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1 Introduction

When making a simple decision such as choosing what to eat for lunch, a solution
often pops into our heads e�ortlessly. Our internal heuristic decision making process
provides us with an answer, which we might accept without much thought. On the
other hand when making a more important decision such as, deciding what apart-
ment to buy, a good solution might not pop into our mind as easily. Then a more
analytical approach is needed and dividing the problem into sub problems might be
helpful. What are the criteria for a good apartment? How the available apartments
ful�l these criteria? Thinking all of these things at once can be overwhelming. To
aid in a situation such as this, many decision making tools have been developed
and one of them is the Analytic Hierarchy Process (AHP)[1]. It is a multi criteria
decision making tool, which provides a structured way to approach a decision and
come to a conclusion. In this thesis, we focused on two steps in the AHP. In the �rst
you compare the importance of every criterion against each other and then these
comparisons are stored in a pairwise comparison matrix. In the next step weights
are estimated from the matrix. These weights describe the importance of each cri-
terion relative to the decision at hand. The weights can be later used in calculating
the best alternative for the decision maker.
In some cases the decision maker might not be able to give an answer when asked to
compare two criteria against each other. Missing comparisons cause problems when
estimating the weights and there are several methods which have been developed to
estimate the weights despite the missing comparisons. In this thesis we study two
of them, Harker's method [2] and the method of Shiraishi et al. [3]. In simulations,
these methods were applied on pairwise comparison matrices of di�erent sizes and
amounts of missing comparisons. The purpose of the simulation was to observe how
much the the missing comparisons a�ect the estimation of the weights and how well
the methods perform compared to each other.

2 Pairwise comparison matrix

Pairwise comparison matrices play an important role in the Analytic Hierarchy Pro-
cess (AHP), which is a multi criteria decision-analysis tool developed by T.L Saaty
in the 1970's [1]. AHP can be used to rank the options available to the decision
maker, based on his or her preferences. For example, when deciding what apart-
ment to buy, one might focus on criteria such as price, size, location and condition.
Arranging the available apartments from best to worst requires estimating a score
to each apartment based on these criteria. For example, one apartment might have
excellent price and location, but the condition and size can be poor. Another option
could have superb location and condition, but it might be small and expensive. How
to say which one is the best alternative? AHP can give an answer to that question,
but we will not describe the whole process here. Instead we will focus on the part
of AHP, where we estimate the weights of the criteria from a pairwise comparison
matrix. Weights w1, w2, ..., wn ∈ R+ are used to describe the relative importance
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of the chosen n criteria. In the previously introduced apartment problem n = 4. w1

is the weight of price, w2 is the weight of size, etc.. The more important a criterion
is to the decision maker, the larger the corresponding weight wi should be. [1]
If people are asked to write down the value of each weight and the score of each op-
tion is calculated using those weights, the decision makers might feel that the results
do not represent their true preferences. Assigning weights to the criteria becomes
increasingly di�cult as their number grows [4]. To overcome these challenges, in
AHP pairwise comparison matrices are used, where the entries are numerical com-
parisons of only two criteria at a time. A pairwise comparison matrix is a square
matrix of size n× n where aij, i, j ∈ {1, 2, ..., n}, is the entry on row i and column
j. To �ll a pairwise comparison matrix the decision maker is asked questions such
as: �On a scale from 1

9
to 9, how much more important is the criterion i compared

to criterion j?� The answer to this question, noted as aij, gives insight into what
the ratio of weights wi

wj
≈ aij is. The answers are saved into a pairwise comparison

matrix A in the following manner [1]:

A =


1 a12 a13 · · · a1n

1/a12 1 a23 · · · a2n
1/a13 1/a23 1 · · · a3n
...

...
...

. . .
...

1/a1n 1/a2n 1/a3n · · · 1

 ≈

w1/w1 w1/w2 w1/w3 · · · w1/wn
w2/w1 w2/w2 w2/w3 · · · w2/wn
w3/w1 w3/w2 w3/w3 · · · w3/wn

...
...

...
. . .

...
wn/w1 wn/w2 wn/w3 · · · wn/wn

 .

In AHP, only the upper triangular part (aij,∀i < j) of the matrix A is �lled directly
with the answers of the decision maker. The lower triangular part (aij,∀i > j) is
�lled with the inverse of the corresponding value from the upper triangular part.
It is sensible to assume that if we know aij, then aji should be the inverse of aij
[1]. For example if the decision maker says that price of an apartment is 2.5 times
more important than the location, then location should be 0.4 times as important
as price. By asking the decision maker to �ll only the upper triangular part of the
matrix, the number of required comparisons is (n− 1)n/2. The diagonal entries of a
pairwise comparison matrix are all equal to 1, because the importance of a criterion
compared to itself must be 1.
If we �ll the �rst row of the pairwise comparison matrix and we assume that the
sum of the weights is one, then we have n variables w1, w2, ..., wn and n equations.

∑n
k=1wk = 1

w2 = w1/a12

w3 = w1/a13

w4 = w1/a14
...

wn = w1/a1n

Thus we can estimate the values of the weights w1, w2, ..., wn, but the robustness
of the solution is questionable. A single poorly thought answer from the decision
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maker will have a large e�ect. In AHP the number of comparisons is n(n−1)/2 and
the information in every row of the pairwise comparison matrix is used to estimate
the weights. By using the information on each row, the robustness of the solution
increases, because a single poorly thought answer from the decision maker does not
have such a large impact on the results.
Weights can be estimated from the pairwise comparison matrix, for example, with
the eigenvalue method. In this widely used method, the approximation of the weights
is the principal eigenvector ofA. Therefore, the weights can be calculated by solving
w from the following equation[1].

