
Aalto University

School of Science

Master’s Programme in Mathematics and Operations Research

Sara Melander

Survival regression model for rolling
stock failure prediction

The document can be stored and made available to the public on the open
internet pages of Aalto University. All other rights are reserved.

Master’s Thesis
Espoo, April 29, 2019

Supervisor: Professor Antti Punkka
Advisors: Ville Mattila M.Sc. (Tech.), VR Maintenance Ltd

Otto Sormunen D.Sc. (Tech.), VR Maintenance Ltd



Aalto University
School of Science
Master’s Programme in Mathematics and Operations Re-
search

ABSTRACT OF
MASTER’S THESIS

Author: Sara Melander

Title:
Survival regression model for rolling stock failure prediction

Date: April 29, 2019 Pages: vii + 97

Major: Systems and Operations Research Code: SCI3055

Supervisor: Professor Antti Punkka

Advisors: Ville Mattila M.Sc. (Tech.)
Otto Sormunen D.Sc. (Tech.)

In railway operations where functioning machinery is a key to success, maintenance is an
important part of the business. At the Finnish rolling stock maintenance company VR
Maintenance Ltd, maintenance consists of repair due to failures and preventive main-
tenance actions. Failures happen unexpectedly, whereas the preventive maintenance
actions follow a predetermined programme. Currently, over 50% of the maintenance at
VR consists of repair. To improve the maintenance operations at VR, this thesis devel-
ops a prediction model for rolling stock failure prediction. The model serves as a tool
for short-term maintenance scheduling, for budgeting, and for analysing the current
failure process to help develop the maintenance programme.

The prediction model consists of accelerated failure time models (AFTM) developed
for each failure category for each rolling stock fleet. AFTM is a survival regression
model, where a number of factors found to affect the time to failure are linked to a
failure distribution. In this thesis we use a Weibull AFTM, where the baseline failure
distribution is a Weibull distribution. We found five factors affecting the failure process
significantly: the month, the average speed, the kilometres since previous preventive
maintenance action, the age of the rolling stock, as well as the split between ”good”
and ”bad” rolling stock individuals. The model is based on failure and maintenance
records from a two-year period. Using Monte Carlo simulation, the model outputs
the predicted number of failures during the specified prediction period with confidence
intervals. The model also predicts the total repair time for these failures as well as the
number of critical failures.

The prediction accuracy of the model was found lacking. Some failure categories were

accurately predicted, whereas others need to be improved further. Further model devel-

opment and a pilot study to test its usefulness are encouraged, as utilising a prediction

model in the maintenance operations is expected to boost fleet reliability and avail-

ability, and reduce maintenance costs. It can also be utilised to further develop the

operations, e.g. as a building block in an opportunistic maintenance optimisation model

or in enhancing condition based maintenance.

Keywords: rolling stock, maintenance planning, failure prediction mod-
elling, accelerated failure time model

Language: English
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Underh̊allsarbete är en viktig del av t̊agverksamheten, eftersom verksamhetens
lönsamhet bygger p̊a fungerande utrustning. Hos den finska underh̊allsoperatören för
t̊agutrustning VR Underh̊all Ab best̊ar underh̊allsarbetet av reparationer av fel samt av
förebyggande underh̊all. Fel uppst̊ar oväntat medan det förebyggande underh̊allet följer
ett program. I nuläget best̊ar över 50% av underh̊allsarbetet p̊a VR av reparationer.
För att förbättra VR:s underh̊allsverksamhet utvecklar det här arbetet en prediktions-
modell för att förutsäga fel som uppst̊ar i t̊agutrustningen. Modellen fungerar som ett
verktyg för kortsiktig underh̊allsplanering, för budgetering samt för att analysera hur
och när fel uppst̊ar, vilken stöder utvecklandet av underh̊allsprogrammet.

Prediktionsmodellen best̊ar av modeller för accelererad tid till fel (engelska: accelera-
ted failure time model) (AFTM) som utvecklats skilt för varje felkategori och varje
t̊agflotta. AFTM är en regressionsmodell för överlevnadsmodellering, där ett antal va-
riabler som konstaterats ha ett samband till överlevnadstiden kopplas till en fördelning
som beskriver tiden tills ett fel uppst̊ar. I det här arbetet använder vi en Weibull
AFTM, där basfördelningen är en Weibullfördelning. Vi identifierade fem relevanta va-
riabler: m̊anaden, medelhastigheten, den körda sträckan sedan senaste förebyggande
underh̊allsarbete, t̊agets ålder samt en indelning av braöch d̊aligat̊ag. Modellen baserar
sig p̊a fel- och underh̊allsdata fr̊an en tv̊åarsperiod. Genom att använda Monte Carlo
simulering producerar modellen en prognos med konfidensintervall över antalet fel som
uppst̊ar under en given period. Modellen förutsäger ocks̊a den totala reparationstiden
för felen, samt antalet kritiska fel.

Modellens prediktionsnoggrannheten är dock inte tillräckligt bra. En del felkategoriers

modeller behöver vidareutvecklas för att garantera noggranna förutsägelser. Vidare-

utveckling av modellen och testning av dess nytta genom ett pilotprojekt uppmunt-

ras eftersom användandet av en prediktionsmodell i underh̊allsverksamheten förväntas

förbättra t̊agens p̊alitlighet och tillgänglighet samtidigt som underh̊allskostnaderna

sjunker. Modellen kan ocks̊a användas för att vidareutveckla verksamheten, till ex-

empel som en del av en optimeringsmodell för opportunistiskt underh̊all eller för att

förbättra riskbaserat underh̊all.

Nyckelord: t̊agutrustning, underh̊allsplanering, felmodellering, accelera-
ted failure time model

Spr̊ak: Engelska
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made this experience extraordinary. Words cannot express the gratitude I
feel for the amazing opportunities these seven years have given me, not to
mention all the wonderful people I have met along the way.

I especially want to thank my mother Åsa for the unconditional support
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Chapter 1

Introduction

Maintenance is a key function in many businesses, as it guarantees that the
operations can run smoothly and ensures safety (Dekker, 1996). According
to Stern et al. (2017), maintenance expenses account for approximately 50%
of the overall costs in railway operations. Fleet availability and reliability
are key areas of interest for railway operations. These can be optimised with
an effective maintenance strategy, while still minimising maintenance costs
(Duffuaa et al., 2015). Implementing a well suited maintenance strategy for
the operations may also improve resource management efficiency and reduce
failures (Cheng and Tsao, 2010).

The maintenance strategy defines the implementation of two main mainte-
nance approaches: repair due to failure and preventive maintenance (Wang,
2002). Failures generally happen unexpectedly and are repaired as they oc-
cur or when needed. Preventive maintenance refers to pro-active maintenance
actions taken to prevent failures while the equipment is still in working condi-
tion, mainly to increase reliability and reduce maintenance costs. Preventive
maintenance is often cheaper than repair, as repairing a failure might re-
quire more extensive work than performing pro-active maintenance. Also,
whereas failures are unexpected, pro-active maintenance follows a predeter-
mined programme of scheduled maintenance actions (Stern et al., 2017). The
preventive maintenance programme can be based on driven kilometres, ob-
served condition of the system, opportunities for maintenance due to shut
down of the system, number of production cycles run, or other predetermined
factors (Duffuaa et al., 2015). The maintenance strategy should be tailored
for the specific system, as the system’s structure and interdependencies affect
the suitability of different strategies.

Maintenance scheduling is an element of maintenance operations, which Duf-
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CHAPTER 1. INTRODUCTION 2

fuaa et al. (2015) define as the process of assigning resources and manpower
to maintenance jobs and determining when to perform them. The authors
argue that the effectiveness of a maintenance system is greatly affected by
the quality of the maintenance schedule and its ability to adapt as changes
appear. Changes are due to happen, since the need for maintenance is depen-
dent on the failures that occur. As failures occur unexpectedly, being able
to accurately predict the need for repair will make the maintenance system
more efficient.

At the Finnish rolling stock maintenance company VR Maintenance Ltd
(henceforth referred to as VR), the maintenance strategy consists of pre-
ventive maintenance actions based on usage, time, or component condition.
However, currently over 50% of the maintenance work is repair due to fail-
ures. The failures happen unexpectedly and even if repairing them accounts
for the majority of the overall maintenance, failures are currently not being
extensively predicted. This contributes to challenges with weekly and daily
maintenance scheduling. Hence, rescheduling and delays are not uncommon,
which increase maintenance costs and reduce efficiency. In addition, a com-
prehensive understanding of the failure process for the rolling stock fleets is
currently lacking. Being able to predict failures would grant opportunities to
improve several elements of the maintenance operations, resulting in reduced
maintenance expenses and improved reliability and availability of the rolling
stock fleets.

This thesis develops a failure prediction model for rolling stock failures at
VR. The prediction model mainly provides a tool for enhanced weekly main-
tenance scheduling. It can also be utilised for the improvement of the preven-
tive maintenance programme, as an accurate modelling of failure in combi-
nation with an understanding of the failure process are bases for developing
an optimal programme. An estimate for upcoming failures would also serve
as a basis for budgeting. Factors affecting the failure process are identified
through expert interviews and analysis of maintenance and failure records
from a two-year period. These records are also used for developing the fore-
casting model, which predicts failures per rolling stock fleet and failure cate-
gory. The failures are categorised according to the location of the rolling stock
they occur in, for example, doors and entrances, brakes, or air-conditioning.

For each failure category and each of 12 rolling stock fleets (6 locomotive fleets
and 6 electric multiple unit fleets) we fit an accelerated failure time model
(AFTM) to the observed inter-failure kilometres. The AFTM is a survival
regression model, in which a number of factors having an effect on the failure
process are linked to the underlying survival function. This allows to consider
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the effect of these factors in the modelling of failures. For the rolling stock
failure processes we identify five relevant factors, which we include in the
model: the month, the average speed, the number of kilometres driven since
previous preventive maintenance, the age of the rolling stock, and the split
between identified ”good” and ”bad” individuals.

Figure 1.1 presents the structure of the thesis and illustrates how the chapters
are connected. The rest of the thesis is structured as follows. Chapter 2 gives
an introduction to maintenance planning and maintenance strategies, along
with key concepts related to these as presented in the literature. The current
maintenance planning protocol at VR is also presented in the chapter. A
literature review on failure modelling and failure prediction is presented in
Chapter 3. Both quantitative and qualitative methods and models as well as
some case study examples are discussed. Thereafter, Chapter 4 presents the
maintenance and failure records, which are used in Chapter 5 to implement a
model for failure prediction at VR. In Chapter 5 we describe the development
of accelerated failure time models and how these are combined into a complete
model for predicting the overall failures during a given time period. The
prediction accuracy of the model is presented and discussed in Chapter 6,
which also reviews the utilisation of the failure prediction in the maintenance
operations at VR, as well as the limitations of the prediction model. Finally,
the conclusions and ideas for further development are presented in Chapter 7.
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Figure 1.1: Illustration of the structure of the thesis and the connections
between the chapters.



Chapter 2

Maintenance Planning

In this chapter, we discuss different maintenance strategies and concepts
presented in the literature. Thereafter, we relate the maintenance strategy at
VR to these concepts and describe the current maintenance planning process
as well as future improvement plans. Based on interviews with key personnel
we identify key development opportunities for the process and present how
a failure prediction model would serve as a tool in different areas of the
maintenance planning process.

2.1 Maintenance Strategies

Duffuaa et al. (2015) discuss how the maintenance strategy should be in
line with the organisation’s overall strategy and vision. The maintenance
strategy defines issues such as maintenance outsourcing and organisation,
but also includes maintenance methodology. The maintenance methodology
refers to the equipment level maintenance strategy, that is, it describes the
approach for maintaining the equipment, mainly defining the incorporation
of pro-active maintenance. This is what is meant by maintenance strategy
in this thesis. Table 2.1 presents the main maintenance strategies that are
described further in this section. Generally, the overall maintenance strategy
is a mix of these strategies.

The basic type of maintenance is corrective maintenance (CM), which is
needed to restore the system to working condition when a failure occurs
(Pham and Wang, 1996). Corrective maintenance can also be referred to as
repair. As the need for corrective maintenance often is unforeseen, it may
lead to unexpected and costly breaks in the operations. When a failure oc-
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CHAPTER 2. MAINTENANCE PLANNING 6

Table 2.1: A summary of the maintenance strategies presented in this section.
CM and PM are the main maintenance approaches, whereas CBM, PdM and
OM are approaches to define how PM is performed. (Stern et al., 2017)

Corrective
maintenance

CM Also referred to as run-to-failure strategy.
The system is maintained (repaired) only
at failure.

Preventive
maintenance

PM Pro-active maintenance actions are taken
to prevent failures.

Condition based
maintenance

CBM The condition of the system determines
what (if any) pro-active maintenance ac-
tion should be taken.

Predictive main-
tenance

PdM Pro-active maintenance is performed if the
future condition of the system is predicted
to fall below a predetermined threshold.

