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Cost-efficient operations are increasingly important for VR, the Finnish state-
owned railway company, as it faces more and more competition. Labour costs
are a major expense for transportation companies, so there is a great incentive
to find ways to minimize unnecessary labour costs, such as overtime work. One
way to achieve this at VR is through improved rostering, the creation of work
schedules for train drivers.

The current optimization model used for rostering at VR is suitable for min-
imizing planned labour costs of rosters. We modify the model to account for
uncertainties related to freight trains. Using forecasts of probabilities of train
cancellations and additional train orders, the model tries to decrease expected
overtime costs in operations. The instrument for this is the planning of flexible
driver resource, which refers to drivers who can receive their work information
much later than regular drivers according to union agreements.

We compare the performance of two versions of the developed model with the
original model with a simulation study. The results of the simulation indicate
that the modified model can decrease expected overtime costs. However, more
studies are needed to confirm the magnitude of cost savings in real-life situations
as well as to improve the model further.
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Kustannustehokkaat toiminnot ovat yhä tärkeämpiä VR:lle, Suomen valtion omis-
tamalle rautatieyhtiölle, sen kohdatessa yhä enemmän kilpailua. Työvoimakulut
ovat kuljetusalan yrityksille merkittävä kustannus, minkä takia niiden kannattaa
panostaa turhien työvoimakulujen, kuten ylityökustannusten, välttämiseen. Yksi
tapa VR:llä tähän on parantaa veturinkuljettajien työvuoroluetteloiden suunnit-
telua.

VR:llä tällä hetkellä käytössä oleva optimointimalli työvuoroluetteloiden suun-
nitteluun toimii hyvin suunniteltujen kustannusten minimoinnissa. Tässä työssä
tätä mallia muokataan siten, että se ottaa huomioon tavarajuniin liitty-
viä epävarmuuksia. Malli vähentää toiminnoissa syntyviä odotusarvoisia yli-
työkustannuksia hyödyntämällä ennustettua tietoa junien peruutuksista ja junien
lisätilauksista. Kustannussäästöt mahdollistaa joustavan veturinkuljettajaresurs-
sin suunnittelu. Joustavalla veturinkuljettajaresurssilla tarkoitetaan niitä veturin-
kuljettajia, joille tarvitsee ilmoittaa työvuorot huomattavasti myöhemmin kuin
muille kuljettajille työehtosopimuksen mukaisesti.

Työssä verrataan muokatun mallin kahden eri version suorituskykyä alku-
peräiseen malliin verrattuna simulointitutkimuksella. Simulaation tulosten pe-
rusteella vaikuttaa siltä, että muokatulla mallilla on mahdollista vähentää odo-
tusarvoisia ylityökustannuksia. Tarvitaan kuitenkin lisää tutkimuksia sekä sel-
vittämään, kuinka suuria vaikutukset ovat tosielämässä, että parantamaan mal-
lia entisestään.

Asiasanat: työvuorosuunnittelu, stokastinen suunnittelu, monikriteeri-
nen lajittelu, rautatieliikenne
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Chapter 1

Introduction

1.1 Background

The main railway operator in Finland is the state-owned company VR Group
(VR for short). VR has around 6300 employees, of which nearly 1000 are
train drivers for freight and long-distance passenger trains (VR Group, 2019).
The work schedules of the train drivers utilize synergy from these two train
categories so that a work shift can contain trains from both categories. As
VR faces competition from both rail and road, cost-efficient planning of the
work schedules in general is crucial.

The planning process of work schedules consists of two main steps. The
first step is shift planning. In this phase, train driving and other tasks are
united manually into shifts. The second step is the assignment of shifts to
the drivers of each depot for a planning period of 21 days. This phase is
called rostering and is the focus of this thesis.

At maximum 17 % of train drivers at each depot can be reserved to be
used as flexible driver resource. These drivers are called extra drivers in
this thesis. Instead of a planned roster, extra drivers get to know only six
guaranteed days off, while their shifts are announced 1-3 days beforehand.
The purpose of the flexible driver resource is to have drivers available for
demand not known at the time of rostering. Such unknown demand can
result from possible extra shifts and shifts originally planned for drivers who
happen to be on a sick leave. In addition, a portion of the shifts known
before the rostering process cannot fit into the rosters of regular drivers, due
to constraints such as maximum work time, so extra drivers should also take
care of these residue shifts. If necessary, regular drivers can also provide
some flexibility with overtime work. However, this is costly and requires
permission of the driver, so optimal availability of extra drivers is important
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CHAPTER 1. INTRODUCTION 2

to minimize actualized costs.
Some freight trains have a high probability of being cancelled because

their demand is inadequately known at the time of planning. Consequently,
some shifts are more prone to cancellations than others. Because the rosters
of regular drivers cannot be changed without extra costs and permission,
these shifts should be left as residue shifts. If a residue shift is cancelled,
there will be no cost, as the required work time has not been assigned to any
driver. Therefore, residue shifts with low certainty increase the availability
of extra drivers compared to more certain shifts. In addition, the availability
of extra drivers could be increased by having less residue shifts on those days
with more predicted extra shifts.

An optimization model and implementation for automatic rostering has
been developed and is used at VR (Porokka, 2017). The implementation
solves the rostering problem heuristically and excels in maximizing quickly
the planned utilization rate of train drivers and indicators of drivers’ work
well-being subject to constraints that increase equality between drivers.

1.2 Objectives

This thesis further develops the existing roster optimization model to account
for shift cancellations and extra shifts. The main objective of the modified
model is to maximize the availability of flexible driver resource for possible
extra shifts. The maximization of availability is divided into general and
daily availability. General availability refers to the required amount of work
hours from residue shifts after cancellations. Daily availability considers
simultaneously the number of extra drivers able to work and how many extra
shifts and not-cancelled residue shifts are expected on each day. The evenness
of daily availability lowers the risk of cancellations due to lack of train driver
and can enable more efficient use of extra drivers than general availability
alone. The model should be intuitive and enable planners to easily modify it
based on their local expertise. Therefore, we choose to utilize multicriteria
sorting of shifts in modeling availability. The objectives related to well-being
of drivers are untouched in the modified model. The implementation of the
modified model should be approximately as quick and easy to use as the
original one.
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1.3 Structure of the thesis

The rest of the thesis is structured as follows. Chapter 2 reviews relevant
literature of crew planning, uncertainty in crew planning context and mul-
ticriteria classification and sorting. Chapter 3 presents the modified opti-
mization model. Chapter 4 compares two variants of the modified model to
the original one with a simulation study and finally Chapter 5 concludes the
thesis and discusses possibilities for future developments.



Chapter 2

Literature review

This chapter presents a review of literature relevant to the thesis. Section 2.1
presents a brief introduction to crew planning, while Section 2.2 examines
crew planning under uncertainty. Section 2.3 presents the main approaches
to multicriteria classification and sorting.