Aw = λmaxw, (1)

where λmax is the principal eigenvalue of A. The �rst entry of w is the weight of
the �rst criterion, the second entry is the weight of the second criterion, etc.. The
weights are usually normalised so that the sum of the weights is one.

2.1 Consistency

Only a perfectly rational person is able to give consistent answers which satisfy the
equation of cardinal consistency for pairwise comparison matrices [1]:

aik = aijajk, ∀i, j, k. (2)

In the context of AHP and pairwise comparison matrices, consistency means that all
connected paths from one entry to another should give the same result. For example,
the decision maker might state that: �The condition of the apartment is 2 times
more important than location (a43 = 2), price is tree times more important than
condition (a14 = 3) and price is six times more important than location (a13)=6� For
this example we can see that equation (2) holds and therefore these three statements
are consistent with each other:

6 = 3× 2.

In practise the decision maker is not expected to be able to give answers that are all
completely consistent. For example, if he had changed only one of the answers even
slightly, the statement would have been inconsistent, because equation (2) would
no longer hold. Fortunately, approximations of the weights can be calculated even
when the answers are inconsistent. In fact, inconsistency is expected and decision
making tools like AHP are designed to deal with it.
Saaty showed that the consistency of an positive reciprocal matrix A is connected
to the value of its principal eigenvalue λmax. When A is consistent, it applies that
λmax = n, and λmax > n when there is inconsistency in the matrix. To measure the
inconsistency of the pairwise comparison matrix Saaty introduced the consistency
index (C.I) [1]:

C.I =
λmax − n
n− 1

(3)

and the consistency ratio CR:

CR =
C.I

RI(n)
=

λmax−n
n−1

RI(n)
, (4)



4

Table 1: RI values for matrices of order n [6].

n 3 4 5 6 7 8 9 10
RI(n) 0.5247 0.8816 1.1086 1.2479 1.3417 1.4057 1.4499 1.4854

where RI(n) is the average value of C.I of pairwise comparison matrices of size n×n,
where the entries are randomly generated from a scale from 1/9 to 9. Table 1 has RI
values for matrices of di�erent order. Small C.I and CR values are an indication of
consistency. Saaty proposed that matrices with a CR value between 0 and 0.10 are
considered good enough to evaluate weights from [1]. If the CR value of the matrix
is larger than 0.10, it is worth considering to ask the decision maker to answer the
questions again, in hope of more consistent answers. Inconsistent answers, might
be, for example, a sign of lack of focus from the decision maker. In these cases the
solution derived from the answers, might not represent accurately the preferences
of the decision maker. How to measure inconsistency and how to determine which
matrices are too inconsistent to evaluate weights from is still under research [5].

3 Missing pairwise comparisons

Missing comparisons are empty entries in a pairwise comparison matrix. There are
several reasons why the pairwise comparison matrix might not be complete and
Harker presented some examples [2]:

(i) The decision maker might not know the answer to a question due to lack of
expertise or he might not have a clear opinion on the matter. Leaving the
answer empty might provide better solution than forcing the decision maker
to guess.

(ii) The decision maker does not want to explicitly tell their preferences. For
example, when asked about the importance of pro�t compared to the safety of
the employees.

(iii) The number of pairwise comparisons that have to be made by the decision
maker can be overwhelming. There might not simply be enough time to answer
all the questions.

Harker's examples makes it easy to understand that missing comparisons are not
that rare and therefore understanding their e�ects is important. For example Ureña
et al. [7] and Carmone et al. [8] have done research on missing comparisons and
decision making. There are several methods of estimating the weights despite the
missing preferences and in this thesis two methods are compared. The �rst was
presented by Harker in 1987 and it will be from now on referred to as Harker's
method [2]. The second method is developed by Shiraishi et al. in 1998 and from
now on it will be referred to as method of Shiraishi et al.[3].
Short explanations of these methods will be presented later, but �rst we need to
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introduce some notations. Let us call An(xk) the incomplete comparison matrix of
order n with k missing comparisons. xk is a vector, which contains the variables for
missing comparisons. In the following example n = 4, k = 3. Pairwise comparisons
a12, a14, a23 and their reciprocals 1/a12, 1/a14, 1/a23 are missing from An(xk). The
missing preferences are replaced with x3 = [x12, x14, x23] and their reciprocals are
replaced with 1/x12, 1/x14 and 1/x23:

An(x3) =


1 x12 a13 x14

1/x12 1 x23 a24
1/a13 1/x23 1 a34
x/a14 1/a24 1/a34 1

 .

3.1 Harker's method

Harker's method modi�es the incomplete pairwise comparison matrix An(xk) using
simple rules into a quasi-reciprocal comparison matrix C. The weights can then be
estimated from C using the eigenvector method. The rules for creating the matrix
C from An(xk) are [2]:

cij =


0 if aij is a missing comparison or its reciprocal, ∀i 6= j

aij if aij is a real number > 0, ∀i 6= j

1 +mi where mi is the number of zeros in the row i, ∀i = j.

