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Abstract
This Bachelor’s thesis examines the random walk hypothesis for weekly returns of
two indices, OMXHPI and OMXH25, and eight stocks in Helsinki Stock Exchange.
The returns run from January 2000 to February 2018. In order to test the null
hypothesis of a random walk, the study employs three variance ratio tests: the Lo–
MacKinlay test with the assumption of heteroscedastic returns, the Chow–Denning
test and the Whang–Kim test. The variance ratio estimates produced by the
Lo–MacKinlay test are analyzed for various lag values. The results indicate that
both indices and all stocks, except for UPM–Kymmene, follow a random walk at
the 5 percent level of significance. Furthermore, the variance ratios are found to be
less than unity for shorter lags, which implies that stock returns may be negatively
autocorrelated for short return horizons. Some stocks and both indices show a
high variance ratio estimate for larger lag values, contradicting a mean reverting
model of stock prices. The results demonstrate, in contrast to previous studies,
that Helsinki Stock Exchange may be an efficient market and thus, that predicting
future returns based on historical price information is difficult if not impossible.
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Sammandrag
Enligt slumpvandringshypotesen bildar avkastningarna på aktier en följd av
oberoende slumpvariabler, vilket implicerar att det är svårt eller omöjligt att
förutspå kommande avkastningar på basis av tidigare prisinformation. Huruvida
aktiekurserna är autokorrelerade eller inte har såväl praktiska implikationer för
investerare som teoretiska implikationer för effektiviteten av marknaden. Detta
kandidatarbete undersöker slumpvandringshypotesen för två index, OMXHPI
och OMXH25, samt åtta aktier på Helsingforsbörsen. Undersökningsmaterialet
består av veckoavkastningar från januari 2000 till februari 2018. Nollhypotesen om
en slumpvandring undersöks med tre olika varianskvottest: Lo–MaKinlay–testet
med antagandet av heteroskedastiska avkastningar, Chow–Denning–testet
samt Whang–Kim–testet. Vidare undersöks varianskvotestimaterna för diverse
tidsförskjutningar för att få en bättre bild av hur tidsserierna är autokorrelerade.

Tidigare studier tyder på att Helsingforsbörsen inte följer en slumpvandring.
Få av studierna använder sig dock av moderna varianskvottest och vecko-
avkastningar: en stor del av forskningarna undersöker dagliga avkastningar
och utnyttjar sig huvudsakligen av seriella korrelationstest eller enbart ett
varianskvottest. Därmed finns det ett behov att testa slumpvandringshypote-
sen i Finland med nyare data, veckoavkastningar och med flera olika varianskvottest.

Resultaten av denna forskning tyder på att båda indexen och alla de under-
sökta aktierna, med undantag av UPM–Kymmene, följer en slumpvandring
på fem procents signifikansnivå. Både Lo–MacKinlay–testet och Whang–
Kim–testet förkastar slumpvandringshypotesen för UPM–Kymmene. Vidare
indikerar varianskvotestimaterna att avkastningarna är svagt negativt au-
tokorrelerade för korta tidsförskjutningar, vilket delvis kunde bero på den
låga omsättningen i Helsingforsbörsen. För längre tidsförskjutningar verkar
varianskvoterna vara i medeltal större än ett, vilket strider mot teorin om att
aktiepriserna tenderar att återgå till det historiska medelvärdet på lång sikt.

I motsats till tidigare studier visar denna forskning att Helsingforsbörsen kan
vara en effektiv marknad och att det därmed är svårt för investerare att utveckla
köpstrategier med vars hjälp högre avkastningar än den väntade avkastningen
uppnås. Huruvida tidsperioden för avkastningarna och undersökningsperioden
inverkar på testresultaten på Helsingforsbörsen är delvis öppna frågor.

Nyckelord slumpvandringshypotes, marknadseffektivitet, varianskvottest,
Helsingforsbörsen
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Symbols and abbreviations

Abbreviations

CD Chow–Denning
EMH Efficient market hypothesis
LM Lo–MacKinlay
RWH Random walk hypothesis
SMM Studentized maximum modulus
VR Variance ratio
WK Whang–Kim

Symbols

CDcrit Chow–Denning test critical value
M1(k) Lo–MacKinlay test statistic evaluated at lag k
MV1 Chow–Denning and Whang–Kim test statistic
V (k) Estimator of the variance ratio for lag k
WKcrit Whang–Kim test critical value
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1 Introduction

The predictability and nature of stock returns have long been topics of both interest
and controversy in academic and business circles. If stock returns have predictable
patterns, then it is possible to develop a quantitative model of stock price movements
and hence, increase expected earnings. On the other hand, if stock prices move
randomly, then forecasting stock returns using historical price information is no
easier than forecasting a sequence of randomly generated numbers. The question
whether stock prices are predictable is thus very intriguing from an investor’s point
of view.