2.1 Crew planning

Crew planning is often split into two related sub-problems: scheduling and
rostering. The problem in crew scheduling is finding a set of shifts that covers
all required services or tasks (Valdes and Andres, 2010). Rostering, the focus
of this thesis, is creating a work schedule (roster) for a planning period based
on the shifts formed in crew scheduling (Lin and Tsai, 2019). Generally, the
goal in crew planning is minimizing operational costs and maximizing the
personal preferences of staff. However, the details and terminology of the sub-
problems vary considerably. Some aspects depend on the field of application
while others are specific to the company or organization in question (Valdes
and Andres, 2010).

Labour legislation and union agreements set numerous compulsory con-
straints on both crew scheduling and rostering. In addition, some shifts may
require a qualification, which places constraints especially on rostering. Non-
compulsory constraints may also be placed to satisfy crew preferences, such
as days off and shift equity (Ernst et al., 2004).

Rostering can be divided into two types: cyclic and non-cyclic rostering.
In a cyclic roster, each worker follows the same long-term roster. The length
of the long-term roster (in planning periods) is the same as the number of
crew. After each period, the roster for each worker is the next row in the
previous roster. In non-cyclic rostering, a unique roster for each worker is
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CHAPTER 2. LITERATURE REVIEW 5

created for each planning period. Cyclic rostering requires identical quali-
fications and similar preferences between workers. While cyclic rosters can
be fair and easy to maintain, they are quite inflexible regarding changes
in demand (the number and timing of shifts) and supply (the number and
availability of workers) (Xie and Suhl, 2015).

There are several types of methods and algorithms to solve crew plan-
ning problems. When the problem is highly constrained and the main issue
is finding a feasible solution, constraint programming can be useful. For
relatively simple problems, the best solutions can often be achieved with
algorithms based on mathematical programming approaches, such as mixed-
integer linear programming. Metaheuristics, including simulated annealing,
tabu search and genetic algorithms, are generally suitable for problems that
are too difficult for mathematical programming (Ernst et al., 2004).

Crew scheduling and planning are used in numerous fields. Examples
include transportation, call centres, health care and protection and emer-
gency services (Ernst et al., 2004). Lin and Tsai (2019) integrate train
crew scheduling and rostering to a composite problem and solve it using
a branch-and-price-and-cut and a depth-first search-based algorithm. Based
on empirical studies with different group sizes (from 12 to 84 drivers), the
authors conclude that the integrated approach can produce better solutions
than scheduling and rostering separately. Burke et al. (2010) present a hybrid
model of integer programming and variable neighbourhood search for nurse
rostering. The authors compare the performance of the model to approaches
using either a genetic algorithm or variable neighbourhood search. The hy-
brid model outperforms the compared algorithms on 12 rostering problems
from a Dutch hospital.

Örmeci et al. (2014) develop a mixed-integer programming model for
rostering in call centres with operational cost, agent satisfaction and customer
service objectives as goals. They analyze the solutions of the model with
through numerical experiments using data from a call centre in Istanbul
with a total of 250 employees in four regions with 8 different types of calls
corresponding to a required skill. Gendreau et al. (2006) discuss physician
scheduling in emergency rooms using four different techniques, such as tabu
search and constraint programming. They formulate the constraints of the
problem based on practical experiences from five hospitals in Montreal area
but do not numerically analyze the performance of different techniques.
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2.2 Uncertainty in crew planning

While the real-life environments of crew planning usually involve considerable
uncertainties, most crew planning models are deterministic, which means
all forms of uncertainties are ignored. However, some literature exists on
stochastic models as well. Van den Bergh et al. (2013) classify uncertainty in
planning into three main categories: uncertainty of demand, arrival and ca-
pacity. Uncertainty of demand represents the predictability of the quantity of
required workload. Uncertainty of arrival is concerned with the specific tim-
ing of required workload and is thus highly related to uncertainty of demand.
For example, the number of patients in a hospital corresponds to uncertainty
of demand, whereas the arrival of calls to a call center corresponds to un-
certainty of arrival. Uncertainty of capacity indicates the predictability of
available workforce (due to sickness, for example).

Approaches to uncertainty in crew rostering can be reactive or proactive
(Ingels and Maenhout, 2015). In reactive approaches, the original roster is
adapted after disruptions during operational planning to minimize resource
shortages. Overtime work, schedule changes and using existing reserve shifts
are typical methods to react to disruptions. Proactive approaches attempt
to build robust rosters that will be less likely to be affected by these dis-
ruptions. A typical proactive method is introducing buffers. Time buffers,
such as additional work time to a shift, can be used in crew scheduling. In
crew rostering, capacity buffers, such as planning reserve shifts, can be used.
While there is often a trade-off between planned costs and roster robust-
ness, expected operational costs can be lowered by increasing robustness.
The quality of robustness is usually measured by simulating disruptions to
rosters and comparing to other approaches.

Ingels and Maenhout (2015) study the impact of reserve shifts on ros-
ter robustness. They implement five different strategies to proactively plan
reserve shifts in rostering. The strategies are compared after a simulation
of disruptions (demand and capacity) and reactive re-scheduling. While the
authors conclude that capacity buffers in rosters are necessary, they note
that the size and positioning of buffers is of great importance to robustness.
The authors have also produced several other reports on roster robustness.
The report from 2017 (Ingels and Maenhout, 2017) formulates the concept of
employee substitutability to improve robustness. On a given day, each em-
ployee either has a shift requiring certain skill or a day off. However, three
types of changes to the assignment can be possible: between-skill, within-
skill and day-off-to-work substitutions. Individual employee substitutability
is the weighted sum of the value of these substitution possibilities. Group
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employee substitutability measures the availability of these substitution pos-
sibilities after additional capacity buffers are created. After a simulation of
demand and capacity disruptions and re-scheduling, rostering strategy based
on individual employee substitutability is found to produce more robust ros-
ters than group substitutability or minimum cost strategies.

A few studies apply uncertainty to a certain field in crew planning. Schae-
fer et al. (2005) study airline crew scheduling under uncertainty. They create
a scheduling model that considers the expected costs of frictional disruptions,
i.e. short-term delays due to various reasons. Based on simulation results,
the authors conclude that the created schedules perform better in operations
than those which use only planned cost.

Punnakitikashem (2007) develops an integrated model for nurse staffing
and assignment under uncertainty. Nurse staffing and assignment are the
operational phases of nurse planning after rostering. Staffing nurses to shifts
is done 90 minutes before each shift, while assigning nurses to patients occurs
30 minutes before each shift. The goal of the two-stage stochastic integer
programming model is to minimize excess workload on nurses under short-
term demand uncertainty while keeping the budget in control.

