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Abstract 

 
In retail, products whose sales occur mainly within a certain period of the year are called seasonal 
products. Forecasting the sales of these products is hard and thus a retailer may hold a suboptimal 
inventory level when the selling season is coming to an end. It is important to sell the inventory to 
make room for new products by the end of the selling season while gaining the maximum revenue 
possible. This is usually done during clearance periods where the sales quantity of a product is con-
trolled by adjusting its selling price. The objective of this thesis is to review the literature on clear-
ance pricing and formulate a model to optimize the price for the clearance period.  
 
First, we developed a multiple linear regression sales forecasting model which considers the most 
important parameters from literature in forecasting seasonal products. The performance of the fore-
cast model was tested on transactions data of highly seasonal outdoor activity peripheral products 
sold by a large European retailer. The optimal price is then obtained by determining the price with 
which the forecast of our model equals to the quantity which is to be sold by the end of the selling 
season.  
 
The results of our model were inconsistent and varied from product to product, resulting in lower 
revenue compared to the revenue from the actual sales quantities and prices. In this thesis, we as-
sumed that the price elasticity of demand decreases exponentially, and we optimized only one price 
for the clearance period. Future research would benefit from research into the time dependency of 
the price elasticity of demand as well as optimizing multiple price points for the clearance period.  
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Tiivistelmä 

 
Vähittäiskaupan tuotteita, joiden myynneistä suurin osa keskittyy tiettyyn aikajaksoon, kutsutaan 
sesonkituotteiksi. Näiden tuotteiden myyntimäärän ennustaminen on vaikeaa. Näin ollen vähittäis-
kauppiaalla saattaa myyntikauden loppua kohden olla varastossa suboptimaalinen määrä tuotteita. 
Varasto halutaan yleensä myydä tyhjäksi myyntikauden loppuun mennessä, jolloin uusille tuotteille 
vapautuu lisää tilaa ja kaikki mahdollinen myyntituotto on saavutettu. Tämä toteutetaan käytän-
nössä poistomyynneillä, joissa myyntimäärää ohjataan säätämällä tuotteen myyntihintaa.  
 
Työn tavoitteena on muodostaa sesonkisten tuotteiden myyntiennustemalli, jonka avulla optimoi-
daan korkein mahdollinen hinta, jolla tuotteen varasto saadaan myytyä loppuun myyntikauden lop-
puun mennessä. Mallin rakentamiseen hyödynnetään poistomyynnin hinnoittelua ja hintaopti-
mointia käsittelevää kirjallisuutta. 
 
Myyntimäärän ennustamiseksi kehitettiin usean muuttujan lineaarinen regressiomalli, joka huo-
mioi kirjallisuudessa mainitut tärkeimmät parametrit sesonkituotteiden myyntimäärää ennusta-
essa. Ennustemalli sovitettiin ja sen sopivuutta testattiin eräältä suurelta eurooppalaiselta vähittäis-
kauppiaalta saadulla sesonkisten ulkoliikuntatuotteiden transaktiodatalla. Optimihinta määritettiin 
puolitusmenetelmällä, jolla myyntimäärän ennuste asetettiin yhtä suureksi halutun myyntimäärän 
kanssa. 
 
Mallin tulokset eivät olleet johdonmukaisia ja ne vaihtelivat tuotteittain. Optimihinnat johtivat kes-
kimäärin huonompaan myyntitulokseen kuin tapahtuneilla myyntimäärillä ja hinnoilla. Tässä 
työssä oletimme, että kysynnän hintajousto vähenee eksponentiaalisesti ja sen lisäksi optimoimme 
ainoastaan yhden hinnan koko poistomyyntijakson ajaksi. Työssä ehdotetaan lisätutkimusten koh-
teeksi kysynnän hintajouston aikariippuvuutta sekä poistomyyntijakson jaottelua useampaan hin-
noittelujaksoon. 
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1 Introduction

In retail, products which are sold only during a certain period are called
seasonal products. These products have a life cycle that typically ends at a
certain time, whereafter they have little to no value as they will be replaced
with a newer model in the next season. Typically the inventory of a seasonal
product is to be depleted by the end of its selling season. One way to achieve
this is to price products optimally during the season so that the whole in-
ventory is sold while gaining maximum profit. However, perfectly optimizing
the price and forecasting the demand of a product during its whole life cycle
is really hard, which can lead retailers to build excessive inventories to min-
imize potential loss of sales if the inventory is sold out too quickly [Sachs,
2015]. The end-of-season excessive inventories are usually sold through clear-
ance sales where radical price markdowns are made to ensure no inventory
is left over. Optimizing the amount to markdown in a clearance sale can not
only help retailers clear the inventory but also increase profits [Smith, 2009].

Because price optimization relies heavily on the forecast, it is important that
forecasts are as good as possible. While the historical sales quantities of a
product is the most commonly used parameter in forecasting sales quanti-
ties, it is not always enough to forecast the sales quantities of discounted
seasonal products. Frequently used in literature, the price elasticity of de-
mand is an important factor when forecasting discounted products and it is.
In their study, Soysal and Krishnamurthi [2012] also take into consideration
the purchase timing while Caro and Gallien [2012] and Smith [2009] like to
also consider the quantity of products left in stock.

In this thesis, we formulate a regression model to forecast the sales quantities
of seasonal products which combines different parameters from the literature.
The model is used on real life transactions data from a European retailer.
We determine a single optimal clearance price for each product so that the
inventory is cleared at the end of the selling season. The results are evaluated
against the actual sales figures, conclusions are made and lastly, we assess
future research.

2 Background

Retailers face a more complex and harder to navigate market environment
than ever before. Already established in the 1980s, the the portion of mark-
down sales in overall sales were increasing in a fast pace [Pashigian, 1988].
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Multiple factors like ever-expanding choices, rapid changes in consumer be-
haviour and increasing competitive pressure affects retailer’s ability to sell
products at full price. According to a recent survey of US retailers, about
40% of non-food grocery sales are made during markdowns. Even if discount-
ing and promotions are getting more frequent and with shopping events such
as Black Friday accounting for larger portions of the total promotional sales,
clearance sales continues to be one of the most important promotional periods
[Weinswig et al., 2019].