Let us assume that pairwise comparison matrix B contains the true preferences of
the decision maker:

B =


1 1/3 1/4 1/6
3 1 3/4 1/2
4 4/3 1 2/3
6 2 3/2 1


The principal eigenvalue of B is λmax = 4 = n, which means that B is consis-
tent. Using the eigenvector method, the weights w can be solved from the following
equation.

Bw = λmaxw, (5)

where λmax is the principal eigenvalue of B. The principal eigenvector w is [1/6,
1/2, 2/3, 1]. Weights are usually normalised so that their sum is one. Therefore
the normalised weights are w ≈ [0.07, 0.21, 0.29, 0.43]. These are the weights esti-
mated from a complete pairwise comparison matrix and they will be compared to
the weights estimated with Harker's method from the incomplete pairwise compar-
ison matrix.
Let us assume that during the elicitation process two questions are left unanswered.
By removing two answers from the matrix B, we get an incomplete pairwise com-
parison matrix A4(x2):
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A4(x2) =


1 x12 1/4 1/6

1/x12 1 x23 1/2
4 1/x23 1 2/3
6 2 3/2 1

 .

By using Harker's rules we get:

C =


2 0 1/4 1/6
0 3 0 1/2
4 0 2 2/3
6 2 3/2 1


The weights can be calculated by solving the principal eigenvector w from:

Cw = λmaxw. (6)

The principal eigenvalue ofC is λmax = 4 = n and the corresponding principal eigen-
vector w = [1/6, 1/2, 2/3, 1]. This is exactly the same principal eigenvector than
which were calculated from the complete pairwise comparison matrix B. Harker's
method was able to solve the eigenvector perfectly despite the missing pairwise com-
parisons. The reason why it was so successful is that the comparison matrix used
in this example was consistent. A perfect scenario was used to keep the example
simple and clear. Perfect consistency is not expected from a real decision makers
and for this reason, the pairwise comparison matrices will not be consistent in the
numerical study of the thesis.

3.2 Method of Shiraishi et al.

This method was presented in 1998 by Shiraishi et al. [3]. It is more complicated
than Harker's method. The idea is to complete the pairwise comparison matrix
An(xk) with values x

′

k which try to maximise the consistency of the matrix using a
heuristic method. Then the weights can be estimated using the eigenvector method
from this completed matrix noted as A

′

n(x
′

k).
The previously introduced consistency index:

C.I =
λmax − n
n− 1

(7)

can be used to measure the consistency of the pairwise comparison matrix. A small
C.I value is an indication of consistency and it depends on the largest eigenvalue
λmax. To maximise the consistency, one could try to �nd values x

′

k, which minimises
the largest eigenvalue λmax(x

′

k), as Bozóki et al. have done [9]. Instead, Shiraishi et
al. used a heuristic method to minimize λmax [3]. By de�nition, the characteristic
polynomial PA(λ) of a pairwise comparison matrix A of size n× n is:

PA(λ) = det(λI −A) = λn + c1λ
n−1 + ...+ cn, (8)
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where I is the identity matrix. The coe�cient of the term λn−3 is c3 and it holds
that c3 ≤ 0. Shiraishi et al. have shown in their paper [10] that c3 has a connection
to the matrix's consistency. The larger c3 is, the smaller the C.I values tend to
become. The connection is not theoretically proven, but empiric tests show that
there is a strong relationship [10]. Other papers such as one made by Brunelli et al.
[11] con�rms this connection. The value of c3 can be calculated using the following
equation [10].

c3 =
∑
i<j<k

{2− (
aijajk
aik

+
aik
aijajk

)}. (9)

Shiraishi et al. proposed to �ll the missing comparisons in matrix An(xk) with
positive values x

′

k, which maximize the value of c3 [3]. Using the method of Shiraishi
et al. therefore requires solving the following optimisation problem:

maximise c3(x
′

k)

subject to x
′

ij > 0,∀i, j
(10)

The weights can then be estimated from An(x
′

k) using the eigenvalue method. This
optimisation problem was solved in the simulation presented in this paper with an
additional constraint:

xij ≥ 0.0001,∀i, j. (11)

It was added because, without it, in some cases the variables would be given a value
too close to zero, which led to a division with zero and an error. This restriction
insured the proper function of the simulation and it did not have any e�ect to the
results.

4 Methodology

Creation of the pairwise comparison matrices

Numerical simulations were done to observe the e�ects of missing comparisons.
Next we will explain the steps in the simulations. First we create a set of weights
(w∗

1, w
∗
2, ..., w

∗
n), which represent the decision maker's accurate preferences on n cri-

teria. The weights are randomly generated real numbers from a range from one to
nine. Then these weights are used to create a pairwise comparison matrix A∗ where
a∗ij = w∗

i /w
∗
j , ∀ i, j. This matrix is completely consistent and the answers describe

the decision makers preferences accurately. However it is not a realistic pairwise
comparison matrix elicited from a decision maker, since people are expected to give
answers which can deviate from their true preferences so that aij is not necessarily
an exact ratio of the weights, but an approximation of wi/wj, ∀ i, j. To achieve
a more realistic pairwise comparison matrix A, we then multiply each value a∗ij in
the upper triangular part (i < j, ∀i, j) of A∗ with a di�erent coe�cient vij. Each vij
is randomly sampled from a log-normal distribution so that vij ∼ lnN(µ, σ), ∀i, j.
Then the lower triangular part of the matrix is remade by taking the reciprocal of
the upper triangular part:
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Figure 1: Probability density of the log-normal distribution with normal mean µ=0
and normal standard deviation σ=0.43.
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Figure 2: Histogram of the consistency ratios (CR) of 10 000 pairwise comparison
matrices of size 7 × 7.