The random walk hypothesis (RWH) states that stock returns are independent of
previous returns and thus, that predicting future stock prices based on previous
price information is impossible. According to the efficient market hypothesis (EMH),
stocks are in some sense always correctly priced, meaning that it is not possible
for an investor to "beat the market" [1]. In such a market, stock prices reflect all
available price information at any time and instantaneously adjust to new information.
Bachelier [2] and Osborne [3] theorize that, if information affecting the stock’s price
is generated randomly or if there is uncertainty concerning the stock’s intrinsic value,
stock prices should follow a random walk in an efficient market. The random walk
hypothesis is thus of great interest because it gives insight into whether or not a
stock market is efficient. However, as noted by Stephen [4, p. 111], random walk
tests cannot be considered as tests of market efficiency, as RWH is neither a sufficient
nor a necessary condition for EMH.

RWH has been tested extensively in various markets. Among others, Fama [5] has
studied dependence in financial time series using sample serial correlation coefficients
and runs test for successive returns. The results show that common US stocks do not
show statistically significant dependence, supporting the random walk assumption.
Furthermore, Kendall and Hill [6] have studied British industrial share prices and
other financial time series and found that the prices show little serial correlation.
The consensus is that RWH holds for large and developed markets, such as the US
and UK stock markets.

Later studies on RWH in thin or emergent markets show opposite results. Jennergren’s
and Korsvold’s 1974 study on Swedish and Norwegian stock markets indicates that
the said markets may be inefficient [7]. They use the serial correlations test and the
runs test to test their hypothesis. Moreover, recent studies reveal mean reversion
tendency in returns. For instance, Fama and French [8] establish that for long holding
periods, returns are significantly negatively correlated.
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Older studies seem to suffer from restrictive testing methods or strict assumptions.
The variance ratio (VR) test presented by Lo and MacKinlay (LM) in 1988, introduces
a more modern way of testing RWH [9]. One version of their test allows the time
series to have heteroscedastic increments, which is considered to be commonplace
in financial time series. Frennberg and Hansson [10] apply the LM test to Swedish
stock prices from the period 1919–1990 and reject RWH for the whole period.

Few studies examine RWH in Finland. Shaker [11] demonstrates that the stock
market indices OMXH25 and OMXS30 in Helsinki and Sweden do not follow random
walks. The study uses the variance ratio test by Lo and MacKinlay, an autocorrelation
test and the Dickey–Fuller unit root test. Shaker tests RWH for daily returns of
the aforementioned indices from the period 2003 to 2012. Although the study gives
convincing evidence against RWH in the case of stock market indices, it does not
reveal whether individual stocks follow random walks. Furthermore, Shaker’s study
covers a fairly short time period and utilizes only one individual variance ratio test
and no multiple variance ratio tests. Therefore, there is a need for a reexamination
of RWH in Finland, using more recent data and newer variance ratio tests.

This thesis examines whether RWH holds for weekly returns of the indices OMXHPI
and OMXH25 as well as eight highly traded stocks in Helsinki Stock Exchange.
The returns run from January 2000 to February 2018, and they are collected from
Yahoo! Finance [12] and Investing [13]. Three different variance ratio tests are being
used: the Lo–MacKinlay test, and two enhanced versions of it: the Chow–Denning
(CD) test and the Whang–Kim (WK) test. The data is processed and the tests are
performed in RStudio with the R programming language. A secondary objective of
this thesis is to investigate the nature of the variance ratios of the data. In particular,
the magnitudes of the variance ratio estimates for various lags are of major interest.
There might be differences between the variance ratio profiles of the stocks and the
indices – these differences are analyzed as well.

This thesis is structured as follows. Section 2 discusses previous research and
definitions of random walks. Section 3 describes the variance ratio tests used in
this thesis and the related test statistics. The latter part of section 3 presents the
data and describes how the data is processed and what software is used. Section
4 discusses the results and section 5 concludes the study and gives suggestions for
further research.
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2 Background

2.1 The random walk hypothesis

To test the random walk hypothesis, one has to give a meaningful definition of it
first. The essence of RWH is captured in the idea that stock prices are unpredictable,
which means that future stock returns are independent of previous returns, that is
P[rt = r | rt−1, rt−2, . . . ] = P[rt = r], where rt is the return of time period t. This
assumption of uncorrelated returns is the central assumption in RWH.

Let us denote by pt the stock price at time t and define the logarithmic price process
as xt = log pt. Then the time series xt is said to follow a random walk if it is generated
by the following process:

xt = µ + xt−1 + ϵt, (1)

where µ is a constant parameter and ϵt is the random term [14]. A classical definition
of RWH is that the terms ϵt are independent and identically distributed random
variables. Some authors even consider the disturbance terms ϵt to be normally
distributed. However, the assumption that ϵt are i.i.d. is a very strong assumption
and a test of this hypothesis does not necessarily tell much about the predictability of
returns. For instance, if the conditional variances of returns are time–varying (which
is often considered to be the case for financial time series), then the null hypothesis
is rejected even though the time series may be unpredictable [4, p. 110]. Thus, for
this study, the classical definition of RWH presented above is too restrictive.