2.1 Seasonal products

Products which are sold only during a certain time period are called seasonal
products and that time period is called the selling season which can be of
varying length. A short selling season is considered to be a few weeks, say,
for example Easter themed products, and a long selling season is considered
to be for example the whole summer. Some seasonal products such as Easter
eggs are sold only during a limited period of time whereafter they are dis-
continued. Then again, other seasonal products such as biking peripherals
are sold throughout the year, but are considered having a selling season from
Spring to Fall, as the sales outside this selling season is minimal compared
to high-season sales. Seasonal products also have different demand patterns
and characteristics compared to non-seasonal or consumer packaged goods.
The demand of a seasonal product tends to peak shortly after the season
start date and then decreases gradually towards the end of the season [Caro
and Gallien, 2012, Smith, 2009].

A seasonal product can provide value only once (e.g. airline ticket or fire-
works) or over the whole season (e.g. skis or swimsuits), in which case the
customer can use the product more the earlier in the season it is purchased.
Durable seasonal products such as summer clothes or winter accessories are
typically liquidated with the use of promotions as the season ends to make
space for the next season’s products and also because the salvage value of
seasonal products after their season is typically very low or can even be neg-
ative [Soysal and Krishnamurthi, 2012]. Hence, the customer is faced with a
trade-off between buying the products at high price while getting the most
value out of it and getting the product at a cheap price but then have a risk
of being rationed [Nocke and Peitz, 2007]. This means that the product is
less sensitive to price changes as the season progresses, meaning that deeper
markdowns are needed for the markdowns to be as effective [Gupta et al.,
2006, Caro and Gallien, 2012, Soysal and Krishnamurthi, 2012, Smith and
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Agrawal, 2017]. This effect is also referred to as time discounting.

2.2 Clearance sales

Clearance sales are a type of promotion used as an inventory management
tool by many companies. In clearance sales, the products are sold at a con-
siderable discount relative to their usual retail prices. The clearance period is
defined by the start of the aforementioned markdown period and the end date
of the product’s selling season when the remaining inventory is scrapped and
is replaced with new products [Zhao and Zheng, 2000]. For example, clear-
ance sales in winter accessories usually starts when the snow starts melting
and summer approaches.

There are many reasons why retailers use clearance sales, but the main reason
is to get rid of excessive stock. Having an inventory buffer is a way to reduce
uncertainty, but there is rarely only one reason that leads to having excess
inventory and often it is also caused by several reasons [Zaarour et al., 2016].
For instance, the actual sales may have been lower than anticipated or that a
manufacturer had released a newer substitute product which renders the old
product obsolete. Overstock could also originate from weather conditions,
competition or a shift in trends.

The combination of lowering prices radically and the fact that forward looking
customers are expecting end-of-season sales increases store traffic. Forward
looking customers anticipate clearance sales at the risk of the particular prod-
uct being sold out quickly and therefore, some customers prefer to buy the
product at a higher price before the sales start [Nocke and Peitz, 2007, Soysal
and Krishnamurthi, 2012]. Discounted prices also offer access to goods at a
lower price which can attract new customers and could consequently even
increase the customer base.

The ultimate goal in clearance sales is to clear the inventory to make room
for newer products while generating the maximum profits. There are two
main decisions to make when planning clearance sales: when to start the
markdown period and how to set the correct price. During the clearance
period, there is no restocking and the markdowns are permanent, which
means that the price cannot be raised from its current price. The initial
markdowns should be deeper than the customers are accustomed to having
while avoiding excessive markdowns at the end of the clearance period [Smith,
2009, Soysal and Krishnamurthi, 2012].
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2.3 Price elasticity of demand

Price elasticity of demand is commonly used to evaluate the sensitivity of cus-
tomer behaviour when prices are changed. It is expressed as a dimensionless
value of the ratio of the percentage of change in demand (Q) with respect to
the percentage of change in price (P): β = ∆Q/Q

∆P/P
[Zaarour et al., 2016]. The

price elasticity can either have a linear or an exponential relationship with
demand. Linear effect of the price elasticity is calculated by multiplying the
price change ∆P with the elasticity value E: (∆P−1) ·β . Consequently, the
exponential effect of price elasticity is calculated by raising the price change
to the power of the elasticity value so that ∆P β . The main difference of
these two relationships is the rate the effect of price elasticity grows. For ex-
ample, when the price elasticity value β is −2.0 and a 30% decrease is made
in the price, the linear effect would suggest a 60% increase in sales whereas
the exponential effect would suggest a 100% increase in sales.

The sign of the elasticity value indicates the direction of change. It is typically
negative due to the inverse relationship between price and quantity demand.
When the price elasticity is negative, lowering the prices will increase sales
and vice versa. However, if the price elasticity is assumed to have a linear
relationship with demand and the elasticity value is larger than −1, then
decreasing the price will lead to a lower profit even when selling a lower
quantity with the original price. A product with such a price elasticity is said
to have a relatively inelastic demand. When a product has an elasticity lower
than −1, the profit growth is positive compared to the original price and it is
thus said to have an elastic demand. See Table 1 for the full interpretation of
the price elasticity coefficient. When the relationship of the elasticity value
and demand is exponential, the threshold value of the elasticity for positive
profit growth depends on the discount and the elasticity value. Situations
where the elasticity is positive and a higher price leads to increased demand
are exceptional and are disregarded.

Table 1: Interpretation of the price elasticity coefficient β when the relation-
ship with demand is assumed to be linear.

β = 0 Perfectly inelastic demand
0 > β > −1 Relatively inelastic demand
β = −1 Unitarily elastic demand
β < −1 Elastic demand

Estimating the value of the price elasticity is important in forecasting the
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demand of products with discounts. It is known that the elasticity of a
product is not constant and changes during the selling season, becoming
increasingly inelastic when the selling season approaches its end [Gupta et al.,
2006, Caro and Gallien, 2012, Soysal and Krishnamurthi, 2012, Smith and
Agrawal, 2017]. Thus, the estimation of the price elasticity can be a challenge
especially when there is not much data on earlier price changes resulting in
corresponding changes in demand. Both Caro and Gallien [2012] and Smith
et al. [1994] used clothing in their pricing studies, establishing that using a
constant price elasticity value for product groups yielded better values than
using elasticities for every product or price-category. However, clearance
pricing studies including cosmetic items [Zaarour et al., 2016] and typical
retail products with inventory dependent demand [Smith and Agrawal, 2017]
suggested the use of different price elasticities for every product-location
combination.