A∗ =


1 a∗12 · · · a∗1n

1/a∗12 1 · · · a∗2n
...

...
. . .

...
1/a∗1n 1/a∗2n · · · 1

⇒ A =


1 v12a

∗
12 · · · v1na

∗
1n

1/(v12a
∗
12) 1 · · · v2na

∗
2n

...
...

. . .
...

1/(v1na
∗
1n) 1/(v2na

∗
2n) · · · 1

 .

The normal mean µ is selected to be zero and the normal standard deviation σ is
0.43. The probability density of lnN(0, 0.43) is plotted in Figure 1. This distribution
was selected because it developed pairwise comparison matrices, which are inconsis-
tent, but rarely exceed the 0.1 limit for consistency ratio proposed by Saaty[1].
As a result of this procedure we have a positive reciprocal pairwise comparison ma-
trix A, where the entries simulate answers elicited from a real person. Using the
described method, ten thousand pairwise comparison matrices of size 7 × 7 were
created. Figure 2 is a histogram of consistency ratio values of those matrices.
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4.1 Comparing the two methods

Applying the eigenvector method to A, we get weights w1,, w2, ..., wn. They are then
ranked based on their value. The largest weight gets rank one, the second largest
gets rank two, etc. As a result we get a vector r = [r(1), r(2), ..., r(n)], r(k) ∈
{1, 2, ..., n}, k ∈ {1, 2, ..., n}, where r(k) is the ranking of the k-th weight. Let us
take an example, where n = 4 and r = [4, 2, 1, 3]. This means that the third
weight is the largest and it is estimated to be the most important criterion to the
decision maker. The index of the weight, which is calculated from the full pairwise
comparison matrix A and which ranking is one, is noted as m,m ∈ {1, 2, ..., n} and
the corresponding weight is referred to as the m-th weight. In this example r(3) = 1
and therefore m = 3. The corresponding weight is noted as wm. The ranking of the
largest weight r(m) is then compared to the rankings created by Harker's method
rH(m) and method of Shiraishi et al. rS(m), when they are used on the incomplete
comparison matrix An(xk). It is important to understand that the m-th weight,
which was the largest when estimated from the complete matrix A, might not get
the same rank when the weights are estimated from An(xk). We save the values
rH(m) and rS(m) and repeat the process with new pairwise comparison matrices.
As a result we get statistics on how many times the methods are able to rank the
largest weight wm correctly to rank one, but we also know what rank they give it
when they fail. The lower rank it gets, the worse the method is considered to be
performing.
To show how this works, suppose that we constructed 100 pairwise comparison
matrices of size 4 × 4 and removed 2 random entries from each one. The full
matrices had originally n(n − 1) = 6 comparisons and removing 2 of them, means
that 33 % of the comparisons are missing. Methods of Harker and Shiraishi et al.
were then applied to the incomplete matrices in the previously described manner
and the results are shown in Table 2.

Table 2: Results on 100 matrices of size 4×4 with 33 % of the comparisons missing.

Percentage of instances Percentage of instances
rH(m) = 1 75% rS(m) = 1 73%
rH(m) = 2 19% rS(m) = 2 23%
rH(m) = 3 5% rS(m) = 3 3%
rH(m) = 4 1% rS(m) = 4 1%

In this example the method of Harker was able to correctly give the rank 1 to the
weight wm 75% of the times despite the missing comparisons. It failed in 25% of the
times and in these cases it gave the largest weight wm second rank 19 % of the cases,
third rank 5% of the cases and fourth rank 1% of the cases. Method of Shiraishi
et al. performed similarly and therefore a much larger sample sizes has been used
in this study to draw conclusions about the di�erences in the performance of these
methods.
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Table 3: In the simulations three di�erent size of matrices were used and each was
subjected to a low percentage of missing comparisons and a high percentage of
missing comparisons.

