an extension to k-fold cross-

validation so that class balances are kept similar across all the folds [21].

Kohavi [21] suggested that using a stratified cross validation scheme may

yield less bias and variance in estimating a model parameter.

3.3 Metrics for model performance

Model performance is measured across a variety of metrics, each summarizing

different aspects of model functionality and goodness of fit. In total, three

measures and their applicability are covered.

CHAPTER 3. METHODOLOGICAL APPROACHES 22

3.3.1 F-score

F-score or equivalently F-measure can be used to assess binary classification

results. The more common version is defined as the harmonic mean of preci-

sion and recall. Both are derived from the true positives (TP), true negatives

(TN), false positives (FP) and false negatives (FN), from which the Fscore

follows:

PPV =
TP

TP + FP
(3.10)

TPR =
TP

TP + FN
(3.11)

FPR =
FP

FP + TN
(3.12)

FOR =
FN

TP + FN
(3.13)

Fscore = 2
PPV · TPR
PPV + TPR

. (3.14)

Here PPV stand for positive predictive value or precision, TPR for true

positive rate or recall, FPR for false positive rate or fall-out and FOR is an

abbreviation for false omission rate.

Churn

No churn

Churn No churn

Predicted value

True value

TP FN

FP TN

Figure 3.4: Confusion matrix for a binary classification task.

CHAPTER 3. METHODOLOGICAL APPROACHES 23

3.3.2 Logarithmic loss

The logarithmic loss may be used in classification problems and is primarily

measure of the classification accuracy, which aims also to express how well

the model performs, given its confidence on each of its predictions. Thus,

given the true classes yi, with N samples, K classes and the respective class

probabilities pik, logarithmic loss is defined as

Llogloss = − 1

N

N∑
i=1

K∑
k=1

yik log(pik). (3.15)

3.3.3 Receiver operating characteristic and lift curve

Receiver operating characteristic (ROC) captures a model’s sensitivity to

the ratio of true positives versus false negatives. It is a suitable and often

used measure for binary classification problems - an extension for multi-class

case does exist [12] - because it readily describes the TPR as a function of

FPR. Naturally, it is preferable to have a high ratio of TPR versus FPR,

which would show up as a steep rising curve on the ROC chart. For a visual

benchmark, one may compare the actual ROC curve from a model to a line

spanning between the coordinates (0, 0) to (1, 1) in the ROC space. The line

can be interpreted as random guessing or a constant prediction, representing

an equal proportion of true and false positives as predicted by the model.

Another measure relating to ROC is the area under ROC curve (AUC),

which is a scalar metric calculated as defined by its name. This is a more

common way of comparing different classification models with each other, as

they are now summarized by a single statistic. However, AUC does come

with some caveats, such as being insensitive to the prediction probabilities

and they also summarize model performance over regions that are of no

practical interest or are operationally infeasible [11].

Lift curve assesses the models performance conditional on the underlying

distribution of classes and which class is being predicted. The curve itself is a

CHAPTER 3. METHODOLOGICAL APPROACHES 24

ratio of all the positive instances and all the cumulated data up to the point,

scaled by the proportion of the positive instances. Furthermore, it is assumed

that data is arranged in a descending order according to the probability of

each sample belonging to the reference class. Thus, lift is a measure of how

well the model finds associations between the data and the predicted class,

with higher lift values indicating better model performance. A base rate of

1 refers to the point where the model cannot distinguish between the two

classes and the situation resembles random guessing.

Given a model M , which assigns each observation x ∈ X a probability

pM(x) of belonging to the positive class y = 1, a p∗ cumulative lift can be

defined as follows

Lift(X, pM |p∗) =

∣∣{x ∈ X| y(x) = 1, pM(x) ≥ p∗}
∣∣∣∣{x ∈ X| pM(x) ≥ p∗}

∣∣∣∣{x ∈ X| y(x) = 1}
∣∣ , (3.16)

where y(x) represents the true class of observation x.

An alternative and an equal interpretation of the lift curve is to convert

it to the response rate of the model. The only difference is that the base rate

is now exchanged with the class distribution of the class under consideration.

It is also entirely possible for the model to perform worse than the base rate,

however, this does not imply that under those scenarios it is better to choose

the other class as the predicted one. An example of of both, ROC and lift

curves are illustrated in Figure 3.5.

3.4 Model interpretability

Model interpretability may be approached in a number of ways. Two distinct

paradigms are considered, the first, which aims at distinguishing explaining

factors on an aggregate level, and secondly, trying to explain directly the

amount weight each feature contributes to the made prediction.

CHAPTER 3. METHODOLOGICAL APPROACHES 25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
p

os
it

iv
e

ra
te

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Cumulative share of data

L
if

t
Figure 3.5: The left side image corresponds to a ROC chart and the one on
the right to a lift curve. Note that the title of the x-axis is interchangeable
on both images, on the premise that the samples are ranked in a descending
fashion based upon their probability of belonging to the same class.

3.4.1 Eliciting feature importances from trees

One way of understanding feature importances is to measure the Mean De-

crease of Gini (MDG), with the single tree variant of it introduced in [8].