Opportunistic
maintenance

OM Maintenance is performed as an opportu-
nity arises.

curs, there are different grades of restoration that can be sought with the
corrective maintenance action: minimal repair, imperfect repair or perfect
repair. Minimal repair refers to only repairing the system as much as needed
for it to be in operating condition again, restoring the system to an ”as bad
as old” (ABAO) state. Perfect repair usually refers to replacing the system
with a new one, hence bringing it back to an ”as good as new” (AGAN)
condition. Pham and Wang (1996) however address, that in reality a main-
tenance action usually restores the system to a state between ABAO and
AGAN, indicating imperfect repair. Due to the stochastic nature of fail-
ures, implementing corrective maintenance as the only maintenance strategy
may be costly as maintenance actions are not planned and consequently the
maintenance needs are unexpected. (Duffuaa et al., 2015)

To minimise failures and consequently the need for corrective maintenance,
as well as to reduce maintenance costs, pro-active maintenance actions can
be taken. These actions are performed when the system is still in operating
condition and are called planned or preventive maintenance (PM). Numer-
ous maintenance policies have been developed to determine when to take
which pro-active maintenance action. As in preventive maintenance strate-
gies pro-active maintenance actions are by definition part of the maintenance
strategy, the maintenance policy defines how these preventive actions are im-
plemented (Duffuaa et al., 2015). Wang (2002) reviews traditional preventive
maintenance policies developed and researched in the second half of the 20th
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century.

A widely used and extensively studied preventive maintenance policy is the
age-dependent policy, where a component is replaced at failure or at a pre-
determined age T, depending on which occurs first. Numerous extensions
and generalisations for the age-dependent policy have been developed, see
for example Sheu et al. (1995) and Block et al. (1993). Another popular
policy is the failure limit policy. Under this policy some reliability index,
such as the failure rate, is audited. As the index falls below a predetermined
threshold and the probability for failure grows larger than a tolerance level,
the system is preventively maintained to reduce the probability of failure.
Historical failure and maintenance data can be exploited to determine the
system specific optimal maintenance policy. (Wang, 2002)

More advanced maintenance strategies defining when to perform preventive
maintenance are

• Condition based maintenance (CBM)

• Predictive maintenance (PdM)

• Opportunistic maintenance (OM).

Condition based maintenance determines what preventive maintenance ac-
tions to take based on monitoring the condition of the system, for example,
by sensors or with inspections. Based on pre-determined rules, the state of
the system indicates if a preventive maintenance action should be performed
or not. Extensive historical data on failures and condition states is needed
to determine the condition thresholds for preventive maintenance actions.
(Alaswad and Xiang, 2017)

Predictive maintenance is based on an estimation of the state of the system
at a future time. If the system is expected to fall below a specified threshold
before the next maintenance, an additional pro-active maintenance action is
taken. Predictive maintenance requires not only monitoring of the condition
of the system, but also monitoring of factors affecting the system. Utilising
machine learning, notifications can be given when the system’s condition is
predicted to fall below the allowed threshold. This way, the system can be
preventively maintained before a failure occurs. (Stern et al., 2017)

Opportunistic maintenance is, as the name indicates, performed as the op-
portunity arises. Opportunities include another maintenance occasion or a
system shut down (Duffuaa et al., 2015). Urbani (2017) describes how oppor-
tunistic maintenance considers both preventive maintenance and corrective



CHAPTER 2. MAINTENANCE PLANNING 8

maintenance. Utilising predictive maintenance, estimates on which main-
tenance task to perform at any maintenance occasion can be derived. He
also suggests that a well implemented opportunistic maintenance strategy
increases system availability and reduces maintenance costs as several main-
tenance actions are performed at the same time and additional set-up costs
associated with any maintenance occasion can be avoided.

Many models and methods for determining an optimal or a well suited main-
tenance strategy have been developed. A review is presented by Sharma
et al. (2011), while Dekker (1996) summarises case studies of applications
of maintenance optimisation models. To optimise the maintenance policy,
an understanding of the system is needed, which typically requires histori-
cal data on maintenance actions and failures. This indicates that the model
needs to be customised for the specific case, as the parameters are system
specific (Urbani, 2017). Wang (2002) presents that the objective for a well
suited maintenance strategy is mainly to maximise system reliability or to
minimise system maintenance costs. Generally however, a combination of
these two is needed as a certain level of reliability needs to be guaranteed
and the maintenance costs cannot grow too large. Hence, he defines the
main objectives for finding the optimal maintenance strategy as either min-
imising system maintenance cost rate while reliability requirements are met,
or as maximising reliability measures while system maintenance cost rate
requirements are met.

According to their report on rolling stock maintenance Stern et al. (2017)
identify the maintenance strategy for rolling stock greatly affected by strict
safety regulations dictating the maintenance for security components and
components leading to train failure, such as brakes. These components to-
gether with highly visible quality components, such as air-conditioning, are
generally preventively maintained. Other components are maintained at fail-
ure, hence stoppage due to failure is inevitable at some point. They also con-
clude that the new digital developments enable the exploitation of condition
based maintenance and predictive maintenance in rolling stock maintenance
operations, which may come to increase efficiency of maintenance operations
by 15-25%. However, these strategies have not yet been implemented to such
an extent in railway operations and at least the leap to predictive mainte-
nance will require extensive investments.
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2.2 Current Maintenance Planning Process

at VR

For the implementation of a failure prediction model to improve elements
of the maintenance operations at VR, we have studied the current mainte-
nance planning process. We have interviewed key personnel at VR to get
an understanding of how the planning and scheduling are currently organ-
ised. Understanding the current process allows us to identify trouble points
and how parts of the process can be improved with a failure modelling tool.
The interviews in combination with an analysis on maintenance history and
failure data contributes to the understanding of the current situation.

According to the insights of the maintenance planners Kaarela (2018), Lehtola
(2018) and Levo (2018), the maintenance planning process at VR consists of
three levels:

1. Long-term planning, where the preventive maintenance strategy and
possible additional preventive maintenance actions are determined. Fre-
quently occurring failures for each rolling stock fleet are identified, as
well as seasonal fluctuations in the number and type of failures.

2. Short-term planning, which consists of scheduling the maintenance
activities for the next week. Only preventive maintenance actions are
scheduled, based on driven kilometres and time. Repair of failures pre-
venting the rolling stock from being used are scheduled as these failures
occur. Smaller failures not preventing usage, are usually repaired when
the rolling stock arrives at the depot for a preventive maintenance or
to repair a bigger fault. Short-term maintenance planners also con-
sider the depot shift schedule, since not all maintenance staff have
the knowledge or the certificates to perform all maintenance actions.
Additionally, the maintenance planners take into account the current
location of the rolling stock and direct it to a depot nearby with enough
capacity, i.e. personnel, vacant maintenance slot and time.

3. On-site planning, where the exact maintenance actions are chosen
based on the resources available and the criticality of the failures.
Resources refer to maintenance slots, personnel, materials and time.
Changes to the weekly schedule are common due to unexpected fail-
ures and delays in arrival times at the depot.

The current maintenance system and maintenance planning protocol at VR



CHAPTER 2. MAINTENANCE PLANNING 10

have elements of corrective maintenance, preventive maintenance, condition-
based maintenance as well as opportunistic maintenance.

The maintenance planners estimated that over 50%, even up to 80%, of the
time spent on maintenance actions is used for repairs. This observation is
backed up by analyses of the maintenance records. This means that correc-
tive maintenance plays a big role in the current maintenance system. The
short-term planning mainly focuses on scheduling preventive maintenance
actions for the next week. Observed failures or estimated failure occurrences
for the next week are only considered to a limited degree, as some time
and capacity are reserved for corrective maintenance mainly based on expert
judgement. Thus, this process has potential for improvement by utilising e.g.
survival regression modelling for more accurately predicting the future needs
for corrective maintenance.

Opportunistic maintenance is present in the current process as non-critical
failures are repaired in conjunction with other maintenance actions. Smaller
pro-active maintenance actions can also be conducted during a depot visit,
if the maintenance schedule allows them and there are available resources.
These pro-active maintenance actions can be based on the observed condition
of a component. For example, if the thickness of the brake pad is measured
to be below or close to a given threshold, it can be replaced.

The planning tool for weekly maintenance scheduling indicates preventive
maintenance actions to be performed and this information dictates the sched-
ule for the next week’s maintenances. Levo (2018) expresses that unexpected
critical corrective maintenance needs may result in planned preventive main-
tenance actions being moved. This is an issue since preventive maintenances
actions need to be performed after a predetermined amount of driven kilo-
metres or days, and a rescheduling might put the rolling stock on hold due
to the kilometres or the number of days being reached, hence prohibiting the
rolling stock from being used. On-site maintenance foreman Kehä (2018) also
adds that currently preventive maintenance actions are scheduled very close
to the maximum tolerance limit, resulting in little flexibility in the sched-
ule and problems when unexpected critical failures happen. Kaarela (2018)
and Levo (2018) believe that a closer examination of failures could reduce
the need for preventive maintenance rescheduling due to capacity needed for
critical corrective maintenance.

According to Lehtola (2018), material shortage is another issue resulting
from the uncertain characteristics of the failure process. If materials are not
available in stock, the repair is rescheduled, causing possibly a longer period
of the rolling stock being unused before the needed material has been deliv-
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ered. A failure prediction model could prevent possible material shortages,
as needed materials could be ordered based on the failure estimate.

The maintenance system is under constant development and improvements
are in the pipeline. Levo (2018) together with maintenance development
manager Annala (2018) describe how condition based maintenance is already
incorporated in e.g. maintaining of brakes with the aim of utilising condition
based maintenance to an ever more complete degree in maintenance for all
kinds of components. Another plan is to utilise machine learning to develop
an understanding of which failures are correlated, namely, if certain failures
can be predicted based on previous failures. Kaarela (2018) explains how
the fleet engineers follow up on the failures and continuously develop the
preventive maintenance programmes to reduce common failures. According
to fleet engineer Parta (2018), there is an understanding of which failures
become more frequent during the winter, and hence preventive maintenance
is performed in autumn to reduce these failures and to reserve more mainte-
nance capacity for the increased number of failures during the winter. In her
bachelor’s thesis Torpo (2019) examines different opportunistic maintenance
modelling strategies. Preliminary plans have been made to combine a model
like hers with an appropriate failure prediction model to produce optimal
combinations of maintenance actions to perform at each depot stop. These
combinations can be utilised in the on-site maintenance planning.

Based on the interviews, we decided to develop a model for failure prediction,
which could shed some light on the characteristics of the failure process
for different fleets and also provide an estimate for the expected number of
failures during the following planning period. We found that this type of
predictive model could serve as a tool for budgeting as well.

The planned use of the failure prediction model in the maintenance planning
process is presented in Figure 2.1. The long-term maintenance planning
provides insight into the factors affecting the failure process, and hence on
which parameters to include in the failure prediction model. The output
of the model depends on the user’s input and on the historical failure and
maintenance records from a specified time period.

The long-term maintenance planning would benefit from a failure predic-
tion model, as it would serve as a tool for identifying rolling stock that are
performing worse than others and as the model would provide insight on
commonly occurring failures. Based on these insights, additional preven-
tive maintenance actions could be incorporated in the maintenance program.
The predicted number of failures could also serve as a basis for budgeting.
The current budgeting process relies on historical failure and maintenance
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records, when budgeting the maintenance needs for the following year. A
failure prediction tool would allow for including the effect of relevant factors
in the estimated number of failures. It could also be used for scenario analysis
where e.g. the predicted failures with different number of driven kilometres
for the next year could be examined.

In the short-term maintenance planning process, the failure prediction can
be utilised in the scheduling and assigning of resources for next week’s main-
tenance jobs. If a larger number of failures are predicted, more time and
resources should be reserved for repair. Consequently, if the model predicts
less failures, there is time to perform further preventive maintenance actions.
If the short-term maintenance schedule is accurate, namely, adequate capac-
ity has been reserved for corrective maintenance, the need for changes to
the maintenance schedule is smaller, hence making the on-site maintenance
planning easier.

Furthermore, in line with future plans, the output of the failure prediction
model can also be exploited in an opportunistic maintenance model, defin-
ing optimal combinations of maintenance actions to be performed. Should
such a model be developed, will the output of it together with the short-
term maintenance schedule affect the on-site maintenance planning. Optimal
opportunistic maintenance combinations and accurate weekly maintenance
schedules enhance the maintenance work, which improves equipment relia-
bility and reduces maintenance costs.
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Figure 2.1: A graphical presentation of how the failure prediction model fits
into the maintenance planning process.



Chapter 3

Modelling Failure Repair Needs

The total upcoming maintenance actions are the combination of preventive
and corrective maintenance actions. Hence, to estimate the total mainte-
nance work load both maintenance types must be considered (Duffuaa et al.,
2015). In this thesis we only focus on modelling the uncertain part, namely
the need for corrective maintenance. Thus, the emphasis of this chapter lies
on failure modelling.

Yang et al. (2012) define a repairable system as one which generally is re-
paired at failure instead of being replaced. A rolling stock falls into the
category of repairable systems, more specifically into the category of com-
plex repairable systems. A systems is classified as complex if it consists of
several components or subsystems, between which there are either economic,
failure or structural dependence (Wang, 2002). Hence, the focus of this lit-
erary review is failure modelling of complex repairable systems.

Reliability refers to the ability of a system to function for a specified time
period and reliability analysis deals with the modelling of a system’s con-
dition and failure risk. Numerous methods for modelling failures have been
presented in the reliability analysis literature and this chapter provides a
summary of different approaches. Figure 3.1 presents a scheme of the fail-
ure prediction models and methods introduced in this chapter and these are
discussed further in Sections 3.1 and 3.2. Furthermore, Section 3.3 presents
a few case studies relevant to VR’s application.

14
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Figure 3.1: An overview of the methods for failure modelling presented in
this chapter. The split is based on the literary review in the PhD thesis of
Sun (2006).

3.1 Quantitative Models

A mathematical approach to failure modelling is popular in the reliability
analysis of a system. Several quantitative failure models have been developed
and are based on probability theory, statistics and stochastic processes. This
section presents different quantitative approaches and also introduces the
basic mathematical concepts related to reliability analysis.

