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Yksilöt usein turvautuvat päätöksenteossaan toisten antamiin suosituksiin, oli kyse sitten esimer-

kiksi musiikista, kirjoista tai elokuvista. Suosittelujärjestelmien kehitys on peräisin tästä havain-

nosta. Viime vuosina sähköisen liiketoiminnan kehityksen ja kasvavan informaatiomassan myötä 

suositusjärjestelmille on syntynyt kasvava tarve. Irrelevantit ja personoimattomat elektronisen lii-

ketoiminnan sivustot voivat pahimmillaan ajaa pois potentiaalisia asiakkaita ja johtaa taloudellisiin 

tappioihin liiketoiminnassa. Tässä työssä rakennetaan personointia edistävä suositusjärjestelmä 

suurelle suomalaiselle nettihuutokaupalle. 

Työssä on tavoitteena rakentaa suositusjärjestelmä, joka tekee nettihuutokaupan etusivusta rele-

vantimman ja personoidumman sen käyttäjille. Tämä saavutetaan suositusjärjestelmällä, joka te-

kee käyttäjän selaushistorian perusteella huutokaupan etusivulle personoituja huutokauppakohde-

suosituksia. Sopivan suositusjärjestelmän löytämiseksi työssä vertaillaan ja evaluoidaan yhteensä 

seitsemän eri suositusjärjestelmää. Evaluointi perustuu suositusjärjestelmien ennustustarkkuu-

teen, ja se toteutetaan offline-simulaatiolla hyödyntäen käyttäjien selaushistoriaa. 

Suuri osa suositusjärjestelmiin liittyvästä kirjallisuudesta olettaa suositeltavien kohteiden tai esinei-

den olevan staattisia ja ei-uniikkeja. Näin ei kuitenkaan ole huutokaupassa, minkä vuoksi tässä 

työssä suositusjärjestelmän tulee kyetä suosittelemaan lyhytikäisiä ja uniikkeja kohteita. Työssä on-

gelmaa lähestytään luomalla yleinen suositusprosessi, joka toimii pohjana sisältöperusteisille suo-

situsjärjestelmille, jotka hyödyntävät luonnollisen kielen prosessoinnin menetelmiä huutokauppa-

kohteiden esittämisessä vektorina. 

Tulosten perusteella hyvä ennustetarkkuus voidaan saavuttaa erilaisiin lähestymistapoihin perus-

tuvilla suositusjärjestelmillä. Sekä neuroverkkoihin perustuva Word2Vector (W2V) että Term Fre-

quency-Inverse Term Frequency (TFIDF) – mallit soveltuvat ennustetarkkuudeltaan parhaiten käyt-

täjälle uusien kohteiden suosittelemiseen. Tulosten perusteella käyttäjille voisi olla järkevää suosi-

tella myös samoja kohteita, joissa he ovat aiemmin käyneet, ja näin ollen tehdä etusivusta käyttä-

jäystävällisempi tarjoamalla suora oikotie aiempiin kohteisiin. 
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1 Introduction 

1.1 Background and motivation 

When one needs to make a decision with insufficient experience on the alterna-

tives, it is often needed to rely on recommendations from other people. The rec-

ommendations can originate from multiple different sources, such as by word of 

mouth, letters, reviews or general surveys. Recommender systems assist in this 

social decision-making process by taking recommendations as inputs, then aggre-

gating them, and finally sending them to appropriate recipients. The value of rec-

ommender systems comes from both the aggregation and the system’s ability to 

make matches between the recommenders and those who seek recommenda-

tions (Resnick & Varian, 1997).  

The development of recommender systems arise from the observation that indi-

viduals often rely on recommendations provided by others in their decision-mak-

ing process. For example, individuals tend to read and rely on the movie reviews 

when they are selecting a movie to watch. Also, employers tend to count on rec-

ommendation letters when recruiting new employees (Ricci, et al., 2011; 

Schwartz, 2004). In addition to filtering undesired alternatives, recommender sys-

tems can suggest particularly interesting alternatives to its users (Gündüz-

Ögüdücü, 2010). 

Recently, new electronic business services have caused a pressing need for recom-

mender systems. In fact, recommender systems have developed in parallel with 

the Web. This is due to the fact that there is a vast number of alternatives being 

offered to users, which makes it difficult for users to choose between alternatives. 
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Examples of these electronic business services are online shops, online auctions, 

and different product comparison services (Ricci, et al., 2011; Bobadilla, et al., 

2013).  

Currently, nearly everyone who surfs the Web sites on Internet will come across 

recommender systems. There are many popular Web sites that exploit recom-

mender systems, such as Amazon1, YouTube2 and Netflix3 (Gündüz-Ögüdücü, 

2010).  

1.2 Scope and objectives 

This thesis has been developed in collaboration with a major Finnish online auc-

tion, where users can buy and sell a variety of different items, such as antique, 

cars, movies, clothes, electronics and artwork. Users vary from single individuals 

to large corporate businesses. The auction site has over 500 000 users every 

week, and about 200 000 € worth of products are sold per day. 

Currently, the front page of the auction site displays items that are irrelevant for 

the users. This may drive away potential users and lead to loss of business oppor-

tunities. Moreover, users are required to filter the most interesting and relevant 

items themselves from a very large and dynamic collection of approximately 1.5 

million unique items, which can be a laborious task. Thus, a recommender system 

is needed to make the site more relevant for the users. 

The goal of this thesis is to build a recommender system that makes the front page 

of the online auction site more relevant for the users. In practice, multiple recom-

menders are evaluated in an offline simulation, using real life clickstream data of 

the users. 

1.3 Structure of the thesis 

This thesis is divided in to six chapters. Chapter 2 introduces the theory of recom-

mender systems and online auctions, and examples of recommender systems in 

real-life scenarios. Chapter 3 presents the most relevant recommender evaluation 

                                                      
1 http://www.amazon.com 
2 http://www.youtube.com 
3 http://www.netflix.com 

http://www.amazon.com/
http://www.youtube.com/
http://www.netflix.com/
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methods in the context of this thesis. Chapter 4 describes the research problem 

and justifies the techniques and processes that are used in the construction of the 

recommenders. Moreover, the data, experimental setup and evaluation methods 

used are explained. Chapter 5 presents the simulation results. Finally, Chapter 6 

discusses the developed recommendation systems and summarizes this thesis. 
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2 Theory and practice 

2.1 Recommender systems 

2.1.1 Former research 

The study of recommender systems is new compared to research into other clas-

sical information system tools and techniques, such as databases and search en-

gines (Ricci, et al., 2011). The first research paper on recommender systems was 

published in the mid-1990s (Park, et al., 2012). The first actual recommender sys-

tem was Tapestry, an experimental mail system for filtering vast number of incom-

ing documents by utilizing user collaboration (Goldberg, et al., 1992). Tapestry was 

the first recommender system that utilized collaborative filtering, a recommenda-

tion technique still used by many highly rated Web sites, such as Amazon and 

YouTube (Linden, et al., 2003; Davidson, et al., 2010; Resnick & Varian, 1997). 

Since the mid-1990s, interest in recommender systems has dramatically in-

creased. This is supported by the following facts (Ricci, et al., 2011): 

 Recommender systems play a major part in popular Internet sites such as Am-

azon, YouTube, Netflix, Yahoo4, Last.fm5 and IMDB6. For example, in 2006, Net-

flix announced the Netflix Prize challenge (Amatriain & Basilico, 2012), where 

$ 1 million was offered to a team that could improve the accuracy of the cur-

rent recommender system by 10 %. 

                                                      
4 http://www.yahoo.com 
5 http://www.last.fm 
6 http://www.imdb.com 

http://www.yahoo.com/
http://www.last.fm/
http://www.imdb.com/
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 Since 2007, ACM Recommender Systems (RecSys) has been an annual event 

focusing on recommender technology research and applications. Moreover, 

recommender system topics are covered in many other conferences, such as 

ACM Special Interest Group on Information Retrieval (SIGIR), User Modeling, 

Adaptation and Personalization (UMAP), and ACM’s Special Interest Group on 

Management of Data (SIGMOD). 

 At higher education institutions, many courses are dedicated to recommender 

systems only. In addition, tutorials on recommender systems are common in 

computer science conferences. 

 Special issues in academic journals about research and development of recom-

mender systems field, such as AI Communications (2008), IEEE Intelligent Sys-

tems (2007) and ACM Transactions on Computer-Human Interaction (2005). 

The number of published research papers between years 2001 and 2010 was 210 

in total. Majority of these research papers were related to movies (25.2 %) and 

shopping (20.0 %), because these fields have a large number of practical applica-

tions. The most popular journals in recommendation field between years 2001 

and 2010 were Expert Systems with Applications (33.3 %) and IEEE Intelligent Sys-

tems (10.0 %). In recent years, the number of research papers has been increas-

ing, as shown in Figure 1 (Park, et al., 2012). 

 

 

Figure 1: The distribution of research papers by year of publication. 

The figure is taken from A literature review and classification of rec-

ommender systems research (Park, et al., 2012). 



6 

 

 

2.1.2 Core concepts and definitions 

Recommendation systems are defined as software tools and techniques that pro-

vide suggestions for items to be of use to a user (Burke, 2007). In this thesis, rec-

ommender systems are also referred to as recommender systems and recom-

menders. The definition of a recommender system includes some core concepts 

that are explained in more detail in the following (Ricci, et al., 2011; Barbieri, et 

al., 2014; Burke, 2007). 

Recommendation is an information filtering form that analyzes users’ historical 

preferences on a catalog of items in order to generate a personalized list of sug-

gested items. It is an option worthy of consideration. 

Users are those who use the recommender system, and to whom the items are 

recommended. Users may have different goals and characteristics. Recommender 

systems exploit information about the users in order to personalize the human-

computer interaction. 

Items denote objects that the system recommends to users, and they can be char-

acterized by their complexity, value or utility. The value of an item is positive, if 

the item is useful to the user, and negative, if the item is not useful for the user. 

Recommender systems focus in various different fields, and items can be for ex-

ample CDs, documents or news. Recommender systems are also customized in 

such way that the provided recommendations are useful and effective suggestions 

for a specific item type. 

In the following, a recommender system is defined mathematically as a scoring 

function, as described by Barbieri et al. (2014) in Probabilistic Approaches to Rec-

ommendations (Barbieri, et al., 2014). 

Items, users and their preferences are denoted as follows. Let 𝒰 = {𝑢1, … , 𝑢𝑀} be 

a set of 𝑀 users and ℐ = {𝑖1, … , 𝑖𝑁} a set of 𝑁 items, where 𝑢 represents a single 

user, and 𝑖 represents a single item. Using this notation, users’ preferences can be 

modeled with a 𝑀 × 𝑁 size matrix 𝑹, where each element 𝑟𝑖
𝑢 of 𝑹 denotes the 

preference value that user 𝑢 assigns to item 𝑖. In this thesis, this preference value 

is referred to as rating, which is interpreted as the degree of user’s appreciation 

for a certain item 𝑖. Since 𝑹 describes the users’ preferences, it is also referred to 

as a rating matrix. 
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User preference data (elements 𝑟𝑖
𝑢 for each user 𝑢 and item 𝑖 combination) can 

be explicit or implicit. Explicit user preference data are explicitly expressed by in-

dividual users on the items they have experienced. For example, explicit user pref-

erence data are retrieved when users rate movies from 1 (worst) to 5 (best) after 

watching them (thus, 𝑟𝑖
𝑢 ∈ {1, 2, 3, 4, 5} ∀𝑢, 𝑖). In this thesis, the focus is on im-

plicit user preference data, which are observations of user and item co-occur-

rences. Examples of implicit user preference data are users’ recorded Web ses-

sions, likes, viewing times, check-ins, and clickstreams on Web pages.  

Ratings can be explicit or implicit user preference data. A generic entry of user-

item rating matrix 𝑹 can be defined as a binary value. If user 𝑢 has not yet experi-

enced (for example, in implicit case not clicked on the item’s Web page, or in ex-

plicit case not rated the item) item 𝑖, then implicit rating 𝑟𝑖
𝑢 = 0. On the other 

hand, if user 𝑢 has experienced item 𝑖, then the generic entry for rating matrix is 

implicit rating 𝑟𝑖
𝑢 = 1.  

Let 〈𝑢, 𝑖〉 be the enumeration of all user-item pairs in 𝑹. By using the previous no-

tation, the set of items (implicitly or explicitly) rated by user 𝑢 can be defined as 

ℐ𝑹(𝑢) = {𝑖 ∈ ℐ | 〈𝑢, 𝑖〉 ∈ 𝑹}. Similarly, 𝒰𝑹(𝑖) = {𝑢 ∈ 𝒰 | 〈𝑢, 𝑖〉 ∈ 𝑹} can be de-

fined as the set of users that have (implicitly or explicitly) rated item 𝑖. With this 

notation, it is possible to define the following key concepts: 

Active user is any user 𝑢 that has rated more than or equal to one item, and thus 

for an active user it satisfies that ℐ𝑹(𝑢) ≠ ∅. This means that an active user has 

rating history.  

Cold-start problem occurs when no items have been rated by users 𝑢, or respec-

tively, no users have rated items 𝑖. It commonly occurs when a new user or item 

is added to the underlying information system, and the recommender system can-

not provide suggestions in the absence of information. 

As mentioned before, a recommender system provides suggestions for items to 

be of use to a user. Because this is the case, a recommender system aims to pro-

vide an active user 𝑢 with a list of item recommendations, recommendation list 

ℒ𝑢 ⊆ ℐ, where the items are expected to be of the user’s interest. Often the rec-

ommendation list may only include items from which the user 𝑢 has no experi-

ence, and thus, it must satisfy that ℒ𝑢 ∩ ℐ𝑹(𝑢) = ∅. In this thesis, this is referred 
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to as recommendation list for non-visited items, and accordingly, if the recommen-

dation list may include items that the user has experienced in the past, it is a rec-

ommendation list for visited items.  

Now it is possible to define a recommender system as a mathematical function. A 

recommender system can be defined as a scoring function 𝑝𝑖
𝑢: 𝒰 × ℐ → ℝ that ac-

curately estimates future preferences based on information about users’ past ac-

tions. The score 𝑝𝑖
𝑢 represents the appreciation of user 𝑢 for item 𝑖. Therefore, a 

recommender system can be used to predict the items that are the most likely to 

be purchased in the future. 

An example of implicit users’ preference matrix 𝑹 is illustrated in Table 1, where 

the rows 𝑢1, … , 𝑢10 represent ten (𝑀 = 10) different users, and the columns 

𝑖1, … , 𝑖5 represent five (𝑁 = 5) different items. The ratings represent whether us-

ers 𝑢 have experienced item 𝑖 (𝑟𝑖
𝑢 = 1 if has, and 𝑟𝑖

𝑢 = 0 if not). Typically, the 

number of users is large compared to the number of items (𝑀 ≫ 𝑁), and the pref-

erence matrix 𝑹 is sparse. By using the notation presented above, the set of users 

who have experienced item 𝑖3 can be represented as 𝒰𝑹(𝑖3) = {𝑢2, 𝑢3, 𝑢5}, and 

the set of items experienced by user 𝑢4 is ℐ𝑹(𝑢4) = {𝑖1, 𝑖4}. No users have experi-

enced item 𝑖5, and thus 𝒰𝑹(𝑖5) = ∅. This represents the cold-start problem; how 

should item 𝑖5 be recommended? In addition, cold-start problem exists for user 

𝑢7, who has no experience from any of the items; how should items be recom-

mended to 𝑢7? 

 

Table 1: An illustration of implicit users’ preference matrix 𝑹. 