The single tree case can be defined as

Imp(Xj) =
∑
t∈φ

∆I(x̂∗j,t, t), (3.17)

where x̂∗j,t is the optimal split on Xj at the node t, which belongs to the set

of nodes, denoted by φ. Ideally, x̂∗j,t is as close as possible to the original

splitting point x∗t in terms of decreasing the select impurity measure. The

impurity ∆I(·) is the same as in equation (3.3). If the variable is the actual

splitting variable at node t, it is referred to as a primary splitter, or conversely,

a surrogate splitter in the case it is not. However, some algorithms only

consider the primary splits, when calculating the feature importances, such

as the decision tree implementations from [27].

For multiple trees, MDG is a weighted sum of the decrease in the impurity

for each variable and all the nodes it splits. Weighting is done by accounting

CHAPTER 3. METHODOLOGICAL APPROACHES 26

for the probability for an observation of reaching a given node, which in turn

is approximated by the proportion of samples split by the node. As expressed

in both [24] and [25]:

Imp(Xj) =
1

NT

∑
T

∑
t∈φT

p(t)∆I(x̂∗t,j, t), (3.18)

where p(t) = Nt/Ntotal is the proportion of samples reaching the node t,

belonging to the set of splits φT in tree T . Only the primary splits are

considered for equation (3.18). Thus, if variable j is not the splitter at t, Xj
receives a score of 0 from that split.

It is possible to use feature importance measures such as MDG in the

initial model building phase to select an appropriate set of futures. However,

this is problematic in the presence of highly correlated variables, since the

interpretation of these importance measures becomes obscure [16].

3.4.2 Local interpretable model-agnostic explanations

As the tile of this section suggests, LIMEs goal is to explain the predictions

of any model, regardless of the algorithm or method used for modeling [28].

This is done by exploring the model and constructing linear approximations

near the observation of interest.

Adopting the notation of the original author, let x ∈ RM be the original

representation of an instance to be explained. Furthermore, let x′ ∈ {0, 1}M ′

be a binary vector indicating the interpretable version of the instance and

g ∈ G the model explaining it, belonging to the class G of all possible inter-

pretable models, which has the same domain of {0, 1}M ′
as does x. It only

remains to define a few more functions for the algorithm. Firstly, the classi-

fication function f(x), which acts over RM → R, indicating the probability

of an instance belonging to a certain class and Πx(z) - a proximity measure

between a sample instance z and an observation x. The target function to

be minimized, which according to [28] ensures both local fidelity and model

interpretability, is defined as L(f, g,Πx) and obtained from

CHAPTER 3. METHODOLOGICAL APPROACHES 27

ξ(x) = arg min
g∈G

L(f, g,Πx) + Ω(g), (3.19)

where the term Ω(g) is a measure of model complexity, thus acting as reg-

ularizing component favoring simpler models. Ideally this leads to models,

which are readily interpretable by humans and consequently produce perti-

nent insights into the data.

Technically, the minimization problem set by equation (3.19), is solved by

sampling uniformly around x and each of the samples are weighted according

to Πx(z) = exp(−D(x, z)2/σ2). Thus samples closer to x receive more weight

than those that are further away. Now, let g ∈ G be defined as g(z′) = wT
g z′,

where z′ ∈ {0, 1}d′ and wg the weights. Finally, let the loss function be of

the form

L(f, g,Πx) =
∑

z,z′∈Z

Πx(z)
(
f(z)− g(z′)

)2
. (3.20)

Defining these terms allows LIME to proceed and optimize the target

function of (3.19). First a number of samples are generated near the point

of interest and then K important features are chosen by applying the least

absolute shrinkage and selection operator method (Lasso) [31]. Once these

steps are taken, the weights wg are fitted through ordinary least squares.

Chapter 4

Implementation

4.1 Model training

A number of methodologies exist for training a model and subsequently as-

sessing its properties of generalization, that is, what to expect from it’s per-

formance on yet unseen data. Some often applied practices include simply

splitting the data into separate training, testing and validation sets, whereas

other validation designs, such as K-fold cross-validation, rely on splitting the

data into multiple instances for training and testing in an iterative fashion.

Here, the chosen procedure follows the principles of splitting the data

initially into training and testing sets. Furthermore, the algorithms are ini-

tially be trained by applying Stratified K-fold cross-validation scheme using

the training data only, and once overall satisfactory results are obtained re-

garding any some of the hyperparameters, the whole training data will be

used to train a complete model. Finally, the hold out set (testing set) will

be used for validation. Although all of the algorithms leave ample of space

for potential parameter optimization, only the tree depth will be explored in

depth. Each algorithm is set to contain a minimum of 20 records per leaf

for a split to be considered and the classes are weighed according to their

current distribution in the given training phase data set. RF and ERT both

contain 500 trees, whereas XGB is set to do 400 iterations, which directly

28

CHAPTER 4. IMPLEMENTATION 29

translates into the amount of trees constructed.