3.1.1 Basic Principles of Probability Theory

The survival and failure distribution functions and the hazard function are
concepts relevant for reliability analysis (Kalbfleisch and Prentice, 2002). In
this section we present the relationships between these relationships of the
probability distribution of the failure time T , as presented by Kalbfleisch
and Prentice (2002) and Kaufmann et al. (1977). To illustrate the concepts,
we present the survival, failure probability distribution, and hazard function
for the Weibull distribution. The Weibull distribution is a commonly used
distribution for modelling the reliability of a system.

The survival function S(t) is a mathematical presentation of the expected
reliability distribution of the system. The survival function gives the proba-
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bility of a system surviving in the time interval (0,t], where 0 < t <∞, that
is, the probability of the does not fail before time T

S(t) = Pr(T ≥ t).

The variable t does not necessarily correspond to time, but is rather a sys-
tem specific variable best describing the use of the system and the change in
the condition of the system. It can be, for example, operating time, number
of production cycles or kilometres. Figure 3.2 presents three survival func-
tions with different underlying survival distributions. The cumulative failure
distribution function F (t) is closely related to the survival function

F (t) = 1− S(t) = Pr(T < t).

The cumulative failure distribution function presents the probability of failure
during a specific time interval (0,t), 0 < t <∞.

The failure probability density function f(t) again presents the probability
of failure at time t, hence with small dt corresponds to

f(t)dt ≈ Pr(t ≤ T < t+ dt) = F (t+ dt)− F (t) = S(t)− S(t+ dt),

as f(t) is the derivative of the cumulative failure distribution function F (t)

F (t) =

∫ t

0

f(τ)dτ.

We also note that f(t) ≥ 0,
∫∞
0
f(t)dt = 1 and f(t) is related to S(t) as

follows

S(t) = 1−
∫ t

0

f(τ)dτ =

∫ ∞
t

f(τ)dτ.

The failure rate λ(t), also called the hazard rate or instantaneous failure rate,
presents the instantaneous failure rate for a system which has survived until
time t, i.e.

λ(t) = lim
dt→0+

Pr(t ≤ T < t+ dt|T ≥ t)

dt
,

and the relationship to the survival function and the failure probability den-
sity function is

λ(t) =
f(t)

S(t)
= −

dS(t)
dt

S(t)
.

We can further write the hazard rate in the form

λ(t) = − d

dt
log S(t).
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When we integrate with respect to t and use S(0) = 1, we get

S(t) = exp
[
−
∫ t

0

λ(τ)dτ
]

= exp[−Λ(t)], (3.1)

where Λ(t) =
∫ t
0
λ(τ)dτ is the cumulative hazard function. When we differ-

entiate equation (3.1), we get the relationship between the failure probability
density function and the hazard rate

f(t) = λ(t) exp[−Λ(t)].
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Figure 3.2: Examples of survival functions when t follows different failure
distributions.

The Weibull distribution is one of the most commonly used distributions for
reliability modelling due to the possibility to include a change in the failure
rate over time. Other popular distributions for failure modelling are the ex-
ponential distribution, the Poisson distribution, the gamma distribution and
the log-normal distribution. The failure distributions are discussed by, e.g.,
Kalbfleisch and Prentice (2002) and Kaufmann et al. (1977). We here present
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the two-parameter Weibull distribution, the survival function of which has
the form

S(t) = exp[−(λt)γ], (3.2)

where λ > 0 is the scale parameter and γ > 0 is the shape parameter, also
referred to as the Weibull slope. Taking the derivative of the survival function
yields the probability density function, which is

f(t) = λγ(λt)γ−1 exp[−(λt)γ]. (3.3)

The hazard function again has the form

λ(t) = λγ(λt)γ−1. (3.4)

To illustrate the effect of the Weibull shape parameter γ Figure 3.3 presents
the probability density function for three different values for γ, while keeping
scale parameter λ constant. The shape parameter also has a distinct effect on
the failure rate, which is presented later in Figure 3.6. This is an important
effect of γ in the Weibull distribution, as it indicates a decreasing (γ < 1),
increasing (γ > 1) or constant (γ = 0) hazard rate.
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Figure 3.3: The effect of the Weibull shape parameter γ on the probability
density function f(t). The scale parameter is kept constant at λ = 1/100.

The scale parameter has a stretching effect on the Weibull probability den-
sity function, illustrated in Figure 3.4 as the probability density function is
presented for different values on λ, while keeping γ constant. The peak of
the probability density function is lower and appears at a larger value t for
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Figure 3.4: The effect of the Weibull scale parameter λ on the probability
density function f(t). The shape parameter is kept constant at γ = 3.

a smaller value on scale parameter λ. If λ is larger, the peak is higher and
occurs at a earlier t-value.

Historical failure data can be used to determine a suitable distribution for
modelling of failure times. Plotting the empirical distribution function, which
is defined as

F̂n(x) =
no. sample values < x

n

where n is the sample size, provide insight to what distribution the sample
failure times could fit to (Kalbfleisch and Prentice, 2002). Most programming
tools, such as Matlab, Python, or R, have functions to fit the failure times
to different distributions. After determining the distributions, they can be
used to estimate future maintenance needs, for example by examining fail-
ure probabilities at different times or by simulating failure times from the
distributions with Monte Carlo simulation (Le Gat and Eisenbeis, 2000).

3.1.2 Models based on the Poisson Process

Lindqvist (2006) and Doyen and Gaudoin (2004) present the renewal pro-
cess (RP), commonly used for modelling failures for repairable systems.
RP includes both the homogeneous Poisson process (HPP) and the non-
homogeneous Poisson process (NHPP). Poisson processes assume that the
failure times are independent of each other and that they all follow the same
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distribution. HPP assumes perfect repair, whereas NHPP assumes minimal
repair. The difference can be seen from the failure intensity functions.

The HPP failure intensity function at time t ≥ TNt is of the form

λt = λ(t− TNt),

where TNt is the N :th failure time. Thus, t − TNt (t ≥ TNt) indicates that
the intensity function starts at zero after each failure and does not consider
earlier failures. The intensity function returning to zero after each failure
captures the assumption of perfect repair, as it indicates that the system is
returned to an AGAN state after repair. HPP can also be used to model
a non-repairable system’s failure process, where the system is replaced at
failure.

As perfect repair often means replacement, HPP may be unsuitable for the
modelling of repairable systems. Instead, NHPP can be used, where the
assumption is minimal repair, returning the system to an ABAO state after
repair. NHPP considers the cumulative lifetime of the system, not only the
time since the previous failure. Hence, the failure intensity function is

λt = λ(t), ∀ t ≥ 0.

As Doyen and Gaudoin (2004) discuss, NHPP allows for failure modelling
of systems that improve or degrade over time, as the failure rate is time
dependent. If the failure rate is constant, the failure process equals a HPP.

Figure 3.5 illustrates the failure probability density functions of a HPP and a
NHPP. Both processes follow the same Weibull distribution. In the HPP the
failure distribution is restored to the original state after each failure, whereas
the failures in the NHPP do not change the distribution.

Doyen and Gaudoin (2004) describe the power law process (PLP), which is
a popular type of NHPP with the failure intensity function

λ(t) = λγtγ−1,

where scale parameter λ > 0 and shape parameter γ > 0. An intensity func-
tion with γ < 1 represents an improving system, as this implies a decreasing
failure intensity function. With γ > 1, the function is increasing, hence rep-
resenting a deteriorating system with an increasing failure rate over time.
We can see that with γ = 1, the intensity function becomes constant and
as it is no longer time-dependent, reverting back to a HPP. The change in
the PLP’s failure rate for different γ values can be presented in a so called
bathtub curve, illustrated in Figure 3.6.
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Figure 3.5: Failure probability density functions of a NHPP (left) and a HPP
(right), with random inter-failure times simulated from a Weibull distribu-
tion.

Figure 3.6: The so called bathtub curve presents how different values on
the shape parameter γ affect the failure rate and hence the type of failure
process. (Ahmad and Kamaruddin, 2012)

HPP and NHPP are basic models, with limited use for modelling failures
in real systems due to these models’ assumption of the system either being
restored to an AGAN state or remaining at an ABAO state after repair. In
reality however, the system is usually imperfectly repaired, wherefore the
state is between these two after repair. A basic, widely referred method for
imperfect repair modelling was developed by Brown and Proschan (1983).
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The model assumes a perfect repair with probability p and minimal repair
with a probability 1 − p at failure. Several generalizations of this classical
model have later been developed. Another class of imperfect repair models
are the virtual age models (Kijima, 1989). The virtual age models reduce
the age of the system after repair by some factor. Hence, the failure intensity
function value after repair at time T is not λ(T ), but rather λ(T −x), where
0 ≤ x ≤ T . For a review of imperfect repair models, see Peng et al. (2018).
Figure 3.7 illustrates an imperfect repair process following the basic imperfect
repair model of Brown and Proschan (1983). The underlying distribution is
the same Weibull distribution as in Figure 3.5.

0 1 2 3 4 5 6 7

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f(
t)

Imperfect repair process, p=0.5

Imperfect repair failure process

Failures

Figure 3.7: Failure process and failure probability density function of a failure
process following the basic imperfect repair model presented by Brown and
Proschan (1983), with probability of perfect repair p = 0.5. The underlying
failure distribution is the same Weibull distribution as in Figure 3.5.

3.1.3 Models based on Markovian Theory

Buzacott (1970) presents how a Markov approach can be used for modelling
of failure times for repairable systems. The Markov process is characterised
by being non-hereditary and memoryless and it captures the stochastic pro-
cess of a system transitioning from one state to another, so that the future
probability behaviour only depends on its current state.

The system is assumed to have N possible states and Pi(t) describing the
probability of the system being in state i at time t. The states can correspond
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to functions, failure modes, standby and different maintenance activities of
the system, and the holding times in each state are exponentially distributed.

However, the transition probabilities can be difficult to estimate and the
number of transition probabilities grow exponentially as the size of the system
grows. Hence, the Markov approach is best suited for smaller systems.

3.1.4 Models based on Bayesian Theory

The Bayes’ theorem, introduced by Thomas Bayes in the 18th century, presents
the probability of an event based on some prior conditional information rel-
evant to the event. The mathematical presentation of the theorem is

P (A|B) =
P (B|A)P (A)

P (B)
,

where P (A) and P (B) refer to the probabilities of event A and B occurring,
respectively. P (A|B) is the probability of event A given that event B occurs,
and P (B|A) is the probability of event B given A. (Bayes, 1763)

In failure modelling, Bayesian models allow for the use of expert knowledge
on the system’s reliability to reduce uncertainties in the model. Observed
values, such as, thickness of brake pads, amount of precipitation, or type of
previous failure can be used to estimate the failure probabilities. Beiser and
Rigdon (1997) model a failure process with HPP and PLP and use a Bayesian
approach to incorporate prior knowledge affecting the failure process. The
model is based on historical data and is used to estimate the number of
failures during some given future time interval.

3.1.5 Models based on Condition Monitoring Data

Monitoring the current state of a system gives important insight into pending
failures. There are several models for utilising the condition information in
failure modelling, here we present the proportional hazard model (PHM), also
called Cox’s model, and the accelerated failure time model (AFTM). These
are classified as survival regression models and also other parameters than
the system condition can be included as parameters in the model. Hence,
these models allow for including the effect of parameters affecting the failure
process, such as weather condition, age or load. The models are presented
by among others Kalbfleisch and Prentice (2002).

PHM is an extension to the homogeneous and non-homogeneous Poisson
processes (HPP and NHPP), where explanatory variables affecting the failure
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rate are added. As p explanatory variables (covariates) x′ = (x1, x2, ..., xp)
are linked to the failure time T , the hazard function will be of the form

λ(t|x) = λ0(t) exp (x′β),

where λ0(·) is an arbitrary baseline hazard function, x is a vector of the
covariates, corresponding to, e.g. observed state of the system, the tempera-
ture, or other factors affecting the failure process, and β′ = (β1, β2, ..., βp) is
a vector of unknown regression parameters. In PHM, the covariates have an
multiplicative effect on the hazard function. If we have λ0(t) = λ, PHM re-
duces to an exponential proportional hazard function, as the baseline hazard
function is constant. We get Weibull PHM if we have λ0(t) = λγ(λt)γ−1. In
the case of an arbitrary baseline hazard function, the model is suitable for
many applications, due to its flexibility.

The conditional survival function of a PHM is of the form

S(t|x) = [S0(t)]
exp(x′β),

and the probability density function is

f(t|x) = λ0(t) exp(x′β) exp
[
− exp(x′β)

∫ t

0

λ0(τ)dτ
]
.

Whereas the covariates in the PHM act multiplicatively on the hazard func-
tion, the accelerated failure time model (AFTM) models the covariates’ effect
as an acceleration or deceleration of the time to failure. The hazard function
of the AFTM is of the form

λ(t|x) = exp(−x′β)λ0(te
−Zjβ). (3.5)

This leads to a survival function

S(t|x) = exp
[
−
∫ t

0

exp(−x′β)λ0(τe
−x′β)dτ

]
= exp

[
− Λ0(te

−x′β)
]
.

The failure probability density function is the product of the hazard function
and the survival function.