Parisio and Jones (2015) develop a two-stage stochastic mixed integer
programming model for rostering in retail outlets with demand uncertainty.
The authors generate demand scenarios from historical data and run a sim-
ulation. The stochastic model performed better than the older deterministic
model in the roster quality metric chosen by the authors, which measures the
sum of differences between the number of assigned employees and actualized
number of customers on each hour.

2.3 Multicriteria classification and sorting

The problem in multicriteria classification and sorting is assigning a set of
alternatives into predefined homogeneous groups based on more than one
criterion. Zopounidis and Doumpos (2002) present a literature review of the
methods in multicriteria classification and sorting. The difference between
classification and sorting is in the definitions of the groups. In classification,
the groups are nominal, while groups that can be ordered based on the pref-
erences of the decision maker belong to sorting. This thesis uses the formal
notation by Zopounidis and Doumpos (2002). The finite set of n alternatives
A = a1, a2, . . . , an should be assigned into q predefined groups C1, C2, . . . , Cq.
In a sorting problem, the group C1 is the most preferred while the group Cq

is the least preferred. A vector of m criteria g = (g1, g2, . . . , gm) is used to
classify/sort the alternatives. The performance of each alternative is eval-
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uated on each criterion, so any alternative ai can be described by vector
ai = (g1i, g2i, . . . , gmi), where gji is the performance on criterion gj. In or-
der to classify or sort an alternative, the performance vector needs to be
aggregated by a suitable model.

There are three main types of approaches to aggregate the criteria: out-
ranking, utility functions and models based on decision rules (Zopounidis and
Doumpos, 2002). The central characteristic in outranking is the existence
of thresholds determining when to prefer one over another and when to be
indifferent (Yevseyva, 2007). In addition, alternatives can be incomparable.

According to Zopounidis and Doumpos (2002), the most widely used out-
ranking method is ELECTRE TRI introduced by Yu (1992). In ELECTRE
TRI, alternative ai outranks alternative ap if there are enough arguments
to support that ai is at least as good as ap and if there is no argument
to disprove this. The groups used in sorting are distinguished by reference
profiles, which are defined by performance vectors equivalently to the alter-
natives. Reference profile rk = (rk1, rk2, . . . , rkm) distinguishes classes Ck and
Ck+1. The comparison of alternatives and reference profiles is performed by
pairwise comparison on all criteria. Alternative ai is preferred to profile rk
if the weighted sum (based on importance) of criteria where ai is at least as
good as rk is enough to reach the threshold used in sorting, while the equiv-
alent weighted sum for rk is not enough to reach the threshold (Cardinal et
al. 2011). The mathematical formulation is∑

j:gji≥rkj

wj ≥ λ

∑
j:rkj≥gji

wj < λ,

where λ is the threshold and wj is the weight of criterion j. However, if ai
is much worse than rk on a single criterion, a veto evaluation can prevent
ai from outranking rk. In those cases, the alternative and the profile are
considered incomparable. If both the alternative and the profile reach the
threshold, they are indifferent (Zopounidis and Doumpos, 2002).

Doumpos et al. (2009) present an approach based on differential evolu-
tionary algorithm to help specifying the parameter values for ELECTRE
TRI, while Damart et al. (2007) provide a methodology for that based on
guided group discussions. Cardinal et al. (2011) apply ELECTRE TRI to
student selection of a popular major in a French engineering school. Based
on criteria such as GPA, motivation and personality, students are divided
into four different classes to help the selection process.

Approaches based on utility functions (or value functions) create a marginal
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utility function for each criterion to transform the relevant scale of the cri-
terion into terms of utility. Typically, the utility function is simply the sum
of the marginal utility functions. In case of m criteria, the additive utility
function is U(g) =

∑m
j=1 uj(gj) ∈ [0, 1], where uj(gj) is the marginal util-

ity function for criterion gj. The simplest approach to using utility theory
in sorting is the UTADIS method (Jacquet-Lagreze and Siskos, 1982). In
UTADIS, if the total utility of an alternative ai is at least as high as the
lower bound threshold of a class Cq, ai belongs either Cq or a higher level
class (Zopounidis and Doumpos, 2002). Köksalan and Özpeynirci (2009)
introduce an interactive sorting method for additive utility functions. The
interactive approach guarantees to classify alternatives correctly when the
decision maker has preferences consistent with any additive utility function.
Zopounidis and Doumpos (2000) present an interactive multicriteria decision
support system for sorting problems. The decision maker has the possibility
to use four different additive utility models: UTADIS and three of its variants
(UTADIS I, UTADIS II and UTADIS III).

Rule-based models typically use ”if... then...” type of decision rules, which
are inferred from class assignment examples. A popular methodology for
determining the rules is based on rough sets theory (Pawlak, 1982), which
has the advantage of enabling creation of decision rules even if there are
inconsistencies in the assignment examples. Each rule consists of a condition
and decision part. The condition part states a specific profile on a subset of
criteria, which is used to compare alternatives. The decision part determines
an assignment to at least or at most a given class (Zopounidis and Doumpos,
2002). For decision makers, rule-based models are typically intuitive because
of their connection to assignment examples, which can be of great benefit.
Azibi and Vanderpooten (2002) propose method for creating decision rules
that expresses the rules by linear constraints. The consistency of rules is
tested by solving a series of linear programs. Chen et al. (2012) introduce an
approach based on rough sets to determine linguistic decision rules.



Chapter 3

Optimization model

This chapter presents the modified optimization model for the rostering prob-
lem at VR. We present the background of the problem and a verbal descrip-
tion of relevant factors in Section 3.1. The mathematical formulation and
solution methodology of the model is introduced in Section 3.2.

3.1 Description

3.1.1 Crew planning at VR

Union agreements specify that work for train drivers in Finland must be
planned for three-week work periods and published at least one week before
the beginning of each work period. The crew planning process consists of
three different phases: scheduling, rostering and operational planning.