Lo and MacKinlay [9] use the following common assumption H as the basis for
RWH:

H1: E[ϵt] = 0 for all t and E[ϵtϵt−τ ] = 0 for all τ ̸= 0.

H2: {ϵt} is ϕ–mixing with coefficients ϕ(m) of size r/(2r − 1) or is α–mixing with
coefficients α(m) of size r/(r − 1), where r > 1, such that for all t and for any
τ ≥ 0, there exists some δ > 0 for which E[|ϵtϵt−τ |2(r+δ)] < ∆ < ∞.

H3: limT →∞
1
T

∑T
t=1 E[ϵ2

t ] = σ2
0 < ∞.

H4: E[ϵtϵt−jϵtϵt−k] = 0 for all t and for any j, k ̸= 0 where j ̸= k.

These assumptions are more complex than the classical assumptions, but they allow
for different forms of heteroscedasticity while still maintaining the key assumption
that the process xt has uncorrelated increments [9]. Therefore, the assumption H is
an appropriate description of a random walk for financial time series. All tests used
in this study assume H as the common assumption.
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2.2 Previous research

There is a vast amount of research that examines the random walk nature of stock
prices. One of the first stochastical models of stock returns was presented in 1900
by Bachelier [2], who modeled stock returns as a Brownian motion with linearly
increasing variance. Samuelson [15] put forward the idea that stock prices should be
unpredictable in an efficient market. One of the first empirical tests on RWH was
conducted by Fama [5], who tested the validity of RWH in the US stock market and
concluded that stock returns show little to no serial correlation.

Later studies on RWH in smaller stock markets and developing markets show evidence
against RWH. For instance, Jennergren’s and Korsvold’s study from 1974 on 45
Swedish and Norwegian stocks, using serial correlations tests and runs tests, show
that the said stock markets may not be efficient [7]. They hypothesize that the
results might be due to infrequent trading. Solnik [16] investigates serial correlation
coefficients and their stability for European stock prices. The main findings are that
there are slight deviations from RWH, but the serial correlation coefficients are still
small from an investor’s point of view. Solnik [16] presents some possible explanations
for why European markets, in particular, show inconsistencies with RWH. These are,
among others, the thinness of the markets, discontinuous trading, loose requirements
for the announcement of information and little control over insiders’ trading.

Mean reversion of stock prices is a theory in finance which states that a stock’s
price will tend to revert to its historical average over time. Fama and French [8] find
mean reverting tendencies in US stock prices over longer time periods of 3–5 years.
Similarly, Frennberg and Hansson [10] demonstrate that Swedish stock prices show
negative autocorrelations for longer investment horizons, supporting the theory of
mean reversion. In contrast, they show that Swedish stock prices show significant
positive autocorrelations for one to twelve month periods [10].

Early research primarily relies on serial correlations tests, runs tests and similar
methods to test RWH. Lo and MacKinlay [9] introduce a new test methodology:
the method of variance ratios. The variance ratio test is based on the fact that the
variance of a k–period return of a random walk process increases linearly with respect
to k. The LM test has two versions: one with the assumption of homoscedastic
increments and another with the assumption of heteroscedastic increments. The latter
allows for different forms of time–varying volatility, giving somewhat less restrictive
assumptions than some of the earlier tests. A detailed description of the LM test is
presented in section 3.2.

In their experiment, Lo and MacKinlay [9] reject RWH for weekly returns of US stock
portfolios. They show that the said portfolios show significant positive autocorrelation
for all return horizons, casting doubt on the mean reversion model. What is interesting
is that empirical variance ratios computed by Lo and MacKinlay are on average
significantly different one, indicating that the test gives less ambiguous results than
some of the earlier tests. Indeed, Lo and MacKinlay [17] show in a 1989 article, using
Monte Carlo simulations, that their method is more reliable than the Dickey–Fuller
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and Box–Pierce tests.

Few studies investigate RWH for Finnish stocks. Berglund et al. [18] test the
weak–form efficiency of the Finnish and Scandinavian stock exchanges, using daily
returns from the period 1970–1981. The results indicate that all markets seem to
follow an adjustment process, with positively autocorrelated returns for lags 1–3,
negative autocorrelations for lags 3–5 and zero autocorrelation thereafter. The study
reveals that Helsinki Stock Exchange is the most inefficient of the Scandinavian
markets.

Shaker [11] examines RWH for Finnish and Swedish stock indices OMXH25 and
OMXS30 using daily returns from the period 2003–2012. Shaker uses the ADF test,
an autocorrelation test, and the LM test. The results are quite striking: RWH is
strongly rejected for all tests, with the p–value of the LM test being very close to
zero for all k–values. The autocorrelations are significantly negative for short time
periods of 1–3 days.