We can see the covariates’ effect on the failure process in equation (3.5).
The covariates affect the failure time rather than the hazard function as in
the case of PHM. If we have covariates x = 0, we are left with the baseline
hazard function λ0(t). The regression parameters β specify whether the
covariates accelerate or decelerate the failure time. If βj < 0, covariate xi
has an accelerating effect on the failure time, whereas βi > 0 indicates a
decelerating effect of covariate xi.
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3.2 Qualitative Methods

A quantitative model is not always possible to apply for the modelling of
failures. In this section, we present commonly used qualitative methods for
reliability modelling, some of which can be used for quantitative analysis as
well.

3.2.1 Condition Monitoring and Fault Diagnostics

The condition based maintenance strategy was presented in Section 2.1. Duf-
fuaa et al. (2015) discuss the characteristics of condition based maintenance,
which is an effective preventive maintenance strategy, as the current condition
of a system is considered when maintenance decisions are made. This reduces
the number of unnecessary maintenance actions. The condition of a sys-
tem’s components can be monitored continuously and maintenance actions
are taken when the condition of a component falls below a predetermined
threshold. Also, the condition can be inspected in conjunction with another
maintenance action and the component can be opportunistically maintained
if the condition falls below the threshold. The threshold is determined based
on data from previous failures. Criticality of failures should also be assessed
to determine the threshold for different maintenance actions. The failure
modes, effect and criticality analysis (FMECA) presented in Section 3.2.4
can be used for determining failure criticality.

Sensors can be used for monitoring the condition of components by mea-
suring, for example, vibrations, noise level, lubricating oil contaminants or
running temperature. Condition based maintenance has become more pop-
ular as the technical development allows for more cost effective and reliable
monitoring. This method, when implemented correctly, gives great insight
into pending failures. A good understanding between the condition of com-
ponents and failures is needed, which requires historical data. Condition
based maintenance is especially suitable for systems where the change in sys-
tem condition can be observed before failure, i.e. when the condition of the
system can indicate imminent failures. However, as concluded in Section 2.1,
extensive implementation of condition-based maintenance has not yet been
incorporated in railway operations. Currently this strategy is limited to
maintaining only specific component, such as brake pads.
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3.2.2 Fault Tree Analysis

A classical method for analysing failures is fault tree analysis (FTA) (Watson
et al., 1961). This is a method with a top-down approach, where a top
event (failure) is analysed by graphically and logically presenting different
combinations of possible events affecting the system, all leading up to this top
event. After defining the top event to be analysed, events that are immediate,
sufficient and necessary causes for the top event are identified and connected
to the top event by logical operators.

An example of a simple fault tree is presented in Figure 3.8. The logical
operators AND and OR, together with how the components are connected,
describe possible paths to the top event. In the presented fault tree, examples
of cases leading to the top event are: component A fails, or components D
and E fail, or component H fails.

Figure 3.8: An example of a fault tree. In the tree, A-H are components
whereas AND and OR are logical operators, connecting the components to
the top event.

FTA can be used for quantitative analysis to provide information on, for
example root causes, failure paths, and weak areas of the system. It can also
be used for qualitative analysis, yielding information on the probability of
the top event happening. Hence, probabilities for the top event in different
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scenarios can be studied with a fault tree. Mancuso et al. (2017) use fault
tree analysis to derive combinations of events leading to system failure, which
they utilise for further analyses on system risk.

The fault or event tree analysis technique is however time consuming as
numerous events must be considered. Another limitation is that the fault tree
cannot describe the behaviour of a system with multiple states, for example
a leakage of different gravity (Mancuso et al., 2017). It can also be difficult
to find enough relevant data for the analysis to be reliable.

Traditional FTA is based on static fault trees, which is a limiting factor in the
utilisation of fault trees for analysing system failure, since component failure
may be affected by the state of other components. Dynamic fault trees can
model such failure sequences, as they include additional logical operators
that capture the relationships between component failures. (Distefano and
Puliafito, 2007)

3.2.3 Reliability Block Diagram

Whereas FTA visualises the combination of component failures leading to
system failure, a reliability block diagram (RBD) presents the reliability re-
lationships and functions between components. Reliability relationships refer
to how the reliability of one component affects the reliability of others. An-
other factor differentiating RBD from FTA is that RBD is success oriented,
while FTA models the system failure. (Distefano and Puliafito, 2007)

RBD was the first model developed for reliability assessment. An RBD is a
logical network showing the connections of functioning components needed
for a specific system function to work. An example of a RBD is presented in
Figure 3.9. In the presented RBD, component C1 must function for compo-
nents C2.1, C2.2 and C2.3 to function. Similarly, for component C3 to function,
C2.1, C2.2, C2.3 as well as C4 need to be working. λi refers to the reliability
measure for component i, illustrating the probability of the component to be
in a working condition. If the λ:s are known for all components, the RBD
can be used for quantitative analysis.

If a system has several functions, multiple reliability block diagrams might be
used. The qualitative information the RBD provides, is information on the
system’s state (functioning or failed) under given conditions. When RBD
is used for quantitative analysis, the system’s reliability at a given time t
is measured. A reliability block diagram can be converted to a fault tree
and vice versa, but the fault tree is generally more suitable for quantitative
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analysis. (De Souza, 2012)

Figure 3.9: An example of a reliability block diagram, illustrating the reli-
ability relationships between components. λi is the reliability measure for
component Ci.

3.2.4 Failure Modes, Effect and Criticality Analysis

Bowles and Peláez (1995) describe the failure modes, effect and criticality
analysis (FMECA), the goal of which is to quantify and rank critical failures,
for prioritisation of corrective actions. The approach was, like FTA, devel-
oped in the aerospace industry for design reliability assessment. FMECA is
often conducted by a group of experts identifying for each of the system’s
component or subsystem

• the failure modes,

• the consequences of the failure modes,

• and the criticality of each failure.

The criticality assessment is done by evaluating the gravity of each failure’s
negative effects on the function and operation of the system, on other compo-
nents, on the environment and on people. After the evaluation of all identified
failure modes, these are typically ranked according to probability of failure
and severity of the effect. The highest ranked failure modes are then given
higher priority, as they are assumed to be more important. FMECA helps to
identify critical parts of the system and it’s design, providing an opportunity
to improve the reliability of those parts. Identifying the failure modes, their
consequences and the criticality of the failures also allows for determining
the most suitable maintenance policy and serves as a basis for determining
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the priority of maintenance tasks. However, FMECA analysis is difficult to
implement even for a rather simple system, due to the exponential growth of
possible failure modes as the system’s complexity grows.

3.3 Examples of case studies

In this section, we present some case studies where the approaches presented
earlier in this chapter are used for modelling and analysing failures. The
cases are related to rolling stock, aviation industry and water networks.

Cheng and Tsao (2010) present an approach for first determining a suit-
able strategy for rolling stock maintenance and then estimating the needs for
spare parts. In their calculations, they assume the failure time to follow a
Weibull distribution, the parameters of which are determined based on his-
torical failure data. The failure times generated from the Weibull distribution
are used for estimating component replacement intervals. They also discuss
how FMECA and FTA can be utilised for determining the most critical com-
ponents of rolling stock operations. This is later done by Dinmohammadi
et al. (2016), as they introduce a FMECA based approach to evaluate the
risks associated with unexpected failures of components of a rolling stock.
The failures are ranked according to likelihood of occurrence and the severity
of damage. For the failure ranked as most critical, mitigating actions can
be identified. The authors apply their approach on passenger door units of
rolling stock operating in Scotland. They define potential failure modes and
their root causes and conclude that 12% of the failure modes are of high
criticality to the functionality of the door system. They utilise their findings
for developing a preventive maintenance programme.

Reliability analyses and predictions are an important part of the aviation
operation’s research, which is also indicated by the several reliability models
originally developed for the aviation industry. In a case study on jet engine
life modelling, Weckmann et al. (2001) apply the power law process (PLP).
They use jet engine removal data from two airline databases for the construc-
tion of the model, which they use to forecast future engine removal instances.
They also include a seasonal effect in their forecasting model by adjusting
the estimated jet engine removal times according to a month specific adjust-
ment factor. The model is evaluated based on data fit and accuracy of the
forecast. They conclude that even if data from a longer time period (around
15 years) would be needed for the model to be more accurate, PLP is an
effective forecasting tool providing a more accurate forecast compared to
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other used forecasting techniques. A PLP forecasting model able to predict
with an accuracy of 5% could provide substantial cost savings to an airline’s
maintenance expenses.

Water network failure prediction is addressed in several papers. In his PhD
thesis Røstum (2000) presents a non-homogeneous Poisson process (NHPP)
with covariates and a modified Weibull proportional hazard model (PHM)
to predict the pipe failures for each individual pipe in a water distribution
network. The models are based on data on the water distribution network in
Trondheim, Norway. Covariates which he found significant for the Weibull
PHM were pipe length, age and dimension, soil condition, and the number
of previous failures. He concludes that both models are capable of modelling
failures and, as the model results are more accurate at network level, the
pipe level results are also satisfactory. He observes that the Weibull PHM
tends to overestimate failures compared to NHPP. The author argues that
predictive models should become part of water network maintenance decision
processes, as such tools would lead to a reduction of maintenance expenses.
The actual implementation of a prediction model in the process is however
not described.

In their model for water network failure forecasting, Le Gat and Eisenbeis
(2000) use a Weibull PHM and Monte Carlo simulation to estimate the ex-
pected number of failures for each pipe in the network. The prediction model
is based on data from the water company in Charente-Maritime, France.
They include both environmental covariates, such as traffic, humidity, and
acidity, as well as internal factors, such as pipe diameter, length, and age.
They conclude that the Weibull PHM provides an efficient method even
with shorter maintenance records. Without specifying the type of prediction
model, the authors conclude that the use of a model predicting pipe con-
dition deterioration would enhance the water network maintenance decision
making process and would support the analyses of, for example water quality
and water loss.

Further applications of mathematical models in maintenance are presented
by Scarf (1997). He presents different approaches to failure modelling as
part of modelling maintenance. He also underlines the system specificity
characteristic of maintenance modelling, namely how the focus should lie on
the understanding of the system and decision-maker’s interests rather than
on the model used to reach the goal or solution.



Chapter 4

Presentation of the Failure Data

This chapter provides background to the failure and maintenance records
at VR. Here we also present an analysis of the failure times from a two-
year period for one rolling stock fleet to get an understanding of the failure
process. This data is also used for developing the prediction model described
in the next chapter. Analysis is conducted separately for the locomotive fleets
and multiple unit fleets presented in Table 4.1 before developing the system
specific failure prediction models. However, we only present the results for
one fleet in this thesis to illustrate the procedure.

4.1 Failure and Maintenance Records

Fleet sizes, i.e. the number of rolling stock individuals in the fleet and nick
names of VR’s fleets are presented in Table 4.1. Types SRx are electric
locomotive classes, DV12 and DR14 are diesel locomotive classes and DR16
refers to a class of diesel-electric locomotives. The SMx classes are electric
multiple unit train fleets, where the rolling stock consists of a combination of
carriages with electric motors incorporated in one or several carriages, hence
not needing a separate locomotive. Fleets SM2, SM4 and SM5 operate the
local traffic in the Helsinki region. SM3 is a Pendolino fleet operating on
domestic routes, whereas the Pendolino fleet SM6, called Allegro, operates
the route between Helsinki and Saint Petersburg. The DM12 fleet consists of
single unit diesel rail cars, mainly operating on secondary routes. Figure 4.1
presents an electric locomotive of type SR3 and Figure 4.2 presents a diesel
locomotive of type DV12, the largest locomotive fleet. A SM3 type Pendolino
is presented in Figure 4.3. In addition to the fleets listed in Table 4.1, VR
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also has carriage fleets, but the failure prediction model is not developed for
these and hence are not presented here.

Table 4.1: Locomotive and multiple unit fleets for which failure prediction
models are developed.

Type Name Nick name Fleet size
Locomotive SR1 Siperian susi 109
Locomotive SR2 Marsu 46
Locomotive SR3 18
Locomotive DV12 Deeveri 192
Locomotive DR14 Seepra 24
Locomotive DR16 Iso-Vaalee 23
Multiple unit SM2 Sami 50
Multiple unit SM3 Pendolino 18
Multiple unit SM4 Pupu 30
Multiple unit SM5 Flirt 81
Multiple unit SM6 Allegro 4
Multiple unit DM12 Lättä 16

Figure 4.1: An electric locomotive of type SR3, VR’s newest locomotive fleet.
(VR Group, 2019b)
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Figure 4.2: A diesel locomotive of type DV12, VR’s largest locomotive fleet.
(VR Group, 2019c)

Figure 4.3: An electronic multiple unit train of type SM3, operating domestic
routes. (VR Group, 2019a)

The data consists of failure and maintenance records with the information
presented in Table 4.2. The model and analyses are based on the presented
data entries.
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Table 4.2: The information in the maintenance and failure records used for
the analysis.

Data Explanation
Equipment ID ID of the rolling stock.
Fleet name The name of the fleet the rolling stock belongs to

(names presented in Table 4.1).
Fault code Code with 18 categories, categorising the failures on

a high level according to the location or system of
the rolling stock where the failure occurs.

Fault creation time Time stamp when the failure report is made, in this
thesis used as failure time.

Repair start time Time stamp when the fault is taken under repair.
Fault completion
time

Time stamp when the repair of the fault is finished.

Maintenance type Categorisation of preventive maintenance actions.
Maintenance start
time

Time stamp when preventive maintenance is started.

Maintenance end
time

Time stamp when preventive maintenance is com-
pleted.

Mileage values Rolling stock total driven kilometres at different
times. For the analyses, the kilometres is mapped
to the failure times and repair completion times, so
that the kilometre value is from the same day, or a
maximum of five days before the time stamp.