Crew scheduling creates shifts that cover all work demand known at the
time of planning. The work can be driving freight and passenger trains or
other train-related tasks, such as preparing a train for driving. The goal in
scheduling is to combine the tasks to shifts efficiently, while also complying
with labour law and union agreements. For example, there are limits to the
lengths of shifts and tasks. Figures 3.1 and 3.2 present graphical examples
of shifts. Typically, some shifts require that a driver should move from one
location to another when there is no need for driving a train. In those cases,
the shifts require additional traveling tasks. Scheduling is currently done
manually using proprietary software and simultaneously for all driver depots
in Finland. Each shift is assigned to a home depot, which is the start and
end station of the shift. The capacity at each depot (skills and available
drivers) must be considered while determining how the workload is divided
between them. There are a few important shift concepts and types, which

10



CHAPTER 3. OPTIMIZATION MODEL 11

are explained below:

Night work
The amount of work time between 22:00 and 06:00

Artificial work time
Work time with added time compensation from evening (21:00 – 22:00)
and night work

Night shift (type A)
A shift with three hours or more of night work in a single night

Night shift (type B)
A shift with work between 02:00 and 05:00

Shift with rest
A shift which contains a time period not counted as work time

Figure 3.1: Example of a day shift. First driving a passenger trains from
KV to KTS and back. After a break (the star sign), driving a freight train
from KVLA to LH and back by traveling. KV and KVLA are at the same
location in practice

Figure 3.2: Example of a night shift with rest. The shift starts with a short
locomotive task to KUK. From KUK to RIT there is a freight train driving
task, which is split into two parts with a break in KVLA. After a rest in RIT
(two star signs), driving a freight train back to KV. The last train includes
work between 02:00 and 05:00, which makes the shift a type B night shift.
Hour 28 refers to 04:00, for example
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Rostering takes place after scheduling and is the creation of rosters for
each depot based on the shifts from scheduling. The depots are planned
separately. Large depots have more than 100 drivers, while small depots
have less than 20 drivers. Rostering is performed using optimization software
implemented in C++ and R languages (Porokka, 2017), which is integrated
into the same software crew scheduling uses. The drivers at each depot are
split into regular and extra drivers. After rostering, extra drivers know only
their six days off during the work period, unlike regular drivers, who need
to know both their shifts and days off. Extra drivers act as flexible train
driver resource, which is one form of capacity buffer (Ingels et al., 2015).
According to union agreements, at maximum 17 % of drivers (rounded up)
at each depot can be used as extra drivers. In practice, this usually means
that each driver acts as an extra driver once in six work periods. Figure 3.3
presents a roster for regular drivers, while Figure 3.4 shows a roster for extra
drivers. In addition to shift types and concepts, there are a couple of roster
related concepts:

Double week rest
Two consecutive calendar days without work

Work cluster
A period of work between two double week rests

Sunday work
Work time on Sundays and certain public holidays

Residue shift
A shift not planned for regular drivers

Absence
A driver has permission to be away from work due to vacation or a sick
leave, for example

Because of either labour law and union agreements or the work well-being
of drivers, rostering needs to account for the following constraints (Porokka,
2017):

C1. Each driver has a limit to the artificial work time during the work period.
If the work period has no public holidays and the driver is a full-time
worker without absences for the work period, the limit is 114 hours and
45 minutes

C2. At most 42 hours of night work during the work period
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C3. At most five calendar days between two consecutive double week rests

C4. No more than 45 hours of artificial work between two consecutive double
week rests

C5. At least ten hours of rest between two consecutive shifts

C6. No night shifts of type B on consecutive nights (without permission
from union representative)

C7. The maximum number of consecutive nights with night shifts is two

C8. The drivers can only be assigned to shifts for which they have the re-
quired skills

C9. The drivers cannot be assigned to any shifts during absences

C10. Each shift is assigned to a driver

C11. Depot specific maximum on the amount of Sunday work

C12. Depot specific maximum on the number of night shifts

C13. Depot specific maximum on the number of shifts with rest



CHAPTER 3. OPTIMIZATION MODEL 14

Figure 3.3: Example of roster for regular drivers. Orange shifts are type B
night shifts and yellow ones are type A night shifts. Blue line in left side
of shift indicates a shift with rest. ”VT” indicates a compulsory weekend
rest during the work period. Driver 11 has four work clusters, which are
separated with double week rests.
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Figure 3.4: Example of a days off roster for extra drivers. Each extra driver
is planned six days off. One weekend rest at minimum and at least one day
off each week. Single days off are unpreferred

After the rostershave been published to drivers, operational planning
oversees the work period. Operational planners need to adjust the rosters to
demand, arrival and capacity disruptions, such as additional work demand
(extra shifts) and sick leaves. Each residue shift which is not cancelled must
also be assigned to a driver. The primary instrument for operational planning
is the use of flexible train driver resource (extra drivers). The secondary in-
strument is to assign overtime work to regular drivers. However, this is costly
and always requires permission from the driver. In addition, it is possible to
use extra drivers after the deadline for shift announcement, but this demands
permission and additional compensations.

For example, the extra driver roster in Figure 3.4 has five extra drivers
available on the second day of the period. If there are three residue shifts for
the second day, extra drivers are able to do at most two extra shifts. If the
number of extra shifts is higher, the rest will be overtime work for regular
drivers, even if extra drivers were underused on all other days. However,
if one of the three residue shifts is cancelled, extra drivers are able to do
one more extra shift, which can decrease overtime work. The regular driver
number 15 in Figure 3.3 has shift 14129 assigned on the first day and 14384
on the second day of the period. If the customers of the freight trains of shift
14384 want to change the departure day to the first day, driver 15 cannot do
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the shift regardless of permission due to shift 14129. The shift on the second
day will be cancelled for driver 15, while an equivalent shift will be an extra
shift for the first day.

3.1.2 Shift structure

A shift typically consists of two or more tasks. The first task of a shift always
starts at the home depot of the driver and the last task ends there. The most
common type of task is driving a train from one location to another. The
driver can also be required to drive only a locomotive or travel as a passenger
in a train. Other possible tasks, such as preparing the next train for driving,
are cancelled if the trains of the shift are cancelled, so we can ignore them
in this thesis. Figure 3.5 presents a simple shift structure, while Figure 3.6
presents a more complicated shift.

Home
depot

Away
A

Home
depot

train 1 train 2

Figure 3.5: A shift consisting of two train driving tasks

Home
depot

Away
A

Home
depot

Away
B

Home
depot

travelling train 1 locomotive train 2

Figure 3.6: A shift with traveling as passenger, driving a locomotive and two
train driving tasks with a visit in the home depot in the middle

3.1.3 Shift certainty and adaptability

The certainty of a shift refers to the probability that its required working
time will not change after rostering. The working times of regular drivers
cannot be altered without permission and extra cost, even if their shifts are
cancelled, while extra drivers are more flexible. Therefore, residue shifts
should be those with low shift certainty.

After the rosters have been planned and published, some trains in the
shifts can be cancelled for various reasons. Depending on shift structure, train
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cancellations can lead to a) cancellation of the whole shift, b) cancellation
of a part of the shift or c) none or only minor changes to the working time
of the shift. As every shift must start and end at home depot, a whole
shift is cancelled only if all tasks in it are cancelled. Otherwise a cancelled
train is replaced by traveling as a passenger or driving only a locomotive. If
the original shift includes traveling tasks, they are also cancelled if all train
driving tasks are cancelled, because there is no need for them.

