
Aalto University
School of Science
Degree programme in Engineering Physics and Mathematics

Generating a Navigation Graph for Coastal
Waters

Bachelor’s Thesis
09.01.2019

Leevi Olander

The document can be stored and made available to the public on the open
internet pages of Aalto University.
All other rights are reserved.

Aalto University, P.O. BOX 11000, 00076 AALTO

www.aalto.fi

Abstract of bachelor's thesis

Author Leevi Olander

Title of thesis Generating a Navigation Graph for Coastal Waters

Degree programme Engineering Physics and Mathematics

Major Mathematics and Systems Analysis Code of major SCI3029

Supervisor Prof. Ahti Salo

Thesis advisor(s) M.Sc Tech. Juho Roponen

Date 09.01.2019 Number of pages 22+8 Language English

Abstract

This bachelor’s thesis examines how a navigation graph can automatically be generated for coastal
waters. Usually graphs are generated manually in game development for example; however, this is
not applicable for coastal waters due to the amount of data. In other words, generating navigation
graphs manually would entail on immense workload and therefore automatic generation is required.

Towards this end, relevant data is first downloaded and then converted to a more suitable format.
The data is then processed via various methods, to produce a navigation graph. The parameters of
the generation method are both analyzed and optimized by solving a large number of random path-
finding problems. Furthermore, comparative analyses on the advantages and disadvantages of the
developed method are presented. These results indicate that the generation process is valid and pro-
duces graphs that contain the necessary topological information.

In comparison with a graph which is converted from the input data directly, our method produces a
graph whose performance is significantly better on several factors (e.g. pathfinding processing time)
while others (e.g. coverage, path length) are only marginally worse. All algorithms and methods in
this thesis were implemented in a software with a graphical user interface. This application makes
it easy to visually inspect and validate the results.

Keywords navigation, graph, pathfinding, coast, A*, Dijkstra, software

Aalto-universitetet, PB 11000, 00076 AALTO
www.aalto.fi

Sammandrag av kandidatarbetet

Författare Leevi Olander

Titel Generering av en navigeringsgraf för kustvatten

Examensprogram Teknisk fysik och matematik

Huvudämne Matematik och systemvetenskaper Huvudämnets kod SCI3029

Ansvarig lärare Prof. Ahti Salo

Handledare DI Juho Roponen

Datum 09.01.2019 Sidantal 22+8 Språk Engelska

Sammandrag

Detta kandidatarbete undersöker hur en navigeringsgraf kan genereras automatisk för kustvatten.
Ofta genereras grafer för hand, till exempel i utveckling av datorspel. Detta är dock inte lämpligt för
kustvatten på grund av mängden av data. Det vill säga, generering av navigeringsgrafer för hand
skulle leda till enorma arbetsmängder, vilket är varför automatisk generation är nödvändigt.

För att avklara detta nedladdas relevant data, varefter den konverteras till ett mera passande format.
Datan blir därefter processerad med hjälp av diverse metoder, vilka slutligen producerar en
navigeringsgraf. Genereringsmetodens parametrar analyseras och optimeras genom att lösa ett
stort antal av slumpmässiga vägsökningsproblem. Därefter presenteras för- och nackdelar för den
utvecklade metoden. Resultaten indikerar att genereringsprocessen är giltig och att
navigeringsgraferna innehåller den väsentliga informationen.

I jämförelse med en graf som konverteras direkt från den ursprungliga datan, producerar den
utvecklade metod grafer vars prestanda är betydligt bättre i flera aspekter (t.ex. processeringstiden
för vägsökningsproblem), medan andra aspekt (t.ex. utsträckning, längden av den funna rutten)
försämras marginellt. Alla algoritmer och metoder i detta arbete implementerades i mjukvara med
ett grafiskt användargränssnitt. Mjukvaran gör det enkelt att visuellt inspektera och validera
resultaten.

Nyckelord navigering, graf, vägsökningsproblem, kust, A*, Dijkstra, mjukvara

Contents
1 Introduction 1

2 Methods 2
2.1 Data . 2

2.1.1 Data Format . 2
2.2 Graph Generation . 5

2.2.1 Traversable Areas . 6
2.2.2 Untraverasble Areas 9
2.2.3 Combination . 14

2.3 Parameter Optimization . 17
2.3.1 Parameter Sensitivity 19
2.3.2 Combinatorial Analysis 20

3 Results 21

4 Conclusions 22

5 Appendix 23
A Reference Point Generation Algorithm 23
B Segmented Border Tracing Algorithm 23
C Border Expansion Algorithm 24
D Ramer Douglas Peucker Modification 25
E Parameter Configurations . 25

E-1 Parameter Dependencies 25
E-2 Initial Parameter Configuration 26
E-3 Sensitivity Ranges . 26
E-4 Combinatorial Ranges 27
E-5 Optimal Configuration 28

1 Introduction

An important aspect of warfare is to remain undetected by the enemy for as
long as possible, and as such an important interim goal is to choose a good
route from one location to another. Movement can be modeled by using
a weighted graph, in which the weights correspond to the risk of travers-
ing through a specific area. However, the graph can not be too dense, be-
cause this would require excessively costly computations. Thus, a critical
sub-objective is to generate a graph that models a given area precisely and
sparsely.

Graphs have long been a subject of interest and have many practical appli-
cations such as navigation systems, agent simulations and traffic direction.
However, no single method has been proven superior for automatic graph
generation. For example Yang & Worboys (2015) have presented a method
for indoor graph generation. Similar approaches work well for graph genera-
tion when the modeled area consists of clearly defined and relatively confined
subareas, such as rooms and corridors. However, in the case of coastal wa-
ters, this would simplify the graph too much and make it difficult to apply
weights to the graph, thus rendering it unusable for accurate representation
of the waters.