Criticality The criticality of the fault expressed on a scale of
1-3. 1 prohibits use before the fault is repaired, 2
means the fault must be repaired at the next depot
stop and 3 does not prevent use.

Depot The depot where the fault has been repaired.
Speed The maximum speed limit for the train unit a rolling

stock has been part of at any time, in addition to the
operating time and km for the particular train unit.

The unit of measure best describing the change in the rolling stock condition
is the driven kilometres. Hence, we must calculate the kilometres between
the failures to illustrate the failure times. As most of the failures that occur
are small and do not prevent the use of the rolling stock, the failures are
not necessarily repaired at once. Therefore, additional failures in the same
category might occur before the previous failures have been repaired. To
make the inter-failure kilometres comparable, the calculation of the inter-
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failure kilometres is different depending on when the failure occurs

• The failure occurs before the previous failure is repaired: The
inter-failure kilometre is the difference between the kilometre mark at
failure and the kilometre mark at the previous failure.

• The failure occurs after the previous failure is repaired: The
inter-failure kilometre is the difference between the kilometre mark at
failure and the kilometre mark at the repair of the previous failure.

An example of a failure process for a rolling stock individual for one failure
category is presented in Figure 4.4. The inter-failure kilometres for failure 2
(F2) equal the difference in driven kilometres between the occurrence of the
first and the second failure, as the first failure (F1) has not been repaired
before the second failure arises. After the second failure, both F1 and F2

are repaired (marked as R1 and R2). The repair restores the stock to a
condition with no failures. Thereafter, the third failure (F3) occurs. The
inter-failure kilometres for the third failure correspond to the difference in
driven kilometres at the third failure and the repair of the second failure. The
inter-failure kilometres for the fourth failure (F4) are calculated similarly.
The fifth failure (F5) is found as the fourth failure is repaired, hence the
inter-failure kilometres for the fifth failure are zero.

Figure 4.4: Example of a failure process for one failure category for a rolling
stock individual.

There are however, some limitations associated with the data (Annala, 2018).
The failures are not always correctly categorised and some actions associated
with condition based preventive maintenance are systematically recorded as
failures. Also, the reporting of a failure is not necessarily done when the
failure occurs, but rather when it is noticed or even after it has already been
fixed. This, in combination with the total driven kilometres not being marked
daily, may lead to inaccuracies in the inter-failure kilometres.
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The broad failure categories represent an additional limitation (Annala, 2018).
The categorisation only categorises the failures at a higher level without spec-
ifying the exact type of failure or the failed component. This also affects the
calculation of inter-failure kilometres, as the repair of a failure in a specific
category might not affect the timing of the next failure in the same category
at all. For example, say a failure occurs in category N, referring to doors
and entrances. The failure is located in door number one of the rolling stock
and it is repaired. The next day, another category N failure occurs - this
time in door number two of the rolling stock. Repairing the failure in door
number one does not necessarily affect the condition or probability of failure
of door number two, hence leading to a misleading inter-failure kilometre for
the second failure. The data at hand is limited to the described categorisa-
tion within most failure categories. There is some component specific failure
history, which would allow for more accurate and descriptive inter-failure
kilometres. However, this thesis focuses on the high level categorisations, as
the low number of data points in the more specific failure categories hinder
the development of a component specific prediction model.

Levo (2018) expresses that the repair lead times marked in the system also
have some limitations. These are not necessarily consistent with the realised
repair times, due to a number of reasons. Firstly, the workers may work
on several failures simultaneously and mark them as completed at the same
time. This results in the data indicating that X hours have been spent on
repairing each of the failures, whereas in reality X hours have been spent on
the repairs combined. Secondly, a failure ticket may be opened in conjunction
with a preventive maintenance, but the failure is not repaired before the
rolling stock leaves the depot. The ticket then stays open until the failure
is repaired and marked as completed in the system, which can be several
days, or even months later. The actual lead time for the repair has not been
more than a few hours, but the data indicates it has taken several days.
This however, is the case only for non-critical failures, which do not limit the
rolling stock from operating. The marked repair times for failures prohibiting
the rolling stock from being used are more accurate, even though they may
include waiting times due to shortage in components.

4.2 Data Analysis

Next, we present an analysis of the failure data of a single fleet X. Figure 4.5
presents the number of failures per failure category for fleet X. The largest
categories are F, R, E, J and Q; these failures combined correspond to 56%
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of all failures during the two-year inspection period. The total number of
failures during the two-year period is 16 024. These are mainly small failures
not preventing the rolling stock from being used. Critical failures are only
1% of the total number of failures.
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Figure 4.5: Number of failures per failure category for fleet X during a time
period of two years.

A histogram of all inter-failure kilometres larger than zero are presented in
Figure 4.6. For this fleet, approximately 9% of the failures are found during
a depot stop, which results in the inter-failure kilometre being zero. The
incorporation of these failures in the failure prediction model has to be done
separately, the approach for which is described in Section 5.5. These have
to be included separately in the model, since inter-failure kilometres equal
to zero prevents the fitting of a Weibull or log-normal distribution to the
inter-failure kilometres. We will use a Weibull distribution for the failure
modelling, hence we now focus only on the inter-failure kilometres larger than
zero. These are presented in the histogram in Figure 4.6, and correspond to
91% of all inter-failure kilometres.

The shape of the histogram presenting the inter-failure kilometres resembles
an exponential probability distribution function. A Weibull or log-normal
distribution could also fit the data. In Figure 4.7, we have fitted an exponen-
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Figure 4.6: A histogram of all inter-failure kilometres larger than zero for
fleet X, during the two-year period.

tial, Weibull and log-normal distribution to the inter-failure kilometres. We
perform a Kolmogorov-Smirnov goodness-of-fit test (KS-test) (Massey Jr,
1951) to see whether the failure kilometres seem to fit the distributions or
not. The test hypotheses are as follows:

• H0 : The inter-failure kilometres follow the specified distribution.

• H1 : The inter-failure kilometres do not follow the specified distribution.

We use a significance level α = 0.05, indicating that the null hypothesis is
rejected if the p-value falls below 0.05. Table 4.3 presents the results of the
KS-tests. All p-values are below the 0.05 significance level, indicating that
the inter-failure kilometres do not fit any of the distributions.

As we cannot fit one distribution to all inter-failure kilometres, we look at
the inter-failure kilometres for specific failure categories. The histograms of
the inter-failure kilometres for the the five largest failure categories (F, R, E,
J and Q) with fitted exponential, Weibull and log-normal probability distri-
bution functions are presented in Figure 4.8. We perform the Kolmogorov-
Smirnov test to examine the fit of the distributions. The results are presented
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in Table 4.4. With a significance level α = 0.05 the KS-test null hypothesis
of distribution fit is rejected for all but E and J failures coming from the
Weibull distribution.
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Figure 4.7: Probability density functions (PDF) f(t) of distributions fitted
to all inter-failure kilometres.

Table 4.3: P -value of KS-test performed for three distribution on all inter-
failure kilometres larger than zero.

Distribution p-value Null hypothesis
Exponential 1.8e−65 Rejected
Weibull 1.9e−15 Rejected
Log-normal 1.8e−86 Rejected
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Figure 4.8: Histograms of category specific inter-failure kilometres and prob-
ability density functions f(t) of fitted distributions.
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Table 4.4: P -values of KS-test performed for three distribution on inter-
failure kilometres larger than zero for failure categories F, R, E, J and Q.

Distribution p-value Null hypothesis
Exponential 0.03 Rejected
Weibull 0.01 RejectedF
Log-normal 0.0 Rejected
Exponential 0.0 Rejected
Weibull 0.0 RejectedR
Log-normal 0.0 Rejected
Exponential 2.3e−14 Rejected
Weibull 0.14 AcceptedE
Log-normal 7.9e−10 Rejected
Exponential 0.0 Rejected
Weibull 0.11 AcceptedJ
Log-normal 2.0e−4 Rejected
Exponential 0.02 Rejected
Weibull 0.04 RejectedQ
Log-normal 1.7e−12 Rejected

As it appears that all failures cannot be modelled only with a failure dis-
tribution, we want to identify parameters affecting the failure process and
link them to the failure distribution. This can be done with an accelerated
failure time model (AFTM). In the analysis conducted in this chapter, we
found that the Weibull distribution is the best fit for most of the failure
types’ inter-failure kilometres. Hence, we implement Weibull AFTMs, where
the underlying failure distribution is the Weibull distribution. The imple-
mentation of the Weibull AFTM is presented in the next chapter.



Chapter 5

Failure Prediction Model

As concluded in the previous chapter, the failures for the rolling stock fleet X
cannot be modelled only with a failure distribution. Analyses of the failures
of the other fleets gave similar results. Hence, we construct a survival regres-
sion model, which allows us to include the effect of parameters identified as
relevant in the modelling of failures.

In this chapter we illustrate how an accelerated failure time model is fitted
to the failure data presented in the previous chapter and how the model
produces an estimate for upcoming repair needs and repair times. We also
provide a detailed mathematical presentation of the accelerated failure time
model and present how the model was validated. The model is developed for
failure prediction for 12 fleets, but in this thesis we demonstrate the analysis
and modelling with the results for only fleet X. The model is implemented
using Python coding language, specifically utilising packages scipy.stats (The
SciPy community, 2019) and lifelines (Davidson-Pilon, 2019).

5.1 Model Structure

We develop a model for estimating the number of failures during a given
time period. The structure of the model is presented in Figure 5.1. The user
specifies whether the output should be for a specific rolling stock or for the
whole fleet. The user can also give a depot as the model input. In case a
depot is specified, the number of failures can be predicted either for a specific
fleet or rolling stock repaired at the given depot, or for the sum of the failure
repairs for all fleets to be conducted at that depot. The user must specify
the prediction period, by defining the starting date of the prediction period
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and the number of days to predict. The can also also specify the number
of kilometres a rolling stock operates during the prediction period. If the
user only specifies the number of kilometres or only the prediction period,
the model bases the average kilometres a rolling stock operates per day on
historical records on driven kilometres for that specific fleet.

When using this model in the scheduling of next week’s maintenance jobs, the
user wants to have a prediction on next week’s expected number of failures.
The user typically knows the number of kilometres the rolling stocks are
expected to operate during the week. Hence, the user inputs the dates for the
next week and the average expected operating kilometres per rolling stock.
For budgeting purposes on the other hand, the prediction period input would
probably be a specific month and the operating kilometres could be based on
an estimate for that month’s average operating kilometres per rolling stock.
A fleet engineer examining the failure pattern for the whole fleet or a specific
rolling stock individual, could look at predictions for different time intervals
and comparing the predictions. In that case, the historical average operating
kilometres would probably suffice for the prediction.

The user also inputs dates to define the time period from which data is used
for model estimation. In addition, the user specifies whether to take the
timing of the previous failure into account in the simulation of failures. If
the timing of the previous failure is not to be taken into account, the model
assumes that a failure has just occurred, i.e. the kilometres since the previous
failure are zero.

The prediction model is based on modelling the kilometres to failure with
an accelerated failure time model (AFTM). The AFTM is selected as the
failure modelling approach since we want a quantitative model, with the
possibility to include the effect of other parameters. The AFTM makes it
possible to easily add, alter and remove covariates and provides a quantitative
prediction.

An AFTM is fitted separately to the inter-failure kilometres of each fleet
and each failure category. Given that there are 18 failure categories for each
fleet, predicting the number of failures for all 12 fleets requires generating 216
unique models. If a regular exponential, Weibull or log-normal distribution
is a better fit to the data than an AFTM, we choose that distribution for
the prediction instead. This is the case, if the inspected factors do not
significantly affect the failure process, or if the number of observations is too
small. To determine the best suited model or distribution, we compare the
maximum log likelihood values of each model and choose the one with the
highest log-likelihood.
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Figure 5.1: The structure of the model used for failure prediction.



CHAPTER 5. FAILURE PREDICTION MODEL 45

The prediction is conducted with Monte Carlo simulation with 100 itera-
tions where failure times are drawn from the generated AFTMs. The model
simulates failures in all failure categories for all individuals. The predicted
number of failures and repair times are presented as averages across the sim-
ulation replications as well as associated confidence intervals. In addition to
the expected number of failures, the model also expresses the estimated total
repair time for the failures.

It should be noted that there are some computational limitations associated
with Monte Carlo simulation. Enough data is needed in order to deter-
mine the distributions accurately; a distribution that does not describe the
phenomena or system being simulated, leads to incorrect results. Also, to
guarantee that the simulations converge to a result with a small enough error
term, the number of simulations needs to be large. Depending on the com-
plexity of the simulation model, increasing the number of simulations may
lead to a much longer run time. Hence, the number of iterations must be
selected so that the result is accurate enough, while still fitting the possi-
ble run time limitations. In this thesis, these limitations are not restricting
factors for the use of Monte Carlo simulation.