Some shifts can be divided into multiple parts if home depot is visited in
the middle of the shift at least once. Such shifts can be partially cancelled
if all tasks in one of the parts are cancelled. The different types of shift
structures and effects of cancellations on them are presented in Figures 3.7,
3.8, 3.9 and 3.10.

Occasionally, the first or the last task of a shift is simply traveling as a
passenger from a depot to another. In these cases, the home depot of the shift
could be changed if necessary. For example, if a depot A shift begins with
traveling from A to depot B, the shift could easily be changed to a depot B
shift that ends with traveling from A to B. Thus, such a shift can be helpful
as a residue shift if depot B has more flexible driver resource available during
that time. In this thesis, we call the possibility to change depot of a shift
as shift adaptability. Example of a depot change is presented graphically in
Figure 3.11.

Home
depot

Away
A

Home
depot

train 1 train 2

Figure 3.7: A shift cancelled only if trains 1 and 2 are both cancelled. Oth-
erwise cancellations are replaced by traveling or driving a locomotive

Home
depot

Away
A

Home
depot

locomotive train 1

Figure 3.8: A shift cancelled if train 1 is cancelled
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Home
depot

Away
A

Away
B

Home
depot

travelling train 1 train 2

Figure 3.9: A shift cancelled only if trains 1 and 2 are both cancelled. If
train 1 is cancelled, the shift starts with either traveling or locomotive from
home depot to B. In some cases, this leads to cancellation of some working
time

Home
depot

Away
A

Home
depot

Away
B

Home
depot

locomotive train 1 train 2 travelling

Figure 3.10: A shift cancelled only if trains 1 and 2 are both cancelled,
while cancellation of either train is enough for a partial cancellation of shift,
because of a visit to the home depot. The visit to the home depot divides
the shift into two parts: trip to A (first part) and trip to B (second part).
For example, if train 1 is cancelled, the first part of the shift is cancelled and
only the trip to B is required

Depot
A

Depot
B

Depot
A

travelling train 1

Depot
B

Depot
A

Depot
B

train 1 travelling

Figure 3.11: A shift before and after a depot change from A to B

3.1.4 Objectives

The first and main objective of the model is to maximize the availability
of flexible train driver resource for expected extra shifts. The purpose of
availability is to decrease expected costs. Availability consists of general and
daily availability.
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General availability depends on both the shift certainty and adaptability
of residue shifts. We do not try to calculate expected artificial work hours
of residue shifts, because cancellations of whole shifts usually increase avail-
ability for extra shifts more than partial cancellations, even if the cancelled
work time is equal. Therefore, we minimize the planned artificial work time
of residue shifts while giving shifts not prone to cancellations priority for
regular drivers. In addition, the possibility to change the depot of a residue
shift can increase availability at the depot where the shift would be moved
from. Thus, we also give some priority to shifts with no adaptability for
regular drivers.

Daily availability considers both the number of extra drivers available and
the distribution of shifts predicted for extra drivers. The predicted shifts for a
given day are the sum of the forecast number of extra shifts and the forecast
number of residue shifts not cancelled. The evenness of daily availability
during a planning period should be maximized in order to prevent high peaks
in the number of shifts which require drivers to accept overtime work.

The second objective is the compactness of rosters, which is a shared
objective with the old model (Porokka, 2017). Rest time between two con-
secutive shifts should be as close to 10 hours as possible, unless there is a
double week rest between them. Also, the number of work clusters should be
minimized. Compactness is aimed at improving the work well-being of train
drivers.

3.2 Formulation and solution

3.2.1 Solution methodology

This thesis uses the solution methodology developed by Porokka (2017), as
the constraints of the problem have not changed. The methodology is based
on a heuristic Adaptive Large Neighborhood Search (ALNS) algorithm by
Ropke and Pisinger (2006). The basic idea of the algorithm is to improve
solutions by removing some shifts from a roster and then trying to put the
shifts back to different drivers.

There are three stages to the search of a solution: initial solution, feasible
solution and solution improvement. After the initial solution, some shifts are
left unassigned but all constraints are met by the assigned shifts. After the
feasible solution, all shifts are assigned to drivers. In the first two stages,
the actual objective function is irrelevant as feasibility is the only goal in
improvement.

After a feasible solution is found, the solution can be improved with re-
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gard to the objective function with Algorithm 1 by Porokka (2017). While
generally only improvements to the solution should be permitted, the algo-
rithm sometimes allows feasible but inferior solutions with probability pacc
to enable escaping local optima. Possible insertion strategies used in the
algorithm include greedy insertion, greedy random insertion and insertion
based on a regret heuristic. Greedy random insertion is the fastest strategy
and adequate for solving the problem. The shifts to be inserted are put in
a random order and then sequentially inserted back to the roster. If there
are multiple drivers to whom a shift can be inserted, the insertion with the
lowest increase in objective function is chosen.

Algorithm 1 Solution improvement

1: feasible roster R
2: Rbest ← R
3: repeat
4: R′ ← R
5: choose a random number r from uniform distribution U(0, 1)
6: remove q ∈ {qmin, ..., qmax} shifts from roster R
7: choose insertion strategy s
8: insert the q removed shifts back to R using strategy s
9: if insertion did not result in a feasible solution then

10: R← R′

11: else if (f(R) > f(R′)) and (pacc < r) then
12: R← R′

13: else if f(R) < f(Rbest) then
14: Rbest ← R
15: end if
16: until the stopping criterion is met
17: Rbest contains the best feasible solution found

3.2.2 General availability

For simplification purposes, we divide shifts into four priority classes based
on shift certainty and adaptability. We split shift certainty into two criteria
(whole and partial cancellations), so we perform multicriteria sorting with
three criteria. Each priority class corresponds to a certain level of adjustment
to the artificial work time of shifts. General availability is then achieved by
minimizing the adjusted work time of residue shifts.

The first criterion is whole cancellations, q1, which is the probability that
the whole shift is cancelled. We assume that each train task has a cancellation
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probability pi that is independent from other train tasks. Locomotive and
traveling tasks are assumed to be always cancelled if the related train tasks
are cancelled. Figure 3.12 presents an example of a shift with four tasks.
The probability of all tasks in the shift being cancelled is

q1 = p1 · p2 · p3 · p4
= p1 · p3,

where p2 = 1 and p4 = 1 are the cancellation probabilities of locomotive and
traveling tasks, respectively. For a shift with n tasks,

q1 =
n∏

i=1

pi. (3.1)

The second criterion is partial cancellations, q2, which is the probability
that only a part of the shift is cancelled. This excludes the probability of
the whole shift being cancelled (q1). Partial cancellations are not as valuable
for availability as whole cancellations, because they require a driver. The
shift in Figure 3.12 has two parts, A and B. According to addition law
of probability, if P (A) is the individual cancellation probability of part A,
P (A ∪ B) = P (A) + P (B)− P (A ∩ B) is the probability that either part A
or part B is cancelled (or both). Thus, we can calculate the probability that
only part A or B is cancelled in shift of Figure 3.12 as

q2 = P (A ∪B)− q1

= P (A) + P (B)− P (A ∩B)− q1

= p1 · p2 + p3 · p4 − p1 · p2 · p3 · p4 − q1

= p1 + p3 − 2q1.