2.4 Inventory effect

The level of remaining inventory has a significant influence on demand both
positively and negatively [Smith, 2009, Smith and Agrawal, 2017]. A large in-
ventory that is visible to the customer can appear more attractive to the cus-
tomer and thus boost demand. Adequate representation or, in other words,
having a complete selection of sizes and colours in store is needed in order
to not have a negative inventory effect on the demand. When the level of
inventory becomes lower than the adequate representation level, the demand
usually declines significantly and is called the broken inventory effect [Caro
and Gallien, 2012]. The inventory level can vary from location to location
and thus the demand of the same product can differ depending on the loca-
tion. Relocating inventory from locations with plenty of inventory to those
with low inventory can be the most efficient approach when trying to clear
company wide inventories, but this idea is usually discarded due to high
transportation costs.

3 Literature review

Zaarour et al. [2016] present a model using a multi-period nonlinear pro-
gramming that maximizes profits from the discounted items:
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Maximize
T∑
t=1

αP β+1
t (1)

Subject to
T∑
t=1

αP β
t ≤ I , (2)

where α is an estimated positive constant, Pt is the price of the product, β
is the price elasticity, I is the initial inventory and T is the phase-out time
horizon.

Zaarour et al. used data on obsolete cosmetic items sold by a large US retailer
which has over 6000 stores over the United States. The data contained weekly
sales data including price from a 54-week period. After clustering the data
with a k-means cluster method, Zaarour et al. used regression analysis to
find out the best fitting model which was a power regression model. The
demand-price model (2) is heavily dependent on the price elasticity which,
in lack of price sensitive data, is hard to estimate. However, every SKU in
this research had price fluctuations during the review period, which enabled
good estimation of the price elasticities. The improvement in profits by using
the developed model ranged from 8.6 to 22.6 percent, a considerable increase
compared to the retailer’s old strategy.

In an empirical analysis of the demand dynamics of seasonal goods, Soysal
and Krishnamurthi [2012] developed a dynamic demand model where con-
sumers are strategic and heterogeneous. The model describes the consumers’
decision process and considers the consumers’ responsiveness to price changes,
decreasing demand as well as the changing market composition during the
season. The optimal purchase timing of a customer is determined by solving
a dynamic programming problem in which the total utility of the product
at a certain purchasing point is defined considering the purchase price, time
of season, price elasticity, seasonality, availability as well as demand shocks.
The model was estimated with sales data on women’s coats category from
an apparel retailer for 105 different SKUs. Soysal and Krishnamurthi use
counterfactual experiments rather than solving the optimization problem to
investigate implications of changes in the pricing policy. The results show
that not accounting for the changing utility or ignoring customers’ expec-
tation of the future availability may lead to incorrect demand forecasts and
lower price elasticities. Soysal and Krishnamurthi also establish that small
and early markdowns yield better profits than later markdowns or deep early
ones. They also emphasize that the correct timing of early markdowns is
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critical as they can have significant negative profit implications because the
market composition is more sensitive to price changes.

Caro and Gallien [2012] developed and integrated a clearance pricing opti-
mization for Zara, a fashion retailer which, before the implementation, had
relied on manual and informal decision-making process for determining mark-
downs. Zara is a fast-fashion retailer which sells articles with short life-cycles
that are almost never discounted before the clearance period. Thus, there
is almost no price sensitive data available at the beginning of the clearance
period which renders price elasticity estimation useless in optimizing the first
markdown price. This is completely the opposite of the study by Zaarour
et al. [2016] where the most important factor was to estimate the price elas-
ticity parameter.

Through lots of experimentation, Caro constructed a forecasting model which
is a particular instance of the model presented by Smith and Achabal [1998].
To overcome the lack of price sensitive data, a two-stage estimation procedure
was used. The model consists of the past sales quantity, the age of the article,
the broken assortment effect and the price discount. Caro did not consider
cross-product dependencies, impact of competition nor strategic customers
because of the additional complexity they impose. A price optimization
model was built alongside the forecast model with multiple constraints to
comply with the complex clearance price policies of Zara. The models were
tested in a live pilot in two entire countries and measured with multiple
performance metrics, the most important ones being the realized income and
the percentage of stock sold. The pilot resulted in a significant financial
impact of a 6 % increase in clearance sales revenue, which company-wide
corresponded to $90 million in 2008.

Smith [2009] formulates a deterministic model for clearance pricing which
assumes that the sales rate depends explicitly on price, seasonal variation
and like in [Caro and Gallien, 2012] also inventory level. Price accounts for
the price elasticity of demand and seasonal variation captures sales spikes
during special season specific periods such as Christmas and declining de-
mand towards the end of the selling season. The inventory level adds the
broken assortment effect to the model which means a too low inventory may
decrease sales. Here, the minimum inventory level of a product is defined as
the threshold from where the effects steps into place. Smith does not con-
sider competition nor demand uncertainty, because these would complicate
the problem in a great extent. As the clearance period is rather short, Smith
also overlooks inventory costs and time discounting.

Similar to [Smith, 2009, Smith and Achabal, 1998, Caro and Gallien, 2012] in-
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ventory levels are taken into consideration in a study on markdown optimiza-
tion by Vakhutinsky et al. [2012]. In contrast to these studies, Vakhutinsky
considers a revenue maximizing SCAN*PRO demand model for which price
recommendations and inventory trajectories are obtained. No time discount-
ing is considered due to the short clearance period and the limited set of price
values are considered as usually the price is selected from a pre-defined price
ladder. The demand model is assumed to be a multiplicative and separable
function with three components: price- and inventory-dependent components
as well as a time-dependent seasonality coefficient. Vakhutinsky found that
a constant price elasticity value and a power law function for the inventory
effect gave the best fit for the data. The seasonality coefficient is estimated
from historical sales data and adjusted for specific dates where higher sales
are expected.