 𝒊𝟏 𝒊𝟐 𝒊𝟑 𝒊𝟒 𝒊𝟓 

𝒖𝟏  0 1 0 0 0 
𝒖𝟐 0 1 1 1 0 
𝒖𝟑 1 1 1 0 0 
𝒖𝟒 1 0 0 1 0 
𝒖𝟓 0 1 1 0 0 
𝒖𝟔 0 1 0 0 0 
𝒖𝟕 0 0 0 0 0 
𝒖𝟖 0 0 0 1 0 
𝒖𝟗 1 1 0 1 0 
𝒖𝟏𝟎 0 1 0 0 0 
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In general, a recommender system focuses on producing a list of recommenda-

tions for a certain user. Recommendations can be made with the help of algo-

rithms. A general framework for an algorithm that produces recommendation list 

ℒ𝑢 for a certain user 𝑢 is shown in Algorithm 1. 

 

Algorithm 1: A general framework for a recommender algorithm 

Choose the number of candidate items 𝐷 that will be taken from the full item set ℐ (positive inte-
ger, 𝐷 ≤ 𝑁). 

Choose the size of the recommendation list 𝐿 (positive integer, 𝐿 ≤ 𝐷). 

1. Choose a subset of items 𝐶 ⊆ ℐ by using business-specific criterion. The number of items in 
𝐶 must satisfy |𝐶| = 𝐷 and 𝐶 ∩ ℐ𝑹(𝑢) = ∅. 

2. Calculate score 𝑝𝑖
𝑢 for each item 𝑖 ∈ 𝐶, where higher score means higher appreciation. 

3. Select the top 𝐿 items based on the highest 𝑝𝑖
𝑢. List them in the recommendation list ℒ𝑢 

with respect to some ranking algorithm. 

4. Return ℒ𝑢. 

 

2.1.3 Goals 

The movement towards providing products and services to customers through 

electronic commerce has allowed companies to provide customers with more op-

tions. The amount of information that customers must process before finding an 

item that meet their needs has expanded (Schafer, et al., 1999). For users, the goal 

of a recommender system is often to solve this information overload problem 

(Resnick & Varian, 1997; Burke, 2007). Recommender systems can also be useful 

for the users in the following scenarios (Ricci, et al., 2011; Herlocker, et al., 2004): 

 Finding (all) good items. Recommender systems try to provide a list of items 

that are of use for the users. Sometimes the list provided may include item 

combinations, item sequences, or all the possible items that satisfy the needs 

of a certain user. Recommendation list with predicted ratings or scores can 

also be helpful for the user.  

 Receiving annotations. Users can be given personalized annotations in con-

text, such as a TV program recommender system which sends notifications to 
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users when a TV show worth watching (based on users’ preferences) will be 

aired in the near future. 

 Wanting to just browse. In this case, users are given the chance of browsing 

the item catalogues freely, with no intention on purchasing any items. The pur-

pose of the recommender is to browse the items that are more likely to be 

interesting for the users, provided by the recommender system. 

 Interacting with the recommender system. Instead of trusting in recommen-

dations coming from recommender systems, some users might just want to 

test the goodness of the recommendations or the behavior of the system. Us-

ers may also be given the possibility to interact with the recommender system 

and make the recommendations more personalized.  

 Wanting to express themselves. In some cases, users are more interested in 

expressing their opinions and beliefs through comments and ratings. In addi-

tion, users may want to contribute in order to just help or influence others. 

The role that a recommender system plays for a service provider is different from 

the role it plays for users. Service providers may use recommender systems for 

numerous reasons, such as (Schafer, et al., 1999; Ricci, et al., 2011; Schafer, et al., 

2001): 

 Increasing sales volume. One of the most common reasons of commercial rec-

ommender systems is to be able to sell more with the help of recommenda-

tions. This goal is attained by recommending items that the users are most 

likely to buy. 

 Selling items more diversely. The service provider might want to sell a variety 

of items from the catalogue, not only the most popular ones. Diversification 

can be achieved by recommending items that would be difficult for users to 

find without recommendations. 

 Understanding the user better. By gathering explicit and implicit user prefer-

ence data, the service provider will be able to understand and predict the user 

behavior. The preference data can be used for various things, such as increas-

ing user satisfaction and loyalty, turning browsers into buyers, or choosing new 

items for product selection. 

The lists above describes how recommender systems can serve multiple purposes. 

The numerous possibilities for recommender systems have initiated the need for 

different sources of knowledge and recommendation techniques (Ricci, et al., 

2011; Gündüz-Ögüdücü, 2010). 
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2.1.4 Recommendation techniques 

Recommendation techniques are used to predict items that might be of use for 

the users. Several different techniques have been proposed as the basis for rec-

ommender systems, such as collaborative filtering, content-based, hybrid-based, 

knowledge-based, demographic-based, and utility-based recommendation tech-

niques (Burke, 2007; Bhuiyan, 2013). This is a broad categorization of recom-

mender systems by different techniques, and it is not by any means the only way 

to categorize recommender systems (Parsons, et al., 2004). The previously men-

tioned six techniques are briefly summarized in the following. 

Collaborative filtering technique builds a database of user preferences for items 

(Sarwar, et al., 2001). The technique is based on the observation that human in-

terests and preferences are typically correlated, and it assumes that users’ past 

behavior will tend to agree also in the future (Barbieri, et al., 2014). Collaborative 

filtering exploits this correlation by recommending the target user those items 

that other users with similar preferences have liked in the past (Schafer, et al., 

2001).  

Content-based filtering is based on similarities between item contents and fea-

tures. Content-based recommender systems recommend items that are similar to 

those that the target user have liked in the past (Pazzani & Billsus, 2007).  

Vector Space Models (VSM) can be used for spatial representations of textual item 

contents, and it allows for representing each item in an 𝑛-dimensional space, 

where each dimension usually corresponds to a term in an overall vocabulary. By 

representing user profiles and items in the same vector space, recommendations 

can be derived by calculating similarities. Cosine similarity is the most widely used 

similarity measure to describe the proximity of two vectors 𝒗𝟏, 𝒗𝟐 (Lops, et al., 

2011): 

 𝑠𝑖𝑚(𝒗𝟏, 𝒗𝟐) =
𝒗𝟏 ∙ 𝒗𝟐

‖𝒗𝟏‖‖𝒗𝟐‖
. (2.1) 

In knowledge-based filtering, a recommender system provides a list of recommen-

dations based on the knowledge about users and items. Knowledge-based recom-

menders use reasoning for finding the products that meet the target user’s re-

quirements. These systems often interact with the user to gain the knowledge, 

and the recommendations are not based solely on user ratings (Bhuiyan, 2013). 
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In demographic-based filtering, recommender systems recommend items based 

on user demographics. These demographics can include a variety of users’ per-

sonal attributes, such as age, sex, location, education, and occupation. Demo-

graphic-based recommender systems try to learn the associations between items 

and people demographics (Bhuiyan, 2013). 

In utility-based filtering, recommendations are based on utility of each item for 

the target user. The utility is calculated by first using item features as background 

data, and then determining the utility functions from items to user preferences. 

Finally, item rankings are calculated with the help of the utility functions (Bhuiyan, 

2013). 

Hybrid-based recommender systems combine multiple recommendation tech-

niques together, such as all the techniques presented above. In addition to com-

bining different techniques, hybrids can combine various concepts, such as fea-

tures from different knowledge sources, recommender systems themselves, or 

different implementations of the same recommendation technique (Burke, 2007). 

Graph-based recommender systems can combine both collaborative- and con-

tent-based filtering techniques. Graphs present relations between users and items 

as a bipartite graph. Users and items are usually defined as nodes, and edges con-

nect users and items. Edge weights can be used for representing the strength of 

users’ preference towards the items (Huang, et al., 2002). 

2.1.5 Challenges and considerations 

Research has shown that recommender systems can help users to make much bet-

ter decisions with less effort (Häubl & Trifts, 2000). On the other hand, survey find-

ings (ChoiceStream, 2008) have also shown that more than one-half of product 

recommendation system users are not happy with the recommendations on elec-

tronic commerce sites (Yoo, et al., 2013). When building a recommender system, 

there are many things to consider from the user’s perspective, and also from the 

practical point of view. For example, the type of data available, performance of 

the system, and the desired scalability and quality of recommendations should be 

considered (Bobadilla, et al., 2013). The following lists some of the most relevant 

considerations in the context of this thesis: 
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 Sparsity. Data sparsity arises when users rate a limited number of items. As 

mentioned in Section 2.1.2, the number of users is typically remarkably larger 

than the number of items (𝑀 ≫ 𝑁), and therefore, the rating matrix 𝑹 is ex-

ceptionally sparse. Sparsity is problematic especially when using collaborative 

filtering because recommendations are based on aggregating like-minded user 

preferences (Guo, 2012). 

 Cold start. As defined in Section 2.1.2, cold start problem arises when almost 

nothing is known about the user preferences, or when recommendations are 

required for items that no users have rated. Research on these problems has 

mainly focused on the latter, where content-based filtering (computing item-

item similarities) has been proposed as one possible solution. Expectation 

Maximization (EM) technique has been proposed to solve the user-side cold 

start problem. Both types of cold-start problems are problematic when using 

collaborative filtering due to insufficient information (Schein, et al., 2002; Lam, 

et al., 2008). 

 Item churn. Some recommender systems are implemented in a dynamic envi-

ronment, where items are added and removed continuously. Recommender 

systems need to be able to adapt to these dynamic environments (Barbieri, et 

al., 2014). 

 Short- and long-term preferences. Users may have different short- and long-

term preferences that a recommender system should take into account. Gen-

erally, recommender systems are either focused on building a long-term user 

profile or making recommendations based on user’s short-term preferences 

(Ricci, et al., 2011). 

 Recommending the same items repeatedly. Beel et al. (2013) conducted a 

study to find out how often (if at all) it is reasonable to make same item rec-

ommendations to same users multiple times. They found out that generally it 

makes no sense to display recommendations to the same users multiple times. 

However, it was also found that users might miss interesting recommenda-

tions, if they are shown only once (Beel, et al., 2013).  

 Personalization-privacy trade-off. Personalization techniques aim to improve 

the end-user experience by supporting users in filtering, sorting, and classify-

ing information. However, there is a trade-off between user personalization 

and privacy. In order to receive more personalized recommendations, users 

need to be willing to sacrifice some level of their privacy (Uchyigit & Ma, 2008). 
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2.2 Online auctions 

Traditional auctions are the oldest forms of economic exchange (Samuelson, 

2014). There are a variety of different selling institutions that can be defined as an 

auction. A common aspect of auction-like institutions is that they are anonymous, 

and they elicit information in the form of bids, for example, who wins what and 

pays how much is determined on the basis of received information. Auctions are 

universal, and they may be used to sell any good (Krishna, 2002). 

Online auction is an auction, where transactions take place on an Internet portal, 

and the transactions are negotiated between buyers and sellers (Jank & Shmueli, 

2010). Online auctions are typically deadline auctions, where the person with high-

est standing bid before a fixed stopping time, is declared the winner (Krishna, 

2002). The first online auctions were held electronically via email messages, dis-

cussion groups, and news groups in 1995. Thus, online auctions are relatively new. 

Today, there are many well-known online auction sites, such as eBay7 and uBid8, 

where buyers and sellers can exchange goods and information. In recent years, 

online auctions have become popular for many reasons: online auction Web sites 

are constantly available, geographical constraints are negligible, product selec-

tions are extensive, and auctions provide entertainment (Jank & Shmueli, 2010).  

Moreover, the empirical research of online auctions is thriving, and the research 

of online auctions has been thriving even more than conventional, brick-and-mor-

tar auctions (Jank & Shmueli, 2010). The research of recommender systems is usu-

ally focused on business-to-customer Web sites rather than customer-to-cus-

tomer which online auction sites are based on (Li, et al., 2007). 

The following sections introduce different online auction formats and auction 

characteristics. 

2.2.1 Auction formats 

This section presents the most common online auction formats. Online auction 

sites may provide both single-item auctions where only a single item is up for sale, 

and multiple item auctions, where multiple items are up for sale simultaneously. 

                                                      
7 http://www.ebay.com 
8 http://www.ubid.com 

http://www.ebay.com/
http://www.ubid.com/
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The single-item online auction formats presented are the English auction, Reserve 

auction and Fixed Price auction, and the multiple-item auction formats are multi-

ple-item Fixed Price auction and the multiple-item Dutch auction (eBay, 2015, p. 

Overview Of The Different eBay Auction Types; Sanoma, 2015, p. Ohjeet). 

English auction is the most traditional auction, where the bidders compete against 

each other by raising each other’s bids until the deadline is reached. The bidder 

with the highest (and last) standing bid before the deadline is declared as the win-

ner of the auction. The winner pays the seller an amount equal to the price of the 

last standing bid, and receives the auction object (Samuelson, 2014; Jank & 

Shmueli, 2010). It is possible that the online auction allows bids also after the 

deadline, as long as the time since the last bid is under some fixed time limit (for 

example 5 minutes). The seller may also set the minimum starting bid (Sanoma, 

2015). 

Reserve auction prevents the seller from selling the item for less than a certain 

price. This price is called the reserve price, and it is set by the seller at the point of 

putting the item up for auction. The price is only visible to the seller, and the price 

is not revealed to the bidders until at the end of the auction. If the highest bid is 

greater than the reserve price at the end of the auction, the bidder pays the seller 

an amount equal to the price of the last standing bid, and receives the auction 

item. If the highest bid is smaller than the reserve price, no transactions are made. 

Despite the seller’s reserve price, the reserve auctions work similar to English auc-

tions (eBay, 2015, p. Overview of the Different eBay Auction Types). 

In Fixed Price auction (also known as “Buy Now” auction), the seller sets a fixed 

price and a deadline for the auction item. The item is on sale for the fixed price 

until the deadline is reached. If only a single item is on sale, the first bidder that 

offers the fixed price before the deadline wins the auction. After that, the bidder 

pays the seller an amount equal to the fixed price that the seller was asking. If 

multiple items are on sale, the auction remains open until all the items have been 

bought for the fixed price. If no bidders are willing to pay the fixed price before 

the deadline, the auction closes and the item remains unsold. In Fixed Price auc-

tions, there is no need for minimum starting bids (Sanoma, 2015). 

Multiple-item Dutch auctions are rare online auctions, where the seller is selling 

more than one of a certain item with a deadline. In Dutch auction, the buyers bid 

a price and say how many items they are willing to buy. When the deadline is 
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reached, everyone pays the lowest price that was bid by one of the winning bid-

ders and receives the item or items (eBay, 2015, p. Overview of the Different eBay 

Auction Types). 

Sellers may also be given the possibility to combine Fixed Price with other auction 

formats, such as Fixed Price and Reserve auction (Fixed Price Reserve auction), or 

Fixed Price and English auction (Fixed Price English auction). Fixed Price English 

auction works similar to normal English auction, but it also allows bidders to buy 

the auction item instantly by offering the fixed price. If no bidder offers the fixed 

price before the deadline, the auction ends up being a normal English auction, and 

if the fixed price is offered, the auction closes as it normally would in a Fixed Price 

auction. The Fixed Price Reserve auction works likewise (Sanoma, 2015). 

2.2.2 Special characteristics of online auctions 

A recommender system in an online auction environment facilitates trading by 

helping the buyers to find suitable items from the sellers. In this case, the role of 

a recommender system can be to build and retain user relationships, and promote 

sales (Li, et al., 2007). In order to know the type of items that should be recom-

mended to different online auction users, it is important to understand auction 

characteristics and user preferences that guide users in their decision-making. 

The research (Drake, 2007) on online auction characteristics separates auction se-

lection and product valuation as two separate decision-making processes of the 

user. The first describes how users choose between different auctions (thus, 

items), and the latter describes the decision of determining how much to bid on a 

certain item. Table 2 presents the five most and least important auction charac-

teristics for both auction selection and product valuation, according to the study 

conducted by Drake (2007). In addition to Table 2, some other characteristics that 

were included in the study were shipping costs, shipping options, return policy, 

payment methods accepted, reserve price, minimum bid, “Buy now” option, and 

seller feedback.  
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Table 2: The most and least important auction characteristics. 