Case 1: Contract A

Initialization data to be removed

Random non-churned sample

Case 2: Contract B

Initialization data to be removed

Shift target and remove excess data

Case 3: Contract C

Initialization data to be removed

Chosen churned sample

Time measured in months

Figure 4.1: Three cases illustrating all the possible ways of sampling data for
modeling. In the first case for Contract A, one sample is added to the used
data set, whilst the data for Contract B ends up being discarded totally -
original churn date marked with gray and this will always be either shifted
or discarded. Contract C illustrates how a churned target variable is shifted
backwards in time and then used as a churned sample. Note that churned
samples are explicitly chosen, and randomly assigned only when partitioning
the full data set into training and testing sets.

Figure 4.1 shows how the data is transformed into a balanced data set of

churned and non-churned contracts for the training set. It should be noted

that the first three months of each contract are used to initialize many of

the variables, are therefore screened from the whole data set, including the

CHAPTER 4. IMPLEMENTATION 30

test set1. Should the data history span a shorter time period, the contract

is simply dropped from the data set. To balance the training data set in

terms of non-churned and churned contracts, each non-churned contract’s

time series is trimmed by randomly sampling a single data point from it and

adding it to the new, balanced training data set. For the churned contracts,

the target label is shifted three months backwards in time and only these

events are added to the data set. Shifting the target label indicating a churn

event also prevents potential data leaks.

The split into training and testing sets is conducted randomly by using

the customer as an identifier and is carried out so that 70% of the data is

preserved for training and 30% testing. The latter set contains the full time

series for each of the service contracts, unlike the training set. The reason for

using a customer to form the splits is to avoid situations, in which a customer

could have multiple contracts, and thus potentially leak information into the

test set.

All the programming was done with Python 3.5 with the help of the

libraries presented in [9, 27, 28].

4.2 Model evaluation

4.2.1 Model accuracy

Unlike in the training phase, where much emphasis is on single metrics mea-

suring overall model performance, the test set focuses more on the model lift

and AUC (or the ROC curve). Both of these describe how well the models

rank the service contracts from the riskiest to those that are the least likely

to be cancelled, with the former metric being agnostic to whether or not the

model is actually predicting churn or not. Unlike in the training phase, no

truncated time series will be used, instead, each month for each contract will

be considered as separate instances when evaluating the model. However, a

1Although not explicitly depicted in Figure 4.1, it is also possible for a contract to be
totally left out, if it has less than a 3 month history.

CHAPTER 4. IMPLEMENTATION 31

three month grace period is given to each of the churn predictions. Thus, if

a model predicts a contract will churn and it indeed does so within the fol-

lowing grace period, this is considered as a correct prediction, a true positive

in this case. For the test set, the initial target variable is shifted by one, two

and three month backwards in time from the date it is marked as lost. This

is shown in Figure 4.2 which illustrates how the grace period is formed and

added to the test set.

Case 4: Contract D

Figure 4.2: Contract D shows how the actual churn date is shifted - marked
as gray and removed from the test set - to encompass the previous three
months, if possible.

Judging by Figure 4.2, it is possible that a model predicts for a contract

to churn on time stamp i (denote this with ŷi = 1), but not on the following

month (ŷi+1 = 0), when indeed it does so: yi = yi+1 = yi+2 = 1). In this

particular case, ŷi = 1 would be a true positive and ŷi+1 = 0 a false positive.

This example can be easily extended to cover other variations of the situation

and is similar to a sliding window methodology, when it comes to prediction

evaluation.

Overall, the predictive models aim to capture the churn event ideally

three months ahead, which serves as a motivation for using the described

training and validation setups, respectively. It should be noted, however,

that inevitably an influencing factor is the limited historical data on detailed

contractual terms, such as exact cancellation procedures, which would allow

the fine tuning of the model evaluation scheme or creation of additional

variables to capture these aspects. Now the contracts are scored continuously

and evaluated as described, assuming each one of them may be cancelled at

any point in time.

CHAPTER 4. IMPLEMENTATION 32

4.2.2 Importance of features

A number of different metrics were chosen to assess the model performance.

This is due to the fact that each of the measures captures unique character-

istics of model performance and, judging it from a multiple different angles,

gives a better overall understanding of its nature. This relates also to the

importance of trying to grasp what the model is actually predicting and why.

The purpose is not just to train a model which seemingly performs well under

conventional metrics, but also to validate the sensibility of the results and

potentially to gain new business understanding. Thus actually being able to

explain individual predictions may prove very valuable.

Model structure, as defined by the features, are purely examined in the

framework in section 3. In practice, this means assessing the feature impor-

tances, derived from the models, and comparing their relevances amongst

the different models. Any individual features will not be discussed, although

it would be possible in the context of LIME, because it is not possible to

go into detail about what each of the features are precisely about. Thus it

makes in depth analysis on the feature level obsolete, however, LIME is used

to produce aggregate level descriptions of variable influences, based on the

categories presented in the Table 2.1.

Chapter 5

Computational results and model

evaluation

This section presents the main numerical results of this thesis. We first

present the overall results from the training and testing phases on how the

models fared against the chosen metrics. We then analyze and discuss them

in the remainder of the chapter.

5.1 Resulting model performance

Table 5.1 shows the accuracy of all algorithms, derived by taking the average

accuracies over all stratified k-folds during the training scheme, with varying

tree depths. The displayed metrics are F-score, AUC and logarithmic loss.