Vakhutinsky introduces an optimal continuous price control model and a
more realistic model for markdowns when price and time are discrete. The
latter model was tested on two-year weekly sales history of one hundred
products from a large fashion retailer. The sales volumes of the products were
aggregated over different sizes and colours. The study did not entail financial
results of the testing but, instead, they compared the regret, optimality and
calculation speeds to the current markdown approach used by the retailer.

An interesting approach is taken by Meijer and Bhulai [2013] who applied
survival analysis to determine the optimal pricing for a period. Cox regression
is used to estimate the proportional hazard which depicts the instantaneous
rate of failure at a given time which in retail context means the rate of selling
the product at the given time assuming that the product is available. The
survival model estimates the probability of surviving longer than a specified
time which again in retail means the probability that the product has not
yet been sold at the given time. The model can then be used to calculate
the estimated price difference needed to achieve the desirable sell-through at
a given time. The model was tested on a data set of almost 6000 different
T-shirts sold in a half years’ time in a department store in the Netherlands.
The survival rates at different time points were estimated for each size and
colour of every product and the optimal prices were estimated. The average
return with markdown was 3 percent higher compared with the returns of
no markdown and write-off.



9

4 Research question and methods

Pricing during clearance sales raises many questions ranging from the date
to start the clearance markdown period to the amount of markdown adjust-
ments allowed during the clearance period. In this thesis, we approach the
clearance pricing problem in the context of the following rather simple sit-
uation. The clearance period starts from a predefined date, which is well
after the peak selling point of the season. We then define one price for each
product for the rest of the selling season from the said date onward so that
the remaining inventory is depleted by the end of the selling season.

According to Smith [2009], a successful clearance pricing optimization sys-
tem has three components: a sales forecasting model, a clearance price op-
timization algorithm and financial performance metrics for measuring the
effectiveness of the system. In this thesis, we mostly focus on the first two
components. First, we formulate a regression model for predicting future
sales and, second, we optimize the clearance selling price so that the pre-
dicted sales totals to the inventory level on the starting day of the clearance
period.

4.1 Data

The data consists of sales transactions data from highly seasonal products
sold by a European retailer. The products are peripherals for outdoor ac-
tivities which have visible selling seasons but are nonetheless sold during the
whole year and for each product we get two full seasons of sales. A selling
season is defined as a whole year which starts from week 12. The data is
split into two parts: the training data from week 11 of year one to week 48
of year two and the data for validation purposed from week 49 of year two to
week 10 of year three. We assume that the present time is at the end of week
49 of year two. An example of the sales quantity and average sales prices of
a product used can be seen in Figure 1 where the green line represents the
point from where we forecast the sales.

The transactions have been aggregated product-wise to the weekly level and
they contain the sales quantities as well as the sales prices of the products
which have both been rescaled to a scale from 0 to 1 for privacy reasons.
Negative transaction rows are not considered and have been filtered out from
the data. The sales prices of the products are attached to the sales quantities
meaning that the average prices are only calculated on products which are
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Figure 1: Rescaled sales quantity and average sales price over a period of
two 52-week seasons

sold, which does not fully represent the average in-store sales prices at the
aggregate-level. In addition, the retailer has multiple promotions during
each product’s selling season which often overlap and are only active in few
locations. Differing markdown promotions at various locations can skew the
average sales prices at the aggregate-level. This can clearly be seen in Figure
1. However, the average sales price is used for clarity.

4.2 Fitting the regression model

To predict future sales, we formulate a linear regression model based on the
data and the literature review.

The general multiple linear regression model can be written as

Y = β0 + β1X1 + · · · + βpXp + ε = β0 +

p∑
i=1

βiXi + ε , (3)

where Y is the response, X1, . . . , Xp are regressors variables and β1, . . . , βp
are the corresponding regression coefficients to be estimated and ε is a zero-
mean random error component with unknown variance[Montgomery et al.,
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2012]. A regression problem starts with a collection of predictors which
are derived from the available data. The regressors can among others be
simple predictors, transformed predictors, polynomials or interactions and
combinations of predictors.

• Simple predictors are used to directly explain the data where the model
is fitted.

• Predictors are transformed when the original predictors do not give a
reasonable approximation for the data to which the model is fitted. A
common example of a predictor transformation is to use the predictor
in log scale, but also other methods such as differentiation or normal-
ization is used. Transformations greatly expand the range of problems
that can be summarized with linear regression.

• Polynomial regressors are used when the problem includes curved func-
tions. For example, to fit a quadratic polynomial both predictors Xp

and its square X2
p are used as regressors.

• Interactions and combinations are often useful for explaining joint ef-
fects of the predictors which can not be explained by separate predic-
tors.

Regression coefficients of a multiple linear regression model are commonly
estimated with the least squares method. That is, estimating the regressor
coefficients β1, . . . , βp so that the sum of the squares of the differences between
the observed responses and the corresponding fitted values called residuals
ei = Yi − Ŷi are minimized. This method can be generalized as

min
β0...βk

n∑
i=1

ε2
i = min

β0...βk

n∑
i=1

(
yi − β0 −

k∑
j=1

βjxij

)2

. (4)

The results from this equation are least-square estimators β̂0, β̂1, . . . , β̂k. The
fitted regression model corresponding to the levels of regressor variables is

Ŷ = β̂0 +
k∑
j=1

β̂jXj . (5)

To fit our regression model, we used RStudio where the lm-function uses the
method of least squares to estimate the best regressor variables.

A manual stepwise variable selection process was used to find the best model
fitted on the training data. In this process, regressor variables are added to
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the model one-by-one and after each step all candidate variables in the model
are evaluated to see if they still provide improvement in the model fit, or in
other words, are still significant. If a non-significant variable is found it is
removed from the model [Yan and Su, 2009].

At each step, the candidate variables in the formulated regression models
were evaluated based on the following methods:

• Graphical evaluation of the fit
An important factor is how well the estimated regression model fits
the observed data with the given regressors. Any errors in the data
or regressors can easily be seen when plotting the fit on top of the
observed data.