Order of the matrix n = 4 n = 7 n = 10
Number of comparisons 6 21 45

Low: number of missing comparisons 1 4 9
and their percentage 17% 19% 20 %

High: number of missing comparisons 3 10 20
and their percentage 50% 48% 44%

5 Results

The simulations were made with Wolfram Mathematica version 10.0.2.0 1. Matrices
of size 4×4, 7×7 and 10×10 were used. The amount of comparisons required from
the decision maker to �ll each matrix is n(n−1)/2, where n is the order of the matrix.
Therefore the amount of comparisons available for removal from these matrices are
6, 21 and 45, respectively. Certain percentages of these comparisons were removed to
test how the missing comparisons a�ect the estimation of the weights. Two levels of
missing comparisons were chosen. There was a high amount of missing comparisons,
which was 44%-50% of the available comparisons and a low amount, which was 17%-
20%, depending on the size of the matrix. See Table 3 for details. The percentages
of missing comparisons are not exactly the same for every size of matrices, but they
were chosen so that they would be close to each others. For example it is impossible
to remove 50% of the comparisons from a matrix that has 21 comparisons. For that
reason the percentage of missing comparisons in the 7 × 7 matrix is 48% and not
exactly the same as in 4× 4 matrix. The simulations were conducted so that both
methods were used on all three di�erent size matrices with a low level of missing
comparisons and a high percentage of missing comparisons.
The scenarios from Table 3 were each simulated 50 000 times as described in the
methodology section. The statistics of the simulations can be found on Table 4 in
the Appendix A, and the main results are summarised in Figure 3. Both methods
performed very similarly when the percentage of missing comparisons was low: 17%,
19% and 20%. Based on those results, neither of the methods can be considered
to be better or worse. Small di�erences in the performance did occurred when
the amount of missing comparisons was high: 50%, 48% and 44%. In these cases
Harker's method was able to place the m-th weight correctly to �rst rank more often
than the method of Shiraishi et al. On the other hand, it also placed them-th weight
more frequently incorrectly to the last rank compared to the method of Shiraishi
et al. Therefore neither of the methods can be considered to be clearly better or
worse than the other, based on their accuracy, but there is one advantage in using
Harker's method. It was more than nine times faster to compute than the method
of Shiraishi et al. In Harker's method the incomplete comparison matrix An(xk) is

1The orignal script was made by Matteo Brunelli and it was modi�ed by Vili-Matti Ojala.
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Figure 3: The percentage of instances of each rank was given to the m-th weight,
when each scenario was simulated 50 000 times. S stands for method of Shiraishi et
al. and H stands for Harker's method. The size of the matrix is indicated with n×n
and the amount of missing comparisons is shown with percentages. Small ranks are
a sign of accurate estimations of the m-th weight. This chart was made from Table
4, which can be found in the Appendix.

modi�ed using simple rules, but in the method of Shiraishi et al. the optimisation
problem displayed in equation 10, must be solved. Solving this problem took by far
the most time compared to any other part of the simulations.

6 Discussion

The pairwise comparison matrices used in this thesis were randomly generated and
they were made inconsistent by multiplying their entries with di�erent coe�cients
vij randomly sampled from a log-normal distribution so that vij ∼ lnN(µ, σ), ∀i, j,
where σ = 0.43 and µ = 0. Are pairwise comparison matrices produced in this way
good approximations of those elicited from real persons? Maybe not exactly, but
they can still be used to test the performance of method of Shiraishi et al. and
Harker's method. If more research on this subject were made in the future, one
might want to compare how the inconsistency of the pairwise comparison matrices
a�ect the results. The inconsistency can be altered, by changing the distribution of
from which parameters vij are drawn from. To create more realistic pairwise com-
parison matrices, one might want to change the level of inconsistency depending of
the size of the matrix. According to Bozóki et al., the larger the matrix is, the more
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inconsistent peoples answers tend to be [12].
The performance of the methods were measured by the di�erences in the ranking
of the weights estimated using full information of a complete pairwise comparison
matrix and the weights estimated from the same matrix, but with some of the com-
parisons missing. We assumed that the weights estimated from the complete matrix
were more accurate representations of the decision makers true preferences, com-
pared to the weights estimated from the matrix with missing comparisons. Changes
in the ranking of the weights were considered to be a failure. The reasoning behind
this was that, more information should give more accurate results. In reality this
is not always the case. Filling a pairwise comparison matrix can be a challenging
task to perform, and not all of the comparisons might be accurate representations
of the decision maker's true preferences. These poorly thought comparisons will
a�ect the estimated weights in an undesirable way. The estimated weights would
represent more accurately the decision makers preferences, if we could ignore the
poorly thought comparisons all together and use only the accurate comparisons.
Unfortunately distinguishing the accurate answers from the inaccurate is hard or
impossible, but surely if some of the answers are randomly removed, like in the sim-
ulations in this thesis, in some cases the bad answers are removed and the weights
can be accurately estimated from the remaining good answers. Therefore in some
cases, when the methods ranked the m-th weight to some other place than �rst, it is
not necessarily a bad thing for the decision maker. Perhaps the ranking made with
less information happened to represent more accurately the true preferences of the
decision maker.

7 Conclusion

The percentage of missing comparisons and the order of the matrix both a�ected
the reliability of the estimation of the weights. When estimating weights from a
matrix of order n, the amount of comparisons required from the decision maker is
n(n − 1)/2 and the amount of estimated weights is n. Therefore the amount of
information per weight in a large matrix, such as 10 × 10 is far larger than in a
small matrix that is for example 4×4. The amount of pairwise comparisons elicited
from the decision maker for these matrices, are 45 and 6, respectively. This makes
the amount of comparisons, which can be used to estimate the weights 4.5 and 1.5
per weight, respectively. Therefore one might think that removing 50% of the com-
parisons on both matrices would make it relatively more harder to estimate the 4
weights accurately from the small matrix compared to estimating the 10 weights
from the larger one, because there would be still on average 2.25 comparisons left to
estimate one weight in the larger one and on average only 0.75 comparisons in the
smaller one. This might be the case, but the results of the simulation do not support
this hypothesis, because the larger the matrix was, the less accurate the methods
became. This might be explained by the fact that, when the order of the matrix
increases, there are more incorrect ranks that can be given to the m-th weight. In a
4× 4 matrix there are 3 possible wrong answers and in a 10× 10 matrix there are 9.
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The way the performance was measured placed restrictions on what e�ects of the
missing comparisons could be observed. In this thesis it was measured in a narrow
way. Keeping track on what rank these methods give to the m-th rank, is a demon-
strative way to measure performance, but it is surely not the only way. Perhaps,
measuring the error of every weight would yield more comprehensive results.
Neither method can be considered to be clearly better than the other based on
these results. Both performed similarly, when the amount of missing comparisons
was less than 20%. Some di�erences did become visible, when the amount of miss-
ing comparisons was increased. Harker's method got more extreme results, when
the percentage of missing comparisons was over 44%, compared to the method of
Shiraishi et al.. Harker's method ranked the m-th weight to the �rst rank and to the
last rank more frequently. A possible explanation for this phenomenon is that the
methods behave di�erently in some cases when the amount of missing comparisons
is larger than n−1. Let us take an example where the complete pairwise comparison
matrix is