5.2 Mathematical presentation

We presented the accelerated failure time model in Section 3.1.5. We further
present the theory of the model as presented by Lee and Wang (2003), focus-
ing on the Weibull AFTM, which is used for failure modelling in this thesis.
In the Weibull AFTM, covariates affecting the failure process are linked to
the Weibull distribution. A linear relationship between the logarithm of the
survival time T and the covariates is an assumption for the AFTM and can
be used for analysing survival times. Given a Weibull AFTM, this linear
relationship for the a survival time Ti with covariate values xi is

log Ti = β0 + x′iβ + σεi = µi + σεi, (5.1)

where β0 and β = (β1, β2, ..., βp) correspond to the regression coefficients,
x′i = (x1i, x2i, ..., xpi) are the covariate values associated with failure time Ti,
and εi is an independently and identically distributed random variable with
an extreme value distribution with the density function

g(ε) = exp(ε− exp(ε))

and survival function
G(ε) = exp(− exp(ε)).
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The survival time T is Weibull distributed with

γ =
1

σ
(5.2)

and

λi = exp
(
− µi
σ

)
= exp

(
− β0 + x′iβ

σ

)
= exp

(
− γ(β0 + x′iβ)

)
. (5.3)

Combining equations (5.3) and (5.2) with the Weibull survival function (equa-
tion (3.2)), gives the Weibull survival function with covariates

S(t|λi) = exp(−λitγ). (5.4)

Similarly, inserting equations (5.3) and (5.2) into the Weibull hazard func-
tion (equation (3.4)) and into the Weibull probability density function (equa-
tion (3.3)), presents the Weibull hazard function with covariates

λ(t|λi) = λiγt
γ−1,

as well as the Weibull probability density function with covariates

f(t|λi) = λiγt
γ−1 exp(−λitγ).

The relationship presented by equation (5.1) shows the effect of the covariates
on the failure time. We assume a simple example to illustrate it. We have
one covariate, which can take the value 0 or 1. If x = 0, the covariate does
not effect the time to failure and we get T0 = exp(β0 +σε). If the covariate is
set to x = 1, the time to failure is T1 = exp(β0 +β1 +σε), which is equivalent
to T1 = T0 exp(β1). This illustrates the effect of the covariate on the time to
failure:

• if β1 > 0: decelerating effect as T1 becomes larger than T0,

• if β1 < 0: accelerating effect as T1 becomes smaller than T0,

• if β1 = 0: no effect as T1 becomes equal to T0.

The parameters β0, β and γ in equations (5.3) and (5.2) are estimated
through the maximum likelihood method. The log-likelihood function for
the observed n failure times to be maximised is

l(β0, β, γ) =
n∑
i=1

log(f(ti|λi))

=
n∑
i=1

[
log γ + (γ − 1) log ti − γ(β0 + x′iβ)

− tγi exp(−γ(β0 + x′iβ))
]
.
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The parameters b = (β0, β, γ) that maximise the log-likelihood functions
correspond to the maximum likelihood estimate (MLE) b̂, which are derived
using the Newton-Raphson iterative procedure to find

∂(l(b))

∂bi
= 0 ∀ bi ∈ b.

The significance of the covariates’ effect on the failure time can be examined
using the log-likelihood function. To check if any of the given p covariates
have a significant effect on the failure time, we consider the following chi-
squared distributed XL with p degrees of freedom

XL = −2
(
l(β̂0(0),0)− l(β̂0, β̂)

)
,

where β̂0(0) is the MLE of β0 given β = 0. The null hypothesis is

H0 : β = 0

and is rejected if the 100α percentage point of the chi-squared distribution
with p degrees of freedom is smaller than XL.

Similarly, we can test the significance of a single covariate on the failure time.
For the case with p = 2, where the first covariate has been found significant,
we can test the significance of the second covariate with

XL = −2
(
l(β̂0(0), β̂1(0), 0)− l(β̂0, β̂1, β̂2)

)
,

where β̂0(0) and β̂1(0) are the MLE of β0 and β1 given β2 = 0. The null
hypothesis

H0 : β2 = 0

and is rejected if the 100α percentage point of the chi-squared distribution
with p degrees of freedom is smaller than XL.

5.3 Covariate selection

Choosing relevant covariates for the AFTM can be a challenging process (Lee
and Wang, 2003). In this section, we perform a univariate analysis of the
impact on the failure times for five parameters chosen based on suggestions
from maintenance experts at VR. In addition to the results of the univariate
analysis for each chosen parameter, the effect of the parameter as a covariate
in the Weibull AFTM and the significance of the covariate are presented in
this section. The chosen covariates are:
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• Seasonality, examined on a monthly basis

• Average speed of the train units the rolling stock has been part of since
the previous failure

• Kilometres since previous preventive maintenance

• Rolling stock age, expressed in total driven kilometres

• Good and bad individuals, differing significantly in performance from
the fleet average.

5.3.1 Impact of Season

We start by analysing the season’s impact on the inter-failure kilometres. We
define the season as the month when the failure occurs. Figure 5.2 presents
the average kilometres to failure with standard errors for each month for
failures of type F for fleet X.
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Figure 5.2: The average kilometres to failures each month for failure type F,
fleet X.

A larger value on the average inter-failure kilometres is preferred, since it
means the average kilometres to failure have been longer. The bar chart
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shows that the average inter-failure kilometres have been the longest in July
and the shortest in February and March. This indicates that the number of
failures per driven kilometre is largest in February and March and smallest
in July. This is consistent with the intuitive hypothesis of the failure rate
being larger in Finland during the winter and smaller during the summer.

The average inter-failure kilometres for failure category F for fleet X is ap-
proximately 18 000 km. This corresponds to around 40 days on average, im-
plying that a rolling stock does not experience a type F failure every month.
This might lead to some problems with the seasonal analysis, as the timing
of the failures may fall more often on one month than another. However, as
the failure records are from a two-year period, the timing issue is likely to be
somewhat evened out. Failure records from a longer period would be needed
for an accurate analysis of the seasonal effect.

In addition to the graphical analysis of the season’s effect on the failure rate,
we also perform a two-sample t-test to test whether the average time to failure
for each month differs significantly from the average time to failure during the
rest of the year. The results for the t-test are presented in Table 5.1. The null
hypothesis is that there is no significant deviation from the yearly average
kilometres to failure, meaning that the mean values of the two samples are
equal:

• H0 : µm = µM\{m}, the investigated month’s (m ∈ M) average inter-
failure kilometres are equal to the average inter-failure kilometres for
the rest of the year (M\{m}).

• H1 : µm 6= µM\{m}, the investigated month’s (m ∈ M) average inter-
failure kilometres differ from the average inter-failure kilometres for the
rest of the year (M\{m}),

where M = {1, 2, ..., 12}.
The null hypothesis is rejected if the p-value is below the significance level
α = 0.05. Before performing the two-sample t-test, we test if the variances
for the two samples are equal or not. If the test indicates equal variance,
we use the t-test assumption of equal variance, i.e. σm = σM\{m}. If the
variances for the two samples cannot be assumed equal, we perform a t-test
with the assumption of unequal variance, i.e. σm 6= σM\{m}. The test for
variance equality is performed before the two-sample t-tests for the other
covariates as well.
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The results in Table 5.1 show that the average inter-failure kilometres differ
significantly from the mean of the rest of the year in February, March, July,
September and October.

Table 5.1: Results from the t-test for testing of significant deviation from
the yearly average inter-failure kilometres for each month. A rejected null
hypothesis indicates significant deviation.

Month Sample size p-value Null hypothesis
January 278 0.092 Accepted
February 183 5.1e−06 Rejected
March 131 0.001 Rejected
April 92 0.278 Accepted
May 109 0.573 Accepted
June 107 0.264 Accepted
July 135 4.4e−04 Rejected
August 129 0.128 Accepted
September 130 0.016 Rejected
October 159 0.038 Rejected
November 176 0.781 Accepted
December 141 0.507 Accepted

The season’s effect on the survival function of the AFTM is presented in
Figure 5.3. The covariate value is included as the historical average inter-
failure kilometres for the specified month divided by the longest historical
average inter-failure kilometres. Hence, the covariate value equals 1 for the
month with the longest inter-failure kilometres and is smaller than 1 for all
other months. The two cases of covariate values presented in Figure 5.3
correspond to July (season = 1) and February or March (season ≈ 0.6),
which can be concluded from the average inter-failure kilometres per month
presented in Figure 5.2. As the value for the season-covariate increases the
kilometres to failure increase as well, indicating that the covariate has a
decelerating effect on the failure time.

Testing the significance of the season covariate in the AFTM model for F
type failures for fleet X generates a p-value p < 0.005, indicating that the
effect of the season covariate is significant.
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Figure 5.3: Effect of the season covariate on the survival function in the
AFTM for F-failures for fleet X. Season = 1 represents July’s survival func-
tion, and season = 0.6 is an approximate representation of the survival func-
tion in February and March.

5.3.2 Impact of Average Speed

Figure 5.4 presents the difference in average inter-failure kilometres at dif-
ferent average speed of the rolling stock since the previous failure. This is a
parameter, which may be more relevant for locomotives as, intuitively, the
speed affects the stress and performance of the locomotive. The bar chart
indicates that the higher the average speed, the shorter the inter-failure kilo-
metres. This follows the intuitive conclusion of a higher speed resulting in
an increased number of failures.

The results of the t-test to check for significant deviations between the speed
groups are presented in Table 5.2. The hypotheses for the t-test are:

• H0 : µs = µS\{s}, the investigated speed group’s (s ∈ S) average inter-
failure kilometres do not differ significantly from the average inter-
failure kilometres for the rest of the population (S\{s}).
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• H1 : µs 6= µS\{s}, the investigated speed group’s (s ∈ S) average inter-
failure kilometres differ significantly form the average inter-failure kilo-
metres for the rest of the population (S\{s}),

where S =
{

[0, 80[, [80, 100[, [100, 120[, [120,∞[
}

.
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Figure 5.4: The average kilometres to failures for failure type F, fleet X, at
different average speeds.

Table 5.2: Results from the t-test for testing for significant deviation from
the overall average inter-failure kilometres for different average speeds. A
rejected null hypothesis indicates significant deviation.

Speed Sample size p-value Null hypothesis
< 80 km/h 81 0.052 Accepted
80-100 km/h 685 6.6e−11 Rejected
100-120 km/h 880 2.5e−05 Rejected
> 120 km/h 206 7.7e−07 Rejected

The speeds are calculated as the weighted average rolling stock unit speed
limits since the previous failure repair, or since the previous failure if it has
not been repaired yet. In the calculations, the speed limit rather than the
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actual speed is considered. Hence, the weighted average speed corresponds
to the average speed given that the train unit would drive at the speed limit
all the time. The results of t-test also indicates that the larger the average
speed, the shorter the inter-failure kilometres.

The effects of the average speed on the AFTM survival function are presented
in Figure 5.5. Covariate value speed = 0.5 corresponds to the average speed
limit being 50 km/h and speed = 1.5 corresponds to the average speed being
limit 150 km/h. A lower average speed decelerates the kilometres to failure,
whereas a higher speed has an accelerating effect. The test for covariate
significance gives the p-value p < 0.005, resulting in a rejection of the null
hypothesis, indicating the average speed having a significant effect on the
failure times of F type failures.
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Figure 5.5: Effect of the speed covariate on the survival function in the
AFTM for F-failures for fleet X.

5.3.3 Impact of Kilometres since Preventive Mainte-
nance

The effect on the failure process of the number of driven kilometres since
the previous preventive maintenance action is presented in Figure 5.6. The



CHAPTER 5. FAILURE PREDICTION MODEL 54

previous preventive maintenance refers to any pro-active maintenance ac-
tion performed and is not necessarily associated with the failure category.
However, several preventive maintenance actions are typically performed at
the same maintenance occasion. We can see that the average kilometres to
failure are shorter as the kilometres since the previous preventive mainte-
nance action are shorter. This indicates that the failure rate is higher after
a preventive maintenance and decreases as the kilometres since the previous
preventive maintenance increase, which may appear counter-intuitive. This
could be the result of poor maintenance work quality. However, there is
probably some other explanation to the counter-intuitive result, such as the
users paying more attention to the condition of the rolling stock directly af-
ter it has been maintained, hence noticing more failures. Also, this might be
the infant mortality effect presented in the bathtub curve in Figure 3.6, that
is, the failure probability is larger in the earliest stage and decreases as the
system ages.
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Figure 5.6: The average kilometres to failures for failure type F, fleet X, for
different kilometres since the previous preventive maintenance.
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We perform a t-test to check for significant deviations between the groups
and the results are presented in Table 5.3. The hypotheses for the t-test are:

• H0 : µm = µM\{m}, the average inter-failure kilometres for the inves-
tigated kilometres since previous preventive maintenance (m ∈ M) do
not differ significantly from the average inter-failure kilometres for the
rest of the population (M\{m}).

• H1 : µm 6= µM\{m}, the average inter-failure kilometres for the investi-
gated kilometres since previous preventive maintenance (m ∈M) differ
significantly from the average inter-failure kilometres for the rest of the
population (M\{m}),

where M =
{

[0, 0.5[, [0.5, 1[, [1, 1.5[, [1.5, 2[, [2,∞[
}

.

Table 5.3: Results from the t-test for testing for significant deviation from
the overall average inter-failure kilometres for different kilometres since the
previous preventive maintenance. A rejected null hypothesis indicates signif-
icant deviation.

Km since PM Sample size p-value Null hypothesis
< 5000 km 512 2.0e−11 Rejected
5000− 10000 km 362 0.142 Accepted
10000− 15000 km 332 0.133 Accepted
15000− 20000 km 301 0.019 Rejected
> 20000 km 345 4.2e−06 Rejected

We can conclude that there are significant deviations between the groups.
The effect of the kilometres since previous preventive maintenance as a co-
variate in the AFTM is presented in Figure 5.7. The estimated survival
function for an individual with 5 000 km since the previous preventive main-
tenance falls below the baseline survival function, whereas it is above the
baseline function for an individual with 25 000 km since the previous pre-
ventive maintenance. The test for covariate significance gives the p-value
p < 0.005, resulting in a rejection of the null hypothesis, indicating that the
kilometres since previous preventive maintenance have a significant effect on
the failure times.
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Figure 5.7: Effect on the survival function of the covariate illustrating the
kilometres since previous preventive maintenance in the AFTM for F-failures
for fleet X.