Narayan and Smyth [19] test the presence of a unit root, which is a necessary condition
for a random walk, against the alternative of mean reversion in the market indices of
22 OECD countries, including Finland. They use the ADF and Phillips–Perron unit
root tests as well as the sequential trend break test by Zivot and Andrews [20] and a
panel data unit root test by Im et al. [21]. The findings are that almost all indices
possess a unit root, supporting the theory of random walks. It seems, based on the
test statistics, that the Helsinki Stock Exchange show smaller deviations from RWH
than the average index.

In conclusion, it seems that the results on whether RWH holds in European markets
and Finland are highly contradictory. Overall, it appears that RWH holds in large
markets with high trading volumes, such as the US and UK stock markets, but
not necessarily in emergent or thin markets such as the Middle Eastern, the Latin
American or emergent European markets. Based on the few studies that there
exist, Helsinki Stock Exchange appears not to be efficient in the random walk sense.
However, there are not many recent studies that seriously investigate RWH for both
indices and individual stocks in Helsinki Stock Exchange with multiple VR tests and
adequately large datasets. The chosen assumptions of RWH, the test methodologies
used and the return horizon profoundly affect the results. Therefore, this thesis aims
at choosing proper return intervals, testing methods and motivating the choice of
the null hypothesis.
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3 Research material and methods

3.1 The variance ratio

Tests based on variance ratios have gained popularity in recent years [14]. The VR
methodology relies on the fact that the variance of k–period random walk increments
is linear with respect to the difference k, that is Var[xt −xt−k] is k times Var[xt −xt−1].
This motivates the following definition of the variance ratio:

VR(k) = 1
k

Var[xt − xt−k]
Var[xt − xt−1]

. (2)

With the assumption that xt is a random process, one gets that VR(k) should
be equal to unity for all differences k. Let us denote the estimator of VR(k) as
V (k):

V (k) = σ̂2(k)
σ̂2(1) . (3)

Here, σ̂2(k) is the unbiased estimator of (1/k)Var[xt − xt−k]. There are several valid
choices for σ̂2(k), but Lo and MacKinlay [9] use an estimator based on overlapping
k–period returns, which according to their simulations yield desirable properties for
finite samples. Their estimator is defined as

σ̂2(k) = m−1
T∑

t=k

(xt − xt−k − kµ̂)2, (4)

where (x0, . . . , xT ) is the data, µ̂ = T −1 ∑T
t=1 xt is the estimator of the mean, T + 1

is the sample size and m = k(T − k + 1)(1 − kT −1). If the logarithmic stock price
process xt is a random walk, the expectation of the test statistic V (k) should be
equal to one for all differences k.
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3.2 The Lo–MacKinlay test

Lo and MacKinlay [9] present two test statistics based on variance ratios, one of
which is robust under the assumption of homoscedasticity and another which is
robust under different forms of heteroscedasticity. This study uses the latter one to
accommodate for time–varying volatility. The heteroscedastic LM test uses the test
statistic

M1(k) = V (k) − 1√
ϕ(k)

, (5)

where
ϕ(k) =

k−1∑
j=1

4(k − j)2

k2 δ(j) (6)

and
δ(j) =

∑T
t=j+1(xt − xt−1 − µ̂)2(xt−j − xt−j−1 − µ̂)2[∑T

t=1(xt − xt−1 − µ̂)2
]2 . (7)

Under the null assumption that V (k) = 1 for all k, the test statistic M1(k) follows
the standard normal distribution asymptotically, that is M1(k) ∼ N(0, 1) for a fixed
k and T → ∞. As noted by Charles et al. [14], the test statistic proposed by LM is
asymptotic, meaning that the sampling distribution is approximated by the limiting
distribution. For large values of k relative to T , the test statistic is right skewed and
non–normal [17]. Due to this phenomenon, Lo and MacKinlay [9] propose selecting
k–values no larger than half of the sample size T . Here, k–values in the range
{2, 4, 8, 16, 32, 64} are used for the LM test.

3.3 The Chow–Denning test

The LM test is an individual variance ratio test, meaning that it tests the null
hypothesis for a given difference k. The null hypothesis H as defined in section 2.1
holds if and only if the individual LM tests pass for all values of k that are selected
for the test. This method of several individual tests can increase the probability of a
type I error, that is over rejection of the null hypothesis [14]. Furthermore, Chow
and Denning [22] argue that the choices of the k–values play a significant role on the
results of the LM test: focusing on extreme statistics may lead to over rejection of
the null hypothesis.