A =


1 1.24 1.27 0.70

0.81 1 0.86 0.68
0.78 1.17 1 0.46
1.42 1.47 2.17 1

 .

The weights estimated from A are w ≈ [0.32, 0.26, 0.15, 0.27] and the ranking is
then r = [1, 3, 4, 2]. Three comparisons are then removed and we get:

A4(x3) =


1 x12 x13 x14

1/x12 1 0.86 0.68
1/x13 1.17 1 0.46
1/x14 1.47 2.17 1

 .

There are no pairwise comparisons in the matrix A4(x3), which would give infor-
mation about the �rst weight. In other words, it is not connected to the other
weights with pairwise comparisons. The two methods give di�erent results when
faced with this situation. Weights estimated from the incomplete matrix A4(x3)
with the method of Harker are w ≈ [0, 0.27, 0.26, 0.47] and therefore rH = [4, 2, 3, 1].
Because the �rst weight was estimated to be zero, it was given rank four, instead of
the rank one it actually should get. Method of Shiraishi et al. behaves di�erently
when faced with the matrix A4(x3) . It will complete the matrix before estimating
the weights and we get

A
′

4(x
′

3) =


1 0.57 3.2 1.62

1.71 1 0.86 0.68
0.31 1.17 1 0.46
0.68 1.47 2.17 1

 .

Weights estimated from A
′

4(x
′
3) are w ≈ [0.25, 0.20, 0.20, 0.35] and the ranking rS =

[2, 3, 4, 1]. Method of Shiraishi et al. ranked the �rst weight incorrectly to second
place, but it did manage better than Harker's method, which placed it to the fourth
place.
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When the missing comparisons happen to be placed so that one of the weights is
not connected to the others, Harker's method will estimate it to be zero and give it
the last rank. Method of Shiraishi et al. completes the matrix before estimating the
weights and it can give the unconnected weight other values than zero. This gives
an advantage to the method of Shiraishi et al., when the unconnected weight is the
m-th weight. Harker's method gives it the last rank, but the method of Shiraishi
et al. can give it other ranks. This might explain why Harker's method gave more
frequently the last rank to the m-th weight.
On the other hand, when the unconnected weight is not the m-th weight, it can give
an advantage to Harker's method. The unconnected weight gets automatically the
last rank, which reduces the competition for the �rst rank. Harker's method should
do better especially in cases where two or more of the largest weights estimated
from the complete matrix have similar values. For example when weights estimated
from a full comparison matrix are [0.30, 0.32, 0.15, 0.23], and the m-th weight is
therefore the second weight. When three or more comparisons are removed and
the �rst weight happens to be unconnected from the rest, Harker's method will
give it the rank four. This should make it more likely for the second weight to be
estimated correctly as the largest one, because its best competitor got the last rank.
The method of Shiraishi et al. can give the unconnected weight other value than
zero, therefore the m-th weight has a lower chance of being ranked to �rst place,
compared to Harker's method. This might explain why Harker's method was more
likely to give the m-th weight its correct rank one, when the percentage of missing
comparisons were high.
The fact, that the largest di�erences between the results of these methods were
in cases with matrices of order 4 with 50% missing comparisons and matrices of
order 7 with 48% missing comparisons, support this explanation. In these cases
the amount of missing comparisons were larger than n − 1, which is the minimum
amount of comparisons that needs to be removed to have an unconnected weight.
The same phenomenon is also visible in the case with matrices of order 10 with
44% missing comparisons. The reason why it is not as strongly visible in the larger
matrix compared to the smaller ones is that in a matrix with 45 comparisons, from
which 20 are missing, it is less likely for any weight to be unconnected, compared
to a 4× 4 matrix with 6 comparisons, from which 3 are missing.
Having an unconnected weight is not a realistic scenario. If this happens during
an elicitation process, it would be wise to pressure the decision maker to make
more comparisons, to ensure that there is enough information to estimate all of the
weights. Therefore allowing weights to be unconnected in the simulations, is not a
preferable situation. Simulations where the comparisons are removed in a way, which
leaves all of the weights connected would produce more realistic results. Perhaps
then there would be no signi�cant di�erence in the results between the performance
of the two methods.
The method of Shiraishi et al. was considerably more computationally demanding,
which is an disadvantage, but in practice the time di�erence is irrelevant. Both
methods can estimate the weights from a missing comparisons matrix within seconds,
when the order of the matrix is less than one hundred.
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Appendix A Table of results
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Appendix B Finnish summary