# 

Most important 

(auction selection) 

Most important 

(product valuation) 

Least important 

(both) 

1 Photo of the item Photo of the item Seller location 

2 Item quality Item quality Proxy bidding9 

3 Item description Item description Shipping insurance 

4 Security Current bid Rate of bidding 

5 Time remaining Time remaining Number of bidders 

 

Another study by Drake et al. (2015) used signal theory methods to explore differ-

ent factors that guide buyers in their online auction decision making (Drake, et al., 

2015). These are presented in Table 3. 

Table 3: Factors explained by auction characteristics. 

Factor loadings  

(variance explained) Factor Auction characteristics 

𝟐𝟓 % Item quality Item quality 

Item description 

Photo of product 

𝟏𝟐 % Logistics Shipping costs 

Shipping options 

Shipping insurance 

Payment methods accepted 

𝟖 % Competition Time remaining 

Rate of bidding 

Number of bidders 

𝟓 % Minimum price Reserve price 

Minimum bid 

𝟒 % Service expectations Return policy 

Seller location 

𝟒 % Expected winning bid Current bid 

Time remaining 

𝟑 % Reputation Feedback scores 

𝟑 % Default purchase “Buy now” option 

                                                      
9 Proxy bidding: When the highest bidder bids, the winning price is always a small increment (often 
determined by the seller) above the next lowest big (Roth & Ockenfels, 2002). 
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Online auction transactions are often paid-up-front, which makes the buyers vul-

nerable to frauds. Therefore, online auctions use feedback systems to give users a 

possibility to build their reputation by giving each other feedback. Because nega-

tive feedbacks are very rarely given, its consequences on users’ overall reputation 

are more significant than positives. Therefore, users may try to avoid the conse-

quences of negative feedback by creating multiple accounts and pseudonyms 

(Wang & Chiu, 2008; Resnick, et al., 2006).  

There is evidence from eBay and Amazon online auctions that the decision dynam-

ics change near the end of an auction. This is called last-minute bidding, also 

known as sniping, where the bidders submit their bids near the closing seconds of 

the auction. There is not just one reason for sniping, but it is the best response in 

many bidding strategies. For example, bidding early could give a signal to other 

buyers that the item is exceptionally valuable, and thus raise the price. Online auc-

tions can deal with sniping by giving every bidder a chance to bid, even after the 

deadline, as long as the time since the last bid is under some fixed time limit (Roth 

& Ockenfels, 2002). 

Online auctions also deal with different types of sellers. The sellers may have large 

diversity in their company types, product assortments, objectives and strategies. 

Especially the corporate sellers may have different strategies, such as finding new 

customers, increasing profit margins, or gaining reputation. Therefore, auction 

sites often charge a listing price from the corporate sellers (Becherer & Halstead, 

2004). 

In addition to previously mentioned characteristics, online auctions are very dy-

namic marketplaces, where the items are unique and short-lived. Moreover, there 

are usually many bidders willing to buy certain item, whereas only one of them 

can win the item. Often those who made a bid but did not win the item are willing 

to buy the same item or a similar item from someone else. On the other hand, the 

one who won the item, is not likely wanting to buy a similar item again (Katukuri, 

et al., 2013; Pinckney, 2013a). 
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2.3 Recommender systems in practice 

The purpose of this section is to overview recommenders that are in real-world 

use on popular Web sites, such as YouTube and eBay. It should be noted that the 

information presented in this section may not be up-to-date, and due to the speed 

of change, the recommenders currently implemented on those sites may differ 

from what is presented here. Moreover, detailed information on the techniques 

and algorithms in use are challenging to find, which may be due to the business 

value of the recommenders. 

2.3.1 YouTube 

YouTube is a popular online video community, where the recommender recom-

mends video sets to its users. The goal of the recommender is to provide very high 

quality and personalized video recommendations based on both content and us-

ers’ activity data. Content data include raw video streams and video metadata, 

and users’ activity data can be further divided into explicit and implicit data. Ex-

plicit data include users’ ratings, favorites, likes and subscriptions, whereas im-

plicit data is generated from activities like viewing times and interaction with vid-

eos (such as the proportion of video that a user watched). The following is based 

on YouTube’s recommendation system that was in use in 2010 according to Da-

vidson et al. (2010). 

One of the main techniques that YouTube use is association rule mining, where 

the number of co-visitation counts 𝑐𝑖𝑗 are calculated for each pair of vid-

eos (𝑣𝑖, 𝑣𝑗). Then, a score called relatedness 𝑟𝑖𝑗 is calculated with the help of the 

following formula 

 𝑟(𝑣𝑖 , 𝑣𝑗) =
𝑐𝑖𝑗

𝑓(𝑣𝑖, 𝑣𝑗)
, (2.2) 

where 𝑓(𝑣𝑖, 𝑣𝑗) is a normalization function, such as 𝑓(𝑣𝑖, 𝑣𝑗) = 𝑐𝑖 ∙ 𝑐𝑗. Now, given 

a seed video 𝑣𝑖, videos 𝑣𝑗 , 𝑗 ≠ 𝑖 can be ranked in a decreasing order with respect 

to the relatedness measure, and top 𝑁 candidate videos can be chosen in ranking 

𝑅𝑖. These related videos in 𝑅𝑖 can be considered as a directed graph: for each pair 

of videos (𝑣𝑖, 𝑣𝑗), there is an edge 𝑒𝑖𝑗 that connects 𝑣𝑖  and 𝑣𝑗  only if 𝑣𝑗 ∈ 𝑅𝑖, where 

the weight of the edge is given by (2.2). 
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After this, a candidate video set will be generated. The generation begins by gen-

erating a set of videos based on user’s personal activity on the site. This is called a 

seed set 𝑆, which contains videos that the user has shown activity towards (such 

as favorited, rated, or added to playlist). The relatedness rankings 𝑅𝑖 are calculated 

for each of the videos in the seed set, 𝑣𝑖 ∈ 𝑆, and the union of these rankings is 

denoted as 

 𝐶1(𝑆) = ⋃ 𝑅𝑖

𝑣𝑖∈𝑆

. (2.3) 

Taking only 𝐶1 as a set of candidate videos often leads to a narrow set of related 

videos, which is why this candidate set is expanded by taking a limited transitive 

closure over the related videos graph. Define 𝐶𝑛 as the set of videos that are reach-

able in 𝑛 steps from any video in the seed set 

 𝐶𝑛(𝑆) = ⋃ 𝑅𝑖

𝑣𝑖∈𝐶𝑛−1

, (2.4) 

where 𝐶𝑛−1 is a recursive definition, and 𝐶0 = 𝑆 is the first set. By removing the 

original seed set 𝑆 from this, and taking all the cases 𝐶𝑖 from 𝑖 = 0 to 𝑁𝑐, the can-

didate set for recommendations is obtained as 

 

𝐶𝑓 = (⋃ 𝐶𝑖

𝑁𝑐

𝑖=0

)  \ 𝑆. (2.5) 

Because the size of the candidate set is large, the next step is to rank the videos in 

the set. The ranking is a three-step procedure, and it is done by using a linear com-

bination of the following signals: 1) video quality (assure video quality by using 

view count, ratings, and such), 2) user specificity (boost user’s unique taste and 

preferences), and 3) diversification (remove too similar videos from the ultimate 

list). Based on the computed rankings, a small number of recommendations (from 

4 to 60) are displayed through the user interface (Davidson, et al., 2010). 

In the previous it was described how a number of techniques from Section 2.1.4 

are used in the YouTube recommender. Therefore, this recommender could be 

classified as a hybrid recommender that uses for instance collaborative-, demo-

graphic-, content-, and graph-based techniques. The YouTube recommender also 

follows the general framework of a recommender algorithm (see Algorithm 1), 

where a set of candidate items are first chosen, then ranked, and finally displayed. 
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2.3.2 eBay 

eBay is a multinational online auction site where buyers and sellers can exchange 

items and information. There is little information about the current recommender 

system that eBay is using, but Tom Pinckney held a speech about eBay’s graph-

based recommender system in 2013. This system is explained in the following, 

based on the video (Pinckney, 2013a) and slides (Pinckney, 2013b) of Pinckney’s 

speech. 

The recommender system at eBay is based on user’s personal taste profile, which 

describes the set of things that the user likes, and the set of things that the user 

does not like. Taste profile is based on the assumption that likes and dislikes are 

correlated. The purpose of using taste profiles is to reduce the computation time 

by reducing the dimension of the problem. Back in 2013, eBay had graphs with 40 

billion edges, 2 billion item nodes, and 200 million user nodes. 

The graph technique is explained with the help of the following example. First, 

assume user A, who likes bicycles and carrots (items). On the other hand, assume 

user B who dislikes bicycles and carrots but likes cars. Now, based on the taste 

profile’s correlation assumption, it is possible to infer that another user C, who 

dislikes carrots, would like cars over bicycles. This is due to the fact that user B also 

dislikes carrots, and therefore user C would choose similar to B. The situation is 

illustrated in Figure 2. 

 

Figure 2: Inferring correlations in eBay’s recommender system. User 

C would like the car instead of the bicycle because both users B and 

C dislike carrots. 

In the previous scenario, information about user B and C’s preferences on certain 

items were used in order to predict user C’s choice. Assuming more users (D, E, F, 
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and G), and that they can describe their preferences from −2 (dislike) to 2 (like) 

on each item, it is possible to plot the users’ preferences in Figure 3. It can be seen 

that the users almost form a straight line, and there seems to be a hidden factor, 

a latent factor, that could explain users’ preferences in less dimensions. For exam-

ple, one reason why users are either liking or disliking both carrots and bicycles 

could be that some users are more ecological than others. Therefore, it could be 

possible to describe user preferences to some extent by using only the ecological 

factor rather than all the items themselves (Ecological axis in Figure 3). In general, 

latent factors can be inferred but not observed, and there is not necessarily a rea-

sonable real-world interpretation for the factor. The exact techniques that eBay 

uses for extracting the latent factors were not introduced in the source material. 

 

Figure 3: Users’ preferences plotted in two dimensions, illustrating 

how much users like bicycles and carrots.  

In general, eBay uses a number of latent factors 𝑙𝑖 in order to create an 𝑛-dimen-

sional taste space 𝑇 = (𝑙1, … , 𝑙𝑛). The taste space is used for creating a taste pro-

file 𝑇𝑢 = (𝑙1
𝑢, … , 𝑙𝑛

𝑢) for each user 𝑢. Therefore, the taste profile consists of latent 

factor coordinates 𝑙𝑖
𝑢, 𝑖 = 1, … , 𝑛, also known as taste coordinates. Moreover, 

items 𝑖 are described in terms of the taste coordinates, 𝑇𝑖 = (𝑙1
𝑖 , … , 𝑙𝑛

𝑖 ) (such as 

how ecological is the carrot compared to the bicycle).  
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Now, assume a graph as in Figure 2, where items and users are the nodes, and 

edges can only connect users and items. Moreover, assume only two latent factors 

𝑙1 and 𝑙2. By defining edge weights from users to an item to be the cross product 

of taste profiles between users and the item, it is possible to constrain similar 

items to be close to each other. The situation is presented in Figure 4, where the 

taste profile of the bicycle can be calculated by solving 

 
{

−1𝑙1
𝑏𝑖𝑐𝑦𝑐𝑙𝑒

+ 2𝑙2
𝑏𝑖𝑐𝑦𝑐𝑙𝑒

= −2

2𝑙1
𝑏𝑖𝑐𝑦𝑐𝑙𝑒

− 1𝑙2
𝑏𝑖𝑐𝑦𝑐𝑙𝑒

= 2
  →   𝑇𝑏𝑖𝑐𝑦𝑐𝑙𝑒 = (

2

3
, −

2

3
). (2.6) 

 

 

Figure 4: Calculating the taste profile 𝑇𝑏𝑖𝑐𝑦𝑐𝑙𝑒 = (𝑙1
𝑏𝑖𝑐𝑦𝑐𝑙𝑒

, 𝑙2
𝑏𝑖𝑐𝑦𝑐𝑙𝑒

) 

for the bicycle. 

The users’ taste profiles are updated as users like (for example purchases items) 

or dislike (for example views the item’s Web site and ignores the item) items. Taste 

profile coordinates are updated so that only the coordinates of the item and user 

in question are updated. This requires checking that every adjacent nodes cross 

products will remain the same as before. For example, when user C in Figure 4 

buys (likes) the car, only user C’s and the car’s coordinates are updated. In this 

example, there are many possible coordinate combinations, and the solution is 

not unique. One possible solution is presented in Figure 5. 
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Figure 5: Updating the taste profile coordinates. Only the coordi-

nates of the item and user in question are changed (marked with 

blue color). 

As mentioned in Section 2.2.2, online auctions are highly dynamic marketplaces, 

where items are added and removed constantly. eBay tackles this with the help of 

graphs and low-dimensional users’ taste profiles, rather than computing large and 

dynamic item-item or user-user similarity matrices. Recommendations for a cer-

tain user can be computed by calculating the distances between user’s taste pro-

file and item profiles. If necessary, too similar items are not recommended.  

The exact techniques how eBay generate the end-user recommendation list from 

the graphs are not revealed in the speech. It remains unknown how the latent 

factors or possible candidate items are generated, if at all. However, the key idea 

in their recommender is to represent both users and items in the same vector 

space, and calculate similarities in this space to generate the recommendations. 

Dimensionality reduction is used to reduce the computation time.  
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3 Evaluating recommender systems 

Numerous goals for recommender systems were introduced in Section 2.1.3. It is 

useful to evaluate how well recommender systems perform with respect to these 

goals, and also with respect to variety of properties such as accuracy, robustness 

and scalability (Shani & Gunawardana, 2011). This chapter describes experimental 

settings and evaluation metrics that help in making choices between different rec-

ommender systems. 

3.1 Experimental settings 

Recommender systems can be compared with the help of experimental method-

ology. The methodology follow guidelines that are common for empirical studies: 

a hypothesis must be set before running the experiment, all sources of variation 

must be identified, and the generalization power of the experiment must be con-

sidered when drawing conclusions (Dean & Voss, 1999; Shani & Gunawardana, 

2011). Shani and Gunawardana (2011) divide experimental settings into user stud-

ies, offline experiments and online experiments (Shani & Gunawardana, 2011). The 

latter two are the most relevant in the context of this thesis, and they are dis-

cussed in the following. 

Offline evaluation is usually based on simulating the online environment of a rec-

ommender system by splitting the available data into training and test sets, similar 

to machine learning algorithms (Barbieri, et al., 2014; Bishop, 2006). In recom-

mender evaluation, the original dataset can be split into training and test sets by 

splitting in time, and using these sets the recommender can be simulated by mak-

ing predictions for the unseen test set. However, in order to make valid deductions 
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from the simulations, it needs to be assumed that the user behavior would have 

been the same whether the recommender was actually in use or not (Shani & 

Gunawardana, 2011). Offline experiments are attractive since they require no in-

teraction with the users. However, the drawback is that offline evaluations can 

only provide metrics from the past, and therefore, only a very few questions can 

be answered by solely relying on offline experiments (Shani & Gunawardana, 

2011; Barbieri, et al., 2014). 

In an online evaluation, recommender systems are partly or fully deployed in the 

target environment, where the recommender systems can be used by real users. 

This allows for testing the effects of the recommender system on real users that 

interact with the system. In addition, online evaluations are useful for testing mul-

tiple different recommender systems simultaneously to compare and rank them. 

Online evaluations require careful planning in order to draw reliable conclusions. 

For example, users need to be sampled multiple times and randomly when divid-

ing them into subsets of users in order to compare different recommender sys-

tems. Online evaluations can also be expensive and risky, which is why it is rea-

sonable to develop algorithms first by using offline evaluation (Shani & 

Gunawardana, 2011). 

3.2 Evaluation properties 

Shani and Gunawardana (2011) have listed numerous recommender system prop-

erties for measuring and ranking different recommender approaches (Shani & 

Gunawardana, 2011). Unless mentioned otherwise, the following is based on this 

list with the help of notation from Section 2.1.2. 