The CD test considers the joint null hypothesis that the VR estimates are equal to
one for all chosen differences k in a set of m different k–values. The CD test uses
the maximum absolute value of the LM statistics as its test statistic:

MV1 = max
1≤i≤m

|M1(ki)|, (8)



14

where M1(ki) is defined in (5). By applying the results obtained by Sidak [23],
Hochberg [24] and Richmond [25], Chow and Denning give an upper bound to the
critical value of MV1 and show that it follows the studentized maximum modulus
distribution SMM(α, m, T ), where α is the level of significance of the test. Chow
and Denning [22] show that the null hypothesis is rejected at α level of significance if
and only if MV1 exceeds the 1

2(1 + (1 − α)1/m):th percentile of the standard normal
distribution. At the 5 percent level of significance and k–values {2, 4, 8, 16}, the
critical value of MV1 is calculated as 2.491.

3.4 The Whang–Kim test

The CD test statistic is approximated by an upper bound on the exact critical value,
which can in some cases be too conservative of an approximation. Thus, Whang
and Kim [26] propose a strategy that directly approximates the exact critical value.
Their method is based on a subsampling technique. The WK test uses the same test
statistic as the CD test, namely:

MV1 = gT (x0, . . . , xT ) (9)

where gT (x0, . . . , xT ) = max1≤i≤m |M1(ki)|. Whang and Kim [26] then approximate
the cumulative distribution function of MV1, denoted as GT , by looking at b–sized
subsamples (xt, . . . , xt−b+1) and calculating gT,b,t = gb(xt, . . . , xt+b−1) for all t =
0, . . . , T − b + 1. The distribution of GT is then approximated by the formula

ĜT,b(x) = (T − b + 2)−1
T −b+1∑

t=0
1(gT,b,t ≤ x), (10)

where 1 is the indicator function [26]. The critical value of the test is the (1 − α)–
percentile of ĜT,b, meaning that RWH is rejected if MV1 exceeds this critical value.
Note that one must choose an appropriate value for the subsample size b in order to
perform the test successfully. Whang and Kim use in their Monte Carlo simulations
six different b–values equal distances apart in the range [2.5T 0.3, 3.5T 0.6]. In this
thesis, three subsample sizes in the aforementioned range are used: b ∈ {50, 100, 150}.
The k–values are the same as in the CD test.
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3.5 Data and software

The data consist of weekly prices for two indices, OMXHPI and OMXH25, as well
as eight stocks. All prices are from the time period January 3, 2000 to February 28,
2018. Stock prices and related information are collected from Yahoo! Finance [12]
and the prices of the two indices are retrieved from Investing [13]. The stocks are
randomly selected from the OMXH25 index, with the restriction that there are less
than ten missing data points. Nokia is included by default, since it is the most traded
stock in Helsinki Stock Exchange and thus of special interest. The data, including
further details, is presented in table 1. Key financial information appears in table
2.

All prices are close prices, which are adjusted for possible splits. Dividends are not
included in the returns, and there are some missing data points that are simply
ignored. The problem with not including dividends in the return history is that,
since dividends are predictable, there is a deterministic adjustment of the stock price
that corresponds to the size of the dividend. Ignoring missing data points can cause
volatility spikes in the time series.

Lo and MacKinlay [9] suggest using weekly returns, as their sampling method is
based on an asymptotic approximation requiring a large number of observations.
Daily returns would give more observations, but there are many problems related to
it. As noted by Lo and MacKinlay [9], the unwanted effects of infrequent trading, the
bid–ask spread and asynchronous prices may become emphasized for daily returns.
Thus, weekly returns are a good compromise: Lo and MacKinlay follow this strategy
in their own experiment [9].

Table 1: Summary of the data. Note that the number of observations does not
include missing data points.

Stock Ticker symbol Observations Missing data points

OMXHPI index OMXHPI 947 1
OMXH25 index OMXH25 945 3
Nokia Oyj NOKIA.HE 939 9
Wärtsilä Oyj Abp WRT1V.HE 942 6
Amer Sports Oyj AMEAS.HE 948 0
UPM–Kymmene Oyj UPM.HE 940 8
Fortum Oyj FORTUM.HE 940 8
Stora Enso Oyj STERV.HE 940 8
Elisa Oyj ELISA.HE 940 8
Nokian Renkaat Oyj NRE1V.HE 945 3
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The data is imported into the RStudio software, where it is analyzed, missing data
points are removed and the time series are logarithmized and differentiated. The test
statistics and the auxiliary functions are written as R functions. The actual source
code used in the tests, including comments, are presented in appendix A.

Table 2: Key financial information about the data.

Time series Avg. price (e) Avg. return (e) Avg. weekly vol. (Me)

OMXHPI index 7915.96 -5.29 342.80
OMXH25 index 2416.39 0.80 –
Nokia Oyj 13.54 -0.04 124.62
Wärtsilä Oyj Abp 21.80 0.06 2.62
Amer Sports Oyj 12.35 0.02 1.33
UPM–Kymmene Oyj 14.71 0.01 11.56
Fortum Oyj 14.27 0.02 9.84
Stora Enso Oyj 9.19 0.00 16.58
Elisa Oyj 19.14 0.00 2.65
Nokian Renkaat Oyj 19.58 0.04 3.00

4 Results

4.1 Results of the Lo–MacKinlay test

The results of the LM test are presented in table 3. The RWH is accepted for
both indices and all stocks, except for UPM–Kymmene, at the 5 percent level of
significance. The main rows contain the VR estimates V (k) for each parameter value
k, with the LM heteroscedastic test statistic M1(k) reported in parenthesis under
the corresponding VR estimate. The null hypothesis is rejected for UPM–Kymmene,
as M1(2) exceeds the 5 percent critical value of 1.96.