• The coefficient of determination
More commonly referred as the R-squared value is the proportion of
variation explained by the regressors. In other words, it measures the
"goodness" of the fit. The value of the R-squared is 0 ≤ R2 ≤ 1 and
values closer to 1 imply that most of the variability of the response is
explained by the regression model. This parameter should not be the
only parameter to observe when fitting a model as it is possible to make
R2 larger just by adding more variables to the model, which usually
leads to overfitting.

• Significance of regression coefficients
The p-value of an estimated regression coefficient indicates whether
the coefficient is significant in the model. In other words, a low p-value
indicates that changes in the regressors value is related to changes in the
response variable meaning that the regressor is a meaningful addition
to the model. A significance level of 0.05 was used to determine if the
regressor is significant or not.

• Variance inflation factors
The variance inflation factor or VIF is used to measure multicollinear-
ity in the model. Multicollinearity is defined as the existence of strong
correlations between the regressor variables which can arise from the
way of collecting data or by using regressor which are naturally cor-
related. This means it is hard to vary one variable by holding other
variables constant which renders the individual coefficients to be less
useful. A model which exhibits multicollinearity can fit a dataset very
well, but it reduces the effectiveness of regression analysis. The vari-
ance inflation factor quantifies the effect of multicollinearity in a model
by a value that is relative to the overall fit R2 of the fit. VIF values
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larger than 1
1−R2 imply stronger relations among the regressors than

their relation to the response [Freund et al., 2006].

• Residual analysis
There are major assumptions in linear regression analysis: The error
terms ε have a zero mean, a constant variance σ2, they are uncorrelated
and they are normally distributed. Standard summary statistics rely
heavily on these assumptions and do not ensure adequacy on their own.
Instead, it is necessary to consider the validity of these assumptions by
diagnostic methods. There are multiple methods to perform residual
analysis, but we will use graphical analysis [Montgomery et al., 2012].

In this thesis, the regression involves seasonal time series data which means
the regressors are time-oriented. Time series data and especially seasonal
data sets exhibit some type of autocorrelated structure at different time pe-
riods. Thus, the usual assumption of uncorrelated or independent errors
which is made for not time-dependent regression data is usually inappropri-
ate for time series data. Autocorrelation can be detected by the graphical
residual analysis or by using various statistical tests for example the Durbin-
Watson test [Montgomery et al., 2012]. The data used has a season of 52
weeks; however, the data used in fitting is only roughly one and a half times
the season length and the data used for predicting is less than a third of
the season length. Therefore, we will not fully consider autocorrelation, nor
will we fully rely on traditional regression analysis as much as we would in a
time-independent case. Rather we use these methods to guide us in the right
direction.

4.3 The sales forecast model

We constructed a sales forecast model based on the literature review, avail-
able data and regression analysis. This model considers two important char-
acteristics of seasonal products demand. First, consumers’ responsiveness
to prices change during the season and as noted in the literature review,
the price sensitivity of demand decreases over time, diminishing the effect of
price markdowns as the selling season comes to end. Second, as the selling
season is usually also the season when the product is used, the highest sales
in seasonal products are seen in the beginning of the selling season which
then decrease exponentially towards the end of the season as can be seen in
1. Despite several past studies using the broken inventory effect as a compo-
nent in their forecast model, we chose to not use it, because the sales volumes
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were really high compared to the minimum inventory and the impact would
have been minimal.

The model constructed for the sales quantity Sw of week w is

Sw = β0 + βsales × Sw−52 + βprice × Sw−52 ×
(
pw
p̄

)Ew

+ βdistance × dw (6)

+ βsales,distance × Sw−52 × dw + εw ,

where Sw−52 is the sales quantity for week w last year, pw is the price of the
product on week w, p̄ is the normal retail price of the product, Ew is the
price elasticity of demand for week w and dw is the distance of week w from
the week of peak sales. The β parameters are estimated with the model: β0

is a constant which measures the average level of sales without any any other
component, βsales is the coefficient for last year’s sales, βprice is the coefficient
of the estimated price elasticity, βdistance is the coefficient for the distance
from the peak sales, βsales,distance is the coefficient for the relation of distance
and sales from the peak week sales of last year and εw is the error variable
of week w.

The first regressor in model (6) is a predictor of the sales last year at the
same time point as the current week Sw−52. We assume that the season sales
profile as well as the start and end date of the season stay the same every
year. Using last years’ sales is the simplest way to get a reasonable estimate
of the forthcoming sales which is why it is chosen as the first regressor when
forming this model. This way of forecasting is more commonly known as
"naïve forecasting" where the next period’s level of sales will be the same as
that one of the preceding period [McLaughlin, 1983].

The second regressor Sw−52 ×
(
pw
p̄

)Ew is an interaction of last years’ sales
quantity and the effect from the price elasticity of demand. The relation
between the current selling price and the original selling price raised to the
power of the price elasticity gives us the coefficient for the effect of price elas-
ticity. We assume that the price elasticity has an exponential relationship
with demand. Last years’ sales are multiplied by this coefficient, which en-
ables this regressor to capture the effect of price change to the sales quantity.
The price elasticity is calculated from the ratio of change in demand of this
year and last year with respect to the ratio of change in price of this year
and last year which can be defined as

Ew =
(Sw−52 − Sw)/Sw−52

(pw−52 − pw)/pw−52

. (7)
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This equation is not defined when there has not been price changes between
this and last year or if there has not been any sales last year. We will, how-
ever, discard this small issue by inserting a zero where the price elasticity
can not be calculated. With this equation, we get the actual price elasticity
for every week of the training data. There are many studies which suggest
that the price elasticity decreases over time towards the end of the season,
but none of them explicitly defines how the elasticity behaves. We choose an
exponential approach where the calculated price elasticity decreases expo-
nentially to reflect the less price sensitive customer base towards the season
end. This is done by multiplying the mean of the calculated price elasticities
by a rescaled and adjusted quadratic curve fitted to last years’ sales data
from its peak sales point onward. The quadratic fitting is done with a simple
regression model

Ct = β0 + β1t+ β2t
2 , (8)

where t is the time in weeks from the highest point of sales [Freund et al.,
2006]. Thereafter the quadratic fit is rescaled to a scale of 0 to 1 and adjusted
so that after multiplication the price elasticity doesn’t go under a fourth of
its starting value.