3.2.1 Predictive accuracy 

Predictive accuracy measures the accuracy of predicted ratings produced by the 

recommendation system. The accuracy can be measured by comparing the pre-

dicted ratings �̂�𝑖
𝑢 and actual ratings 𝑟𝑖

𝑢 with respect to some metric. Predictive ac-

curacy is usually calculated in offline experiments, since the real ratings 𝑟𝑖
𝑢 are 

typically known. In offline experiments, it is possible to choose a test set 𝒯 that 

contains only user-item pairs 〈𝑢, 𝑖〉 with an actual rating 𝑟𝑖
𝑢 ∈ 𝑹 (thus, ℐ𝑹(𝑢) ≠ ∅ 

and 𝒰𝑹(𝑖) ≠ ∅ for all 〈𝑢, 𝑖〉 ∈ 𝒯), and then calculate the accuracy with respect to 
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some metric. Predictive accuracy can be calculated in a similar manner when per-

forming online experiments, where the only difference is that the real ratings are 

usually retrieved through users’ online usage. 

A typical framework for an algorithm that measures predictive accuracy is pre-

sented in Algorithm 2. 

 

Algorithm 2: A typical framework for measuring predictive accuracy 

1. Divide user-item pairs 〈𝑢, 𝑖〉 ∈ 𝑹 into a training set 𝒮 ⊂ 〈𝑢, 𝑖〉 ∈ 𝑹 and a test set 𝒯 ⊂ 〈𝑢, 𝑖〉 ∈
𝑹, so that 𝒮 ∩ 𝒯 = ∅, 𝒮 = 𝒯 ≠ ∅ and 𝒯 ∩ 〈𝒰𝑹(𝑖), ℐ𝑹(𝑢)〉 ≠ ∅ for all 〈𝑢, 𝑖〉 ∈ 𝒯. This means 
that the test set contains only user-item pairs that have an actual rating, and the training set 
consists of the rest of the user-item pairs. 

2. Train the recommender system with training set 𝒮. 

3. Predict ratings �̂�𝑖
𝑢 for all user-item pairs 〈𝑢, 𝑖〉 ∈ 𝒯. Because a recommender system was de-

fined (Section 2.1.2) to be a scoring function  𝑝𝑖
𝑢: 𝒰 × ℐ → ℝ that maps user-item pairs to 

users’ preferences, the output of the function can be interpreted as users’ predicted rat-
ings �̂�𝑖

𝑢. 

4. Compare predicted ratings �̂�𝑖
𝑢 and the actual original ratings 𝑟𝑖

𝑢 for all 〈𝑢, 𝑖〉 ∈ 𝒯 with re-
spect to some metric. 

 

The Root Mean Squared Error (𝑅𝑀𝑆𝐸) is a metric that measures how close the 

actual and predicted ratings are to each other with the following formula: 

where |𝒯| is the number of user-item pairs 〈𝑢, 𝑖〉 in the test set 𝒯.  

The Mean Absolute Error (𝑀𝐴𝐸) measures the absolute deviation between the 

actual and predicted rating: 

 
𝑀𝐴𝐸 = √

1

|𝒯|
∑ |�̂�𝑖

𝑢 − 𝑟𝑖
𝑢|

〈𝑢,𝑖〉∈𝒯

. (3.2) 

Instead of trying to predict the exact ratings, one could try predicting the items 

that a user would choose. This is called usage prediction, where the idea is to hide 

some of the items 𝑖 ∈ ℐ𝑹(𝑢) that a user 𝑢 has experienced in the past, and then 

 
𝑅𝑀𝑆𝐸 = √

1

|𝒯|
∑ (�̂�𝑖

𝑢 − 𝑟𝑖
𝑢)2

〈𝑢,𝑖〉∈𝒯

, (3.1) 
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observe whether the recommender system recommends these items for the user. 

The logic for this is presented in Algorithm 3.  

 

 Algorithm 3: A typical framework for measuring usage prediction 

Assumptions: Let 𝑹 be a binary matrix of active users’ 𝑢 ∈ 𝒰 preferences, where each element 
𝑟𝑖

𝑢 ∈ 𝑹 ∈ {0, 1} represents whether a user has experienced an item 𝑖 ∈ ℐ. If user 𝑢 has experi-
enced item 𝑖, then 𝑟𝑖

𝑢 = 1, and if not, then 𝑟𝑖
𝑢 = 0. Let ℐ𝑹(𝑢) be the set of items that a user 𝑢 has 

experienced, and 𝒰𝑹(𝑖) the set of users that have rated item 𝑖. 

Initialize list ℒ = {}, which will be a list of lists that contain recommended items for each user 𝑢. 

Choose 𝑁𝑟 to be number of recommendations that will be suggested for each user 𝑢.  

1. Select user-item pairs 〈𝑢, 𝑖〉 ∈ 𝑹 into a test set 𝒯 ⊂ 〈𝑢, 𝑖〉 ∈ 𝑹, so that 𝒯 ≠ ∅, 𝒯 ∩
〈𝒰𝑹(𝑖), ℐ𝑹(𝑢)〉 = ∅ for some 〈𝑢, 𝑖〉 ∈ 𝑹, and 𝑟𝑖

𝑢 = 1 for all 〈𝑢, 𝑖〉 ∈ 𝒯. This means that the test 
set contains only user-item pairs for which a user has experienced the item, but not all of 
them. 

2. Choose a training matrix 𝑺 = 𝑹, and modify it so that 𝑟𝑖
𝑢 = 0 ∈ 𝑺 for all 〈𝑢, 𝑖〉 ∈ 𝒯. This means 

that the training matrix equals the original rating matrix with some of the items hidden. 

3. Train the recommender system with the training matrix 𝑺. 

4. For each user 𝑢 do: 
4.1. Use the recommender system to produce a list of 𝑁𝑟 recommendations ℒ𝑢 for user 𝑢 (as 

in Algorithm 1). 
4.2. Expand list ℒ with ℒ𝑢. 
4.3. End for-loop 

5. Compare recommendation list ℒ with the hidden user-item pairs in test set 𝒯. Do the com-
parison with respect to some metric. 

 

In offline experiments, usage prediction is based on the assumption that users 

would make their decisions in the same way, whether the recommender system 

was actually deployed or not. In other words, it needs to be assumed that the rec-

ommender system would not have had an effect on users’ choices in the past. This 

assumption can be false, for example in a situation where an unaware user would 

have wanted to experience the item, but no chance to see the item was given. 

Therefore, the recommenders may seem to perform worse in comparison to if 

they were actually implemented at the time of evaluation. 

The comparison of users’ experiences on items with the recommendations pro-

vided by the recommender system (Algorithm 3, step 5) can be done for each user 

alone, or to multiple users simultaneously. Table 4 presents four different scenar-

ios that are possible when comparing whether a certain user has experienced a 
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certain item with the items on the recommendation list. If the user has experi-

enced the item and the recommender system recommends this item, it is True-

Positive (𝑇𝑃), and if the recommender system does not recommend the item, it is 

False-Negative (𝐹𝑁). If the user has not experienced the item and the recom-

mender system recommends this item, it is False-Positive (𝐹𝑃), and if the recom-

mender system does not recommend it, it is True-Negative (𝑇𝑁). 

Table 4: Usage prediction scenarios when comparing whether a cer-

tain user has experienced a certain item with the items on the rec-

ommendation list. 

 Recommended Not recommended 

Experienced True-Positive (𝑇𝑃) False-Negative (𝐹𝑁) 

Not experienced False-Positive (𝐹𝑃) True-Negative (𝑇𝑁) 

 

By classifying each item in the user’s recommendation list to one of the cells in 

Table 4, it is possible to count user-specific usage prediction measures. Some of 

the most relevant measures in this thesis are presented in the following. 

The first usage prediction measure is precision, which is defined as follows: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝑟

=
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃
, (3.3) 

where #𝑇𝑃 is the number of items that were classified in Table 4 cell 𝑇𝑃, and #𝐹𝑃 

is the number of items that were classified in cell 𝐹𝑃. In a similar manner, #𝐹𝑁 is 

the number of items classified in cell 𝐹𝑁, and #𝑇𝑁 is the number of items classi-

fied in cell 𝑇𝑁. Because the number of items that are classified in each cell de-

pends on the number of recommendations 𝑁𝑟 (see Algorithm 3), precision meas-

ure can be calculated for different recommendation list sizes, which is noted by 

the sub-index 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝑟
. Precision describes the proportion of items that were 

suitable for the user from all the items that were recommended. 

Another measure for usage prediction is recall: 

 
𝑅𝑒𝑐𝑎𝑙𝑙𝑁𝑟

= 𝑇𝑃𝑅𝑁𝑟
=

#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁
, (3.4) 
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which is also known as the True-Positive-Rate (𝑇𝑃𝑅). The variables in the formula 

were defined above where the variables of equation (3.3) were defined. Recall is 

also dependent on 𝑁𝑟, and it is denoted with similar sub-index to precision. Recall 

describes the proportion of items that were correctly recommended from all the 

items that would have been suitable recommendations for the user. 

There is typically a tradeoff between precision and recall, and longer recommen-

dation lists typically improve recall and reduce precision. F1-Score (Rijsbergen, 

1979) is a measure that summarizes this tradeoff by taking the harmonic mean of 

precision and recall: 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑁𝑟

= 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝑟

∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑁𝑟

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝑟
+ 𝑅𝑒𝑐𝑎𝑙𝑙𝑁𝑟

. (3.5) 

The idea of ranking measures is to measure the ordering of items in a recommen-

dation list ℒ𝑢 that is displayed to a user through a user interface. The ordering of 

the items is produced by a ranking algorithm of the recommendation system, 

which aims to order the set of items according to user’s preferences (see Algo-

rithm 1, part 3). In a simple case, the ranking algorithm just orders the items in a 

decreasing order with respect to the predicted ratings.  

One possibility for scoring rankings is to use a reference ranking, in which the rank-

ing scores are based on correlation of some “true” ranking and the ordering of the 

recommendation list. When it is only known which items users have visited and 

which not, the visited items should be ranked above the non-visited items. This is 

valid only if it is known that the user was aware of all the non-visited items, and 

the user actually preferred visited items to the non-visited items. Constructing the 

true ranking is challenging when the number of items is large, and users may only 

see a fraction of these items.  

Another possibility is to use utility-based ranking measures, where it is assumed 

that the utility of a recommendation list is additive, and can be given as a sum of 

the utilities of individual recommendations. In this case, recommended items are 

discounted by a factor that depends on its position in the list of recommendations. 

Usually, it is assumed that users view recommendation lists from the beginning to 

the end, which is why the utility is discounted more heavily towards the end of the 

list. This assumption is reasonable when it is expected that users will only view a 

few of the items at the top of the recommendation list. 
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R-Score (Breese, et al., 1998) metric assumes that the value of recommendations 

declines exponentially down the recommendation list, yielding the following score 

for each user 𝑢: 

 
𝑅𝑢 = ∑ ∑

max(𝑟𝑢𝑖𝑗
− 𝑑, 0)

2
𝑗−1

𝛼−1

,

𝑗𝑢

 (3.6) 

where 𝑖𝑗 is the item in the 𝑗:th position, 𝑟𝑢𝑖 is user 𝑢’s rating for item 𝑖, 𝑑 is a task-

dependent neutral rating, and 𝛼 is a half-life parameter that controls the expo-

nential decline of the position values in the list. The half-life parameter can be 

interpreted as the number of items in the list such that there is a 50-50 chance the 

user will review that item. For usage prediction, typically 𝑑 = 0 and 𝑟𝑢𝑖 = 1 if the 

user has experienced the item, and 0 otherwise. The user-specific scores can be 

aggregated using 

 
𝑅 = 100

∑ 𝑅𝑢𝑢

∑ 𝑅𝑢
∗

𝑢
,  (3.7) 

where 𝑅𝑢
∗  is the score of the best possible ranking for user 𝑢. 

If it expected that user might view a large proportion of the list, a slower decay is 

needed. In this case, Normalized Cumulative Discounted Gain (NDCG) (Järvelin & 

Kekäläinen, 2002) with a logarithmic discount can be used. Assuming gain 𝑔𝑢𝑖 for 

each user 𝑢 being recommended an item 𝑖, the average Discounted Cumulative 

Gain (DCG) for a recommendation list with 𝑁𝑟 items can be defined as 

 

𝐷𝐶𝐺 =
1

𝑀
∑ ∑

𝑔𝑢𝑖𝑗

max(1, logb 𝑗)
,

𝑁𝑟

𝑗=1

𝑀

𝑢=1

 (3.8) 

where the logarithm base 𝑏 is a free parameter. NDCG is the normalized version 

of DCG 

 
𝑁𝐷𝐶𝐺 = 100

𝐷𝐶𝐺

𝐷𝐶𝐺∗
, (3.9) 

where 𝐷𝐶𝐺∗ is the best possible 𝐷𝐶𝐺. 
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3.2.2 Item coverage 

Item coverage refers to the extent that items are covered when providing recom-

mendations. Item space coverage can be measured by simply examining the per-

centage of items that can be recommended by the recommender system, denoted 

with ℐ𝑃 ⊆ ℐ. This measure is defined as Simple Item Space Coverage (𝑆𝐼𝑆𝐶): 

 
𝑆𝐼𝑆𝐶 =

|ℐ𝑃|

𝑁
, (3.10) 

where |ℐ𝑃| is the number of items in set ℐ𝑃, and 𝑁 is the number of items in set ℐ. 

3.2.3 Other properties 

Confidence measures how much the system trusts in its recommendations. One of 

the most common measures for this is the confidence interval, which statistically 

guarantees that the predicted value from the recommender system lies between 

a confidence interval with pre-defined probability 𝛼. Users can benefit from con-

fidence values when choosing items. For example, users might want to find more 

information about an item with low level of confidence (thus, the confidence in-

terval is large). Confidence can also be used for pre-filtering low confidence level 

items before making recommendations to users. 

In contrary to confidence, trust measures how much a user trusts in the recom-

mendations that are produced by the recommender system. Trust can be meas-

ured by conducting user studies, or by assuming that users will use the system 

repeatedly if they trust the recommendations. Trust requires user interaction, and 

it cannot be measured in offline experiments. 

Some users expect recommender systems to recommend products that they did 

not know about. Novelty of the recommendations can be measured online by con-

ducting user studies, but also offline. In offline experiment, the data is first split by 

specific point on time, meaning that the user ratings made after that point are 

hidden. After that, by also hiding some items before that time point, it is possible 

to simulate that the user was acquainted with these items but did not rate them. 

In this case, the recommender system is rewarded for recommending items that 

user rated after the split, and penalized for recommending items that user rated 

before the split. Moreover, it is possible to measure novelty by using the assump-

tion that popular items are less likely to be novel. 
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In a scenario where an item was successfully recommended to a user (for example, 

user decided to click the item that was recommended), it is possible measure how 

surprising the recommended item was to the user. This measure is known as ser-

endipity, which is as a measure for the amount of relevant information that the 

user was able obtain from the recommendation. In online experiments, serendip-

ity can be measured through user studies, and in offline experiments it can be 

measured by computing the distances between new successful recommendations 

and user’s previous ratings. 

Diversity is described as the opposite of similarity. If the recommender system sug-

gested only similar items to a user, it would be time-consuming for the user to 

browse through the whole range of items. One of the most explored methods for 

measuring diversity is by computing item-item similarities with the help of item 

features (see content-based filtering in Section 2.1.4). The actual measure can be 

based on various quantities, such as on the minimum, maximum or average dis-

tances between item pairs. 

Utility measures the benefits of a recommender system for either the system pro-

vider or the user.  For the system provider, utility can mean various things, such as 

the generated revenue or increase in average visit time of a user (see goals of a 

recommender system in Section 2.1.3). It is usually simple to evaluate by compu-

ting and comparing the quantity in question between different recommender sys-

tems through online experiments. From the user’s perspective, utility describes 

the benefits that a user can gain from the recommendations, which is difficult to 

model in reality. 