Most substantial deviations from unity variance ratio are observed for UPM–Kymmene,
Amer Sports, Fortum, Nokian Renkaat and Stora Enso. Their maximum absolute
values of the LM statistic are 2.01, 1.86, 1.84, 1.55 and 1.53, respectively. The small-
est deviations from unity variance ratio are observed for Nokia and the OMXHPI
index – their maximum absolute values of the LM test statistic are 0.74 and 0.92,
respectively.

The variance ratios are less than one for all stocks and indices for k = 2, and for most
stocks and indices for k ∈ {4, 8, 16, 32}. It can be shown that VR(2) corresponds to
1 + ρ1, where ρ1 is the first–order autocorrelation coefficient of the return process
rt = xt − xt−1. Therefore, the results show that all return processes have a negative
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first–order autocorrelation coefficient. Lo and MacKinlay [9] report that this is a
common symptom of infrequent trading. It appears that the VR estimates increase
as k increases: only UPM–Kymmene, Stora Enso and Nokian Renkaat has it the
opposite way around.

Table 3: The results of the LM test.

Aggregation parameter k

Time series 2 4 8 16 32 64

OMXHPI index 0.96 0.93 1.00 0.96 0.99 1.15
(-0.92) (-0.80) (-0.02) (-0.20) (-0.02) (0.37)

OMXH25 index 0.94 0.92 0.96 1.01 1.22 1.43
(-1.30) (-1.02) (-0.34) (0.05) (0.82) (1.15)

Nokia Oyj 0.99 1.03 1.08 1.03 0.92 1.02
(-0.24) (0.49) (0.74) (0.19) (-0.34) (0.06)

Wärtsilä Oyj Abp 0.97 0.98 0.99 0.98 1.12 1.31
(-0.80) (-0.18) (-0.08) (-0.11) (0.47) (0.87)

Amer Sports Oyj 0.91 0.86 0.76 0.74 0.81 0.99
(-1.86) (-1.59) (-1.77) (-1.36) (-0.73) (-0.04)

UPM–Kymmene Oyj 0.91 0.90 0.87 0.76 0.75 0.78
(-2.01)∗ (-1.23) (-1.05) (-1.33) (-1.00) (-0.64)

Fortum Oyj 0.92 0.83 0.81 0.84 0.92 1.15
(-1.54) (-1.84) (-1.34) (-0.74) (-0.26) (0.39)

Stora Enso Oyj 0.94 0.89 0.81 0.70 0.72 0.76
(-1.40) (-1.37) (-1.45) (-1.53) (-1.01) (-0.65)

Elisa Oyj 0.96 1.00 1.00 1.00 1.12 1.39
(-0.78) (0.02) (-0.04) (0.00) (0.42) (0.97)

Nokian Renkaat Oyj 0.97 0.98 1.12 1.28 1.25 1.10
(-0.70) (-0.27) (0.92) (1.55) (0.99) (0.29)

The VR estimates V (k) are reported without parenthesis and the LM statistics M1(k) are
given in parenthesis. An asterisk (*) indicates that the test statistic exceeds the 5 percent
critical value of 1.96.
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A more detailed profile of the VR estimates for the given time series are presented in
figures 1, 2 and 3. The plots show the variance ratio estimates for all k–values up to
128. Indeed, it seems that the VR estimates tend to increase as k increases, up until
approximately k = 80, where the estimate starts to decline slightly. This pattern is
observable for both indices, and for some of the stocks. The results are in agreement
with the findings of Lo and MacKinlay [9], who report positive serial correlation for US
stock market indices for long holding periods. The results give more evidence against
the mean reversion model proposed by Poterba and Summers [27]. However, it should
be emphasized that the observed variance ratios are insignificantly different from
one, both statistically and economically, except perhaps for UPM–Kymmene.
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Figure 1: The LM variance ratio estimates for the OMXHPI and OMXH25 indices
plotted against k–values in the range 0–128.

An interesting observation is that the OMXHPI index shows smaller deviations
from unity variance ratio than the OMXH25 index. This is not expected, since the
OMXH25 index contains the most highly traded stocks in Helsinki Stock Exchange,
whereas OMXHPI contains also less frequently traded stocks. Another observation
is that the results for the indices do not differ significantly from the results for
individual stocks. Lo and MacKinlay [9] report smaller autocorrelation coefficients
for individual securities than for portfolios, and point out that this could be because
individual stocks carry much firm–specific noise.
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Figure 2: The LM variance ratio estimates for Nokia, Wärtsilä, Amer Sports and
UPM–Kymmene plotted against k–values in the range 0–128.