Tehdessämme arkisia valintoja, kuten päätämme, mitä syömme lounaaksi, ratkaisu
tulee usein vaivattomasti mieleen. Toisinaan eteemme tulee kuitenkin niin vaikeita
valintoja, että päätöksenteko ei onnistukaan yhtä helposti. Tällainen tilanne voisi
olla vaikka asunnon osto. Markkinoilla on eri vaihtoehtoja, ja niiden asettaminen
paremmuusjärjestykseen ei ole yksiselitteistä. Yksi asunto saattaa olla edullinen ja
tilava, mutta sen sijainti ja kunto ovat huonoja. Toisen sijainti ja kunto saattavat
olla hyviä, mutta asunto voi olla kallis ja ahdas. Jotta päätöksentekijä voisi valita
itselle parhaan asunnon, hänen täytyy päättää miten painottaa valittuja kriteerejä
hintaa, kokoa, sijaintia ja kuntoa. Tällaisia tilanteita varten on kehitetty useita
työkaluja, ja yksi suosituimmista on analyyttinen hierarkiaprosessi (AHP). Sitä käyt-
tämällä päätöksentekijä pystyy lähestymään ongelmaa analyyttisesti ja ohjatusti.
AHP:n tavoitteena on selvittää päätöksentekijän mieltymykset ja niitä käyttämällä
laskea pisteet jokaiselle vaihtoehdolle. Suurimman pistemäärän saanut vaihtoehto
on oletettavasti päätöksentekijälle paras valinta.

Sovelletaan AHP:tä edellä mainittuun asunnon valintaan. Tällöin päätöksentek-
ijältä kysytään kysymyksiä, kuten �Miten paljon tärkeämpi hinta on verrattuna
kokoon?� Tähän päätöksentekijä antaa luvun väliltä 1/9 ja yhdeksän. Hänen täy-
tyy verrata jokaista kriteeriä keskenään. Nämä luvut tallennetaan parivertailu ma-
triisiin A. Sen vaaka- ja pystyrivin alkioiden määrä on sama kuin valittujen kri-
teerien määrä. Tässä esimerkissä A:ssa on neljä riviä ja saraketta. AHP:ssa esti-
moidaan jokaiselle kriteerille painokerroin. Tämä tapahtuu esimerkiksi ominaisvek-
torimenetelmällä, jossa otetaan A:n suurinta ominaisarvoa vastaava ominaisvektori
ja skaalataan sen alkiot siten, että niiden summa on yksi. Tuloksena saadaan vektori
w, jonka alkiot ovat suoraan valittujen kriteerien painokertoimet. Niillä voidaan
selvittää päätöksentekijälle paras vaihtoehto. Painokertoimien arvot ovat välillä
nolla ja yksi. Mitä suurempi kriteerin kerroin on, sitä tärkeämpi kyseisen kriteerin
uskotaan olevan päätöksentekijälle.

AHP:ssa oletetaan, että parivertailumartiisi on täysi, eli päätöksentekijältä on saatu
tarvittavat parivertailut. Todellisuudessa osa parivertailusta voi puuttua. Näin
voi käydä esimerkiksi, jos päätöksentekijällä ei ole tarvittavaa asiantuntemusta vas-
tata kysymyksiin. Käytetään jatkossa merkintää A(xk) kuvaamaan matriisia, josta
on poistettu k parivertailua. AHP:ta ei voi soveltaa sellaisenaan puutteelliseen
parivertailumatriisin, ja tämän takia on kehitetty useita metodeja, joilla painoker-
toimet voidaan estimoidaA(xk):sta puuttuvista parivertailuista huolimatta, ja tässä
työssä on käytetty niistä kahta. Ensimmäinen on Harkerin menetelmä ja toinen on
Shiraishin menetelmä. Harkerin menetelmässä, A(xk) muokataan yksinkertaisten
sääntöjen mukaan apumatriisiksi C ja tästä matriisista voidaan estimoida painoker-
toimet ominaisvektorimenetelmällä. Shiraishin menetelmä on hiukan monimutkai-
sempi. Siinä puuttuvat parivertailut yritetään täyttää siten, että matriisista tulisi
mahdollisimman johdonmukainen, kun puuttuvat parivertailut täydennetään. Joh-
donmukaisuudella tarkoitetaan sitä, että jos päätöksentekijän mielestä hinta on
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kolme kertaa tärkeämpi kuin koko ja, jos koko on kaksi kertaa tärkeämpi kuin kunto,
silloin hinnan pitäisi olla kuusi kertaa kuntoa tärkeämpi. Jos oletetaan näin olevan
ja ei tiedetä, miten tärkeä koko on verrattuna kuntoon, voidaan sen suuruus päätellä
näiden kriteerien tärkeydestä verrattuna hintaan. Jos päätöksentekijä on johdon-
mukainen, koon pitäisi olla kaksi kertaa kuntoa tärkeämpi.