Out of the chosen algorithms, ERT seems the only one that still benefits

from added maximum tree depth after the range of 5-8 maximum splits with

regard to all metrics. It is also evident that the logarithmic loss of CART

increases as a function of the tree depth. The other algorithms seem to have

a decreasing logarithmic loss as function of tree depth. However, the other

two metrics are rather stable once the maximum number of allowed splits

exceeds 6. Hence, for the full training the tree depth were set at 6 for CART,

7 for both RF and XGB, and finally the ERT algorithm was trained by using

33

CHAPTER 5. COMPUTATIONAL RESULTS 34

Table 5.1: Results for tenfold stratified training with varying maximum tree
depth, where each value represents the average of the folds.

CART RF
Depth F-Score Log-loss AUC F-Score Log-loss AUC

3 0.380 0.656 0.624 0.390 0.644 0.671
4 0.356 0.642 0.648 0.389 0.624 0.692
5 0.344 0.653 0.635 0.410 0.601 0.706
6 0.408 0.680 0.676 0.425 0.579 0.724
7 0.370 0.753 0.663 0.427 0.558 0.731
8 0.371 0.826 0.674 0.416 0.540 0.738

ERT XGB
Depth F-Score Log-loss AUC F-Score Log-loss AUC

3 0.384 0.663 0.638 0.434 0.544 0.722
4 0.393 0.652 0.657 0.432 0.521 0.729
5 0.391 0.640 0.674 0.432 0.508 0.728
6 0.406 0.627 0.690 0.436 0.49 0.737
7 0.414 0.614 0.705 0.431 0.478 0.738
8 0.429 0.601 0.716 0.429 0.474 0.734

a maximal depth of 8 trees.

Thus, by judging the metrics alone, XGB model outperforms the rest of

the algorithms in almost all of the instances across all metrics. Only when

the maximum depth is set at 8, RF performs better if evaluated by AUC,

and even then the difference is marginal - approximately 0.004 units. Note

that AUC has a maximum value of 1.0 and receiving an AUC of 0.5 indicates

the model is doing no better than “random guessing”.

After running all the algorithms with the full training set and finalized

parameters, the final results are obtained for each model. The ROC curve

and lift chart in Figure 5.1 displays visually how each of the models compare

to each other over the test set. XGB model clearly outperforms once again

all others, which is also evident by reading from Table 5.2, summarizing each

algorithms predictive capabilities. All metrics are now worse off they were

during the training phase. XGB suffers the smallest degradation in terms of

the models predictive power.

CHAPTER 5. COMPUTATIONAL RESULTS 35

0 20 40 60 80 100

% of contracts covered

0

1

2

3

4

5

6

L
if

t

Lift chart

CART
RF
ERT
XGB

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
ti

ve
ra

te

ROC curve

Figure 5.1: Performance on the test set for all algorithms with tuned param-
eters.

CHAPTER 5. COMPUTATIONAL RESULTS 36

Table 5.2: Aggregate results for the testing set, as evaluated by all the used
metrics.

F-score Logarithmic loss AUC
CART 0.075 0.700 0.602
RF 0.107 0.609 0.641
ERT 0.098 0.644 0.652
XGB 0.133 0.518 0.678

From the Lift and ROC charts in Figure 5.1, it can be seen that the

models are capable of ranking the data points in terms of how risky or likely

they are to churn over the following three month period. For XGB, the lift

is still above 2 after covering 20% of the total contract base, meaning that

for every non-churning contract in this category, there are two contracts that

will be cancelled. This has direct implications for how to allocate resources

to enhance retention rate. The ROC curve tells the same story, albeit from

a different angle.

Finally, Figure 5.2 shows the confusion matrices for each of the models

and prediction specific statistics calculated for them. CART achieves the best

TPR of 61.8%, but it does so at the cost of predicting a contract to churn

much more often, which in turn is reflected in it’s FPR, also the highest.

With respect to TPR, ERT and XGB receive similar scores, but XGB scores

are better with the rest of the statistics, and has the best PPV of 7.7%. These

indicate how each model would be able to make use of resources aimed at

reducing contract churn.

5.2 Prominent variables

Feature importances across all the models are shown in Figures 5.3-5.4, which

equal the MDG all except for the XGB model. For XGB the feature impor-

tances are calculated by taking the number of times a feature has been used

to split across all the trees as an estimate for feature importance. All feature

importances are scaled to fit the range from zero to one.

CHAPTER 5. COMPUTATIONAL RESULTS 37

CART

Churn

No churn

Churn No churn

Predicted class

True class

PPV
4.0%

FOR
2.5%

TPR

61.8%

FPR

50.2%

3715 2297

89221 88472

RF

Churn

No churn

Churn No churn

Predicted class

True class

PPV
4.0%

FOR
2.3%

TPR

45.9%

FPR

24.1%

2761 3251

42770 134923

ERT

Churn

No churn

Churn No churn

Predicted class

True class

PPV
5.4%

FOR
2.3%

TPR

50.9%

FPR

30.1%

3060 2952

53416 124277

XGB

Churn

No churn

Churn No churn

Predicted class

True class

PPV
7.7%

FOR
2.1%

TPR

50.9%

FPR

20.7%

3060 2952

36823 140870

Figure 5.2: Confusion matrices for each model.