There are clear differences between the VR profiles for different stocks. Nokia’s
variance ratio estimates are on average closest to one, implying that its price history
agrees best with the random walk model. This is not unexpected since Nokia is the
overwhelmingly most traded stock in Helsinki Stock Exchange (see table 2). On the
other hand, infrequently traded stocks such as Amer Sports or Wärtsilä do not show
radical departures from RWH, either.

UPM–Kymmene and Stora Enso differ from all other stocks in that their VR estimates
are notably less than one and their VR estimates decrease as k increases. The fact that
the said stocks have similar VR profiles is not surprising, as both companies operate
in the forest industry and thus have similar price history. What is quite remarkable
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is that the two stocks show negative serial correlation for all return horizons. This
could be a coincidence, or it could be an indication of mean reversion.
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Figure 3: The LM variance ratio estimates for Fortum, Stora Enso, Elisa and Nokian
Renkaat plotted against k–values in the range 0–128.
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4.2 Results of the Chow–Denning and Whang–Kim tests

The results of the CD and WK tests are presented in table 4. The common test
statistic MV1 is reported in the first column, with the critical value of the CD test,
abbreviated CDcrit, given in the second column. The critical values of the WK
test, denoted WKcrit, are reported in the three rightmost columns for the chosen
subsample sizes b. All critical values are 5 percent critical values.

Table 4: The results of the CD and WK tests.

WKcrit for subsample size b

Time series MV1 CDcrit 50 100 150

OMXHPI 0.92 2.491 2.26 2.00 2.14

OMXH25 1.30 2.491 2.16 2.24 2.45

Nokia Oyj 0.74 2.491 2.64 2.07 1.87

Wärtsilä Oyj Abp 0.80 2.941 2.04 2.05 2.19

Amer Sports Oyj 1.86 2.491 2.05 2.06 2.13

UPM–Kymmene Oyj 2.01 2.491 2.26 2.27 1.91∗

Fortum Oyj 1.84 2.491 2.02 2.02 2.06

Stora Enso Oyj 1.53 2.491 2.17 2.25 2.17

Elisa Oyj 0.78 2.491 2.39 2.39 2.50

Nokian Renkaat Oyj 1.55 2.491 2.85 3.89 3.59

An asterisk (*) indicates that the test statistic exceeds the given critical value.

The CD test accepts RWH for all time series, whereas the WK test rejects RWH for
UPM–Kymmene with subsample size b = 150 at the 5 percent level of significance.
The results are in agreement with the LM test and give further support that the time
series follow a random walk. As expected, WKcrit is on average less than CDcrit.
This shows that the WK test indeed gives a sharper bound for the critical value
compared to the CD test, at least on average.
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5 Conclusion

The results of this study indicate that stocks and the main indices in Helsinki Stock
Exchange follow random walks. Only UPM–Kymmene is found to violate the random
walk assumption at the 5 percent significance level. The results contradict some of
the previous studies on RWH in Finland and Scandinavia. In particular, the results
are not consistent with Shaker [11], who strongly rejects RWH for daily returns of
the OMXH25 index for the period 2003 to 2012. Furthermore, the results are not in
accordance with the results obtained by Berglund et al. [18], who show that Helsinki
Stock Exchange and other Scandinavian stock exchanges are inefficient in the random
walk sense.

It must be emphasized that the results obtained in this study are not entirely
comparable with some of the previous studies. Firstly, this study uses only variance
ratio tests, whereas Berglund et al. [18], Jennergren and Korsvold [7] and some other
authors use primarily serial correlation tests and runs tests. Secondly, many of the
previous studies examine daily returns, while this study uses weekly returns. As
noted by Lo and MacKinlay [9], daily sampling can induce many side–effects: biases
related to infrequent trading or the bid–ask spread may become emphasized. Since
Helsinki Stock Exchange is a relatively thin market, these biases might be even more
pronounced than in larger stock markets.

One should also note that studies on RWH in Finland cover vastly different time
periods of varying lengths. For instance, Shaker [11] considers price data from 2003
to 2012, which is a fairly short time period, whereas this study covers more recent
data from 2000 to 2018. It could well be that the market efficiency of Helsinki Stock
Exchange has evolved over time. Indeed, according to the adaptive market hypothesis,
as market ecology, institutional environment, regulations and taxes change over time,
so does the efficiency of the market [28]. The trading volume in Helsinki Stock
Exchange has not changed notably during the past 20 years, so the market can still
be characterized as a thin stock market.