The users of a recommender system have their own risk profiles. They can be risk-

averse or risk-seeking towards recommendations, and for example, some online 

auction users might be willing to buy items from other users that have had nega-

tive feedback in the past, while some not.  

Robustness measures the recommender system’s ability to tolerate fake infor-

mation. For example, if a recommender system uses viewing time of an item as an 

implicit rating, and in reality the user was away from the computer for the whole 

time, the recommender should not make too strong assumptions of the user’s 

preferences. Moreover, a user could try to boost an item’s popularity by using fake 

profiles, and on the other hand, a user could try to inject competitors’ by giving 

negative ratings. Robustness can be evaluated by experimenting how sensitive the 

system is to these kind of attacks with respective to the system’s goals. Another 
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type of robustness is more related to the technical side of the recommendation 

system, such as how to handle a large number of queries or malfunctions. 

Privacy emerges when a recommender system discovers user’s preferences, and 

with the help of these preferences, makes recommendations to other users. This 

generates a privacy risk, and because collaborative recommendation techniques 

(see Section 2.1.4) are based on this, the recommender system must be certain 

not to leak any sensitive private information. In addition, user anonymity is a pri-

vacy concern, as seen in the Netflix Price (Amatriain & Basilico, 2012) case, where 

researchers were able to reveal the anonymity of some Netflix users by combining 

the anonymized movie rating data from multiple sources (Narayanan & 

Shmatikov, 2008). Privacy usually comes at the expense of predictive accuracy, 

and it can be evaluated, for example by comparing different systems with respect 

to the portion of users whose private information were at risk.   

Recommender systems are often implemented at large scale, which is why scala-

bility of the system plays an important role. The chosen algorithms and techniques 

affect the resources that are needed, such as the computational power, memory 

and time. Users expect recommender systems to provide recommendations rap-

idly, and therefore the algorithms and techniques must be chosen with respect to 

available resources. Thus, it is useful to understand the consumption of these re-

sources over large data sets. Scalability can be measured by different quantities, 

such as number of recommendations per second, or latency (time for making a 

recommendation online). 
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4 Developing the recommender 

4.1 Problem description 

In this thesis, a recommender system is built for a major Finnish online auction 

site. The recommender system is built and evaluated offline using historical online 

browsing data of the auction site users. 

Figure 6 illustrates how the items are currently displayed on the front page of the 

online auction site. In general, the items on the front page can be divided into 

three different main categories: ‘Display window’ (‘Näyteikkuna’ in the figure), 

‘Ending soon’ (‘Vielä ehdit’ in the figure), and ‘Most popular’ (‘Suosituimmat’ in 

the figure). There are 15 items under the category ‘Display window’, where the 

sellers have paid money to get their auction item on front page display for a cer-

tain amount of time. The category ‘Ending soon’ aims to attract the last-minute 

bidders by displaying five auction items that are closing soon, and ‘Most popular’ 

displays five of the most popular items based on item view count. 
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Figure 6: Screenshot of the front page, taken 27.3.2016. 
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As can be seen from the figure, items on the front page are random and likely to 

be irrelevant for the users, especially for those who have the intention to buy only 

certain items. For example, a car and travel enthusiastic male user might not be 

interested in buying a stuffed wild boar or a woman’s handbag as displayed on the 

front page in Figure 6.  

This thesis aims to build a recommender system that makes the front page more 

relevant and personalized for the users. This is achieved by having the recom-

mender system to choose the items to display on the front page. In this thesis, 

multiple recommenders are evaluated based on their predictive accuracy. 

Several challenges, constraints and requirements are to be taken into account 

when building a recommender system. The following sections describe the used 

approaches, experimental setup, and the building process of potential recom-

menders. 

4.2 Considerations 

The large number of items and dynamic nature of the online auction are significant 

factors when considering recommendation techniques. There are continuously 

around 1.5 million items for sale on the auction site, and the average expiration 

time for them is around two weeks. Bidders may also close auctions by winning 

items before they expire. Moreover, tens of thousands of items are added on sale 

every day. 

Nearly every item on the auction site is unique. Even items with the same product 

title often have dissimilarities, such as the condition, price, seller or the location 

of the item. 

Even though hundreds of thousands users visit the site every week, many items 

have only few views, and some items may have no item views at all. The large 

number, uniqueness, and the dynamic nature of items lead to sparsity if repre-

sented in a traditional user-item rating matrix. Moreover, the dynamicity of items 

would require adding and removing item columns from the rating matrix columns 

continuously. 

For practical considerations, the recommender system should be able to provide 

the recommendations quickly. The target requirement for computing the recom-
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mendation when it is queried is less than 100 milliseconds for the recommenda-

tion computation. This time limit allows for performing the necessary queries to 

display the recommendations, while not affecting the user experience through 

slow page loading times. The recommender should provide 𝑁 = 20 recommenda-

tions to be displayed on the front page. The recommender should be able to rec-

ommend recently added items as well. 

4.3 Data 

The online auction site collects data about users and their activities on the web-

site. The data available for this thesis are raw web log data of user clickstreams. In 

this data, users are identified based on their IP address. No data about users’ pre-

vious events, such as sales, purchases or feedbacks exist. Moreover, detailed in-

formation about the auction items is not available. 

Although the data available is limited, there is still vast amount of information to 

be utilized. The data allow for building and evaluating a recommender system. The 

data used in this thesis are divided into two different main datasets: Dictionary 

dataset and Recommender dataset, which are described in the following. How-

ever, due to data privacy and trade secrets, a very detailed exploratory analysis of 

the data is not provided. 

1. Dictionary dataset 

The Dictionary dataset is a one-year sample of user item views between June 2014 

and May 2015. Item views are web log events where users have viewed auction 

items on their item-specific web pages. Each item view event in the web log in-

cludes information about the title of the item (item title) and the category of the 

item (item category). 

Item titles are parsed from the web logs, and they are missing special Finnish char-

acters, such as “ä” and “ö”. Non-alphabetical characters, and words or numbers 

with the length of one are removed from the titles. Because item titles are mostly 

product names, most of the words do not have inflected forms, and stemming is 

not considered necessary. 
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The online auction site uses a three-level item category hierarchy, where the first 

level has 22 categories, second level 95 categories, and the third level 737 catego-

ries. Item category column in this dataset represents the most specific, third level 

category of the item. 

The Dictionary dataset has item views for over 4.7 million unique items which to-

gether cover all possible item categories. The dataset will be used later on as a 

dictionary and training data for content-based recommenders. A sample of the 

Dictionary dataset is shown in Table 5. 

Table 5: A five row sample from the Dictionary dataset, where the 

columns are the row id, item category and item title. 

Row id Item category Item title 

1 417 market black music placebo 

2 419 europe youth megadeth nimmareilla juliste 

3 668 hyvakuntoinen gloria heinakuu lehti 

4 586 caprit marimekko ritva falla suunnittelemat 

5 96 disney pentujengi alaskassa puhumme suomea 

 

2. Recommender dataset 

The Recommender dataset contains all item views, category views, category 

search queries and global search queries from the auction site between June 2015 

and November 2015. Category views are web log events where users have 

browsed items in a category page. Category search queries are events where users 

have performed search queries within a category page. Global search queries are 

events where users have performed searched queries from all categories. Each of 

these previously mentioned events includes an IP address based user id, 

timestamp, session id and item id, if it exists. 

Here again, item titles are parsed from the web logs, and they are missing Finnish 

special characters. Moreover, any non-alphabetical characters and words or num-

bers of length one are removed from the titles. Once again, stemming is not con-

sidered necessary. In comparison to the Dictionary dataset, item categories can be 

any of the three category levels in the hierarchy. 
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The recommender dataset has hundreds of millions of events. For efficiency, the 

data is saved in a compressed format, where the event type can be inferred from 

empty values in different columns. Moreover, a new aggregated words –column 

is added to combine item titles and words used in search queries. Table 6 illus-

trates how event types can be inferred from empty values in columns.  

Table 6: A sample of the Recommender dataset. The inferred event 

type column is not part of the real dataset, and in the table below, 

it indicates the event type of each row. For each row, the event type 

can be inferred from the empty cell values of the row. 

Row 

id 

User 

id 
Timestamp Session id 

Item cat-

egory 
Item id 

Words 

(Search query 

/ Item title) 

Inferred event 

type 

1 36 
2015-11-16 

12:51:01 
Rkjenio54 127 - walking dead 

Category search 

query 

2 36 
2015-11-19 

14:52:55 
Epka44df 215 383668 

walking dead 

figuuri rick 
Item view 

3 1009 
2015-08-16 

08:15:01 
4jk3l4aeds - - mcfarlane 

Global search 

query 

4 23 
2015-11-16 

12:22:00 
0f0fdkrY3 472 - - Category view 

 

When the item views of Recommender dataset are represented in a user-item rat-

ing matrix, the sparsity is approximately 0.001 %, which is very sparse. Moreover, 

a large portion of the users in the dataset has only few sessions. The Recom-

mender dataset is the main dataset used for recommender training and evalua-

tion. 

3. External item dataset 

The External item dataset has around 4 million items with full item information. 

The closing times of these items span randomly mostly around November 2015. 

Only item titles and lowest level categories will be utilized from this dataset. The 

purpose of this dataset will be described in more detail in Section 4.7.1. 
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4.4 Implications on recommenders 

The sparsity and dynamic nature of the rating matrix out rule traditional collabo-

rative filtering techniques that use the rating matrix for computing recommenda-

tions. Moreover, sparsity in the matrix would lead to cold start problem, and some 

items would never get recommended since no users have experienced them. Since 

items are added and removed continuously on the auction site, the columns of the 

matrix should also be dynamically updated. 

This problem could be approached by creating clusters, where items similar to 

each other belong to the same cluster based on some pre-defined item features. 

New items could be assigned to these clusters by calculating the distance to each 

cluster. However, in this thesis, the lack of extensive item data makes this difficult 

to implement. On the other hand, it is possible to use item categories as clusters, 

since items are similar to each other within categories. Categories also remain the 

same over time. Using categories as a starting point for recommendations in this 

sense is reasonable.  

The lack of extensive item data affects the fine-tuning of the ultimate recommen-

dation list. For example, two items with the same item title could be sorted by 

additional attributes, such as the price, auction type, seller or location. These ad-

ditional attributes would also describe the implicit user preferences in more detail, 

such as the significance of different factors for the user. 

To be able to recommend the most recently added items, part of the recommen-

dation calculation has to be left for online computation, or at least the recommen-

dations have to be updated frequently offline. To meet the recommendation time 

requirements, the recommendations should be pre-calculated offline as far as pos-

sible. In this thesis, a combination of offline and online calculation is used. User 

history is aggregated offline, but the actual recommendations are computed 

online, as close to user’s query for recommendation as possible. 

4.5 Recommendation process 

Based on the requirements and implications described in the previous chapters, a 

general recommendation process is developed. The overview of this process is il-

lustrated in Figure 7. It is a six step process that provides a general framework for 



42 

 

 

producing the recommendation list from start to finish. The process is described 

in more detail in the following. 

 

 

Figure 7: The six step recommendation process. 

1. Query for recommendation 

In the first step, the recommender receives a recommendation query from the 

auction site to fetch top 20 items to be displayed for a certain user on the front 

page. 

2. Compute category rankings 

In the second step, categories of any level are selected by looping the most recent 

sessions of the user in chronological order. The categories can be of any category 

level in the category hierarchy. As long as there are more sessions to loop through, 

parameter 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 is not reached, and more than three sessions have not been 

looped through, categories are taken from the most recent sessions. 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 

is a parameter that controls the number of user word queries that will be used in 

cosine similarity calculation (see formula (2.1)) later on. User word query refers to 

the word column in user’s browsing history, and it can be either item title, cate-

gory search query, or a global search query, as illustrated in Table 6. 
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Categories are then ranked in chronological order, where the most recent cate-

gory is ranked the highest. Duplicate categories are removed by choosing the high-

est ranking for each of the duplicates. If the user has less than 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 user 

word queries available in the user history, and/or less than three experienced ses-

sions, then all available categories are used. On the other hand, if the user has no 

previously experienced categories or word queries, the recommended items are 

selected randomly. 

After ranking the categories obtained in the loop, similar categories to those are 

taken from pre-calculated category similarities (calculation described in Section 

4.7.1). This is done by looping through the already ranked categories, and then 

fetching and ranking the similar categories after the already ranked categories. For 

example, if ten categories were obtained when looping through the most recent 

sessions of the user, the most similar category to the category that was ranked as 

#1 is ranked as #11, the most similar category to the category that was ranked as 

rank #2 is ranked as #12, and so on. Once again, duplicate categories are removed 

by choosing the highest ranking for each of the duplicates. The last step is to re-

move categories that are not of the lowest hierarchy level, in order to avoid fetch-

ing all candidate items from just one category later on. Because the pre-calculated 

category similarities has similarities between different hierarchy levels, it is possi-

ble to obtain ranking for all of the lowest level categories for the user. The ob-

tained category rankings are used in later steps to fetch the candidate items. 

3. Compute word queries 

The third step is done in parallel with the second step. In the third step, word que-

ries are selected from the most recent sessions in the same loop as for categories 

in step 2. As long as there are more sessions to loop through, parameter 

𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 is not reached, and more than three sessions have not been looped 

through, categories are taken from the most recent sessions in chronological or-

der, and unique word queries are taken from the word column. Collecting user 

word queries this way guarantees that word queries chosen are relevant to the 

top ranked categories chosen. Similarly to step 2, if the user has less than 

𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 user word queries available in the session history, and/or less than 

three experienced sessions, then all available word queries are chosen. 

At this point, category rankings and user word queries have been obtained. It is 

possible that more than 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 is collected when looping through the user’s 

most recent events. Therefore, a simple heuristic is used to reduce the number of 
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queries. First, cosine similarity is calculated between all the queries, where the 

vector space used is determined by the recommender. The end result is a similarity 

matrix where queries are in both the rows and the columns. Second, the column 

sums are calculated, and finally 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 number of queries with the smallest 

summed similarities are chosen. This heuristic aims to quickly choose the 

𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 number of distinct user word queries from all the available queries. 

4. Fetch candidate items 

In the fourth step, candidate items are fetched from the categories that were 

ranked in step 2. Items are chosen from the categories in the ranked order until 

𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 number of items has been obtained from the categories. The param-

eter 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 controls the maximum number of items chosen for similarity 

calculation against the user word queries from step 3. Items are assumed to be 

stored in an in-memory database, and the vector space is determined by the rec-

ommender. 

5. Calculate similarities and rank items 

In the fifth step, cosine similarities are calculated between the user word queries 

obtained in step 3 and the candidate items obtained in step 4. This results into a 

matrix of size 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 x 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠. After this, top round (
𝑛𝑅𝑒𝑐𝑠

𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠−1
) num-

ber of most similar items are chosen for each query (row-wise). Candidate items 

with zero similarity are removed from each row. Parameter 𝑛𝑅𝑒𝑐𝑠 controls the 

target number of ranked items for the recommendation list. For each query, the 

candidate items are sorted in descending order based on the similarity. The end 

result is a matrix, where each is row is sorted column-wise. This matrix is then 

transposed and flattened into a 1-dimensional array (2nd transposed row comes 

after 1st transposed row, 3rd  after 2nd , and so on). Possible duplicate candidate 

items are removed from this array by keeping only the first occurrence for each. 

The resulting array represents the top items to be recommended for the user, in 

descending order based on the user word queries. Most of the consecutive items 

in the array are dissimilar, since they correspond to top items for different user 

word queries, and on the other hand, the queries were chosen to be distinct in 

step 3. 
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6. Generate the ultimate recommendation list 

The sixth and final step is about generating the recommendation list. Instead of 

taking only the items from step 5, a simple modification is applied first. Based on 

initial experiments with different approaches, it was observed that users tend to 

visit the same items they have previously visited. Therefore, at most five of the 

most recently visited items by the user are chosen to be the first five items on the 

recommendation list. Thus, they are placed on ranks #1-5 on the recommendation 

list, depending whether the items are still available for sale. The recommendations 

computed in step 5 are added after the previously visited items to the recommen-

dation list, with no modifications made in the ordering. 