CHAPTER 5. COMPUTATIONAL RESULTS 38

0.00 0.05 0.10 0.15 0.20

Importance

f1
f21
f19

f4
f5

f18
f7

f17
f16
f13
f26
f22
f23
f28

f9
f8

f25
f20

f6
f3

f24
f29
f10
f15

f2
f11
f30
f27
f14
f12

CART

0.00 0.05 0.10 0.15 0.20

Importance

f4
f23
f19
f22
f21

f1
f13

f7
f25
f28
f17
f18
f20
f15

f5
f11

f8
f6

f10
f24
f16

f9
f26

f3
f2

f29
f30
f14
f12
f27

RF

Figure 5.3: Feature importances as indicated by the trained CART and RF
models, respectively.

CART model produces a tree which heavily weights the top four variables

over others, with many of the features not receiving any weight at all. Out

of the 10 most highly ranked features, three are customer related, five are

linked to the customer portfolio level and only one feature deals either with

the associated costs or contractual options. In comparison, RF has a more

evenly distributed set of feature importances, although the types of variables

are almost the same with two customer attributes, six portfolio features, one

contractual and one operational variable.

ERT and XGB show more variability in the types of features, with both

CHAPTER 5. COMPUTATIONAL RESULTS 39

0.00 0.05 0.10 0.15 0.20

Importance

f4
f13
f28
f23

f9
f1

f29
f10

f8
f3

f21
f2

f24
f5

f19
f22
f30
f25

f6
f7

f20
f17
f15
f14
f18
f12
f11
f16
f27
f26

ERT

0.00 0.05 0.10 0.15 0.20

Importance

f4
f19
f21

f7
f22
f15
f18
f17
f16
f26
f25
f11
f20
f13
f23

f1
f6
f5

f30
f10

f3
f28
f14

f9
f27

f2
f8

f24
f12
f29

XGB

Figure 5.4: Feature importances as indicated by the trained ERT and XGB
models, respectively.

having similar distribution of feature importances as RF. Interestingly, ERT

has the highest number of contractual variables marked as high importance

features, contrary to rest of the models, which have at most only one con-

tractual term among the 10 best features. Additionally, ERT identifies one

operational characteristic, two customer and portfolio related drivers behind

contract risk. XGB is focused very much on the portfolio level indicators

with seven features from this category, while also presenting some influence

from cost and customer related factors, but none from the operational side.

A final summary of the feature representation among the ten best fea-

CHAPTER 5. COMPUTATIONAL RESULTS 40

Table 5.3: Number of times a feature from a set category was one ranked
among the 10 best predictors according to the feature importance metric in
use.

Model Operational Customer Costs Portfolio Contractual
CART 0 3 1 5 1

RF 1 2 0 5 1
ERT 1 2 0 2 5
XGB 0 1 2 7 0

Σ 2 8 3 19 7

tures is in Table 5.3, which clearly indicates the importance of portfolio level

variables. Second biggest factor stems from customer based attributes, which

is almost equal to the number of contributions from contractual factors.

5.3 Predictive capability and model explana-

tions

The clear discrepancies in the training and test set performances are clear

enough warrant further exploration. Although explicitly chosen, the model-

ing setup creates a situation in which there are class imbalances of different

magnitude among the training and testing sets, as shown in Figure 5.5, con-

tributing to the problem. This is especially evident when one uses F-score to

measure the models. A possible reason for this is the presence of many early

predictions, where contracts receive high risk scores indicating that they are

about to be cancelled, but these time periods do not fit the evaluation pe-

riod where they would be correctly labelled as churned. Looking back at the

confusion matrix in Table 5.2 indicates that the models catch many of the

churning contracts to some extent, judging by the TPR, but these come with

the cost of low PPV values.

This suggests that capturing the exact churning points is in practice hard.

Many variables are rolling averages or sums, which could potentially aggra-

vate the problem, because a sudden pike in a risk factor could be hidden

CHAPTER 5. COMPUTATIONAL RESULTS 41

Training set Test set

0

20

40

60

80

100

79.6

98.5

20.4

1.5

%
of

d
at

a
se

t

Contract churn distribution among sets

No churn Churn

Figure 5.5: Relative amount of churn, separated by the data set in question.

underneath the rolling average window, or perhaps be left outside of it, in

the case of summation.

Some rudimentary analysis of the signal strength, namely the churn prob-

ability, is given in Figure 5.6. In it is depicted the average churn probability

as a function of time until the last available date in the time series for both,

the churned contracts and those which have not been cancelled. Evidently,

the churned contracts have systematically a higher mean, although it is shad-

owed by relatively high standard deviation as measured in the sample. The

variability is much greater for the churned contracts overall, which helps

understand the high number of FPs, contributing to a low PPV.

Although it is hard for the models to capture the exact churn date, the

ROC and lift charts suggest they are capable of separating contracts in terms

of how risky they are. The problem is, that it does not address whether or not

there are multiple instances of the same contract within the same categories.

Thus the top scoring categories are possibly inflated with a number of TPs

for a limited set of contracts. But even so, the original assessment holds and

this is subject to a separate discussion, as it is mainly to due with how the

CHAPTER 5. COMPUTATIONAL RESULTS 42

model is validated.The same effect of inflation is also present in the confusion

matrix, as mentioned previously.