For a shift with n tasks and a visit to home depot after task j,

q2 =

j∏
i=1

pi +
n∏

i=j+1

pi − 2q1.

Occasionally, a shift can have more than one visit to the home depot, which
means the shift can be split into three or more parts. The general form of q2
for a shift with that can be split into parts A,B, ..., N can be stated as

q2 = P (A ∪B ∪ ... ∪N)− q1.

The third criterion is shift adaptability, q3, which is whether the home
depot of the shift can be changed. In practice, this means whether the first
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or last task of the shift is travelling to or from another depot. The value of
q3 is either true (1) or false (0).

Home
depot

Away
A

Home
depot

Away
B

Home
depot

train 1 locomotive train 2 travelling

Figure 3.12: A shift with four tasks that has a visit to the home depot in
the middle and can thus be split into two parts: the first part is the trip to
A and back and the second part is the trip to B and back. For example, if
train 1 is cancelled, the first part is cancelled

Based on the three criteria, we assign all shifts to one of four priority
classes:

C1 Extra preference for regular drivers

C2 No preference between extra and regular drivers

C3 Extra preference for extra drivers

C4 Always to extra drivers

Four was considered a suitable number of priority classes by planners, but
the number of classes can easily be increased for future uses of the model. The
fixed amount of work hours from shifts and available work hours from drivers
at a depot mean that not all shifts can fit into the rosters of regular drivers.
While some of the shifts must be left as residue shifts, we do not intend to
increase residue shift work, so C4 should be defined in such a way that work
hours of C4 shifts are significantly less than the required residue shift work
time. In practice, the number of shifts with properties to belong to this class
is always very small, so this does not become a problem. To help planners
make assignment examples for this thesis, we divide the probabilities of q1 and
q2 into four classes: very low, low, medium and high. Table 3.1 presents the
numerical thresholds for the probability classes used in this thesis. We chose
the thresholds based on interviews with planners and analysis of cancellation
probabilities of shifts. While this thesis uses identical thresholds for q1 and
q2, the thresholds can be different.
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Table 3.1: Thresholds of probability classes of whole and partial cancellations
Criterion Very low Low Medium High
q1 0 0.1 0.15 0.3
q2 0 0.1 0.15 0.3

We prioritized clarity, simplicity and adjustability when choosing the
method of sorting, because the method needs to be understandable for plan-
ners and easy to modify if the optimization model needs to be developed
further. We found methods based on utility functions too complex and un-
intuitive for this project and some of the characteristics of ELECTRE TRI,
such as veto evaluations, were unnecessary. Ultimately, we chose a model
based on decision rules as the best alternative because of its intuitiveness.
Based on discussions with planners and practical experiences from rostering,
the following statements were obtained guide the sorting:

1. Only shifts with high probability of whole cancellations should belong
to C4

2. Only shifts with very low probability of whole and partial cancellations
and no adaptability should belong to C1

3. Adaptability makes little to no difference between C2, C3 and C4

Statements 1 and 2 specify C4 and C1, respectively. In order to differentiate
between C2 and C3, we obtained the following assignment examples from
planners:

Table 3.2: Shift assignment examples
q1 q2 Class
medium high C3
low high C3
medium medium C3
low medium C2
low low C2

Because the number of possible combinations is very small, the assign-
ment examples are enough to determine decision rules without inconsisten-
cies. The algorithm to obtain the class of a shift based on the decision rules
is presented as a flowchart in Figure 3.13.
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Figure 3.13: The algorithm for determining shift certainty class

In the original model by Porokka (2017), the main goal is to minimize
the cost of artificial working time of residue shifts in roster R:

Ce(R) = Tα,

where Tα is the total artificial working hours of residue shifts. This is equiv-
alent to the sum of artificial working hours of all residue shifts:

Ce(R) =
n∑

i=1

tα(i), (3.2)
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where n is the number of residue shifts and tα(i) is the artificial working
time of shift i. For general availability, the artificial working time of a shift
should be adjusted based on the priority class of the shift. We make the
adjustment by multiplication with weight term wα(i), whereafter the cost
function becomes

Ce(R) =
n∑

i=1

wα(i)tα(i) (3.3)

If wα(i) = 1 ∀i, the cost function is identical to 3.2.
The adjustments to the artificial work times of shifts should not signifi-

cantly impact the total planned working time of residue shifts after rostering.
Instead, the goal is to change what kind of shifts are left as residue shifts.
However, small increases to the total planned working time of residue shifts
are acceptable when the availability of extra drivers is increased. The class
C2 is neutral in relation to artificial working time adjustments. The class
C1 should cost more than its artificial working time, while class C3 should
cost less than its artificial working time. The weight for class C4 should be
negative and have a large absolute value to ensure they go to extra drivers.
Otherwise, the model may prioritize compactness of rosters over availability.
As the number of C4 shifts is small compared to required extra shifts, the
negative weight does not increase the work hours of residue shifts.

wα(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wα(C1) > 1 if i ∈ C1

wα(C2) = 1 if i ∈ C2

wα(C3) < 1 if i ∈ C3

wα(C4) < 0 < wα(C3) if i ∈ C4

The weight terms can be seen as trade-offs between shifts of different classes.
For example, C3 shifts need only have wα(C3) times the artificial working
time as C2 shifts in order to have the same cost. Thus, if a C1 shift needs to
have half the working time of a C2 shift to be equivalent in value as a residue
shift, wα(C1) should be 1.5. C4 shifts have trade-offs only with the other
objective of the model, compactness of rosters. Experimenting with different
weight values and analyzing the results is needed, because of the complexity
of the model.

3.2.3 Daily availability

Optimal general availability is not enough to minimize overtime work, be-
cause it does not take into account how many extra drivers are required for
extra shifts on each day. Extra drivers should be evenly available for forecast
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extra shifts. The daily distribution of extra shifts can be hard to predict and
can vary from planning period to another. Nevertheless, some weekdays can
be more prone to extra shifts than others. If historical data is available, then
it should be taken into account during rostering.