In the end, a ranked recommendation list is obtained. Maximum of five of the first 

five items are ones that the user has experienced before. Since items with zero 

similarity are removed from the recommendation list and only unique items are 

taken from the flattened array, it is possible that the number of ranked items in 

the end is more or less than 𝑛𝑅𝑒𝑐𝑠. By controlling 𝑛𝑅𝑒𝑐𝑠 in step 5, it is possible to 

guarantee a certain number of ranked items. However, increasing 𝑛𝑅𝑒𝑐𝑠 requires 

more calculation and leads to slower recommendation times. 

As shown in Figure 7, the category rankings and user word queries can be pre-

calculated offline for each user as their user profile. Then, time will only be needed 

for fetching this pre-calculated user profile at the point of recommendation. The 

rest of the steps in the recommendation process have to be done online. The most 

time-consuming part is the similarity calculation in step 5, which could be parallel-

ized if necessary. The time spent in online calculation can also be controlled via 

the previously mentioned parameters. The parameters that allow for controlling 

the recommendation process and calculation time are summarized in Table 7. 

  



46 

 

 

Table 7: Recommendation process parameters. 

Parameter Description 

𝒏𝑺𝒆𝒂𝒓𝒄𝒉𝒆𝒔 The maximum number of user word queries that are taken from the brows-

ing history of a user. The queries are used in similarity calculation against 

the candidate items. This parameter allows for controlling the similarity cal-

culation time, and it can also be used for controlling the diversity of the 

output, since it allows for taking older word queries into account from the 

user’s past. 

𝒏𝑪𝒂𝒏𝒅𝑰𝒕𝒆𝒎𝒔 The maximum number of items that are chosen from all possible items that 

are for sale. This parameter allows for controlling the similarity calculation 

time against the user word queries, and it directly controls the item cover-

age (see Section 3.2.2). 

𝒏𝑹𝒆𝒄𝒔 The target number of ranked items that is needed from the recommender. 

It is time-efficient to not rank every possible item. However, it is not guar-

anteed that 𝑛𝑅𝑒𝑐𝑠 number of items are ranked. If 𝑛𝑞 is the number of 

items that needs to be guaranteed to be ranked, 𝑛𝑅𝑒𝑐𝑠 should be chosen 

to be 𝑛𝑞 ∗ (𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 − 1). 

 

4.6 Recommenders 

A total of seven different recommenders are used in this thesis: LastItems, Ran-

domized, TFIDF, LSI, LSIub, LDAub and W2V. LastItems and Randomized are used 

as reference point recommenders, and their recommendation process differs 

from the process described in Section 4.5 by not using the user word queries at 

all. Recommenders TFIDF, LSI, LSIub, LDAub and W2V obey the recommendation 

process and represent items in their respective vector spaces. They also use dif-

ferent kinds of training methods.  

To illustrate the recommendations by each of these recommenders, a randomly 

chosen user browsing history is used as a case example. The browsing history of 

the chosen user is shown in Figure 8.  
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Figure 8: User history used as a case example to illustrate the output 

of different recommenders. 

As it can be seen from the figure, the case example follows the format of the Rec-

ommender dataset as illustrated in Table 6. The user history consists of 7 unique 

sessions and categories visited over the past 6 months period, with a total of 12 

user word queries available (NaN represents a missing value). This user history is 

used as an input for the recommenders to illustrate the output produced by dif-

ferent recommenders. Top 20 recommendations are produced by each of the rec-

ommenders. The available items for sale in the recommenders are the same that 

will be used in offline simulation later on (Section 4.7.1). Each recommender and 

the output for the case example is presented in the following sections.  

4.6.1 Recommending previously visited items 

Many users come back to see the same items they have previously visited. The 

recently visited items recommender, LastItems recommender, utilizes short-living 

items by ranking those items higher that the user has experienced in the past. The 

recommender ranks items based on their recency – the most recent item being 

ranked as #1, the second most recent as #2, and so on. If none of the previously 

visited items are still for sale, ranks are assigned randomly. This simple recom-

mender is considered as a reference point recommender. The recommender 

avoids heavy computations, and allows for only storing maximum of 𝑁𝑢 most re-

cent items for each user. This is also the only parameter of the recommender. 

The intuition behind the recommender is that users may want to come back to 

view the items they have previously considered interesting. For example, user 
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might want to review the current bidding situation of an item. This simple recom-

mender should already make the front page more relevant for the users, although 

it does not provide anything new to the users. However, since items are short-

lived, users will not see the same items on the front page for a long time. 

Figure 9 illustrates the output of this recommender for the case example in the 

ranked order. As it can be seen, from all the items visited by the case example 

user, only “burberry lompakko” is still available for sale, and thus it is ranked as 

#1. The rest of the items are chosen in the order they appear in the recommender, 

and they are most likely not relevant for the user.  

 

 

Figure 9: Top 20 recommendations for the case example by the 

LastItems recommender. 

4.6.2 Recommending items from previously 

visited categories 

The Randomized recommender ranks those items higher that are from the same 

lowest level categories that the user has experienced in the past. The intuition 

behind this recommender is that users are more likely to rank those items higher 

that are from the same categories they have previously experienced than those 

from other categories. This recommender ranks items in a certain category ran-

domly, but only for the top 𝑁𝑐𝑎𝑡 categories, which are selected based on the sec-
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ond step of the recommendation process (compute category rankings, as de-

scribed in Section 4.5). The parameters for this recommender are 𝑁𝑐𝑎𝑡 and 

𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠, where the latter controls the ranking of the categories.  

The Randomized recommender is also considered as a baseline model to which 

compare other recommenders to. It provides a simple heuristic for making the 

displayed items more relevant to the users. 

Figure 10 illustrates recommendations by the Randomized recommender for the 

case example. Because previously visited items are only taken into account 

broadly only through their category, users may find new items that are similar to 

previously visited items. Since no user word queries are used to produce the rec-

ommendations, items from those categories are also recommended where the 

user has only visited but not viewed an item. For example, in this case example, 

user has visited category 191, but did not view any item or perform a search query 

in that category. Even so, items from category 191 are recommended.  

 

 

Figure 10: Top 20 recommendations for the case example by the 

Randomized recommender. 

4.6.3 Term Frequency-Inverse Document Fre-

quency 

The Term Frequency-Inverse Document Frequency (TFIDF) recommender repre-

sents items in TFIDF vector space, where those items are ranked higher that have 
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similar item titles to those items that the user has experienced in the past. Adopt-

ing from Lops et al. (2011), the general TFIDF vector space model is represented 

in the context of this thesis (Lops, et al., 2011).  

In TFIDF every item can be represented as a vector of term weights, where each 

weight indicates the degree of association between the item and the term. Let 

ℐ𝑡 = {𝑖𝑖, 𝑖2, … , 𝑖𝑁} be a set of item titles and 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} be the set of words 

in the set of item titles. Now, by representing each item 𝑖𝑘 as a vector in 𝑑𝑇𝐹𝐼𝐷𝐹  

dimensional space, it is possible to obtain 𝑖𝑘 = {𝑤1𝑘, 𝑤2𝑘, … , 𝑤𝑛𝑘}, where 𝑤𝑗𝑘 is a 

weight for term 𝑡𝑗 in item 𝑖𝑘. 

In TFIDF, those terms that occur frequently in one item title but rarely in other 

item titles, are more likely to be relevant to that item title. The weights can be 

written as follows 

 
𝑤𝑗,𝑘 = 𝑇𝐹(𝑡𝑗 , 𝑖𝑘) × log2 (

𝑁

𝑛𝑗
), (4.11) 

where 𝑁 is the number of items in the set of items ℐ𝑡, and 𝑛𝑗  is the number of 

items in the set of items in which the term 𝑡𝑗 occurs at least once. Here, the term 

frequency is 

 
𝑇𝐹(𝑡𝑗 , 𝑖𝑘) =

𝑓𝑗,𝑘

max
𝑧

𝑓𝑧,𝑘
, (4.12) 

where the maximum is computed over the frequencies 𝑓𝑧,𝑘 of all terms 𝑡𝑧 that 

occur in item title 𝑖𝑘. Now, with normalization to unit length the weights can be 

represented as 

 
𝑤𝑗,𝑘 =

𝑓𝑗,𝑘

max
𝑧

𝑓𝑧,𝑘
× log2 (

𝑁

𝑛𝑗
), (4.13) 

which means that each item 𝑖𝑘 can be represented as a vector in 𝑑𝑇𝐹𝐼𝐷𝐹  dimen-

sional space. By following formula (2.1), the similarity of two items can be com-

puted with cosine similarity 

 
𝑠𝑖𝑚(𝑖𝑎, 𝑖𝑏) =

∑ 𝑤𝑗,𝑎 ∙ 𝑤𝑗,𝑏𝑗

√∑ 𝑤𝑗,𝑎
2

𝑗 ∙ √∑ 𝑤𝑗,𝑏
2

𝑗

. 
(4.14) 
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TFIDF recommender follows the general recommendation process as described in 

Section 4.5, and in TFIDF vector space. TFIDF recommender allows for represent-

ing both the user browsing history (experienced items) and the items for sale in 

the same 𝑑𝑇𝐹𝐼𝐷𝐹-dimensional space for quick online similarity computation.  

The computation time is mostly spent on the similarity calculation, where the time 

depends on the number of user word queries used, and the number of candidate 

items chosen. However, item titles are short, and the number of terms is smaller 

than the dimension 𝑑𝑇𝐹𝐼𝐷𝐹, which allows for sparse matrix representation. 

The parameters for TFIDF recommender are the dimension 𝑑𝑇𝐹𝐼𝐷𝐹, which can be 

controlled by choosing the number of most frequent terms to keep. The recom-

mendation process parameters 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠, 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 and 𝑛𝑅𝑒𝑐𝑠 are also pa-

rameters of the TFIDF recommender. 

Figure 11 illustrates recommendations by the TFIDF recommender for the case 

example. Since recommendations are based on the words as is, each recommen-

dation must contain words that are already present in the user search queries. For 

example, words “arabia” and “burberry” are included in many of the recommen-

dations. 

 

 

Figure 11: Top 20 recommendations for the case example by the 

TFIDF recommender. 
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4.6.4 Latent Semantic Indexing 

Latent Semantic Indexing (LSI), also known as Latent Semantic Analysis (LSA), was 

proposed by Deerwester et al. in 1990 (Deerwester, et al., 1990). It is a theory and 

method that extracts and represents contextual-usage meaning of words by sta-

tistical computations applied to a text corpus. It determines the similarity of mean-

ing of words and sets of words by aggregating all the word contexts in which a 

given word does and does not appear (Landauer, et al., 1998).  

LSI applies a singular value decomposition (SVD) to a document-term matrix, 

where unique term weights are in the rows and documents are in the columns. 

SVD decomposes this matrix into a product of three other matrices. One compo-

nent matrix describes the original row entities as vectors of derived orthogonal 

factor values, another describes the original column entities in the same way, and 

the third is a diagonal matrix containing scaling values. The original matrix can be 

reconstructed by multiplying these three matrices, and SVD allows for dimension 

reduction by ordinarily deleting coefficients from the diagonal matrix, starting 

from the smallest (Landauer, et al., 1998). 

In this thesis, item titles are considered as documents. The LSI recommender 

transforms items from TFIDF vector space to LSI space by reducing the dimension 

of TFIDF weighted term matrix from 𝑑𝑇𝐹𝐼𝐷𝐹  to 𝑑𝐿𝑆𝐼. The highest valued coefficients 

of the diagonal matrix are used for transforming new, unseen items into the LSI 

space. 

The parameters for LSI recommender include all the parameters from TFIDF rec-

ommender, such as the dimension 𝑑𝑇𝐹𝐼𝐷𝐹  and recommendation process parame-

ters 𝑎𝑟𝑐ℎ𝑒𝑠, 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠, and 𝑛𝑅𝑒𝑐𝑠. Moreover, parameter 𝑑𝐿𝑆𝐼 controls the 

target LSI-dimension.  

Figure 12 illustrates recommendations by the LSI recommender for the case ex-

ample. Since LSI aggregates all the word contexts in which a given word does and 

does not appear, it is possible to have items on the recommendation list that con-

tains no words or only few words from the original user word queries. For exam-

ple, “walt disney nalle puh ja nasu kainalossa jaakaappimagneetti” is fourth on 

the list, even though “ja” is a common Finnish word and it is the only word that 

appears in the user word query. The high ranking could be due to similarities be-

tween words “muki” and “disney”, ”nalle” or “puh”. These word similarities are 
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learned by the recommender in advance, during the training process of the rec-

ommender. The training of each recommender is described on a high-level in Sec-

tion 4.7.2. 

 

 

 

Figure 12: Top 20 recommendations for the case example by the LSI 

recommender. 

4.6.5 User-based Latent Semantic Indexing 

User-based Latent Semantic Indexing (LSIub) recommender is similar to LSI recom-

mender, and the only difference is in the training process. In the training process 

of LSIub, new word contexts are artificially created by joining the words of user 

sessions in a training corpus. The intuition is to show the recommender which 

words have tendency to appear together within a single browsing session, and use 

these as individual training documents. The parameters for LSIub are similar to LSI, 

including 𝑑𝐿𝑆𝐼, 𝑑𝑇𝐹𝐼𝐷𝐹 , 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠, 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 and 𝑛𝑅𝑒𝑐𝑠. 

Figure 13 illustrates recommendations by the LSIub recommender for the case ex-

ample. Since LSIub not only aggregates all the word contexts in which a given word 

does and does not appear, but also creates new word contexts by aggregating 

words from the sessions of different users in the past, it is possible to have recom-

mendations that are significantly different from the original user word queries. For 

example, LSIub recommends a 2€ coin “2 euro ranska 2010 kenraali charles de 
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gaullen” for the case user, even though only the category 254 view indicates that 

the user could be interested in coins. However, the new artificially created con-

texts might have had examples where users have experienced both “ara-

bia”/”muumi” and coin related items during the same session. This would be rea-

sonable since all the previously mentioned words are popular among collectors. 

 

 

 

Figure 13: Top 20 recommendations for the case example by the 

LSIub recommender. 

4.6.6 User-based Latent Dirichlet Allocation 

In general, Latent Dirichlet Allocation (LDA) is a generative probabilistic topic 

model introduced by Blei et al. in 2003. The underlying idea in LDA is that docu-

ments are represented as random mixtures over latent topics 𝑘, where topics are 

characterized by a distribution over words. LDA assumes that each document in a 

collection of documents is generated through the following process (Blei, et al., 

2003): 

1. Choose a number of words 𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜉) from the document, where 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 is the Poisson distribution. 

2. Generate 𝑑𝐿𝐷𝐴 topics by randomly choosing a word distribution 𝜃𝑘~𝐷𝑖𝑟(𝛽) 

for each topic 𝑘 ∈ 𝐾, where 𝐷𝑖𝑟 is the Dirichlet distribution. 

3. For each of the 𝑁 words 𝑤𝑖: 
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a. Choose a topic 𝑧𝑖~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃), where 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 is the multi-

nomial distribution. 

b. Choose a word 𝑤𝑖 from 𝑃(𝑤𝑖|𝑧𝑖, 𝛽), which is a multinomial probability 

conditioned on topic 𝑧𝑖. 

Because distributions for the model parameters are difficult to compute directly, 

approximate inference algorithms have been proposed, such as variational infer-

ence (Blei, et al., 2003) or Gibbs sampling (Griffiths & Steyvers, 2004). 

In LDA vector space, items are represented as 𝑑𝐿𝐷𝐴 dimensional vectors, where 

the vector elements are the latent topics. Similar to LSIub recommender, LDAub 

recommender is trained on documents, where each document consists of the 

words that appear within a single browsing session. In early experimentation with 

LDA it was observed that LDA solely trained on individual words leads to poor ac-

curacy due to short length of individual item titles. Therefore, only LDAub is con-

sidered in this thesis. 