Harkerin ja Shiraishin menetelmiä käytettiin tässä opinnäytetyössä tehdyissä nu-
meerisissa simulaatioissa. Simulaatioiden tarkoituksena oli selvittää, miten paljon
puuttuvat parivertailut häiritsevät painokertoimien estimointia ja miten nämä kaksi
menetelmääa suoriutuvat toisiinsa verrattuina. Simulaatioissa täydestä pariver-
tailumatriisista estimoitiin painokertoimet, ja suurin kerroin tallennettiin. Sitten
samasta matriisista poistettiin joitakin parivertailuja, minkä jälkeen Harkerin ja Shi-
raishin menetelmien avulla estimoitiin uudet kertoimet. Jos sama kerroin oli edelleen
suurin, katsottiin, että menetelmä toimi hyvin ja sille tallennettiin tilastoon numero
yksi. Jos kyseinen kerroin ei ollut enää suurin, tallennettiin sen sijainti kertoimien
suuruusjärjestyksessä. Esimerkiksi, jos suurin painokerroin putoaa parivertailujen
poiston jälkeen kolmannelle sijalle, merkattiin tilastoon numero kolme. Mitä useam-
min menetelmät saivat merkinnän yksi, sitä paremmin niiden katsottiin suoriutuvan.

Simulaatioissa käytettiin kolmea erityyppistä matriisia. Niiden koot olivat 4 × 4,
7 × 7 ja 10 × 10. Niistä poistettiin joko noin 20 % parivertailuista tai noin 50 %.
Poistettavien parivertailujen määrä on ennalta valittu, mutta poistettavien alkioiden
sijainti on satunnainen. Kullekin koeasetelmalle luotiin 50 000 matriisia ja Harkerin
ja Shiraishin menetelmiä käytettiin, kuten edellisessä kappaleessa kuvattiin.

Puuttuvat parivertailut heikensivät molempien menetelmien kykyä estimoida pai-
nokertoimet tarkasti, erityisesti kun matriisien koko kasvoi. Tämä voidaan selit-
tää sillä, että suuremmissa matriiseissa on enemmän painokertoimia ja niiden suu-
ruusjärjestys voi vaihtua helpommin, kuin jos painokertoimien lukumäärä on pienempi.
Molemmat menetelmät suoriutuivat hyvin samanlaisesti. Kumpaakaan ei voi pitää
selvästi toista parempana, sillä erot olivat hyvin pieniä, erityisesti kun puuttuvien
parivertailujen määrä oli alle 20 %. Joitakin eroja kuitenkin syntyi, kun puut-
tuvien parivertailujen määrä oli suuri ja erityisesti kun matriisit olivat pieniä. Näissä
tapauksissa Harkerin menetelmät estimoi useammin oikean kertoimen suurimmaksi,
kuin Shiraishin menetelmä. Toisaalta näissä tapauksissa Harkerin menetelmä esti-
moi kertoimen virheellisesti kaikkein pienimmäksi useammin kuin Shiraishin menetel-
mä. Shiraishin menetelmä siis estimoi kertoimen harvemmin täysin oikein, mutta
epäonnistuessaan se ei tehnyt yhtä suuria virheitä.

Selitys menetelmien tulosten eroihin saattaa löytyä erikoistapauksista, joissa jonkin
painokertoimen kaikki parivertailut on poistettu. Tällaista kerrointa voidaan kut-
sua irralliseksi. Jos asuntoesimerkin parivertailumatriisista poistetaan kaikki kolme
vertailua, joissa esiintyy hinta, on hinnan kerroin tällöin irrallinen. Tällöin ei ole
olemassa mitään informaatiota, josta hinnan painokerroin voitaisiin mielekkäästi es-
timoida. Harkerin menetelmä arvioi tällaisessa tilanteessa hinnan painokertoimen
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nollaksi, joka johtaa siihen, että sen uskotaan olevan pienin kerroin. Tämä on
huonoin mahdollinen tulos, sillä hinnan kerroin oli todellisuudessa suurin. Shiraishin
menetelmällä on tässä tilanteessa etu, sillä se voi päätyä toisenlaiseen tulokseen. Se
täyttää matriisin, ennen kuin se arvio kertoimet, mikä johtaa siihen, että se kykenee
estimoimaan irralliselle painokertoimelle jonkin muun arvon kuin nollan.
Syy siihen miksi, Hiraishin menetelmä onnistui estimoimaan kertoimen useammin
täysin oikein, saattaa johtua myös irrallisista kertoimista. Jos toiseksi suurin ker-
roin on irrallinen, Harkerin menetelmä arvioi sen nollaksi. Tällöin oikea painok-
erroin tulee todennäköisemmin arvioiduksi suurimmaksi, sillä sen pahin kilpailija
arvioitiin pienimmäksi kertoimeksi. Shiraishin menetelmä taas voi arvioida irral-
lisen kertoimen joksikin muuksi kuin nollaksi, joten kilpailu suurimman kertoimen
paikasta on hiukan kovempi kuin Harkerin menetelmällä.

Kumpikaan metodeista ei ollut selvästi parempi kuin toinen. Eroa syntyi toden-
näköisesti vain siitä syystä, että poistettavat painokertoimet valittiin täysin satun-
naisesti. Jos parivertailut poistettaisiin siten, että yksikään painokerroin ei jää irral-
liseksi, erot menetelmien välillä todennäköisesti pienenisivät. Harkerin menetelmällä
on yksi etu, nopeus. Sen käyttäminen oli yli yhdeksän kertaa nopeampaa kuin Shi-
raishin menetelmän.