Looking at the number of FPs in the confusion matrix and just by select-

ing all the contracts that were cancelled and prematurely marked as churned,

there are already 11,620 false positives in the XGB model in the testing set.

On average, the signals were 14.9 months early with a standard deviation

of 9.1 months - both relatively high compared to the actual prediction win-

dow. These could be related to some of the contractual details - eg. allowed

cancellation periods - which were unavailable in the data set.

Similar effects can be observed with the rest of the algorithms. XGB

was best of when it came to the mean and standard deviation of the early

signals. The number of premature FPs were within 2% of each other for RF,

ERT and XGB, constituting approximately 32% of all the FPs. Early false

predictions for churn are also reflected in the logarithmic losses.

In this regard, CART does not perform so well, because it has 18,969

early false positives, which is roughly 21% of all churn predictions. The

relatively weak performance of the the CART model in comparison to the

rest is not surprising. Using only the greedy algorithm for building the tree

does not guarantee globally optimal solutions and is subject to overfitting,

which is partially suggested by the Figures 5.1 and 5.3. In the former, towards

the end of the ROC and lift curves, CART drops below the constant line,

denoting random guessing. The latter image shows how much of the data

were already split by the first four dominant features, contrary to the rest

of the algorithms, whose feature importance distributions were much more

equal.

A hindrance for all of the algorithms are correlated features and Figure

5.7 depicts the correlations amongst all the continuous variables. In the

figure, some of the variables on the diagonal are highly correlated. These are

mainly the operational and portfolio level predictors. To a degree this was

to be expected, because many of the portfolio level predictors are derivatives

of the operational level variables scaled by the customer total portfolio size,

CHAPTER 5. COMPUTATIONAL RESULTS 43

0.2

0.4

0.6

0.8

C
A

R
T

No Churn Churned

0.2

0.4

0.6

0.8

R
F

0.2

0.4

0.6

0.8

E
R

T

0 10 20 30 40 50
Months to last t.s date

0.2

0.4

0.6

0.8

X
G

B

10 20 30 40 50
Months to last t.s date

Mean churn probabilities

Figure 5.6: Average churn signal from all the contracts, grouped by its class
- churned contracts vs not churned - and measured against the time until
the last date in each contracts time series. Dashed lines are one standard
deviation away from the mean.

CHAPTER 5. COMPUTATIONAL RESULTS 44

f1 f2 f3 f4 f5 f6 f7 f8 f9 f1
0

f1
2

f1
3

f1
4

f2
3

f2
4

f2
5

f2
6

f2
7

f2
8

f2
9

f3
0

f30
f29
f28
f27
f26
f25
f24
f23
f14
f13
f12
f10

f9
f8
f7
f6
f5
f4
f3
f2
f1

Feature correlations

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.7: Correlation heat map for all the continuous features. All the neg-
ative correlations have been set to zero for readability. The biggest negative
correlation was approximately -0.23. The feature correlations were calculated
for the training set only.

CHAPTER 5. COMPUTATIONAL RESULTS 45

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

79
.0

89
.0

99
.0

Upper bound for probability

0.00

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

co
nt

ri
bu

ti
on

Feature contributions per category -XGB

Contractual
Costs
Customer
Operational
Portfolio

Figure 5.8: Feature weight contributions from the XGB model, grouped by
the respective categories of each of the features. The training set was used
in the image construction.

thus inducing obvious correlations through the smaller sized customers. This

helps explain why the portfolio variables overshadow the much of the rest,

evident also in the Figure 5.8.

Furthermore, Figure 5.8 shows how at least in the case of the XGB model,

the relative feature contributions are very similar irrespective of the associ-

ated risk of loosing the contract. This suggest that the risks are driven on

average by the same features across the groups. However, these observations

do not rule out the possibility of single features exhibiting more complex or

comprehensible relationships, such as positive correlations with increasing

amount of customer complaints and it’s associated weight, given by LIME.

Table 5.3 also shows how all except ERT model favor portfolio level vari-

ables. Part of the reason is the fact that ERT chooses the split points for

CHAPTER 5. COMPUTATIONAL RESULTS 46

each of the considered splitting variables also randomly, and then choosing

the best variable based on an impurity measure. Hence binary variables will

always produce the splits, whereas continuous variables are prone to having

worse reduction in the impurity measure.

Chapter 6

Discussion and conclusions

There were two goals set for this thesis, separate the truly risky service

contracts from the total population and secondly, identify the causal drivers

behind the risks. All of the applied algorithms were able to perform the first

task, providing some predictive value, when it came to ordering contracts by

their churn probabilities. For the used validation scheme, XGBoost proved to

be the most effective one, with RF and ERT exhibiting similar performance

and CART being the worst. It was expected that the ensemble methods

would outperform a single decision tree fitted by the CART algorithm which

was the case. This is in line with existing literature and the theory behind

the applied modeling techniques.