5.3.4 Impact of Age

Next, we examine what effect the rolling stock’s age, expressed in total driven
kilometres, has on the inter-failure kilometres. Figure 5.8 presents the aver-
age inter-failure kilometres with standard errors for type F failures for fleet
X, for groups with different total driven kilometres representing the age of the
rolling stock. The bar chart does not show the age having a clear significant
impact on the failure process for this fleet for F failures. Only the youngest
group seems to have an average inter-failure kilometre differing significantly
from the other age groups. This group has a smaller average inter-failure
kilometre, indicating that the failure rate is higher for this group.

We conduct a t-test to check for significant deviation of the average kilometres
to failure for each age group compared to the rest of the population’s inter-
failure kilometre average. The hypotheses for the test are:

• H0 : µa = µA\{a}, the investigated age group’s (a ∈ A) average inter-
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failure kilometres do not differ significantly from the average inter-
failure kilometres for the rest of the population (A\{a}).

• H1 : µa 6= µA\{a}, the investigated age group’s (a ∈ A) average inter-
failure kilometres differ significantly form the average inter-failure kilo-
metres for the rest of the population (A\{a}),

where A =
{

[0, 1.5[, [1.5, 2[, [2, 2.5[, [2.5, 3[, [3,∞[
}

.

The results are presented in Table 5.4. The t-test shows a significant differ-
ence in average inter-failure kilometres between the youngest group of rolling
stocks and the rest of the population, which is consistent with the obser-
vation based on Figure 5.8. This could be explained by the rolling stocks
experiencing more failures spend more time at the depot, hence not accu-
mulate as much kilometres as the other rolling stocks, which places them in
the youngest group in this analysis. However, combining the results from
this covariate analysis with the results on ”good” and ”bad” individuals pre-
sented in the next section does not place the significantly worse performing
individuals in the youngest group.
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Figure 5.8: The average kilometres to failures for failure type F, fleet X, for
different age groups (the total driven kilometres scaled for anonymity).
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Table 5.4: Results from the t-test for testing for significant deviation from the
overall average inter-failure kilometres for different age groups. A rejected
null hypothesis indicates significant deviation.

Age (total driven km) Sample size p-value Null hypothesis
< 1.5 Mkm 326 0.022 Rejected
1.5-2 Mkm 632 0.104 Accepted
2-2.5 Mkm 459 0.775 Accepted
2.5-3 Mkm 350 0.480 Accepted
> 3 Mkm 85 0.879 Accepted

Figure 5.9 illustrates the effect of the age covariate on the survival function.
The survival function is very similar for both presented age groups. The test
for covariate significance gives a p-value p = 0.83, based in which the null
hypothesis of insignificance is accepted. Therefore, the age covariate do not
have a significant effect on the F failures for fleet X.
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Figure 5.9: Effect of the age covariate on the survival function in the AFTM
for F-failures for fleet X.
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5.3.5 Difference between individuals

Finally, we want to examine if there are significant differences between the
failure processes of different individuals in the fleet. We want to identify such
individuals that perform better than the rest of the population, as well as
individuals that perform worse than others. The data consists of a minimum
of 8 failures for each rolling stock, hence we can perform a two-sample t-test
to test for significant differences.
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Figure 5.10: The average kilometres to failure for seven individuals from fleet
X that were found to differ significantly from the rest of the population.

A two-sample t-test helps us identify individuals, the average inter-failure
kilometres of which are significantly longer or shorter than those of the rest
of the population. The hypotheses for the test are:

• H0: µi = µI\{i}: the investigated individual’s (i ∈ I) average inter-
failure kilometres do not differ significantly from the average inter-
failure kilometres for the rest of the population (I\{i}).

• H1: µi 6= µI\{i}: the investigated individual’s (i ∈ I) average inter-
failure kilometres differ significantly from the average inter-failure kilo-
metres for the rest of the population (I\{i}),
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where I corresponds to the set of all fleet individuals.

For fleet X, we identify seven individuals that have a significant difference.
The average failure times for these individuals together with the population
average failure time are presented in Figure 5.10. We can see that indi-
viduals a, d and e have significantly shorter average inter-failure kilometres,
whereas individuals b, c, f and g have significantly longer average inter-failure
kilometres compared to the rest of the population. Individuals a, d and e
are classified as ”bad”. Similarly, individuals b, c, f and g are classified as
”good”.

We introduce two new covariates, classes ”bad” and ”good”. The effects of
these covariates on the AFTM survival function are presented if Figures 5.11
and 5.12. We can see that the covariate indicating a ”bad” individual accel-
erates the failure time, whereas the covariate indicating a ”good” individual
decelerates it.
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Figure 5.11: Effect on the survival function of the individuals classified as
”bad” in the AFTM for F-failures for fleet X.
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Figure 5.12: Effect on the survival function of the individuals classified as
”good” in the AFTM for F-failures for fleet X.

5.4 Accelerated Failure Time Models

The analysis of the covariate effects on failures of type F presented in the
previous section resulted in some covariates found significant, while others
were not. Similar analyses were conducted for all failure types. Table 5.5
presents the covariates found significant for each failure type for fleet X.
The significance is determined based on the significance statistic presented
in Section 5.2, with a significance level α = 0.05. There is a lack of data on
failures of type P and U, hence these cannot be modelled with an AFTM
and are left out of the model.
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Table 5.5: The covariates included in the AFTMs for each failure type for
fleet X, the average failure interval in days for the failure type, and the
concordance index (c-index), representing the predictive accuracy for each
model.

Failure
type Season Speed

Km
since PM Age Good Bad

Average
interval

C-
index

B x x x x 111 0.67

C x x x x x 70 0.59

D x x x x 86 0.57

E x x x x x 50 0.62

F x x x x x 40 0.61

G x x x x 76 0.58

H x x 105 0.57

J x x 46 0.57

K x x 98 0.59

L x x x 91 0.61

M x x x x 114 0.63

N x x x x x 116 0.61

P NA NA NA NA NA NA 157 NA

Q x x x x x 65 0.62

R x x x x 48 0.61

S x x x 127 0.59

T x x x 97 0.59

U NA NA NA NA NA NA NA NA

For type F failures, modelled with five covariates, the logarithm of the failure
time (equation (5.1)) will be of the form

log Ti = 9.38 + 1.18xse,i − 0.73xsp,i + 0.22xPM,i + 0.5xg,i − 0.64xb,i + 0.02εi.

We note that the regression parameters representing the season, kilometres
since previous preventive maintenance and ”good” individuals are positive,
indicating that these covariates have an decelerating effect on the failure time
as the value of the covariates increase. The regression parameters represent-
ing the average speed and ”bad” individuals are negative, indicating that
these covariates have an accelerating effect on the failure time as the value
of the covariates increase. The survival function (equation (5.4)) for failure
category F is then

SF (t|xi) = exp
(
− exp

( 1

0.02

(
9.38 + 1.18xse,i − 0.73xsp,i + 0.22xPM,i

+ 0.5xg,i − 0.64xb,i
))
t1/0.02

)
.
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Figure 5.13 presents the survival function for failure category F with different
covariate values; Table 5.6 presents the covariate values for the three different
survival functions in the figure. The average case corresponds to the survival
function in June/August, when the average speed since the previous failure
has been 100 km/h, the kilometres since the previous preventive maintenance
action are 10 000 km, and when the rolling stock individual in question does
not perform significantly better or worse than the rest of the fleet. The good
case corresponds to the survival function in July, when the average speed
has been 80 km/h, the kilometres since the previous preventive maintenance
actions are 20 000 km and the rolling stock individual performs significantly
better than the rest of the fleet. The bad case corresponds to the survival
function in February/March, when the average speed has been 120 km/h, the
kilometres since the previous preventive maintenance actions are 5 000 km
and the rolling stock individual performs significantly worse than the rest of
the fleet.
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Figure 5.13: Three different survival functions for category F failures. The
covariate values for each survival function are presented in Table 5.6.
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Table 5.6: Covariate values for the three survival functions presented in
Figure 5.13.

Average Good case Bad case
Season 0.8 1 0.6
Speed 1 0.8 1.2
Km since PM 1 2 0.5
Good 0 1 0
Bad 0 0 1

5.4.1 Concordance Index

For survival models, traditional model accuracy measures, such as R2, are
not directly applicable. What can be used instead is, for example, the con-
cordance index. The concordance index, also referred to as the c-index, is a
measure for predictive accuracy of a survival prediction model (Steck et al.,
2008). It is the probability that the model correctly predicts the order of
the failures for a random pair of subjects. A model with concordance index
of 0.5 indicates random predictions, whereas an index of 1 implies a perfect
model. A concordance index of 0 implies perfect anti-concordance and can
be transformed to a perfect model by multiplying the coefficients by minus
one.

In this thesis we have data that is uncensored, meaning that the data only
consists of data points where a failure already has occurred. When there is
no censoring, the concordance index can be estimated by the proportion of
the pairs that the model has ordered correctly. The predicted order of any
two subjects i and j is determined by the predicted survival times S(t̂i|xi)
and S(t̂j|xj). To calculate the concordance index for all pairs of observations,
we compare the prediction and the observed failure time. The pair (i, j) is
concordant if ti < tj and S(t̂i|xi) < S(t̂j|xj).
The formula for calculating the concordance index c for uncensored data is

c =

(
n

2

)−1∑∑
ti<tj

[
1(S(t̂i|xi) > S(t̂j|xj)

]
,

where 1(·) is an indicator function, taking the value 1 if the condition is met
and value 0 otherwise.

The concordance indices for the AFTMs for each failure type for fleet X are
presented in Table 5.5. The values range from 0.57 (D, H and J failures)
to 0.67 (B failures). Due to noise in the data, the concordance index of a
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fitted survival model generally ranges between 0.55 and 0.7 (Davidson-Pilon,
2019). All AFTMs have an index larger than 0.55, indicating at least some
modelling accuracy. However, as the majority of the concordance indices
are closer to 0.55 than to 0.7, we want to further examine the accuracy
of the models. Also, the concordance index only illustrates how well the
AFTM describes the data used for estimating the model, not considering the
prediction accuracy of the AFTM. Hence, we use a validation dataset to test
prediction accuracy. These results are presented and discussed in Section 6.1.

5.5 Modelling Failures Found During Repair

As concluded in Chapter 4, 9% of the data consists of inter-failure kilometres
equal to zero. The inter-failure kilometres equal to zero cannot be modelled
with a Weibull AFTM. Therefore, we have to develop another model for
include these failures in the overall prediction of failures. For this we use
a combination of Bernoulli distributions. First, we calculate the probability
of a failure being found in conjunction with repair, i.e. at the same depot
stop. This is simply the number of instances one or more failures are found
during repair, divided by the number of failures with inter-failure kilometres
larger than zero. Thereafter, we examine how many failures are found at
each repair and calculate the probabilities for each amount of failures.

To illustrate this, we give an example using the data for one failure category.
The probability of finding a failure in conjunction with a repair is

p =
NOne or several failures found during repair

NFailure with inter-failure km >0

=
75

802
≈ 0.0935.

This indicates a probability of finding a failure in conjunction with repair
to be 9.35%. For this failure type, number of failures found during repair
has been either 1, 2 or 3. The probability of finding each of the number of
failures is simply the occurrence times for the number of failures, divided
by the number of times failures are found during repair. For the failure
category, the probability of finding i (i ∈ {1, 2, 3}) failures during a depot
stop indicates

pi =
Ni failures found during repair

NOne or several failures found during repair

.

For i = 2, this is

p2 =
5

75
≈ 0.0667.
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That is, if failures are found in conjunction with repair, the number of fail-
ures found is 2 with a probability of 6.67%. Combining the two calculated
probabilities gives the probability of finding two failures in conjunction with
repair, namely 0.0935 · 0.0667 ≈ 0.0062 = 0.62%.

Based on the calculated probabilities of finding failures at the depot, one
or several failures may be added to the predicted number of failures in the
prediction model. Given the above example, on average 0.62% of the sim-
ulated failures result in adding two additional failures to the prediction of
total number of failures in this failure category.

5.6 Simulation Model

The flowchart in Figure 5.14 presents the model used for simulating failures.
The model takes user inputs as specified in Figure 5.1. For each failure
category the model starts by checking if the data consists of at least 70
failures in that failure category. We assume that at least 70 data points
are needed for estimating a failure model. We found 70 data points to be a
suitable limit when analysing the data and fitting AFTMs to the inter-failure
kilometres. If the historical data consists of less than 70 data points, that
failure category is not considered at all in the prediction of failures. This
does not affect the result significantly, since if a failure category has had
fewer than 70 failures during the past two years, there will probably not be
that many failures of that category during the prediction period.

If the number of historical failures is larger than 70 an AFTM is fitted to
the data. If the fitting was successful, the log-likelihood of the AFTM is
compared to the log-likelihoods of fitting regular exponential, Weibull and
log-normal distributions to the data. If an AFTM could not be fitted, or if a
regular distribution fits the data better (based on the log-likelihood values),
a regular distribution is used for the simulation of failures in this failure
category. The simulation procedure in this case is presented in Figure 5.16.
If an AFTM is the best fit to the data, the AFTM is used in the simulation
of failures. This simulation procedure is presented in Figure 5.15.