A different method that aims to solve the same task is to convert an area
into a navigation mesh, a concept which was introduced by Snook (2000).
Several navigation graph generation techniques as well as their pros and cons
are discussed by Leonard (2014). In uniformly weighted meshes, the shortest
path between two points can quite easily be found, but the weighted region
shortest path problem remains unsolved (De Carufel et al., 2014). Due to
the unsolvability, navigation meshes are usually converted to graphs, but the
automated conversion process often results in unnatural or even untraversable
paths between nodes.

A common method to generate a navigation graph is to triangulate the area
and then to refine the triangulation (Shewchuk, 2002), this however relin-
quishes more thorough customization. The refinement produces vertices in a
seemingly random fashion and unless there are extra constraints, may ulti-
mately result in too dense a graph. On these grounds navigation graphs are
usually created manually in, for example, game development.

This thesis studies how a navigation graph can be generated for coastal wa-
ters. Manual generation is not feasible for our purposes due to the sheer
amount of data and as such an alternative automatic method is presented.
All algorithms and methods presented in this paper have been implemented
in an application with a graphical user interface.

2

2 Methods

2.1 Data

We chose to use the data available at the Finnish Transport Agency (Li-
ikennevirasto, 2018), because it was free and contained all the necessary
data. This data is provided in shapefile format, which is a widely used for-
mat for geospatial vector data in geographic information systems (Library
of Congress, 2017). When downloading a grid cell all intersecting depth ar-
eas are included in the resulting data, meaning that extra data is generally
downloaded. This in turn leads to a situation where some data is included
several times, which is a problem that needs to be managed.

3.4 3.6 3.8 4 4.2 4.4

ETRS89 / ETRS-TM35FIN X-Coordinate 105

7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.28

7.29

7.3

7.31

E
T

R
S

89
 /

E
T

R
S

-T
M

35
F

IN
 Y

-C
oo

rd
in

at
e

106

Figure 1: The data in one
grid cell.

Field Value
HISOID FI428000005150976
HGHTLAKE -
MAXDEPTH 20
MINDEPTH 10
TYPEDPR 1
CDATE 2018-01-23
NTMENTRY -
YEARSWEEP -
IRROTUS_PV 2018-06-11T10:14:23

Table 1: The fields of the red
polygon in the output data.

The depth data provided by the Finnish Transport Agency is not explicitly
defined, because each feature (a polygon with data values), presented in
Figure 1, has a minimum and a maximum depth value. Table 1 shows all
available data for one feature. We chose to extract only the minimum depth
value, because it guarantees that the area can be safely traversed.

2.1.1 Data Format

Vector data formats are not practical for storing continuous data (Gisgeogra-
phy, 2018), and because the depth of the sea is continuous, we first rasterize

3

the data to the ESRI ASCII Raster format (Library of Congress, 2017).
Rasterized data has other advantages as well, for example mathematical op-
erations are usually fast. However, there are disadvantages as well. File size
can be a problem, and the fact that a large area that consists of exactly
the same data must be represented cell by cell, rather than just store the
boundary, unlike with vector data formats.

Polygon 1

-1 0 1

-1

-0.5

0

0.5

1

Raster 1

-1 0 1

-1

-0.5

0

0.5

1

Polygon 2

-1 0 1

-1

-0.5

0

0.5

1

Raster 2

-1 0 1

-1

-0.5

0

0.5

1

Polygon 3

-1 0 1

-1

-0.5

0

0.5

1

Raster 3

-1 0 1

-1

-0.5

0

0.5

1

Polygon 4

-1 0 1

-1

-0.5

0

0.5

1

Raster 4

-1 0 1

-1

-0.5

0

0.5

1

Figure 2: Rasterization results of various polygons. The red dots
mark the vertices of each polygon, the blue represents data and
the grey cells represent empty cells.

When rasterizing a vector file the output will always be in a rectangular
form, which is attained by adding cells with no value to the resulting file.
The described phenomena is visualized in Figure 2. Thus, it is not feasible
to rasterize all of the vector data at once if the vectors do not define a form
with an area that closely resembles the area of its bounding box. A better
approach is to rasterize the data in parts that resemble rectangles and thus
reduce wasted space. One also has to take into account the fact that the
input files do not share a unified relative coordinate system. This can be
problematic because the objective is to generate a graph for all of the data,
not just for one file.

4

Input Data

0 2 4 6

Easting 105

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

N
or

th
in

g

106 Rasterized Data

0 2 4 6

Easting 105

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

N
or

th
in

g

106 Data Blocks

0 2 4 6

Easting 105

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

N
or

th
in

g

106

Figure 3: The different phases in data management. Each purple
polygon represents one file.

These problems can be solved by splitting the input data in blocks of uni-
form size and by choosing a common origin for them all. Figure 3 shows
how the data is rasterized and then split from its original state to blocks.
The splitting comes with at least the following additional benefits: the graph
generation can be parallelized to some extent as each block is its own inde-
pendent entity and graph generation parameters can be optimized for small
local problems rather than for a big global problem. Overall memory usage
will also decrease, because not everything has to be loaded at the same time.
On the downside we have to add empty cells to get a clear relative coordi-
nate system, which generally increases the disk space required. However, the
increase in required disk space is often marginal if the block size is chosen
with care.