LDAub follows the previously presented recommendation process with parame-

ters 𝑎𝑟𝑐ℎ𝑒𝑠, 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠, and 𝑛𝑅𝑒𝑐𝑠. In addition, the number of latent topics 

𝑑𝐿𝐷𝐴 is a parameter of the recommender. 

Figure 14 illustrates recommendations by the LDAub recommender for the case 

example. Since recommendations in LDAub are based on similarities of latent top-

ics rather than exact words, many items are recommended even when the exact 

words do not appear in the original user word queries. Some of the recommended 

items, such as gun related “piipunsuun suojus kivaariin m 39 eli pystykorvaan” or 

handcraft related “tuunaajalle wanha lankaharveli”, would seem to be irrelevant 

based on the user’s history. 
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Figure 14: Top 20 recommendations for the case example by the 

LDAub recommender. 

4.6.7 Word2Vector 

In 2013, Mikolov et al. proposed two novel model architectures for computing 

continuous vector representations of words for large datasets (Mikolov, et al., 

2013). Their Word2Vec (W2V) model learns vector representations for words by 

using a shallow neural network language model. One of these is the skip-gram 

neural network architecture that consists of an input layer, a projection layer and 

an output layer to predict nearby words. Due to its simple architecture, the skip-

gram model can be trained with billions of words per hour on a single conventional 

desktop computer. Word vectors are trained to maximize log probability of neigh-

boring words in a given sequence of words 𝑤1, 𝑤2, … , 𝑤𝑁 

 1

𝑁
∑ ∑ log 𝑃(𝑤𝑗|𝑤𝑡),

𝑗∈𝑛𝑏(𝑡)

𝑁

𝑡=1

 (4.15) 

where 𝑛𝑏(𝑡) is the set of neighboring words of 𝑤𝑡, and 𝑃(𝑤𝑗|𝑤𝑡) is a hierarchical 

softmax of the associated word vectors 𝑣𝑤𝑗
 and 𝑣𝑤𝑖

. The model can learn complex 

word relationships, such as 𝑣𝑒𝑐(𝐽𝑎𝑝𝑎𝑛) − 𝑣𝑒𝑐(𝑆𝑢𝑠ℎ𝑖) + 𝑣𝑒𝑐(𝐺𝑒𝑟𝑚𝑎𝑛𝑦) ≈

𝑣𝑒𝑐(𝑏𝑟𝑎𝑡𝑤𝑢𝑟𝑠𝑡) (Kusner, et al., 2015; Mikolov, et al., 2013). 

The W2V recommender utilizes W2V model’s ability to learn associations from 

neighboring words by combining words from users’ sessions, similar to LSIub and 

LDAub. The intuition is to show W2V model which words tend to appear together 
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within a browsing session, aiming to include this information in the vector repre-

sentations of words. For example, if two words appear within the same browsing 

session often, their vectors should be more similar than of those words which 

never appear within a session. 

Since each word is represented by a vector, user word queries and item titles that 

consist of multiple words need to be aggregated. To tackle this problem, different 

techniques have been proposed, such as Paragraph2Vec (Mikolov & Le, 2014). 

These techniques take the word order into account, but in the case of item titles 

and user word queries, the word order is not crucial. During initial experiments 

with W2V recommender, it was found that decent predictive accuracy could be 

achieved by taking the mean of the word vectors and using cosine similarity to 

calculate similarities in the W2V vector space. 

The parameters for W2V are the recommendation process parame-

ters 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠, 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 and 𝑛𝑅𝑒𝑐𝑠. Moreover, parameter 𝑑𝑊2𝑉 controls 

the word vector representation dimension, and 𝑤𝑖𝑛𝑑𝑜𝑤 parameter controls the 

maximum distance to be considered as the word neighborhood within a sentence. 

Figure 15 illustrates recommendations by the W2V recommender for the case ex-

ample. Since recommendations in W2V are based on neighboring words and user 

sessions, some items are recommended even though the exact words do not ap-

pear in the original user word queries, such as “paketti disney nalle puh ser-

vetteja”. This behavior is similar to LSIub and LDAub. On the other hand, nearly all 

the words that appear in the query also appear in the recommendation list as in 

TFIDF. 
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Figure 15: Top 20 recommendations for the case example by the 

W2V recommender. 

4.7 Experimental setup 

The following describes the experimental setup that is used for simulation and 

evaluation of the recommenders. First, it is described how the available data is 

preprocessed and split into smaller datasets. Second, the simulation setup and 

training of the recommenders are described. Third, the evaluation metrics are in-

troduced.  

4.7.1 Data preprocessing 

The three datasets introduced in Section 4.3 were the Dictionary dataset, Recom-

mender dataset and External Item dataset. Figure 16 illustrates how the Recom-

mender dataset and External Item dataset are processed into smaller datasets for 

simulation purposes. 
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Figure 16: Datasets used in the experimental setup. 

The Recommender dataset is filtered to only contain users that have item views 

between dates 15.11.2015 – 30.11.2015. Moreover, only those users are chosen 

who have at least 6 sessions (1 session / month), and at most 1800 sessions (10 

sessions / day) between the six month period 1.6.2015 – 30.11.2015. This dataset 

is called the Filtered Recommender dataset, still including tens of millions of rows, 

and the same five columns as the original Recommender dataset: user id, 

timestamp, session id, item category, item id and words. 

The Filtered Recommender dataset is further on processed into Session dataset. 

The Session dataset is the Filtered Recommender dataset that is filtered by dates 

between 1.6.2015 – 14.11.2015. This data is then aggregated by sessions so that 

all the words that appear within a session are joined together with white spaces. 

The Session dataset is used for training the user-based models LSIub, LDAub and 

W2V. This dataset has several million sessions, and since the session id’s are not 

needed, the dataset is only a list of the joined words. 

The Filtered Recommender dataset is also processed into Category Similarities. 

Category similarities are calculated by first filtering the Filtered Recommender da-

taset to only contain data from dates between 1.6.2015 – 1.11.2015. Then, a 

sparse session id – category id binary rating matrix is constructed. In this matrix, 

sessions are in the rows and categories in the columns. If a certain category was 

visited in a session, the value of the category-session pair is 1, and 0 otherwise. 

The categories may be of any level in the category hierarchy. Finally, cosine simi-

larity between the categories is calculated, and the results are sorted to have the 

Dictionary 
dataset

Model training datasets

Category
similarities

Recommender
dataset

Holdout
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dataset

Raw clickstream data
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External item dataset

Evaluation datasets
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most similar categories to a certain category in descending order in the columns. 

The similarity of a category to itself is ranked as last. In the end, the Category Sim-

ilarities contain the most similar categories for all existing categories, and across 

all category levels. 

The Holdout dataset is used for recommender evaluation, and it is obtained by 

filtering dates 20.11.2015 – 27.11.2015 from the Filtered Recommender dataset. 

The data from these dates is not seen beforehand by any of the recommenders, 

which allows for recommender evaluation on this dataset. 

The Item dataset is combined from External Item dataset and Holdout dataset. 

This dataset approximates the items that are available for sale during the evalua-

tion period 20.11.2015 – 27.11.2015. It is based on the assumption that the items 

available on the auction site between dates 20.11.2015 – 27.11.2015 stay rela-

tively constant. With this assumption, it is possible to collect item titles from all 

unique item views in the Holdout dataset, and combine these with items in the 

External Item dataset. The External Item dataset is filtered to consist of items that 

have listing date before 20.11.2015 and closing date after 27.11.2015. By combin-

ing these datasets, a total of 1 354 476 items with their item title and category 

are obtained. The total number of items is close to the average number of 1.5 

million items that are for sale on the auction site. 

4.7.2 Simulation 

The recommenders are evaluated offline by simulating them in a real life scenario 

for one week time period 20.11.2015 – 27.11.2015. All the recommenders are im-

plemented in Python, with the help of topic modelling library gensim by Radim 

Řehůřek (Řehůřek, 2016). The simulation steps are described in the following. 

First, the recommenders are trained. The exact training process depends on the 

recommender, and more information about the training process of each vector 

space model can be found in their corresponding literature. However, the datasets 

used for training are described here. Terms and term weights for TFIDF, LSI, LSIub 

and LDAub recommenders are trained using the Dictionary dataset. Words that 

appear less than 5 times are removed from the vocabulary, and only the 200 000 

most frequent words are kept in the dictionary. Terms for W2V are taken from the 

words that appear in the Session dataset, and only the words that appear more 

than 20 times are kept in W2V. User based recommenders LSIub, LDAub and W2V 
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are also trained on the Session dataset, using the terms trained in each of the rec-

ommenders. For TFIDF and LSI, only the Dictionary dataset is needed in the train-

ing phase. LastItems and Randomized recommenders use only the user history 

data, and they do not require training. 

The parameters for each recommender are chosen based on initial experiments 

with the recommenders. In these experiments, the prediction accuracy, coverage, 

diversity, and time spent in producing the recommendations are taken into ac-

count. The parameters chosen are presented in Table 8. Because the recommen-

dations are made for the front page, 𝑛𝑅𝑒𝑐𝑠 = 100 are chosen as target for the 

VSM recommenders. Choosing 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 = 80 000 to limit the possible items 

to recommend results in item space coverage of 𝑆𝐼𝑆𝐶 =
80 000

1 354 476
≈ 5.91 %. 
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Table 8: Parameters chosen for each recommender. 

Recommender Parameter 

LastItems  𝑁𝑢 = 100 

Randomized  𝑁𝑐𝑎𝑡 = 10 

 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 = 8 

TFIDF  𝑑𝑇𝐹𝐼𝐷𝐹 = 200 000 

 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 = 8 

 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 = 80 000 

 𝑛𝑅𝑒𝑐𝑠 = 100 

LSI  𝑑𝐿𝑆𝐼 = 100 

 𝑑𝑇𝐹𝐼𝐷𝐹 = 200 000 

 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 = 8 

 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 = 80 000 

 𝑛𝑅𝑒𝑐𝑠 = 100 

LSIub  𝑑𝐿𝑆𝐼 = 100 

 𝑑𝑇𝐹𝐼𝐷𝐹 = 200 000 

 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 = 8 

 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 = 80 000 

 𝑛𝑅𝑒𝑐𝑠 = 100 

LDAub  𝑑𝐿𝐷𝐴 = 100 

 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 = 8 

 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 = 80 000 

 𝑛𝑅𝑒𝑐𝑠 = 100 

W2V  𝑑𝑊2𝑉 = 100 

 𝑤𝑖𝑛𝑑𝑜𝑤 = 5 

 𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 = 8 

 𝑛𝐶𝑎𝑛𝑑𝐼𝑡𝑒𝑚𝑠 = 80 000 

 𝑛𝑅𝑒𝑐𝑠 = 100 
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Second, samples for evaluation are chosen from the Holdout dataset. To keep the 

user activity balanced in the sample, a stratified sample of 14 218 users is selected 

from the Holdout set. The stratification is based on binning the users into the fol-

lowing session count quantiles: [0,10], (10,25], (25,50], (50,75], (75,90], and 

(90,100]. This ensures that both more and less active users are chosen for evalu-

ation. The chosen sample has a total of 153 847 item views to be predicted during 

the simulation time period.  

Third, each recommender is evaluated by making recommendations for each user 

in the sample, one day at a time. To simulate real life scenario, the user history is 

updated to have the latest information about the users’ activities from the previ-

ous day. For example, on 25.11.2016, the recommenders are able to see the users’ 

activities from 24.11.2016 and before. The user information is assumed to be up-

dated every night when the day changes, with no additional update delays. The 

evaluation metrics for each recommendation made are computed and stored, and 

they are described in the following. 

4.7.3 Evaluation 

As described in Chapter 3, recommenders can be evaluated with respect to many 

different criteria. In this thesis, user ratings to be predicted are implicit and binary 

(whether the user experienced the item or not). By assuming that correctly pre-

dicted items would make the site more relevant, it is reasonable to measure pre-

diction accuracy and the ranking of items overall. 

Since the number of recommended items is around 100 for most of the recom-

menders (see Table 8), it is reasonable to measure True-Positive-Rate, precision, 

and F1-Score at different recommendation list sizes 𝑁 < 100. The sizes chosen 

are 𝑁 = 1, 5, 10, 15, 20, 25, 30, 40, 60, 80 and 100.  

To examine how well the recommenders can recommend new items to users, the 

previously mentioned metrics are also computed by using only those items that 

the users have not seen before. The metrics computed using all items are called 

visited items, and the metrics calculated with new items only are called non-visited 

items. As mentioned in Section 3.2.1, it should be noted that the number of False-

Positives is likely to be overestimated in offline evaluation. Therefore, the recom-
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menders may seem to perform worse in comparison to if they were actually im-

plemented at the time of evaluation. After simulation, the metrics are aggregated 

for all recommendation list sizes and for both visited and non-visited items. 

Because predicting a small number of items out of a large collection of items is 

difficult, it makes sense to measure how high items in the holdout set are ranked 

by the recommender. Therefore, NDCG and R-Score with 𝛼 = 20 (R20) and 100 

(R100) are chosen for measuring the ranking of items. The items not ranked by the 

recommender due to 𝑛𝑅𝑒𝑐𝑠 limitation are all set to have rank of the last possible 

rank position, which is the number of items in the recommender. The ranking met-

rics are calculated for visited items only. 

The recommenders are also evaluated with respect to aggregation time and pre-

diction time. Aggregation time is the time taken by steps 2-4 in the recommenda-

tion process (Figure 7), whereas prediction time is the time taken by steps 5-6 in 

the same figure. 
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5 Results 

In order to obtain an overview of the performance of each recommender, the re-

sults are visualized in the following. The exact numerical results are shown in Ap-

pendix A – Table of evaluation results. 

The True-Positive-Rate for visited and non-visited items at different recommenda-

tion list sizes is shown in Figure 17. The figure shows that there are three recom-

mender groups that have similar performance: TFIDF/W2V, LSI/LSIub, and 

LDAub/LastItems. TFIDF and W2V are the best performers for all recommendation 

list sizes, and for both visited and non-visited items. Thus, the proportion of cor-

rectly predicted items from all items that users have experienced is on average the 

highest for these recommenders. For both non-visited and visited items, and at all 

recommendation list sizes, LSI and LSIub perform better than LDAub and LastItems 

but worse than TFIDF and W2V. For visited items, all the previously mentioned 

recommenders perform better than the Randomized recommender, whose per-

formance is clearly the worst.  

As expected, TPR for the non-visited items is zero for LastItems recommender, 

since it does not recommend unseen items. Moreover, the non-visited item curve 

for all recommenders show a gentle slope because five of the most recently expe-

rienced items are ranked in the top five, assuming that they are still available for 

sale. Overall, TPR is lower for non-visited items than for the visited items. 
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Figure 17: True-Positive-Rate for visited and non-visited items at dif-

ferent recommendation list sizes 𝑁. 
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The precision for visited and non-visited items at different recommendation list 

sizes is shown in Figure 18. For visited items, LastItems recommender is the best 

performer. Thus, the proportion of correctly predicted items and all items recom-

mended by the recommender is the highest for LastItems. TFIDF and W2V perform 

similar to each other, being better than all others but LastItems. LSI and LSIub also 

perform similar to each other, being slightly worse than TFIDF and W2V but better 

than LDAub and Randomized. LDAub is the worst performer from the VSM recom-

menders. However, all the recommenders perform remarkably well in comparison 

to Randomized recommender. 

For non-visited items, the results are similar to those of the TPR for non-visited 

items, where TFIDF and W2V are the top performers, followed by LSIub and LSI, 

then LDAub, and finally weak performers Randomized and LastItems. Since 

LastItems does not recommend any new items, the precision is zero. Once again, 

the recommendation of top five most recently experienced items is reflected in 

the non-visited items figure. For most of the recommenders, the precision is the 

highest when the recommendation list size is around 15. 