Like shifts in general, extra shifts can start and end at any time of day. In
addition, overnight extra shifts are quite common. As the precise information
of extra shifts, such as start time and duration, is by definition not known in
advance, the numerous constraints on shift allocation (3.1.1) make modeling
of daily availability highly complex. We make the following assumptions and
simplifications to enable modeling:

• Each extra driver is available for one shift each day if not absent

• Overnight shifts are allocated to both start and end days based on the
proportion of duration before and after midnight

• Shifts that are not overnight shifts are allocated fully to the start day

Some residue shifts are cancelled and do not need extra drivers. The
expected number of residue shifts after cancellations on day i is

E[nr(i)] = nt(i)−
nt(i)∑
j=1

q1(j),

where nt is the total number of residue shifts and q1(j) is the probability
of total cancellation of residue shift j (3.1). The total number of required
drivers on each day is the sum of absences, forecast residue shifts and extra
shifts. It is possible that the highest number of required drivers cannot
be lowered in cases while a high number of required drivers on some other
day could be lowered. Therefore, simply minimizing the peak could have
significant shortcomings. We take into account the whole distribution by
minimizing the sum of the squared number of required drivers each day. The
cost function of daily availability is then defined as

Cd(R) =
21∑
i=1

(na(i) + E[nr(i)] + E[ne(i)])
2 (3.4)

=
21∑
i=1

(na(i) + E[ns(i)])
2 (3.5)

where R is the roster in question, na is the number of absent extra drivers, nr

is the forecast number of residue shifts after cancellations, ne is the forecast
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number of extra shifts and ns is the total number of expected shifts for extra
drivers. The total daily cost should be neutral to different sorts of overnight
shifts. For example, a shift with half of duration on day 1 and half on day

2 is allocated
√

1
2
times to days 1 and 2. Figures 3.14 and 3.15 present two

examples of daily availability. The sum of total required number of extra
driver days- during the period is the same in the examples (50), but the cost
of daily availability is 148 in Figure 3.14 and only 126 in Figure 3.15.
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Figure 3.14: Example of a relatively uneven distribution of daily availability
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Figure 3.15: Example of a relatively even distribution of daily availability

In the thesis by Porokka (2017), the total cost of a roster is simply the sum
of the costs of roster of an individual driver. This allows for straightforward
calculations of total cost while removing and inserting shifts in Algorithm 1.
In order to avoid having to recalculate daily availability of the roster each
time a shift is to be inserted to a driver, we reformulate the cost function of
daily availability (3.4) to be similar in form to general availability (3.3).

Each shift assigned to an extra driver has a cost based on the artificial
work time and the certainty class of the shift. If a cost based on the date of
the shift is added, the solution algorithm should even out the distribution of
residue shifts in regard to absences and expected extra shifts. The method of
determining the daily cost of shift is presented in figure 3.16. The modified
cost function of daily availability is

Cd(R) =
n∑

i=1

wβ(i), (3.6)
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where n is the total number of residue shifts and wβ(i) is the weight corre-
sponding to how much availability is required on the day of shift i.

The importance of daily availability depends on the probability of over-
time work. If the expected utilization rate of extra drivers is very low, no
overtime work is needed regardless of daily availability. In such cases, daily
availability should be given lower priority. In addition, if the utilization rate
of extra drivers is very high from residue shifts alone, all extra shifts will
require overtime work.
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Figure 3.16: Example of a sum distribution of expected extra shifts and
residue shifts after cancellations. The forecast number of shifts (blue line)
for the day of the shift in question (red line) in relation to the average level
of forecast shifts (dashed black line) determines the daily weight of a shift.
In this example, the weight of the shift would be around 3/2 = 1.5. The
highest possible weight would be 4/2 = 2 on day 17



CHAPTER 3. OPTIMIZATION MODEL 30

3.2.4 Objective function

The cost functions of both general availability (3.3) and daily availability
(3.6) should be minimized. However, the functions may not be of equal
importance and their importance might depend on the depot in question.
Therefore, we define total availability of Roster R as a weighted sum of the
cost functions:

fa(R) = WeCe(R) +WdCd(R),

where We and Wd are weights capturing the importance of general and daily
availability, respectively. The costs of compactness (fc) are the same as those
described by Porokka (2017). Thus, the total objective is

f(R) = fc(R) + fa(R).



Chapter 4

Simulation

4.1 Implementation

To find out how well the model will perform, we implement a simulation of op-
erational planning. The simulation environment is implemented in C++ and
R languages and is fully integrated to the rostering implementation (Porokka,
2017). The goal is to measure how well rosters could theoretically perform
after the planning process depending on the optimization model in use. Sim-
ulations of disruptions such as extra shifts during operational planning are
often done on a day-to-day basis (Ingels et al., 2015 and 2017). This would
be suitable for VR as well, as the cancellation of trains and other disruptions
often happen quite late. However, we simplify the simulation to consider
all days of the planning period simultaneously in order to decrease required
computation significantly and to have less need to create completely new
software. Consequently, the simulation assumes all disruptions to be known
at the start of the period. This means that the simulated use of extra drivers
is somewhat more efficient than is possible in practice, regardless of the opti-
mization model in use. On the other hand, as we perform the simulation on a
single depot, the possibility to change the depot of shift is ignored, which can
decrease efficiency to some extent. We leave out disruption types that are
not considered in the optimization model, such as sick leaves. This decreases
unnecessary variability between different simulation runs. As the forecast dis-
tribution of sick leaves would be more or less uniform, simulating sick leaves
would not differentiate the different versions of the model. In short, we make
the following simplifications or assumptions for computational purposes:

• All disruptions known at the start of operational planning

• No sick leaves

31
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• Same extra shifts in all simulation runs

The demand and arrival uncertainties in the simulation are the cancellation of
trains/shifts and the precise information of extra shifts (arrival and duration).

We use a large depot with relatively many freight trains prone to cancel-
lations as our test depot. Table 4.1 presents statistics on the shifts of the
depot. The forecast utilization rate of drivers after extra shifts is around 100
%. The shift data for both planned and extra shifts we use is from a single
representative past period of the depot. For realistic train cancellations, the
cancellation probabilities of freight trains are estimated using 6 months of
historical cancellation data.

Table 4.1: Shift attributes in the simulation depot
Attribute Planned Extra
Shifts 895 63
Night shifts 537 26
Night hours 3145 182
Artificial work hours 9834 660
Class 1 shifts 96 -
Class 2 shifts 774 -
Class 3 shifts 17 -
Class 4 shifts 8 -

Each run of the simulation consists of four steps: rostering, days off
planning, the calculation of train and shift cancellations and minimization of
overtime work. The rostering step uses Algorithm 1 to improve the solution
after a feasible roster has been found. Rostering has stochastic elements,
such as choosing the shifts to be removed while improving a solution, which
is why each simulation run produces a unique roster. After rostering, we plan
the days off for extra drivers automatically. Section 4.2 presents the method
of automatic days off planning.