To use computer resources efficiently, the splitting is done so that we min-
imize the amount of redundant data kept in memory at any given time. A
simple but effective approach is to read the number of rows that one block
needs and then to split the columns accordingly. After writing the blocks
to a file located on the hard drive, the process is repeated until all data
has been processed. This method uses significantly less memory than the
naïve approach of reading the whole original data at once and then writing
the blocks one by one. The duplicate data makes it necessary to handle co-
ordinates that are referenced by more than on file with care. This can be
achieved by cross-referencing the minimum depth value at any given coor-

5

dinate found in any of the original rasterized input files and then validate
the data. Of the cross-referenced values it is logical to choose the maximum
value to preserve the accuracy of the data, because the rasterization process
adds extra cells with zero depth and these added cells do not represent the
original data.

2.2 Graph Generation

50 100 150 200

Cell X Coordinate

20

40

60

80

100

120

140

160

180

200

220

C
el

l Y
 C

oo
rd

in
at

e

0

5

10

15

20
W

at
er

 D
ep

th

(a) Unbuffered data.

50 100 150 200

Cell X Coordinate

20

40

60

80

100

120

140

160

180

200

220

C
el

l Y
 C

oo
rd

in
at

e

0

5

10

15

20

W
at

er
 D

ep
th

(b) Buffered data.

Figure 4: Visualization of the depth data. Blue symbolizes
traversable, brown untraversable and black buffered areas, the
black cells are also untraversable.

When generating the graph for a specific block, we split the procedure in
three different sections: areas which can be traversed, areas that can not
and finally the combination of these two. To decide what is traversable and
what is not, we must define a parameter for the minimum depth that is
allowed, MinDepth. Thereafter cells that have a greater or equal depth to
the value specified by MinDepth get marked as traversable and the rest
as untraversable. We also define a buffer parameter, BufferRadius, which
marks all cells within a given distance from any originally untraversable cell
as untraversable. Figure 4 shows the effect of buffering.

6

2.2.1 Traversable Areas

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(a) Columns extracted from figure 4.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Padding

(b) Padded traversable sets.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Padding

Reference Point

(c) Reference points.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Reference Point

(d) Final result.

Figure 5: Visualization of the steps in the reference point gener-
ation process along the y-axis.

The traversable areas have to be converted to a reduced graph without losing
too much relevant information. As show in Figure 5, this can be done as fol-
lows, by first splitting the block into columns and then extracting continuous
traversable sets from within each column. All sets are then padded from both

7

ends with a value according to the parameter Padding. The padding further
limits the valid space for reference points, so that we may actually define how
close a vertex can be placed to an untraversable area. This is then followed
by placing linearly spaced reference points within each set. The number and
placing of these reference points are defined by the parameters Distance,
which describes the distance between two reference points in a traversable
set and the value of Padding in accordance to the pseudo code presented in
attachment A. The same process is then repeated for rows.

8

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Column Reference Point

Row Reference Point

(a) Generated reference points.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Column Reference Point

Row Reference Point

(b) Connected reference points.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Column Reference Point

Row Reference Point

Intersection

(c) Reference point intersections.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Vertex

Intersection

Clear Area

(d) Vertices and their clearing areas.

Figure 6: Visualization of the steps in the reference point gener-
ation process.

The process of converting traversable areas to vertices is show in Figure 6.
Once the reference points have been calculated, they are connected with
the Bresenhams Line algorithm (Bresenham, 1965). Then, intersections are
calculated, and a vertex is placed at each of them. In the calculation of
intersections, the parameter IntersectionRadius defines whether there is an
intersection or not. In practice, this means that even if a true intersection has

9

not been found at a specific location we may treat is as such. Furthermore,
the parameter ClearRadius is introduced to clear vertices within a distance
from another vertex. This is done so that uneccessary vertices get omitted.

2.2.2 Untraverasble Areas

To ensure that the graph preserves the main structure of the original data,
we want to generate a set of vertices and edges around each untraversable
area at some distance from it. Generally, outward polygon offsetting would
be applied, but we do not want narrow passes to be blocked off, which is why
a slightly different approach is needed. First, we define which cells belong to
which area. A common solution is to either apply the Flood Fill algorithm
or the Scanline Fill algorithm (Vandevenne, 2018). Both algorithms give the
same output on a two-dimensional grid, but the Scanline Fill algorithm is
significantly faster of the two, which is why it was implemented.

Next, we need to trace the contour of each area. Several algorithms have
been invented to solve this, such as the Square Tracing algorithm, Moore
Neighborhood tracing and Theo Pavlidis’ algorithm (Ghuneim, 2000). None
of these algorithms guarantee that each border cell is visited exactly once.
Therefore, a new algorithm, Segmented Border Tracing (SBT), was devel-
oped. It preserves the order of the contour cells and fulfills the visiting
criterion. The pseudocode for the SBT is in Appendix B.

10

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Cell

Border Cell

(a) Extract all border cells.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Cell

Border Cell

Bad Border Cell

(b) Remove bad border cells.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Cell

Border Cell

Start Cell

Forward Propagation

Backward Propagation

(c) Propagate backward and forward.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Cell

Border Cell

Segment Cell

(d) Combination of the propagations.

Figure 7: Visual illustration for the Segmented Border Tracing
algorithm. The color intensities denote the order of the cells.

The visualization of the SBT is in Figure 7. The algorithm outputs a set of
continuous border segments and removes border cells that have more than
two adjacent neighboring border cells. These cells make it difficult to find the
border as they would sometimes be visited several times. After the border
has been successfully traced into continuous segments, it is expanded. The
expansion is made so that narrow passages are preserved.