If stock prices in Helsinki Stock Exchange follow a random walk, what are the
implications for investors and the efficiency of the market? As stated in section
1, RWH is not a sufficient condition for market efficiency and thus, the results
do not imply market efficiency. However, the results suggest that Helsinki Stock
Exchange might be efficient, at least in the weak sense. The implication for investors
is that technical analysis of historical returns may not improve expected earnings
significantly – especially when transaction costs are considered. However, there may
be a handful of stocks, including UPM–Kymmene, that have somewhat predictable
patterns. Nevertheless, since the LM test does not give an alternative model to RWH,
constructing a model for the stock price generating process could be difficult.

This thesis raises many interesting questions regarding RWH and its validity in
Helsinki Stock Exchange. How do the results of variance ratio tests and other tests
of RWH compare for returns of different time periods: are the results significantly
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different for daily, weekly and monthly returns? Has the efficiency of Helsinki Stock
Exchange evolved over time? Perhaps a more extensive study including many, if not
all stocks in Helsinki Stock Exchange could yield a better understanding of which
stocks possess a random walk nature and which do not. There are undoubtedly many
open questions for further research to address.
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A Appendix

A.1 Test statistics and related functions in R

1 # sigma _hat returns the unbiased estimator of (1/k):th of the k- period return
2 # variance , see definition (4). Parameters : k = aggregation parameter ,
3 # T = sample size - 1, ts = time series .
4
5 sigma _hat <- function (k, T, ts) {
6 cur <- 0
7 mu <- mean(diff(ts))
8 m <- k*(T-k+1)*(1-k/T)
9 for(t in k:T){

10 cur <- cur + (ts[t+1] - ts[t+1-k]-k*mu)^2
11 }
12 cur/m
13 }
14
15 # V returns the LM estimator of the variance ratio . See equation (3).
16 # Parameters : k = aggregation parameter , T = sample size - 1, ts = time series .
17
18 V <- function (k, T, ts) {
19 sigma _hat(k, T, ts)/ sigma _hat (1, T, ts)
20 }
21
22 # VTest plots the variance ratio estimates V for the given time series for
23 # k- values 1...128. Parameters : T = sample size - 1, ts = time series ,
24 # label = y-axis label .
25
26 VTest <- function (T, ts , label ) {
27 v <- rep (0 ,128)
28 for (k in 1:128) {
29 v[k] = V(k, T, ts)
30 }
31 plot(v, xlab=’k’, ylab= label )
32 }
33
34 # delta returns delta (j) for the given time series , which is needed to
35 # compute phi(k), see equation (7). Parameters : j = see equation (7) ,
36 # T = sample size - 1, ts = time series .
37
38 delta <- function (j, T, ts) {
39 numerator <- 0
40 denominator <- 0
41 mu <- mean(diff(ts))
42 for(t in (j+1):T){
43 numerator <- numerator + (ts[t+1] - ts[t]-mu)^2 * (ts[t+1-j]-ts[t-j]-mu)^2
44 }
45 for(t in 1:T){
46 denominator <- denominator + (ts[t+1] - ts[t]-mu)^2
47 }
48 numerator / denominator ^2
49 }
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50 # phi returns phi(k) for the given time series , see equation (6).
51 # Parameters : k = see equation (6) , T = sample size - 1, ts = time series .
52
53 phi <- function (k, T, ts) {
54 cur <- 0
55 for(j in 1:(k -1)){
56 cur <- cur + (4*(k-j)^2/(k^2)) * delta (j, T, ts)
57 }
58 cur
59 }
60
61 # M_1 returns the LM test statistic for the given time series and aggregation
62 # parameter k. Parameters : k = aggregation parameter , T = sample size - 1,
63 # ts = time series .
64
65 M_1 <- function (k,T,ts) {
66 (V(k, T, ts) -1) / sqrt(phi(k, T, ts))
67 }
68
69 # data returns the subsample (x_t, ... , x_(t+b -1)) of the given time series .
70 # Parameters : t = first data point , b = subsample size , ts = time series .
71
72 data <- function (t, b, ts) {
73 ts[t:(t+b -1)]
74 }
75
76 # gTbt returns g_b(x_t, ... , x_(t+b -1)), i.e the CD statistic computed for the
77 # subsample (x_t, ... , x_(t+b -1)) of the given time series .
78 # Parameters : t = first data point , b = subsample size , ts = time series .
79
80 gTbt <- function (t, b, ts) {
81 M <- c()
82 i <- 1
83 for (k in c(2 ,4 ,8 ,16)) {
84 M[i] = M_1(k, length (data(t, b, ts)) -1, data(t, b, ts))
85 i <- i + 1
86 }
87 max(abs(M))
88 }
89
90 # GTb returns the the cumulative distribution function of the CD statistic
91 # MV_1, as approximated by WK , evaluated at x. Parameters : T = sample size - 1,
92 # b = subsample size , ts = time series , x = argument of the cumulative distribution
93 # function .
94
95 GTb <- function (T, b, ts , x) {
96 cur <- 0
97 for(t in 1:(T-b+2)) {
98 cur <- cur + ifelse (gTbt(t, b, ts) < x, 1, 0)
99 }

100 cur / (T-b+2)
101 }
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