When it came to analyzing the results, it was interesting to note how

much effect early false predictions can have and how early these are caught

by the models. This lead to further questions about the proper conduct of

model. Now, all the models are punished severely for false early predictions,

even though many of the variables will not change much over time because

of their design. Under the current validation scheme, even if the models are

correctly predicting many months ahead that a service contract is likely to be

cancelled, such predictions will be penalized, no matter what the outcome.

Resolution at which the models are scored and judged naturally affects the

outcome. Such contractual details were not available which would allow the

47

CHAPTER 6. DISCUSSION AND CONCLUSIONS 48

construction of a more elaborate validation scheme, in which where service

contracts would only be scored when they may be cancelled. On the other

hand, even if such information were available, not all contracts have a set

period when they must be cancelled.

Another way around this would be to add features describing such con-

ditions, eg., a flag variable denoting that the service contract is near its

cancellation period or that it does not have one. This way the models could

still be scored continuously without the need for a specific validation scheme,

because the algorithms should now be able to learn from the added features,

which contracts may be cancelled during any given period. The aforemen-

tioned is part of process known as feature engineering, which is key area

to focus on. Instead of spending time tuning the model, finding the best

algorithm and it’s parameters, it is often more helpful to generate informa-

tive variables, which the algorithms can effectively learn and generate better

models based on them.

Also, the staying power of the models was not considered. It is paramount

to know when the predictive power of a model deteriorates enough to warrant

re-modeling. Accounting for such factors could have been considered, but

were chosen not to, because of the relatively short time period compared to

the average contract length. The effect has been considered in literature,

e.g., [29].

Trying to explain the factors behind the risks lead to the discovery of

some correlated features from the portfolio domain that dominated many of

the models. Thus, it is hard to actually determine, whether or not these

are the actual drivers contributing to the risks. The results from LIME also

support these findings, but leave still call for room for further explanation, as

it is designed to provide insights into single predictions, even if the prediction

is given by a black box model. Nevertheless, if the model is only trained on

correlated features, which potentially mask other relevant ones, this will not

be very effective.

The ability to explain individual predictions is of great interest and de-

CHAPTER 6. DISCUSSION AND CONCLUSIONS 49

serves much more emphasis. This was not discussed thoroughly in any related

literature with comparable data sets, although [32] emphasized the compre-

hensibility of the models, so that they are intuitive and match existing do-

main knowledge. Exploring algorithms such as LIME are prominent options

to look into, because of their potentially high value from the business perspec-

tive. Not only would it add another layer of model validation, ensuring the

models predictions are comprehensible, but improve the chances of receiving

actionable insights. These are hard to draw from the implemented models

directly, as they do not provide established methods to explain predictions

case by case. The exception here is CART, which can be easily visualized

and explained how it arrives at its predictions.

Compared to other related work [10], in terms of the churn prediction

setting, this study had the added benefit of not having to explicitly define

churn. Since the predictions were done for service contracts, most of the time

it was clear when a contract has been cancelled, instead of defining periods

of customer inactivity as them being churned.

Ultimately the biggest challenges were those of choosing a proper valida-

tion scheme and engineering quality features. Albeit being a difficult setting

to operate under, each model was able to differentiate between risky service

contracts and to provide insights into each of the models overall structure.

Both of these aspects were left open for future line of development to further

improve the models and, in the end, to help provide actionable predictions

under an evaluation scheme that best corresponds to existing business prac-

tices.

Bibliography

[1] Ahn, J., Han, S., and Lee, Y. Customer churn analysis: Churn

determinants and mediation effects of partial defection in the Korean

mobile telecommunications service industry. Telecommunications Policy

30, 10-11 (2006), 552–568.

[2] Athanassopoulos, A. D. Customer satisfaction cues to support mar-

ket segmentation and explain switching behavior. Journal of Business

Research 47, 3 (2000), 191–207.

[3] Bengio, Y., and Grandvalet, Y. No unbiased estimator of the

variance of k-fold cross-validation. The Journal of Machine Learning

Research 5 (2004), 1089–1105.

[4] Blaser, R., and Fryzlewicz, P. Random rotation ensembles. The

Journal of Machine Learning Research 17, 1 (2016), 126–151.

[5] Breiman, L. Bagging predictors. Machine Learning 24, 2 (1996), 123–

140.

[6] Breiman, L. Out-of-bag estimation. Technical report, Department of

Statistics, University of California, Berkeley, CA, 1996.

[7] Breiman, L. Random forests. Machine Learning 45, 1 (2001), 5–32.

[8] Breiman, L., Friedman, J., Olshen, R., and Stone, C. Classi-

fication and Regression Trees. Wadsworth and Brooks, Monterey, CA,

1984.

50

BIBLIOGRAPHY 51

[9] Chen, T., and Guestrin, C. Xgboost: A scalable tree boosting

system. CoRR abs/1603.02754 (2016).

[10] Coussement, K., and De Bock, K. Customer churn prediction in

the online gambling industry: The beneficial effect of ensemble learning.

Journal of Business Research 66, 9 (2013), 1629–1636.

[11] Eiland, E. E., and Liebrock, L. M. Efficacious End User Measures

Part 1: Relative Class Size and End User Problem Domains. Advances

in Artificial Intelligence 2013 (2013), 2:2–2:2.