11

20 40 60 80 100 120

20

40

60

80

100

120

Inspected Cell

Neighbor Cell

Neighbor Vector

(a) The inspected cell and its neighbors.

20 40 60 80 100 120

20

40

60

80

100

120

Inspected Cell

Neighbor Cell

Normalized Vector Sum

Rotated Normalized Vector Sum

Normal Vector

(b) Vector sum, rotation and normals.

20 40 60 80 100 120

20

40

60

80

100

120

Inspected Cell

Neighbor Cell

Scaled Rotated Vector Sums

Scaled and Offsetted Normal Vector

(c) Vector scaling.

20 40 60 80 100 120

20

40

60

80

100

120

Inspected Cell

Neighbor Cell

Expansion Area

Best Cell

(d) Search for optimal expansion cell.

Figure 8: Visual explanation for the border expansion procedure
for one cell.

For each cell that is to be expanded, we must decide which cells in its near
vicinity are taken into account. This is handled by the parameter Direc-
tionRadius, which defines the maximum distance from the origin cell to
other cells. We also need to define a parameter for the maximum expansion
radius, ExpansionRadius, which specifies how far a cell can maximally be
expanded. The pseudo code for the expansion algorithm is expressed in Ap-

12

pendix C and its visualization is in Figure 8. The optimal expansion cell is
the cell within the expansion area that has the maximum distance to any
untraversable cell.

When all cells have been expanded the next step is to simplify them. A
suitable implementation is the Ramer Douglas Peucker (RDP) algorithm
(Douglas & Peucker, 1973), which is used to simplify polylines. The RDP
algorithm takes as input a set of vertices and a tolerance value. The tolerance
value specifies how far any vertex can maximally be from the simplified lines.
The parameter ToleranceValue is used to represent it.

After the simplification process has been applied a new problem arises. The
RDP algorithm does not conserve the traversability between simplified ver-
tices. Due to the fact that RDP always produces a subset of the vertices
that were given as input and because the border is sorted, the problem has
a straight-forward fix, which is presented in Appendix D.

13

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

S
or

te
d

B
or

de
r

C
el

ls

(a) Sorted border cells.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

S
or

te
d

E
xp

an
de

d
B

or
de

r
C

el
ls

(b) Expanded border cells.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Edge

Modified Border Vertex

(c) Simplified border vertices.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Edge

Modified Border Vertex

(d) Modified border vertices.

Figure 9: The different phases in untraversable border processing.

After the simplification and the correcting procedures have been completed,
we add additional border vertices so that the distance between two subse-
quent vertices does not exceed the distance defined by the parameter Sim-
plifiedDistance. This is achieved by inserting linearly interpolated vertices
between two consecutive vertices that are too far away from each other.
Figure 9 depicts the whole process starting with the sorted segments, then
expansion, simplification and finally modification.

14

2.2.3 Combination

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Vertex, Count: 121

(a) Combined vertices.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Vertex, Count: 69

(b) Combined and merged vertices.

Figure 10: The effect of merging vertices.

When the vertices for both untraversable and traversable areas have been
processed separately, the results are combined. We join all vertices together
and then merge those that are within the radius defined by the parameter
MergeRadius, subject to the condition that any vertex defined by the ex-
panded border may not be modified. This guarantees that narrow passages
are not omitted. Then we define another radius, BorderMergeRadius that
only affects border vertices. This allows some border vertices to be omitted,
but only if they are close to another border vertex. The merging process is
shown in Figure 10.

15

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Inspected Vertex

Vertex

Inner Area

Sector

Sector

Edge

(a) NDC with SectorCount as 4.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Inspected Vertex

Vertex

Inner Area

Sector

Sector

Edge

(b) NDC with SectorCount as 8.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Edge, Count: 351

Vertex, Count: 27

(c) Simple connecting method.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Edge, Count: 55

Vertex, Count: 27

(d) Output of NDC with SectorCount
as 8.

Figure 11: The NDC algorithm with two different parameter
configurations along with a comparison of the output generated
by the simple connecting method and NDC.

Once the vertices have been merged, they are connected to create a graph.
A natural method would be to connect a vertex to all connectable vertices
within a given radius; however, it turns out that this is not a good approach
due to the number of unnecessary edges produced. A is to create and ap-

16

ply the Nearest Division Connect (NDC) algorithm. The NDC defines two
radii: one which functions as the upper limit for distances between con-
nectable vertices, modeled by the parameter OuterConnectRadius, and
one smaller radius, InnerConnectRadius, that will allow a vertex to con-
nect to all connectable vertices within it. Then we divide the disk into
equally sized sectors, where the number of sectors is defined by the param-
eter SectorCount. After the division, the inspected vertex is connected to
the closest connectable vertex in each sector. Figure 11 illustrates the NDC
algorithm and compares it to a method in which each vertex is connected to
all vertices within a given radius.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Vertex, Count: 69

Edge, Count: 321

Figure 12: A representative result of the graph generation process.

The model is now complete, and the final output is shown in Figure 12.
After generating a graph separately for all blocks, they need to be combined
to form one large graph. The connecting is simple as all blocks are given their
own relative x and y coordinates, making it possible to connect the vertices
of one block to all blocks around it, thus resulting in a graph that contains
all input data.