Figure 18 also shows that precision decreases when the recommendation list size 

increases. This applies for all recommenders. This means that the more items are 

recommended, the less is the chance that the predicted items are correct. More-

over, it is possible to increase the recommendation list size even when all items to 

be predicted have already been predicted by the recommender, which decreases 

the precision. Overall, the precision for non-visited items is significantly lower for 

non-visited items than visited items.  
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Figure 18: Precision for visited and non-visited items at different rec-

ommendation list sizes 𝑁. 

  

0.01

0.02

0.03

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

V
isite

d
 ite

m
s

N
o

n
-visite

d
 ite

m
s

1 5 10 15 20 25 30 40 60 80 100
N

P
re

ci
si

o
n

Recommender

LastItems

LDAub

LSI

LSIub

Randomized

TFIDF

W2V

Precision at Top-N Recommendations



69 

 

 

The F1-Score for visited and non-visited items at different recommendation list 

sizes is shown in Figure 19. F1-Score indicates an overall utility of the recommen-

dations, taking into account both precision and TPR. 

For visited items, LastItems is the best performer, and all the VSM recommenders 

perform similar to each other, being slightly worse than LastItems. Randomized 

recommender is clearly the worst performer. 

For non-visited items, the F1-Score for all recommenders but Randomized perform 

similar to each other. Randomized recommender is the worst performer. The F1-

Score for LastItems is not defined, since it would require division by zero because 

of the non-visited items. 



70 

 

 

 

Figure 19: F1-Score for visited and non-visited items at different rec-

ommendation list sizes 𝑁. 
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The results for ranking metrics R20, R100 and NDCG for different recommenders 

are shown in Figure 20. These rankings are for visited items only. Both TFIDF and 

W2V are the top performers on all the ranking metrics, whereas the reference 

recommenders LastItems and Randomized are the worst performers together 

with LDAub. LSIub and LSI are placed in the middle performance-wise.  

 

Figure 20: R20, R100 and NDCG evaluation metrics for each recom-

mender. 

The average time spent in making the recommendation is visualized in Figure 21, 

and the corresponding numerical values are presented in Table 9. From these it 

can be observed that all the recommenders have prediction time less than 40 mil-

liseconds. The total time required for recommendation in the case of reference 

recommenders LastItems and Randomized is very low. The prediction and aggre-

gation times of VSM recommenders are similar, apart from W2V that is signifi-

cantly slower than others, and TFIDF that is slightly faster than others. 
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Table 9: Average time spent in recommendation. 

Recommender 
Aggregation 

time (ms) 
Prediction 
time (ms) 

Total time 
(ms) 

LastItems 0,98 1,95 2,93 

LDAub 71,06 11,47 82,53 

LSI 67,68 12,86 80,54 

LSIub 68,14 12,87 81,02 

Randomized 4,73 7,09 11,82 

TFIDF 48,71 10,49 59,19 

W2V 70,58 36,17 106,76 

 

 

Figure 21: Average time spent in recommendation for each recom-

mender. 
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6 Discussion and conclusions 

The goal of this thesis was to make the front page of an online auction site more 

relevant to its users by building a recommender system that chooses the items to 

display. A general recommendation process was developed to serve as a basis for 

several recommenders that were built. Randomized and LastItems recommenders 

were based on simple heuristics and they were used as reference points for other 

recommenders. TFIDF, LSI, LSIub, LDAub and W2V recommenders were based on 

representing user profile and items in the respective vector space of each recom-

mender. The recommenders were evaluated offline by simulating them in a real-

life scenario for one week. The predictive accuracy was used as an evaluation met-

ric for both visited and non-visited items, and the recommendation time was also 

considered.  

The results show that the simple LastItems recommender performed surprisingly 

well for visited items. This shows that users tend to revisit the items they have 

already visited. Therefore, it would make sense to display at least a small number 

of previously visited items on the front page. Initial experiments with different 

recommenders already showed this kind of behavior from users, and it is also the 

reason for ranking previously visited items in the top five in the recommendation 

process.  

Revisiting the same items could be for various reasons. For instance, users may 

want to keep up with the bids and comments of an interesting auction item. On 

the other hand, sellers may want to do the same. Simply recommending previously 

visited items should make the front page more relevant, and also more user-
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friendly by providing a shortcut to a potentially interesting item. With more exten-

sive data available it would be possible to examine possible reasons for this kind 

of behavior in more detail. 

On the other hand, it would be uninteresting for the users to only see previously 

visited on the front page. Therefore, it would make sense to also recommend un-

seen items for the users. Based on the results, the best performers for non-visited 

items were TFIDF and W2V. Interestingly, these recommenders are based on to-

tally different approaches. TFIDF is more of a content-based approach that only 

takes into account exact words in the item titles, whereas W2V uses more collab-

orative-based approach by taking into account neighboring words in users’ ses-

sions in general. The accuracy of W2V could be enhanced by using more advanced 

heuristics for combining individual words, such as Paragraph2Vec. Moreover, in-

creasing the dimensionality 𝑑𝑊2𝑉 could lead to better results, but it would also 

increase the required computation time. Because W2V has to aggregate individual 

words in to sentences, on average it takes almost double the time of TFIDF to com-

pute a recommendation. Therefore, TFIDF is more scalable than W2V. 

For the online auction site, W2V could be an interesting approach with many ex-

tension possibilities. Because the online auction is owned by a large media corpo-

ration, W2V would allow for using user data from other sources than the auction 

site as well. For example, if there were data about news articles that users have 

read or Facebook comments that users have posted, this information could be ex-

ploited by W2V since it tries to identify the contexts of words. Moreover, the av-

erage performing topic model recommenders LSI and LDA could also perform bet-

ter when trained with more extensive data.  

The more traditional TFIDF recommender was simple, efficient, and performed 

well, even with limited amount of data available, as in this thesis. However, the 

recommendations of TFIDF are based on exact word matches, which users may 

consider uninteresting in reality. On the other hand, TFIDF recommender per-

forms search queries based on words in previous sessions of a user, and items 

similar to those previously visited are obtained as a result. Due to its simplicity and 

scalability, TFIDF recommender is a good candidate for further examination and 

online evaluation. 

One of the main challenges in this thesis was the uniqueness and dynamic nature 

of items. In this thesis, the approach to tackle this problem was to offline calculate 

user profile and online calculate item similarities in the same vector space, with 
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the help of cosine similarity and natural language processing based recommend-

ers. Static item categories were used for fetching the candidate items to calculate 

similarities against. One approach that was not comprehensively considered in this 

thesis was clustering. Item categories were used as pre-defined static clusters, but 

by clustering items based on other types of item features, such as location and 

price, it would be possible to create more specific clusters and apply more tradi-

tional recommendation techniques that require more computation time. For ex-

ample, when users add items for sale, these items could automatically be clus-

tered into more detailed, pre-defined static clusters. Traditional recommendation 

techniques could then be applied to these static clusters instead of single items, 

and items could be chosen from these clusters based on some heuristics.  

The recommendation process in this thesis was based on initial experiments with 

possible approaches in order to meet the desired time and scalability require-

ments. The process utilizes both offline and online calculation which allows for 

producing recommendations quickly. In fact, the total aggregation and prediction 

time is under 100 milliseconds for almost every recommender, which indicates 

that user profiles could be aggregated near real-time, and the information of the 

current session could also be utilized when computing the recommendations. 

Moreover, for most recommenders, more candidate items or user word queries 

could be used while still reaching the target prediction time.  

On the other hand, the recommendation process only takes into account the most 

recent sessions of a user. For some users this could be sufficient, but for some 

users it could be beneficial to create a longer-term user profile that takes a larger 

portion of the user history into account. However, creating a long-term profile 

would be more useful with more extensive user data available, such as previous 

items bought and sold.  

Because the recommenders used in this thesis were mostly content-based, rec-

ommendations can easily be made for users with only a few events in their user 

history. Moreover, since category similarities were calculated using a collaborative 

approach, new categories can be recommended to users with experience from 

only few categories. These choices aim to tackle the cold-start problem. 

As mentioned, the data used in this thesis were limited. User browsing history was 

used as an input for the recommenders, and on the item side, only the item titles 

and categories were utilized. Given that users’ previous sales, bids, purchases, 
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feedbacks and demographic information was available with extensive item infor-

mation, recommenders with more predictive accuracy could be built. This extra 

information could be utilized, for example, in the item similarity calculation by 

adding the extra information as new features in the vector representation of the 

item. However, adding more features would increase the recommendation com-

putation time. Another use case for additional information could be the creation 

of a more extensive user profile that could be pre-calculated offline. This profile 

information could be utilized when constructing the final rankings for a smaller 

number of items (as in the YouTube example in Section 2.3.1), for example by 

ranking those items higher that are located closer to the user. Information about 

users’ previous purchases would also allow for obvious post-purchase recommen-

dations, such as recommending an iPad cover after buying an iPad. 
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Appendix A – Table of evaluation re-

sults 

Recommender N TPR 
TPR (non-

visited) 
Precision 

Precision 

(non-visited) 
F1-Score 

F1-Score 

(non-vis-

ited) 

LastItems 1 0,0092 0,0000 0,0385 0,0000 0,3352 - 

LastItems 5 0,0207 0,0000 0,0207 0,0000 0,2365 - 

LastItems 10 0,0262 0,0000 0,0145 0,0000 0,1748 - 

LastItems 15 0,0292 0,0000 0,0115 0,0000 0,1413 - 

LastItems 20 0,0311 0,0000 0,0096 0,0000 0,1195 - 

LastItems 25 0,0322 0,0000 0,0082 0,0000 0,1042 - 

LastItems 30 0,0331 0,0000 0,0072 0,0000 0,0928 - 

LastItems 40 0,0342 0,0000 0,0058 0,0000 0,0766 - 

LastItems 60 0,0353 0,0000 0,0042 0,0000 0,0574 - 

LastItems 80 0,0359 0,0000 0,0033 0,0000 0,0462 - 

LastItems 100 0,0362 0,0000 0,0027 0,0000 0,0386 - 

LDAub 1 0,0092 0,0000 0,0386 0,0001 0,3351 0,2679 

LDAub 5 0,0217 0,0014 0,0209 0,0005 0,2380 0,2626 

LDAub 10 0,0262 0,0059 0,0121 0,0013 0,1636 0,1478 

LDAub 15 0,0293 0,0087 0,0089 0,0014 0,1273 0,1103 

LDAub 20 0,0315 0,0110 0,0071 0,0013 0,1048 0,0906 

LDAub 25 0,0323 0,0120 0,0058 0,0012 0,0890 0,0758 

LDAub 30 0,0330 0,0127 0,0050 0,0011 0,0773 0,0646 

LDAub 40 0,0344 0,0142 0,0039 0,0009 0,0618 0,0514 

LDAub 60 0,0362 0,0160 0,0027 0,0007 0,0442 0,0367 

LDAub 80 0,0377 0,0176 0,0021 0,0006 0,0346 0,0288 

LDAub 100 0,0384 0,0183 0,0017 0,0005 0,0284 0,0235 

LSI 1 0,0094 0,0002 0,0388 0,0004 0,3364 0,5816 
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LSI 5 0,0224 0,0022 0,0213 0,0010 0,2389 0,2731 

LSI 10 0,0283 0,0079 0,0130 0,0020 0,1654 0,1494 

LSI 15 0,0321 0,0115 0,0098 0,0020 0,1296 0,1125 

LSI 20 0,0348 0,0145 0,0079 0,0019 0,1075 0,0915 

LSI 25 0,0362 0,0160 0,0065 0,0017 0,0916 0,0779 

LSI 30 0,0375 0,0173 0,0056 0,0016 0,0800 0,0674 

LSI 40 0,0391 0,0189 0,0044 0,0013 0,0637 0,0530 

LSI 60 0,0410 0,0210 0,0031 0,0010 0,0457 0,0379 

LSI 80 0,0423 0,0225 0,0024 0,0008 0,0357 0,0295 

LSI 100 0,0434 0,0237 0,0020 0,0007 0,0294 0,0245 

LSIub 1 0,0094 0,0002 0,0387 0,0002 0,3366 0,8333 

LSIub 5 0,0226 0,0023 0,0213 0,0009 0,2391 0,2718 

LSIub 10 0,0291 0,0087 0,0130 0,0020 0,1661 0,1545 

LSIub 15 0,0330 0,0124 0,0098 0,0021 0,1302 0,1142 

LSIub 20 0,0356 0,0152 0,0079 0,0020 0,1070 0,0926 

LSIub 25 0,0372 0,0168 0,0066 0,0017 0,0913 0,0779 

LSIub 30 0,0381 0,0179 0,0056 0,0016 0,0796 0,0673 

LSIub 40 0,0397 0,0196 0,0044 0,0013 0,0639 0,0533 

LSIub 60 0,0425 0,0225 0,0031 0,0010 0,0459 0,0380 

LSIub 80 0,0440 0,0243 0,0024 0,0008 0,0361 0,0297 

LSIub 100 0,0451 0,0255 0,0020 0,0007 0,0297 0,0244 

Randomized 1 0,0000 0,0000 0,0001 0,0001 0,2667 0,2698 

Randomized 5 0,0001 0,0000 0,0001 0,0001 0,1434 0,1357 

Randomized 10 0,0002 0,0001 0,0001 0,0001 0,0900 0,0876 

Randomized 15 0,0002 0,0002 0,0001 0,0001 0,0712 0,0710 

Randomized 20 0,0003 0,0002 0,0001 0,0001 0,0602 0,0607 

Randomized 25 0,0003 0,0003 0,0001 0,0000 0,0509 0,0527 

Randomized 30 0,0003 0,0003 0,0001 0,0000 0,0448 0,0463 

Randomized 40 0,0005 0,0004 0,0001 0,0000 0,0364 0,0381 

Randomized 60 0,0006 0,0006 0,0001 0,0000 0,0268 0,0279 
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Randomized 80 0,0009 0,0009 0,0001 0,0000 0,0209 0,0216 

Randomized 100 0,0010 0,0010 0,0000 0,0000 0,0174 0,0178 

TFIDF 1 0,0093 0,0001 0,0387 0,0003 0,3353 0,3460 

TFIDF 5 0,0229 0,0026 0,0215 0,0011 0,2395 0,2756 

TFIDF 10 0,0313 0,0111 0,0136 0,0025 0,1683 0,1540 

TFIDF 15 0,0359 0,0156 0,0103 0,0025 0,1313 0,1140 

TFIDF 20 0,0397 0,0196 0,0085 0,0024 0,1091 0,0930 

TFIDF 25 0,0420 0,0222 0,0072 0,0022 0,0932 0,0778 

TFIDF 30 0,0442 0,0244 0,0062 0,0021 0,0818 0,0680 

TFIDF 40 0,0470 0,0275 0,0050 0,0018 0,0657 0,0546 

TFIDF 60 0,0511 0,0318 0,0036 0,0014 0,0475 0,0396 

TFIDF 80 0,0539 0,0348 0,0028 0,0012 0,0374 0,0311 

TFIDF 100 0,0554 0,0364 0,0023 0,0010 0,0309 0,0257 

W2V 1 0,0095 0,0003 0,0389 0,0004 0,3370 0,6045 

W2V 5 0,0233 0,0029 0,0216 0,0012 0,2389 0,2660 

W2V 10 0,0302 0,0099 0,0136 0,0025 0,1680 0,1533 

W2V 15 0,0359 0,0156 0,0105 0,0026 0,1323 0,1144 

W2V 20 0,0400 0,0200 0,0086 0,0025 0,1097 0,0931 

W2V 25 0,0419 0,0221 0,0072 0,0023 0,0940 0,0789 

W2V 30 0,0439 0,0243 0,0063 0,0021 0,0822 0,0687 

W2V 40 0,0470 0,0277 0,0050 0,0019 0,0664 0,0553 

W2V 60 0,0512 0,0324 0,0036 0,0015 0,0480 0,0398 

W2V 80 0,0541 0,0354 0,0029 0,0013 0,0379 0,0314 

W2V 100 0,0564 0,0378 0,0024 0,0011 0,0313 0,0261 
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