The actual simulation of disruptions can start after extra drivers have
their days off planned. The simulated cancellations of individual trains follow
a binomial distribution based on their cancellation probability. We calculate
shift cancellations for each simulation run from individual train cancellations
using the same logic as with shift priorities in section 3.1.3. We then remove
the cancelled shifts from residue shifts (and cancelled parts from partly can-
celled shifts). In the final step, we introduce the extra shifts and seek to
maximize the working hours of extra drivers using both residue shifts from
rostering and extra shifts. The shifts that cannot be covered by extra drivers
are assumed to be left to overtime workers. To have a clearer view of the
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properties of the different versions of the model, we do not try to minimize
the unevenness of overtime shifts at this stage. The problem of minimizing
overtime work is very similar to the original solution improvement of roster-
ing in section 3.2.1. The difference is that here extra drivers are equivalent to
regular drivers in the original problem, while overtime workers are equivalent
to extra drivers. Thus, we can use Algorithm 1 and choose the artificial work
hours of overtime workers as objective function.

We compare three different versions of the optimization model. The first
version is the original model, which ignores uncertainties. The second version
of the model uses priority classes to achieve general availability (Equation
3.3), while the third version uses both priority classes and daily weights for
shifts based on forecast extra shift distribution (Equation 3.6) to achieve
general and daily availability. The models are identical on other aspects.
We measure the performance of the models by two indicators: the mean
amount of overtime work (general availability) and the mean peak number
of simultaneous overtime shifts (daily availability) after the simulations.

We simulate rostering and minimization of overtime with computational
times of 20 and 10 seconds, respectively. Based on practical experiences,
these seem to be enough for good-enough solutions. The total computational
time of each run is around 35 seconds using a computer with 2.3 GHz Intel
Core i5-5300U processor and 8 GB of RAM.

4.2 Automatic days off planning

For the purposes of this simulation, we develop a multicriteria optimization
model and heuristic for choosing the days off for extra drivers after rostering
automatically but with similar results to manual choosing. Each extra driver
has one weekend off, which is preselected before the simulation. The goal
is to choose the rest of the days off so that there is evenly room for extra
shifts throughout the planning period, while also considering the preferences
of the extra drivers. Extra drivers generally wish to avoid single days off
and work periods (between days off) of less than three days, which are also
often inefficient. In the future, the model should also look at the forecast
distribution of extra shifts in order to properly optimize the days off.

We use a typical additive model for the objective function. To even out
the number of extra drivers that are “taken” (either a day off or a residue
shift) each day, we use the least squares of taken drivers. For example,
minimizing the maximum number of taken drivers would not work in cases
where there is simply too many residue shifts for a certain day. Let a be the
cost of a single day off for an extra driver, while b and c are the costs of
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single- and double-day work periods, respectively. We define the objective
function for a days off plan P automatically as

f(P ) = a · no + b · ns + c · nd +
21∑
i=1

n2
t,i,

where no is the total number of single days off, ns is the total number of
single-day work periods, nd is the total number of double-day work peri-
ods and nt,i is the number of taken extra drivers on day i. Optimizing the
planning of days off is much simpler than rostering, but there are many sim-
ilarities. Therefore, we propose a simple heuristic inspired by the solution
improvement Algorithm 1 from section 3.2.1. that starts with a feasible plan.

Figure 4.1 presents an example of automatically planned days off for
extra drivers along with residue shifts from rostering. The main purpose of
optimizing the days off is enabling simulation without manual input between
runs. Therefore, we determine suitable costs for the objective function by
simply looking at the resulting graphical plans iteratively. The problem is
simple enough that Algorithm 2 can find a good enough solution very quickly,
despite it consisting mostly of trying at random. We find removing those
days off that have currently the most taken drivers to be an intuitive and
satisfactory removal strategy for Algorithm 2.

Figure 4.1: Days marked as ”V” are the automatically planned days off for
the extra drivers based on residue shifts from rostering
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Algorithm 2 Automatic planning of days off

1: feasible plan P
2: Pbest ← P
3: repeat
4: P ′ ← P
5: choose a random extra driver d
6: choose removal strategy s
7: remove q ∈ {qmin, ..., qmax} days off from driver d using strategy s
8: insert q number of removed days off back to driver d to randomly

chosen days
9: if insertion did not result in a feasible solution then

10: P ← P ′

11: else if (f(P ) > f(P ′)) then
12: P ← P ′

13: else if f(P ) < f(Pbest) then
14: Pbest ← P
15: end if
16: until the stopping criterion is met
17: Pbest contains the best feasible solution found

4.3 Results

We have chosen the number of simulation runs to be 100. The graphical
representations of the cumulative means of indicators overtime work from
simulations in Figures 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 indicate that 100 runs is
enough for convergence of mean for the purposes of this simulation. Table
4.2 presents the numerical results of the simulations.
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Figure 4.2: The convergence of cumulative mean of overtime work using
model 1
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Figure 4.3: The convergence of cumulative mean of overtime work using
model 2
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Figure 4.4: The convergence of cumulative mean of overtime work using
model 3
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Figure 4.5: The convergence of cumulative mean of overtime peak using
model 1
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Figure 4.6: The convergence of cumulative mean of overtime peak using
model 2
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Figure 4.7: The convergence of cumulative mean of overtime peak using
model 3

Table 4.2: Simulation results for a large depot (means)
Model Overtime work (h) Overtime peak
model 1 311 3.0
model 2 268 2.9
model 3 252 2.5

Compared to model 1, model 2 makes a clear decrease to overtime work
(over 40 hours, 14 %), while there is little to no difference in overtime peak.
As model 2 does not take extra shift distribution into account, these results
are quite expected and suggest that the model works as intended. While 14
% decrease may seem modest, the proportion of class 3 and 4 shifts is quite
small, so a radical decrease is not possible in this context.
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Model 3 performs slightly better than model 2 on both indicators, which
confirms that the most developed model is the best performing alternative
for the two indicators we have chosen.



Chapter 5

Conclusion

The goal of this thesis was to improve an existing roster optimization model
to account for uncertain freight trains. Because of these uncertainties, some
trains will be cancelled after planning while some are not yet known at the
time of planning. Using forecast information on these types of trains during
roster planning could improve the use of flexible train driver resource, which
decreases overtime costs.

In contrast to the original model, the modified model does not simply
minimize the planned artificial work time of residue shifts but also priori-
tized shifts that are not prone to cancellations for regular drivers. We used
multicriteria sorting to determine the priority of shifts. In addition, we in-
creased the priority of shifts on days when there are more forecast extra
shifts. Both of these modifications were intended to increase the availability
of extra drivers.

Based on the results of a simulation study, we managed to create a mod-
ification to the optimization model, which succeeds in the goal of the thesis.
However, more studies need to be performed to verify the strength of im-
provements and to see if models with different approaches could perform
even better. In addition, the accuracy of forecasting needs attention for
good performance in real-life planning.

43
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