17

2.3 Parameter Optimization
Parameter Section Optimize
MinDepth General No
BufferRadius General No
Distance Traversable Areas Yes
Padding Traversable Areas Yes
IntersectionRadius Traversable Areas Yes
ExpansionRadius Untraversable Areas Yes
DirectionRadius Untraversable Areas Yes
ToleranceValue Untraversable Areas Yes
SimplifiedDistance Untraversable Areas Yes
ClearRadius Combination Yes
MergeRadius Combination Yes
OuterConnectRadius Combination Yes
InnerConnectRadius Combination Yes
SectorCount Combination Yes
BorderMergeRadius Combination Yes

Table 2: The parameters used in the graph genera-
tion process.

All parameters used to construct the graph are listed in Table 2. The total
number of parameters is 15, of which most will be optimized while others will
not. For example, the parameter MinDepth is not optimized because its
value is dictated by the purpose of the navigation graph. The same applies
for BufferRadius, which describes how close to untraversable areas we are
willing to go.

When the model with the parameters has been constructed, the parameter
values should be optimized to create a graph that uses as little disk space
as possible and performs significantly better than the graph based on the
original unmodified data without losing important information. These values
can either be optimized for one block at a time or for the whole graph, but
we found it preferable to optimize for each block independently, because this
decreases processing time and makes it possible to choose different parameter
values for substantially different blocks. Finding the best parameters is an
integer optimization problem whose complexity grows extremely fast due
to the number of parameters. Thus, by measuring the effect of different
parameters on the graph generation process, we can narrow down the search
range by omitting parameters with inconsequential impact. Here we chose
to use a slightly modified exhaustive key search algorithm for optimization.

18

The benefit of choosing this method is that we are not only optimizing the
parameters, but also testing the stability of the graph generation process.

When the configurations are set, we choose a large number of random co-
ordinate pairs in the graph. All coordinate pairs are selected from the real
coordinate space, that is independently of the nodes of the graph that is eval-
uated. Between each coordinate in a coordinate pair a path will be searched
with the A* pathfinding algorithm (Hart, Nilsson, & Raphael, 1968) with the
Euclidean distance as the heuristic function. The pathfinding is then used
to evaluate the configuration using objective function (1)

fpn, p, v, eq “ ´w0n´ w1p´ w2v ´ w3e, (1)

where n is the average number of nodes opened, p average path length, v
number of vertices and e number of edges and definitions for the subjective
weights w0, w1, w2 and w3 are in Table 3.

Weight Corresponding variable Value
w0 Average number of nodes opened 140000
w1 Average path length 135000
w2 Number of vertices 20000
w3 Number of edges 3500

Table 3: Subjectively chosen illustrative weights for the objective
function. In real use these weights should be selected with care.

19

2.3.1 Parameter Sensitivity

587.5357 %

181.7557 %

59.1244 %

130.4647 %

60.213 %

17.995 %

16.2541 %

7.4387 %

5.5704 %

5.0067 %

1.1211 %

1.4735 %

1.1247 %

0.47951 %

0.83535 %

0.25216 %

51.3518 %

18.6908 %

0.81246 %

0.42582 %

0.13163 %

0.0861 %

0.1382 %

0.20045 %

0.17445 %

0.13252 %

559.6209 %

194.218 %

61.1374 %

0 %

0 %

21.6114 %

18.2938 %

6.2559 %

5.8768 %

3.4123 %

0 %

1.5166 %

0.66351 %

715.0967 %

349.529 %

105.3793 %

0.79326 %

44.8934 %

31.2841 %

29.3753 %

1.2147 %

7.3128 %

3.8176 %

14.1795 %

2.2806 %

0 %

220.4805 %

84.0214 %

26.1821 %

24.8625 %

12.5943 %

7.8533 %

7.4085 %

2.6306 %

2.3141 %

1.5181 %

1.1918 %

0.57194 %

0.34161 %

Nodes opened Path lengths Vertex count Edge count Objective function

Distance

Simplified Distance

Tolerance Value

Outer Connect Radius

Sector Count

Expand Radius

Merge Radius

Clear Radius

Border Merge Radius

Intersection Radius

Inner Connect Radius

Padding

Direction Radius
0 %

100 %

200 %

300 %

400 %

500 %

600 %

700 %

Figure 13: The sensitivity of parameters relative to the starting
parameter configuration.

To avoid unnecessarily complex calculations, we first analyze the internal
dependencies of the parameter values. For example, it is counterproductive
to have a huge value for Distance and then have a low value for Outer-
ConnectRadius, the dependencies defined by us are presented in Appendix
E-1. To further simplify the calculations, we analyze how each parameter
affects the graph generation process. The sensitivity analysis, in Figure 13,
provides information about which parameters shall be focused on. The sensi-
tivity for the objective function (1), is also evaluated by using the subjective
parameters defined in Table 3. The starting parameter configuration and the
variation ranges for each parameter are in Appendices E-2 and E-3.

20

2.3.2 Combinatorial Analysis

610 620 630 640 650 660 670 680
Average Path Length (Cells)

50

100

150

200

250

300

350

400

A
ve

ra
ge

 N
od

es
 O

pe
ne

d

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Ve
rt

ex
 C

ou
nt

 +
 E

dg
e

Co
un

t

10 4

Optimal Con�guration

Starting Con�guration

Figure 14: The combinatorially generated data.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

Vertex, Count: 1054

Edge, Count: 4058

(a) The starting parameter configuration.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

Vertex, Count: 650

Edge, Count: 2496

(b) The optimal configuration.

Figure 15: Comparison between graphs generated by the start-
ing configuration and the configuration for which the objective
function is maximised.

21

Figure 14 shows the data generated when running the graph generation pro-
cedure over the ranges and values specified in the Appendix E-4. The data
has been reduced from four dimensions to three, for visualization purposes,
by adding the number of vertices and edges together because these dimen-
sions represent the same data to some extent. Figure 15 shows the difference
between the graph generated by the starting parameter values and the com-
putationally optimized graph.