The third regressor dw represents the effect of distance of week w from the
peak sales week of last year. This is because as well as with the last years
sale quantities we assume that the week of the peak sales is the same ev-
ery year. The effect of distance is the same rescaled fitted quadratic curve
used in the price elasticity estimation, but it is not adjusted to a minimum
limit. The fourth regressor Sw−52 × dw is an interaction between the last
years’ sales and the effect of distance. This regressor captures the effect of
exponentially diminishing sales towards the end of the season which is an
important characteristic of seasonal products demand.

4.4 Predicting sales and optimizing the selling price

After fitting the regression model (6) to the training data it is ready to be used
to predict sales. Towards this end, we need to know the future values of the
regressors of which only the price pw is unknown. The price is the parameter
that is to be optimized so that the forecasted sales from the model are equal
to the inventory at the start of the forecasting period. The aim is to optimize
one price for the rest of the selling season which makes the parameter pw a
constant during all the weeks w during the forecasting period and therefore
it is from now on referred as p.
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The forecasting period length is 15 weeks denoted by w = 1, . . . , 15 where w
is the period to be forecasted. The optimization problem gives an equation
where we minimize the absolute value of difference between the starting in-
ventory level I and the forecast. As we do not account for storage costs and
salvage prices and because of behaviour of the price elasticity of demand the
resulting price from this optimization will also be the price which yields to
most revenue possible. The optimization problem is

min
p

∣∣∣I − 15∑
w=1

Sw

∣∣∣ , (9)

which can be expanded to

min
p

∣∣∣∣∣I −
(

15∑
w=1

β0 +
15∑
w=1

βsales × Sw−52 +
15∑
w=1

βprice × Sw−52

(
p

p̄

)Ew

(10)

+
15∑
w=1

βdistance × dw +
15∑
w=1

βsales,distance × Sw−52 × dt

)∣∣∣∣∣ .
We use the actual sales quantity during the forecast period as our starting
inventory level I which is to be depleted. In other words, we minimize the
forecast error by finding the optimal the selling price p. This is because the
acquired data did not withhold the desirable level of ending inventory. This
also simulates the situation where the inventory needs to be completely de-
pleted, but instead of the objective being zero inventory we have an inventory
level to achieve.

To measure the quality of our forecast, we use two commonly used metrics:
forecast bias percentage and mean absolute deviation. The forecast bias
percentage is the ratio between the sum of the forecasted sales quantity and
the sum of the actual sales so the closer the value is to 100% the better
the forecast is in terms of the total forecast quantity. The mean absolute
percentage error (MAPE) is the average percentage error in the forecast
compared to the actual sales so the closer it is to zero the better the forecast
is [Relex Oy, 2017].

To optimize the selling price for the forecasted period we use the bisection
method using a looping function in Rstudio. The bisection method works so
that we have an interval [a, b] in where the optimal price p is. The algorithm
starts with a candidate price value pc which is in the range of [a, b]. The
difference between the forecasted sales quantity calculated with the candidate
price pc and the inventory to be sold is evaluated. If the forecast is larger
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than the amount that needs to be sold, the price needs to be raised and, vice
versa the price needs to be lowered if the forecast is lower than the amount
to be sold. Thus, the interval for the next loop is chosen to be either [a, pc] or
[pc, b] depending on in which way the price needs to be adjusted so that the
forecast equals the inventory to be sold. The algorithm then chooses the next
candidate price from the middle of the new interval pc = a+pc

2
or pc = pc+b

2
.

The loop is repeated until the difference between the sales forecast and the
inventory to be sold is less than 1.0.

5 Results

5.1 Model analysis

The regression analysis assumed the errors ε are independent, normally dis-
tributed and have equal variances. We start by graphically analyzing the
residuals of the fitted model (6) to see if these assumptions are valid. Then,
we analyze the model by evaluating the fit on the data and evaluating the
model with few other statistical tests. We summarize the regression analy-
sis of only on the model fitted on product 1, because the results for other
products were more or less the same. Plots used in the graphical analysis of
other products are in the appendix A.

Substantial departures from the straight line in the normal probability plot
indicates that the distribution is not normal. The normal probability plot
in Figure 2 the residuals are heavy-tailed, meaning that they have extreme
positive and negative residuals. This implies that the residuals are not totally
normally distributed, as shown in the residual histogram in Figure 3. The
extremities originate from sales spikes from the lowered sales price which can
be seen in Figure 1. This tells us that our model is not fully able to estimate
the sales spikes.
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Figure 2: Normal probability plot of residuals in the model for product 1.

Figure 3: Histogram of residuals of the fitted model for product 1.

A residual versus fit plot is used to detect non-linearity, unequal error vari-
ances and possible outliers. This plot is created by taking a scatter plot of
residuals of the fitted model versus the fitted values of the model. In the
plot created from our model in Figure 4 we can see a slight curvature or
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an outward-opening funnel pattern in the larger fitted values. This suggests
minor nonlinearity or inequality in variances. An impression of a horizontal
band where the points lie helps confirm the assumptions made in regression
analysis. The data points in the larger fitted values have much larger residual
errors compared to the smaller fitted values and can be seen as outliers. The
data points under the fitted values of 300 are relatively randomly distributed
around the horizontal line which implies that we do not have non-linear rela-
tions. Most of the fitted values are really small compared to the largest ones
which is a result of the seasonal character of the sales of the product.

Figure 4: Plot of residuals versus fitted values of the model for product 1.

To inspect the slight curvature or the outward-opening funnel observed in
Figure 4 in detail, we plot the residuals against the corresponding values of
the regressors. This is done in Figure 5 where we see that most values in
every plot seem to be cramped near the origin. This is because the extreme
values inflate the axes. Nonetheless, when inspecting the data points more
closely, we see that they are randomly distributed on a horizontal band which
do not reveal any clear indication of a problem with either the regressors or
the inequality of variance.
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Figure 5: Plots of the residuals against the regressors of the model for product
1.