[12] Ferri, C., Hernández-Orallo, J., and Salido, M. A. Volume

under the ROC surface for multi-class problems. In Machine Learn-

ing: ECML 2003, 14th European Conference on Machine Learning,

Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceedings (2003),

pp. 108–120.

[13] Friedman, J. H. Stochastic gradient boosting. Computational Statis-

tics and Data Analysis 38 (1999), 367–378.

[14] Friedman, J. H. Greedy function approximation: A gradient boosting

machine. Annals of Statistics 29 (2000), 1189–1232.

[15] Geurts, P., Ernst, D., and Wehenkel, L. Extremely randomized

trees. Machine Learning 63, 1 (2006), 3–42.

[16] Gregorutti, B., Michel, B., and Saint-Pierre, P. Correlation

and variable importance in random forests. Statistics and Computing

(2016), 1–20.

[17] Gür Ali, O., and Arıtürk, U. Dynamic churn prediction framework

with more effective use of rare event data: The case of private banking.

Expert Systems with Applications 41, 17 (2014), 7889–7903.

BIBLIOGRAPHY 52

[18] Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. The Ele-

ments of Statistical Learning : Data Mining, Inference, and Prediction.

Springer series in statistics. Springer, New York, 2009.

[19] Idris, A., Khan, A., and Lee, Y. S. Intelligent churn prediction

in telecom: Employing mRMR feature selection and rotboost based en-

semble classification. Applied Intelligence 39, 3 (2013), 659–672.

[20] Kass, G. V. An exploratory technique for investigating large quantities

of categorical data. Journal of the Royal Statistical Society. Series C

(Applied Statistics) 29, 2 (1980), 119–127.

[21] Kohavi, R. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Proceedings of the 14th Interna-

tional Joint Conference on Artificial Intelligence - Volume 2 (San Fran-

cisco, CA, USA, 1995), IJCAI’95, Morgan Kaufmann Publishers Inc.,

pp. 1137–1143.

[22] Kurgan, L. A., and Musilek, P. A survey of knowledge discovery

and data mining process models. The Knowledge Engineering Review

21, 1 (2006), 1–24.

[23] Larivière, B., and den Poel, D. V. Investigating the role of prod-

uct features in preventing customer churn, by using survival analysis

and choice modeling: The case of financial services. Expert Systems

with Applications 27, 2 (2004), 277–285.

[24] Louppe, G. Understanding Random Forests: From Theory to Practice.

PhD thesis, University of Liege, Belgium, 2014. arXiv:1407.7502.

[25] Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. Un-

derstanding variable importances in forests of randomized trees. In Ad-

vances in Neural Information Processing Systems 26, C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds.

Curran Associates, Inc., 2013, pp. 431–439.

BIBLIOGRAPHY 53

[26] Norouzi, M., Collins, M., Johnson, M. A., Fleet, D. J., and

Kohli, P. Efficient non-greedy optimization of decision trees. In Ad-

vances in Neural Information Processing Systems 28, C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Asso-

ciates, Inc., 2015, pp. 1729–1737.

[27] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-

napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research 12 (2011), 2825–2830.

[28] Ribeiro, M. T., Singh, S., and Guestrin, C. “why should

I trust you?”: Explaining the predictions of any classifier. CoRR

abs/1602.04938 (2016).

[29] Risselada, H., Verhoef, P. C., and Bijmolt, T. H. Staying

power of churn prediction models. Journal of Interactive Marketing 24,

3 (2010), 198–208.

[30] Shearer, C. The CRISP-DM Model: The new blueprint for data

mining. Journal of Data Warehousing 5, 4 (2000), 13–22.

[31] Tibshirani, R. Regression shrinkage and selection via the lasso. Jour-

nal of the Royal Statistical Society, Series B 58 (1994), 267–288.

[32] Verbeke, W., Martens, D., Mues, C., and Baesens, B. Building

comprehensible customer churn prediction models with advanced rule

induction techniques. Expert Systems with Applications 38, 3 (2011),

2354–2364.

[33] Xie, Y., Li, X., Ngai, E. W. T., and Ying, W. Customer churn

prediction using improved balanced random forests. Expert Systems with

Applications 36, 3 (2009), 5445–5449.

	Cover page
	Contents
	1 Introduction
	1.1 Background
	1.2 Objectives and structure

	2 Case formulation
	2.1 Churn prediction
	2.2 Data overview and preprocessing

	3 Methodological approaches
	3.1 Decision tree learning
	3.1.1 Classification and regression trees
	3.1.2 Random forests and Extremely randomized trees
	3.1.3 Gradient boosted trees

	3.2 K-fold cross-validation
	3.3 Metrics for model performance
	3.3.1 F-score
	3.3.2 Logarithmic loss
	3.3.3 Receiver operating characteristic and lift curve

	3.4 Model interpretability
	3.4.1 Eliciting feature importances from trees
	3.4.2 Local interpretable model-agnostic explanations

	4 Implementation
	4.1 Model training
	4.2 Model evaluation
	4.2.1 Model accuracy
	4.2.2 Importance of features

	5 Computational results and model evaluation
	5.1 Resulting model performance
	5.2 Prominent variables
	5.3 Predictive capability and model explanations

	6 Discussion and conclusions