3 Results

Ratio A* Dijkstra
Average reduction in number of nodes processed 1400x 1200x
Average increase in path length 1.001x 1.001x
Average reduction in processing time 22000x 3400000x
Reduction in vertex count 1080x 1080x
Reduction in edge count 1100x 1100x

Table 4: Comparison of the optimized graph to a graph created
directly from the source data without any preprocessing. The
graphs were compared with both A* and Dijkstra’s pathfinding
algorithm. Only one path was computed with Dijkstra’s algorithm
due to the excessive computation time.

Table 4 shows how performance regarding different aspects is affected when
solving randomly generated pathfinding problems. Note that the ratios de-
pend directly on the optimization criteria as well as the underlying data and
cannot as such be regarded as exact values, but should rather be thought of
as estimations. The data presented in Table 4 suggests that the generated
graph is significantly better in all aspects, except average path length. The
average path length is on average 0.1% longer, which is insignificant com-
pared to the gains in other aspects. Due to the heuristic function in the A*
algorithm, we included a comparison based on Dijkstra’s algorithm (Dijk-
stra, 1959), which does make use any heuristic function. All edge weights in
the graphs were assigned to be equal to the distance between the respective
vertices. For a non-uniform weighting strategy, the A* algorithm performs
less well while the performance of Dijkstra’s algorithm remains unaffected.

22

4 Conclusions

The purpose of this thesis was to generate a navigation graph for coastal
waters. First we acquired the necessary data, where after the data was
processed to a more practical format. We then introduced a new graph
generation method whose parameters were analyzed with regard to their
sensitivity, finally, these parameters were optimized according to a objective
function using our own subjective preferences and attained a favorable result.
The generated graph was then compared to a graph generated directly from
the unmodified data by evaluating them via various pathfinding problems.
We demonstrated that the resulting graph performed significantly better on
several criteria (e.g. the number of opened nodes, execution time, disk space)
while offering almost identical performance when regarding the length of the
found paths.

However, there is still room for future research. For one, the data acquired
from the Finnish Transport Agency is not ideal in that it inadvertently forces
us to discard traversable areas with a high probability. Secondly, the param-
eter sensitivity analysis is not exhaustive and because it was then used as a
basis for the combinatorial analysis we can not be certain that the parameters
have been optimized to a true global optimum. Another contributing factor
to not finding the global optimum is that the complexity of the problem is so
large that we could not possibly test all possible and sensible parameter con-
figurations, which is why genetic algorithms could possibly be implemented.

The evaluation methods for the generated graphs may need to be revisited,
because they may not truly reflect the usage purpose of the graph. Moreover,
we chose some number of coordinate pairs randomly, which were then used to
evaluate the graph. These coordinate pairs affect the optimization procedure.
To the extent which they accurately represent the underlying data could be
included in further research.

All techniques were developed for raster datasets and as such another inter-
esting research avenue would be to translate them to vector logic. Conse-
quently, some procedures could probably be executed faster and some slower,
but the total net effect is unknown. However, the result would most likely
not display any serious disparities.

Nonetheless the data in Figure 14 strongly affirms, due to its almost continu-
ous form, that our navigation graph generation process is functional. Visual
evaluation suggests the same thing. Thus, we are able to conclude that the
process as a whole serves its intended purposes.

23

5 Appendix

A Reference Point Generation Algorithm

1 Function ReferencePoints(Set, Distance, Padding, RoundMode)
2 {
3 //Set is a one-dimensional continous traversable set
4 //Distance is a parameter that defines the distance between reference points
5 //Padding is a parameter that defines how each set is padded
6 //RoundMode is a function that takes as an input a real value and outputs an integer
7
8 //Calculate the length of Set and take Padding into account
9 //The length of Set must be greater than Padding * 2

10 length = max(Set) - min(Set) + 1 - Padding * 2
11
12
13 //Calculate the number of reference points
14 n = RoundMode(length / Distance)
15
16 //Create an array in which the reference points will be stored
17 referencePoints = empty array of size n
18
19 //Populate referencePoints
20 For(i = 0, i < n, i = i + 1)
21 {
22 //Calculate the position of one reference point
23 referencePoints[i] = min(Set) + Padding + length * (i + 1) / (n + 1)
24 }
25
26 //return the result
27 return referencePoints
28 }

B Segmented Border Tracing Algorithm

1 Function SegmentedBorderTracing(AllUntraversableCells)
2 {
3 //AllUntraversableCells is a set containing all untraversable cells
4
5 //Create the set OpenSet that contains all border cells
6 //This set will keep track of which cells must be processed
7 //GetBorderCells is a function that returns all cells that have atleast one adjacent traversable cell
8 OpenSet = GetBorderCells(AllUntraversableCells)
9

10 //Add all cells from OpenSet with more than two neighbors in OpenSet to the new set BadBorderCells
11 //GetBadBorderCells is a function that returns said cells
12 BadBorderCells = GetBadBorderCells(OpenSet)
13
14 //Remove the all cells in BadBorderCells from OpenSet
15 OpenSet = OpenSet - BadBorderCells
16
17 //Create the set Result that will store the resulting segments
18 //A segment is an ordered list of points
19 Result = empty set
20
21 //Process all cells in OpenSet
22 While OpenSet is not empty
23 {
24 //All cells in OpenSet have a maximum of two neighbors
25 //This mean that one can propagate in a maximum of two directions from each cell
26
27 //Create empty ordered lists Forward and Backward
28 //The directions in lists Forward and Backward are arbitrary
29 Forward = empty list
30 Backward = empty list
31
32 //Choose any cell A from OpenSet and add it to Forward
33 A = Any(OpenSet)
34 Add A to Forward
35
36 //Propagate "forward" as far as possible
37 If A has any connected cells in OpenSet
38 {