Thus far, we have found some extreme values in our data which can some-
times have a crucial influence on the model. To find the influential data
points we can examine the plot of residuals against leverage in Figure 6.
In this plot the pattern of the data points does not matter but instead the
two dashed lines representing the Cook’s distance scores are important. The
Cook’s distance measures the influence of a data point on the model if it is
deleted from the sample data. That is, the more a data point is behind the
Cook’s distance lines, the more influence it has to the model. Leaving one
or more of these data points out of the model can result to the model being
changed radically. In Figure 6 we can see that we have five influential data
points of which the most significant ones are numbered. These data points
are the weeks where the highest sales quantities were made in Figure 1. This
means that the model relies heavily on the high sales after the the first price
discount.
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Figure 6: Plot of residuals against leverage of the model for product 1.

The estimates of the coefficients and their p-values of product 1 are in Table
2. When our model is fitted to the data of product 1 all coefficients have a sig-
nificance level under the cutoff level of 0.05. This means that the coefficients
in the model are all meaningful and a change in any of the regressor values
will have an impact on the response. The estimate of the distance coefficient
βdistance is significantly larger than other estimates, which originates from the
way the regressor is built. The effect of distance regressor is rescaled to have
values between 1 and 0 which is a magnitude smaller than for example the
values of the last years’ sales regressor. The p-values of the coefficients of all
products were under the cutoff level of 0.05 and the estimates had values of
similar magnitude.

Table 2: Estimates and their p-value of our model fitted to the product 1.

Coefficient Estimate p-value
β0 14.2 0.030
βsales 0.7 7.6 · 10−10

βdistance 363.7 3.3 · 10−14

βprice 0.1 5.6 · 10−5

βsales,distance −1.2 0.001

As it has been established earlier regressors which get variance inflation fac-
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tor (VIF) values larger than 1
1−R2 can be said to be heavily involved in the

multicollinearity of the model. The R2 of the model fitted on product 1 is
0.974 which gives us a VIF threshold of 38.46. The calculated VIF values
of our model can be seen from the Table 3. As we can see from the table,
the regressors last years sales and effect of price elasticity have a relatively
low value indicating that they have relatively low correlation with other re-
gressors. However, the effect of distance and the effect of diminishing sales
have clearly higher VIF values. While they do not exceed the calculated VIF
threshold they are still quite high, suggesting some level of multicollinearity
in the model and correlation between the two and other regressors. The cor-
relation between the effect of distance and the effect of diminishing sales is
obvious when looking at how the two regressors are built. They both use the
same fitted quadratic model (8), which immediately adds positive correlation
between them. Thus, minor multicollinearity is inevitable in our situation,
but because it does not exceed the threshold of serious multicollinearity, we
accept it.

Table 3: Regressors and their VIF values.

Regressor VIF
Last years sales 2.42
Effect of distance 28.18
Effect of price elasticity 2.61
Effect of diminishing sales 24.43

Next, we assess how the fitted model compares with the actual sales data.
The coefficients of determination or R2 are in Table 4, indicating that the fit
of the model depends on the product.

Table 4: Coefficient of determinations for each of the products.

Product R2

1 0.974
2 0.733
3 0.971
4 0.414

The high R2 of our model fitted on product 1 is 0.974, which indicates our
model is a good fit on the data. This can be confirmed when evaluating it
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graphically from the Figure 7. The R2 of the fit on product 4 is 0.414 which
indicates a rather poor fit as seen in Figure 8. The start of the selling season
of product 1 and 4 are slightly different which explains the differing lengths
of data in the figures below.

Figure 7: Plot of the actual sales of the training data on product 1 in black
and the fitted model in red.

Figure 8: Plot of the actual sales of the training data on product 4 in black
and the fitted model in red.
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5.2 Forecasting sales and optimizing the selling price

We used our model to forecast the sales quantity of each product for ap-
proximately 15 weeks ahead. The forecast for product 1 and 3 can be seen
in Figures 9 and 10 respectively. The figures for the forecasts of products
2 and 4 can be found the Appendix A. The prices used for forecasting were
the actual selling prices which enables us to measure the performance of the
model. The prices used for forecasting the products are in Table 6.

The performance of the forecasts were measured with the metrics in Table
5. The forecasts for product 1 and 2 seem reasonably good but slightly
underestimating. The forecast has a MAPE of 37.9% which is relatively high
but, in our situation, where we do not replenish our inventory MAPE is not
that important and we focused more on the difference in total forecast. The
forecast bias of the forecast is 92.7%meaning that total sales quantity is 7.3%
less than the actual sales or in other words our model forecasts that there
would still be 7.3% of the inventory left at the end of the forecast period.
The same conclusions can be made for product 2, which has a forecast bias
of 88.1% resulting in a total forecast amount error of −11.9%. The forecast
error for product 4 is small, which indicates a good total forecast quantity
but as its MAPE is 49% we can presume the forecast error being more of a
coincidence than good forecasting capabilities of the model.

Figure 9: Plot of the actual sales for the whole year for product 1 in black
and the forecast in red.
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The results for products 1, 2 and 4 were approximately similar in terms of
forecast accuracy but for product 3 the model had poor forecast results. This
is an interesting result as the model fitted the data quite well and did not
have any clear signs of not being suitable for this product.

Figure 10: Plot of the actual sales in black and the forecast in red for the
product 3.

Table 5: The forecast metrics of forecasts for each product.

Forecast bias MAPE Total forecast error
Product 1 92.7% 37.9% −7.3%
Product 2 88.1% 34.5% −11.9%
Product 3 4877.5% 724.6% 656.0%
Product 4 101.0% 49.0% 1.0%

The selling prices used in the data and the optimal selling price in percentages
of their retail prices are in Table 6. When optimizing the selling prices, we
got results for products 1, 2 and 4 but no optimal price could be calculated
for product 3 due to the poor forecasting capabilities of our model for this
particular product.
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Table 6: The selling prices used and the optimal selling prices in percentage
of retail price.