24

39 Next = Any connected cell to A that is in OpenSet
40 Remove Next from OpenSet
41 Add Next to Forward
42
43 While Next has any connected cells in OpenSet
44 {
45 Next = Any connected cell to Next that is in OpenSet
46 Remove Next from OpenSet
47 Add Next to Forward
48 }
49 }
50
51 //Propagate backwards as far as possible
52 If A has any connected cells in OpenSet
53 {
54 Next = Any connected cell to A that is in OpenSet
55 Remove Next from OpenSet
56 Add Next to Backward
57
58 While Next has any connected cells in OpenSet
59 {
60 Next = Any connected cell to Next that is in OpenSet
61 Remove Next from OpenSet
62 Add Next to Backward
63 }
64 }
65
66 //Unify both Backward and Forward to one list
67 //First reverse Backward and then concenate Forward to it
68 //By doing this we get a continous segment that contains all cells from both lists in order
69 //Then add this segment to Result
70
71 Segment = Reverse(Backward) concenate Forward
72 Add Segment to Result
73 }
74
75 //If we want all border cells to be accounted for then all cells in BadBorderCells must be added back
76 //However, this is not necessary for our purposes
77
78 return Result
79 }

C Border Expansion Algorithm

1 Function ExpandedBorder(BorderCells, R)
2 {
3 //BorderCells is the set containing all border cells
4 //R is a constant that determines how much a cell can maximally be expanded
5
6 //Create the empty set Result that will contain all expanded border cells
7 Result = empty set
8
9 For each cell C in BorderCells

10 {
11 //Create a new vector V
12 V = (0, 0)
13
14 //Add the vector from C to U to V
15 For each untraversable cell U within a distance of N from C
16 V = V + (U - C)
17
18 //Rotate V 180 degrees and normalize it
19 V = V * -1
20 V = Normalize(V)
21
22 //Calculate both normals to V
23 N1 = NormalVector(V, 1)
24 N2 = NormalVector(V, 2)
25
26 //Define the polygon P with 4 vertices
27 P = (C + N1 * R / 2, C + N2 * R / 2, C + V * R + N2 * R / 2, C + V * R + N1 * R / 2)
28
29 //Choose the cell within P that has the largest distance to any untraversable cell
30 //D is any distance function
31 Best = Max(D(P))
32
33 Add Best to Result

25

34 }
35 //Remove duplicates from Result
36 //Unique is a function that removes duplicates
37 Result = Unique(Result)
38
39 return Result
40 }

D Ramer Douglas Peucker Modification

1 Function ExpandedBorder(BorderCells, R)
2 {
3 //BorderCells is the set containing all border cells
4 //R is a constant that determines how much a cell can maximally be expanded
5
6 //Create the empty set Result that will contain all expanded border cells
7 Result = empty set
8
9 For each cell C in BorderCells

10 {
11 //Create a new vector V
12 V = (0, 0)
13
14 //Add the vector from C to U to V
15 For each untraversable cell U within a distance of N from C
16 V = V + (U - C)
17
18 //Rotate V 180 degrees and normalize it
19 V = V * -1
20 V = Normalize(V)
21
22 //Calculate both normals to V
23 N1 = NormalVector(V, 1)
24 N2 = NormalVector(V, 2)
25
26 //Define the polygon P with 4 vertices
27 P = (C + N1 * R / 2, C + N2 * R / 2, C + V * R + N2 * R / 2, C + V * R + N1 * R / 2)
28
29 //Choose the cell within P that has the largest distance to any untraversable cell
30 //D is any distance function
31 Best = Max(D(P))
32
33 Add Best to Result
34 }
35 //Remove duplicates from Result
36 //Unique is a function that removes duplicates
37 Result = Unique(Result)
38
39 return Result
40 }

E Parameter Configurations

E-1 Parameter Dependencies

Parameter Dependency
Distance (D) Independent
Padding Independent
Intersection Radius Independent
Expand Radius Independent
Direction Radius Independent

26

Tolerance Value Independent
Simplified Distance Independent
Clear Radius D / 5
Merge Radius D / 5
Outer Connect Radius D * 1,5
Inner Connect Radius D / 8
Segment Count Independent
Border Merge Radius Independent

D = Abbreviation for Distance. Used to denote
parameter dependencies.

E-2 Initial Parameter Configuration

Parameter Value
Distance 100
Padding 10
Intersection Radius 1
Expand Radius 10
Direction Radius 1
Tolerance Value 12
Simplified Distance 50
Clear Radius 20
Merge Radius 20
Outer Connect Radius 150
Inner Connect Radius 12,5
Segment Count 8
Border Merge Radius 4

E-3 Sensitivity Ranges

Parameter VMin VMax S
Distance (D) 20 180 20
Padding 2 18 20
Intersection Radius 0 2 3
Expand Radius 2 18 20
Direction Radius 0 2 3
Tolerance Value 2,4 21,6 20
Simplified Distance 10 90 20

27

Clear Radius D / 5 * a D / 5 * b 20
Merge Radius D / 5 * a D / 5 * b 20
Outer Connect Radius D * 1.5 * a D * 1.5 * b 20
Inner Connect Radius D / 8 * a D / 8 * b 20
Segment Count 2 14 13
Border Merge Radius 0,8 7,2 20

Parameters are tested SEPARATELY.