Used prices Optimal prices Impact on profit
Product 1 60% and 45% 50% −8.5%
Product 2 40% 15% −63.0%
Product 3 60% no result -
Product 4 60%, 55% and 50% 60% 0.7%

When comparing the forecast metric Table 5 with the prices in Table 6 we
can see that products 1 and 2 had negative forecast error and their optimal
price is below the actual price. We also see that for product 4 the forecast
error is positive while the optimal price is slightly higher than the mean of
the used prices. This can be explained by the price elasticity of demand
component which has a positive effect on sales when the price is lowered and
vice versa. We can see a significant drop in price for product 2 even when
the forecast bias is not that much lower than the one of product 1 which
only received a slight reduction in the optimal price. This suggests that the
effect of price elasticity of the fitted model doesn’t have as large of an effect
in product 2 than it has on product 1.

The optimal prices would have resulted in an 8.5% drop in profit for product
1 and a substantial 63.0% profit drop for product 2 in comparison to the
profit generated from the used prices. A slight increase of 0.7% in the profit
of product 4 would have happened with the optimized price.
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6 Conclusions

In this thesis we used the findings from the literature review of related re-
search papers to first formulate a sales forecasting model for seasonal prod-
ucts using a linear multiple regression model. We then obtained data from a
European retailer and fitted and analyzed the model on four different highly
seasonal products for outdoor activities. Finally, we calculated the forecasts
and optimized the selling price for the clearance period for each of the four
products using the bisection method.

There are numerous studies of successful price optimization implementations
resulting in positive revenue growth and better capabilities of depleting the
inventories by the end of season. All such past studies started by formulating
a demand model of some kind and then optimizing the price. According to
our literature review the most important factors in forecasting the demand
of a seasonal product are the past sales, price discount, the time of season
and the inventory level. The price discount is closely related to the price
elasticity of demand, which is used in most past studies and is the simple
most important factor in optimizing pricing. In fact, it is so important that
in some past studies where there was a lack of price sensitive data, two-
phase estimation methods are used to calculate the price elasticities. Also, a
noteworthy remark from past studies is that the price elasticity of demand is
not constant and tends to become less elastic towards the end of the selling
season.

We constructed a forecast model which considers last years’ sales, the effect
of price elasticity and the effect of diminishing sales towards the end of the
season. The price elasticity of demand as well as the effect of diminishing
sales were approximated to decrease exponentially towards the end of the
season. Our regression model did not quite fulfill the conditions of a good
model in terms of regression analysis which is partially explained by our data
being time series that is usually correlated in some way. However, we still
used regression analysis as a method to guide us in the right direction. The
model fitted the given training data quite well, while the accuracies of the
forecasts were varying.

We used two years’ worth of transactions data which we aggregated to weekly
product-level information. We constructed the model to work with the data
provided, which is not the best approach if the model is intended to work
generally for all seasonal products. As this data was used as a time series and
the data was split into a training and validating series, we only practically
had roughly one and a half 52-week-seasons worth of data and one more



28

season of data could have potentially resulted in a better forecast. One more
season worth of data would, however, change the formatting of the model to
also take the additional season into consideration.

Using the actual prices, gave reasonably good forecasts for products 1, 2
and 4 but the model could not get an appropriate forecast for product 3.
We measured the performance of the forecasts using two commonly used
metrics: mean absolute percentage error (MAPE) and forecast bias which
gave good results for products 1 and 2 with a MAPE of 37.9% and 34.5%
as well as a forecast bias of 92.7% and 88.1% respectively. Product 4 got
a MAPE of 49.0% which indicates that its forecast bias of 101.0% is rather
a result from good coincidence than the outcome of a good forecast model.
Considering this and the fact that product 3 did not get a good forecast at
all, the forecasting model constructed would not be suitable for general use
without further modifications.

By optimizing the prices with the bisection model, we got an optimal price
of 50%, 15% and 60% for products 1, 2 and 4 we respectively as a percentage
of the normal retail price. For products 1 and 2 the optimal price was lower
than the actual price or prices used. As the forecast model underestimated
the sales when forecasting with the actual prices, the lower optimal prices
resulted in a negative impact of −8.5% and −62.0% on profit respectively.
The optimal price for product 4 resulted in a slight positive impact on profits
with a 0.7% increase. However, we optimized the price only so that the model
would empty the initial inventory by the end of the clearance period and we
did not account for the possible impacts on profit.

7 Future prospects

Our model did not perform as well as expected. Further modifying of the
model and testing it with a much larger sample of products would be needed
to assess the full potential of the model. This can be challenging, because
seasonal products tend not to have that many selling seasons, however, more
data could result in better forecasts. For that purpose, reference products
with similar sales patterns could be used.

Past research points out that the price elasticity decreases over time [Gupta
et al., 2006, Caro and Gallien, 2012, Soysal and Krishnamurthi, 2012, Smith
and Agrawal, 2017] but no explicit behaviour is mentioned. We assumed
that the price elasticity value decreases in an exponential manner to a cer-
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tain minimum value. The decreasing of the price elasticity of demand over
the season would benefit from more research especially when the price elas-
ticity is considered to be the most important factor in defining optimal price
discounts.

We optimized only one price for the whole clearance period which, according
to past research [Caro and Gallien, 2012, Soysal and Krishnamurthi, 2012], is
suboptimal at least in the terms of generating profit. Optimizing the price so
that profit is also considered would require products to have a salvage value
as well as possible inventory costs. Also, formulating a dynamic model with
a few, say, two or three points at which the price is optimized could improve
profits. An interesting approach would be to apply the two-stage estimation
system used by Caro and Gallien [2012]. In addition, according to Soysal and
Krishnamurthi [2012], optimizing the starting time of the clearance period
can further improve the results.

A highly useful addition to the model would be to account for the inventory
levels. As Smith [2009], Smith and Achabal [1998], Caro and Gallien [2012]
and Vakhutinsky et al. [2012] stated, the inventory level can have either
negative or positive impact on sales. A large sales volume compared to
the reference shelf level renders the inventory effect nonexistent. Thus, the
benefit of considering the inventory effect the products would be highest
when the sales volume is low compared to the minimum shelf level.
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A Attachment

Figure 11: Plot of the actual sales and the forecast for product 2.

Figure 12: Plot of the actual sales and the forecast for product 4.
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Figure 13: Plots used in regression analysis on the fit on product 2.

Figure 14: Plots used in regression analysis on the fit on product 2.
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Figure 15: Plots in regression analysis on the fit on product 2.
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