Complexity = Sum(S)
= 20 * 10 + 13 + 3 * 2
= 219

D = Abbreviation for Distance. Used to denote
parameter dependencies.

VMin = Minimum value for parameter variation range.
VMax = Maximum value for parameter variation range.
S = Number of steps in variation range.

a = 0,2
b = 1,8

E-4 Combinatorial Ranges

Parameter VMin VMax S
Distance (D) 20 180 20
Padding 10 10 1
Intersection Radius 1 1 1
Expand Radius 2 18 3
Direction Radius 1 1 1
Tolerance Value 2,4 21,6 5
Simplified Distance 10 90 10
Clear Radius D / 5 D / 5 1
Merge Radius D / 5 * a D / 5 * b 4
Outer Connect Radius D * 1,5 * a D * 1,5 * b 5

28

Inner Connect Radius D / 8 D / 8 1
Segment Count 2 14 4
Border Merge Radius 0,8 7,2 2

Parameters are tested COMBINATORIALLY.

Complexity = Product(S)
= 20 * 10 * 5^2 * 4^2 * 3 * 2
= 480000

D = Abbreviation for Distance. Used to denote
parameter dependencies.

VMin = Minimum value for parameter variation range.
VMax = Maximum value for parameter variation range.
S = Number of steps in variation range.

a = 0,2
b = 1,8

E-5 Optimal Configuration

Parameter Value
Distance 100
Padding 10
Intersection Radius 1
Expand Radius 10
Direction Radius 1
Tolerance Value 12
Simplified Distance 50
Clear Radius 20
Merge Radius 20
Outer Connect Radius 150
Inner Connect Radius 12,5
Segment Count 8
Border Merge Radius 4

29

References

J. E. Bresenham (1965). “Algorithm for computer control of a digital plotter”.
IBM Systems Journal 4.1, pp. 25–30.

J.-L. De Carufel et al. (2014). “A note on the unsolvability of the weighted
region shortest path problem”. Computational Geometry 47.7, pp. 724–727.

E. W. Dijkstra (1959). “A note on two problems in connexion with graphs”.
Numerische Mathematik 1.1, pp. 269–271.

D. H. Douglas & T. K. Peucker (1973). “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature”.
Cartographica: The International Journal for Geographic Information and
Geovisualization 10.2, pp. 112–122.

A. Ghuneim (2000). “Contour tracing algorithms”. URL: http : / / www .
imageprocessingplace.com/downloads_V3/root_downloads/tutorials/
contour_tracing_Abeer_George_Ghuneim/alg.html, accessed 25.08.2018.

Gisgeography (2018). “Vector vs Raster: What’s the Difference Between GIS
Spatial Data Types?” URL: https://gisgeography.com/spatial-
data-types-vector-raster/, accessed 27.08.2018.

P. E. Hart, N. J. Nilsson, & B. Raphael (1968). “A formal basis for the
heuristic determination of minimum cost paths”. IEEE transactions on
Systems Science and Cybernetics 4.2, pp. 100–107.

T. Leonard (2014). “Procedural Generation of Navigation Meshes In Arbi-
trary 2D Environments”. Game Behaviour 1.1.

Library of Congress (2017). “ESRI ArcInfo ASCII Grid”. URL: https://
www.loc.gov/preservation/digital/formats/fdd/fdd000421.
shtml, accessed 26.08.2018.

Library of Congress (2017). “ESRI Shapefile”. URL: https://www.loc.
gov/preservation/digital/formats/fdd/fdd000280.shtml, ac-
cessed 25.08.2018.

Liikennevirasto (2018). “Finnish Transport Agency - Download Service”. URL:
"https://julkinen.liikennevirasto.fi/oskari/?lang=en, ac-
cessed 15.07.2018.

J. R. Shewchuk (2002). “Delaunay refinement algorithms for triangular mesh
generation”. Computational Geometry 22.1-3, pp. 21–74.

G. Snook (2000). “Simplified 3D movement and pathfinding using navigation
meshes”. Game Programming Gems 1.1, pp. 288–304.

L. Vandevenne (2018). “Flood fill”. URL: https://lodev.org/cgtutor/
floodfill.html, accessed 25.08.2018.

http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/alg.html
http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/alg.html
http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/alg.html
https://gisgeography.com/spatial-data-types-vector-raster/
https://gisgeography.com/spatial-data-types-vector-raster/
https://www.loc.gov/preservation/digital/formats/fdd/fdd000421.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000421.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000421.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000280.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000280.shtml
"https://julkinen.liikennevirasto.fi/oskari/?lang=en
https://lodev.org/cgtutor/floodfill.html
https://lodev.org/cgtutor/floodfill.html

30

L. Yang & M. Worboys (2015). “Generation of navigation graphs for indoor
space”. International Journal of Geographical Information Science 29.10,
pp. 1737–1756.

	Introduction
	Methods
	Data
	Data Format

	Graph Generation
	Traversable Areas
	Untraverasble Areas
	Combination

	Parameter Optimization
	Parameter Sensitivity
	Combinatorial Analysis

	Results
	Conclusions
	Appendix
	Reference Point Generation Algorithm
	Segmented Border Tracing Algorithm
	Border Expansion Algorithm
	Ramer Douglas Peucker Modification
	Parameter Configurations
	Parameter Dependencies
	Initial Parameter Configuration
	Sensitivity Ranges
	Combinatorial Ranges
	Optimal Configuration