After the failures have been simulated, the model saves the results for all
simulation rounds for this failure category and moves on to the next category.
If all failure categories have already been simulated, the model moves on
to calculating the final results. First, the sum of the failures in all failure
categories is calculated for each simulation round. The prediction of the
number of failures is the average number of failures for the simulation rounds.
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The 95% confidence intervals are calculated by sorting the simulation round
results and choosing the rounds corresponding to 2,5% and 97,5% of the
iterations. That is, as we simulate failures 100 times and sort the values
from smallest to largest, the lower confidence interval is the 3rd result and
the upper confidence interval is the 98th result. The prediction for critical
failures and repair times are calculated similarly.

Figure 5.14: An overview of the simulation model. For a more detailed
presentation of the simulation of the actual failures, see Figure 5.15 or Fig-
ure 5.16, depending on if an AFTM could be fitted to the failure category
data or not and if the AFTM is a better fit to the data than a regular
distribution.
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The flowchart in Figure 5.15 illustrates the simulation procedure for the fail-
ures of a failure category to which an AFTM is a good fit. In the flowchart,
N corresponds to the number of failures, H is the prediction horizon in kilo-
metres and S is the number of simulation rounds to be performed.

In the beginning of each simulation round the number of failures is set to
zero. Failures are simulated for each rolling stock individual and the number
of failures from the simulation round is the combined number of failures for all
individuals. First, the AFTM covariate values are set for the individual based
on the current state, namely the month, the kilometres since the previous
preventive maintenance action, the average speed since the previous failure,
the total kilometres of the rolling stock individual, and values 0/1 indicating
if the individual performs significantly better or significantly worse than the
rest of the fleet. Depending on the user’s input the model either assumes
that a failure has just occurred, i.e. the kilometres since the previous failure
are zero, or the model takes into account the timing of the previous failure. If
the previous failure is not considered the season covariate value of the month
the prediction period begins is used. In the case that the previous failure is
taken into account, the season covariate used for generating the first failure
is that of the month the previous failure occurred in. The total simulated
kilometres (Km tot) are set to zero.

A failure kilometre (Km) is generated from the Weibull AFTM distribution
with the specified covariate values. The failure time follows a distribution
with the survival function in equation (5.4). If the previous total simulation
kilometres plus the simulated failure kilometre are shorter than the specified
prediction horizon, a failure is added to the number of failures. In the case
that the timing of the previous failure is considered, the model checks that
the first generated failure kilometre exceeds the kilometres since the previous
failure and generates new failure kilometres until this is the case. This corre-
sponds to the conditional probability of failure, given that the rolling stock
has survived until the beginning of the prediction period without failing.

Thereafter, a value between 0 and 1 is generated from a uniform distribution.
If the number (Rand) is below the probability of finding additional failures
in conjunction with repair, a number of failures is generated and added to
the total number of failures. The calculation of the probability of finding
failures during repair and how the number of failures found is generated are
presented in Section 5.5. This way the failures with inter-failure kilometres
equal to zero are included in the total number of predicted failures.

After the failures have been added to the total number of failures, another
value between 0 and 1 is generated from a uniform distribution. This number
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(Rand) illustrates the probability of the next failure being found before the
previous failure has been repaired. If Rand falls below the probability, the
total simulated kilometres are only updated by adding the simulated failure
kilometre. Otherwise, the total simulated kilometres are updated by adding
the simulated failure kilometre as well as the average kilometres from fail-
ure to repair for the specific failure category. This way the failure process
illustrated in Figure 4.4 is accurately modelled.

When the simulated total kilometres have been updated, the covariate values
are updated as well. If the month has changed, the season covariate value
is updated. The age of the rolling stock is updated in the same way as the
total simulated kilometres, as are the kilometres since previous preventive
maintenance action. We however assume that a preventive maintenance ac-
tion is performed every 25 000 km, which means that the covariate value
for kilometres since previous preventive maintenance actions is always under
25 000 km.

Next, the model checks if the total simulated kilometres are longer than
the prediction horizon. If not, a new failure kilometre is generated from
the Weibull AFTM distribution with the updated covariate values and the
model checks if the generated kilometre falls within the horizon. If the total
simulated kilometres become longer than the horizon, the model moves on
to simulating failures for the next individual.

After simulating the failures for all individuals, the model calculates the
number of critical failures as well as the total repair times. The number of
critical failures is simply the number of failures times the historical share of
critical failures. The total repair time is the number of failures times the
average repair time for the failure category. These values are saved and the
model moves on to the next simulation round. If this was the final simulation
round, the results of this failure category are saved and the model moves on
to the next failure category (Figure 5.14).

In the case that an AFTM is not the best fit to the category failures, the sim-
ulation of failures follow the process presented in Figure 5.16. The process is
the same as when simulating failures using an AFTM, but now no covariate
values have to be considered or updated. The model simply generates failure
times from an exponential, Weibull or log-normal distribution, depending on
which is the best fit to the historical inter-failure kilometres. The goodness
of fit is determined with the KS-test presented in Section 4.2, and the dis-
tribution with the highest p-value in the KS-test is chosen. Given that the
Weibull distribution is the best fit, the failure kilometres are generated from
a distribution with a survival function as presented in equation (3.2).
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Figure 5.15: A flowchart of the simulation of failures for a failure category
to which an AFTM is a good fit. The flowchart starts and continues in Fig-
ure 5.14. N corresponds to the number of failures, H is the prediction horizon
in kilometres and S is the number of simulation rounds to be performed.
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Figure 5.16: A flowchart of the simulation of failures for a failure category
to which a regular distribution is the best fit. The flowchart starts and
continues in Figure 5.14. N corresponds to the number of failures, H is the
prediction horizon in kilometres and S is the number of simulation rounds to
be performed.



Chapter 6

Results and Discussion

This chapter presents the results of a validation test, in which the model’s pre-
diction accuracy is evaluated by comparing the predicted number of failures
to the realised number of failures in a test dataset. Reasons for problems with
the prediction accuracy are reviewed and ideas for further model improve-
ment are discussed. This chapter also summarises the identified applications
for the developed failure prediction model in the maintenance operations at
VR and discusses limitations in the use of the model in these application
areas.

6.1 Prediction Accuracy

To test the prediction accuracy of the failure prediction model we construct
two datasets: one training dataset for model parameter estimation and one
test dataset for comparing the realised number of failures with the predicted
number. We want to test the accuracy of short-term predictions as well
as long-term predictions. Hence, we predict the number of failures for an
entire year, on a quarterly basis for four quarters, on a monthly basis for
twelve months, and also on a weekly basis for eight weeks. For the weekly
predictions we also look at the predicted repair times and the number of
critical failures. After presenting the results, we discuss problems with the
prediction accuracy and what they may result from.

72
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6.1.1 Yearly Prediction

Failure category specific results for a yearly perdiction are presented in Ta-
ble 6.1. Both the predicted number of failures as well as the realised number
of failures are presented. The Prediction/Reality-column shows the percent-
age of overestimation or underestimation of the number of failures. The
confidence interval (CI) of the prediction of the combined number of failures
in all categories is also presented. The kilometres since the previous failure
are not considered.

Table 6.1: The predicted number of failures for a year for each failure cate-
gory, as well as the realised number of failures during the prediction period.
The Prediction/Reality-column shows the percentage of model over- or un-
derestimation. The confidence interval for the total predicted number of
failures is given.

Failure
category

Predicted
failures

Lower
CI

Upper
CI

Realised
failures

Prediction/
Reality

B 290 251 15%

C 547 487 12%

D 493 375 17%

E 755 1 137 -34%

F 1 037 1 169 -11%

G 530 422 26%

H 344 276 25%

J 840 904 -7%

K 410 322 27%

L 432 321 34%

M 413 226 83%

N 236 193 22%

P 0 26

Q 704 682 3%

R 828 986 -16%

S 263 309 -15%

T 416 305 36%

U 0 4

Total 8 481 8 322 8 665 8 395 1%

For the one-year prediction period the model predicts the total number of
failures to be 8 481. The confidence interval for this prediction is [8322, 8665].
In the test dataset the realised number of failures for the year is 8 395, which
is very close to the predicted number of failures.
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We can see that failure categories F, J and Q are quite accurately predicted.
The number of failures in categories M, T and L are greatly overestimated,
whereas the number of failures in category E are greatly underestimated.
However, the combined number of failures is accurately predicted with only
a 1% overestimation, and the realised number of failures falls within the
prediction’s confidence interval. The accurate prediction cannot however be
trusted, since the prediction accuracies for all failure categories are not good.
The overestimation of some category failures combined with the underesti-
mation of failures in other categories happen to result in a number of failures
close to the realised number of failures.

The results would suggest that the AFTMs for categories F, J and Q succeed
in modelling the failure process well, whereas the models for other categories
are not as good. Categories F, J and Q are large failure categories, hence
the datasets for these failures are large. A larger dataset can be assumed to
provide a more accurate model, as possible outliers in the data do not affect
the model significantly. Failure category E is also large, but the AFTM for
this category does not provide accurate predictions. This might result from
the failure process for this category being more random, which prevents the
finding of relevant factors affecting the time to failure.

As some of the failure category models are clearly lacking in prediction accu-
racy, we should not consider these in the predicting of failures before improv-
ing them. These models should be reviewed and other methods for predicting
the number of failures in these categories can be sought.

We choose to have a closer look at the prediction result of the failure cate-
gories which have been over- or underestimated by a percentage in the range
[-20%, 20%]. This means considering failure categories B, C, D, F, J, Q,
R and S. The combined predicted number of failures for these categories is
4 947, whereas the realised failures are 5 163. This indicates an underesti-
mation of 4%, which can be considered an accurate prediction.

6.1.2 Quarterly Prediction

The quarterly realised and predicted number of failures with confidence in-
tervals are presented in Table 6.2. A percentage indicating the prediction’s
over- or underestimation is also presented. The predictions are carried out
separately for each quarter and the data used for model estimation is updated
for each prediction round so that it consists of data from two years backwards
from the starting date of the prediction period. Also, the kilometres since
the previous failure are not considered.
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Table 6.2: The predicted number of failures per quarter with confidence
intervals, as well as the realised number of failures during the prediction
period. The Prediction/Reality-column shows the percentage of model over-
or underestimation.

Quarter
Predicted
failures

Lower
CI

Upper
CI

Realised
failures

Prediction/
Reality

Q1 2 326 2 255 2 446 2 513 -7%

Q2 2 513 2 373 2 577 1 714 47%

Q3 2 094 1 998 2 202 2 026 3%

Q4 2 014 1 922 2 142 2 142 -6%

Total 8 946 8 548 9 367 8 395 7%

Predicting the number of failures per quarter gives an overestimation of 7%
on the number of failures for the whole year. The predictions for the third
and the fourth quarters are quite accurate and the realised number of failures
for these quarters fall within the confidence interval of the predictions. The
prediction for the first quarter is also pretty good, even though the number
of failures are slightly underestimated. For the second quarter the prediction
overestimates the number of failures greatly. It seems as if the model does
not succeed in accurately capturing the seasonal variation in the number of
failures between quarters.

Due to the problem with varying prediction accuracy between failure cate-
gories, the quarterly predictions presented here should not be trusted without
examining the category specific predictions. We can see that the sum of the
quarterly predictions result in a larger number of predicted failures for the
whole year compared to when predicting the whole year at once. The quar-
terly predictions are conducted separately, starting over in the beginning
of each quarter and not considering the generated failure kilometres that
go beyond the prediction period of three months. This means that failure
kilometres are generated for all rolling stock individuals using the season co-
variate values of January, April, July and October, as these months start
each quarter. In the case of simulating the whole year at once, it might be
that these months are skipped for most individuals. If a failure kilometre
corresponding to three months is generated in March, the next failure is gen-
erated in June. Hence, no failure is generated using April’s covariate values.
If the three month failure kilometre is generated in March in the case of
a quarterly prediction, a new failure is still generated in April as the next
quarter begins. This shows that the length of the prediction period and the
start date of the period have an effect on the predicted number of failures.
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6.1.3 Monthly Prediction

Table 6.3 presents the monthly predicted number of failures with confidence
intervals and the monthly realised number of failures. The table also presents
the percentage of the prediction’s over- or underestimation. The predictions
are carried out separately for each month and the data used for model esti-
mation is updated for each prediction round so that it consists of data from
two years backwards from the starting date of the prediction period. For
example, the prediction of the number of failures in July (2018) is based on
a model estimated using data from July 2016 to June 2018. The kilometres
since the previous failure are not considered.

Table 6.3: The predicted number of failures per month with confidence inter-
vals, as well as the realised number of failures during the prediction period.
The Prediction/Reality-column shows the percentage of model over- or un-
derestimation.

Month
Predicted
failures

Lower
CI

Upper
CI

Realised
failures

Prediction/
Reality

January 844 783 897 1 031 -18%

February 838 792 898 813 3%

March 918 873 987 669 37%

April 934 903 978 583 60%

May 866 815 916 597 45%

June 760 670 822 534 42%

July 764 696 827 692 10%

August 881 828 935 681 29%

September 751 702 831 653 15%

October 737 672 786 718 3%

November 752 701 814 654 15%

December 704 674 734 770 -9%

Total 9 750 9 109 10 425 8 395 16%

We notice that even if February, September and December are quite accu-
rately predicted, there are large difference between the prediction and the
realised number of failures for the other months. This is especially clear in
Figure 6.1, which graphically presents the values of Table 6.3. The figure also
shows the number of failures per month in the dataset used for estimating
the model. It seems that the prediction model cannot capture the seasonal
variations in the number of failures to an extent large enough, which also
was noticed for the quarterly predictions. Taking the average of the histori-
cal number of failures would be a better prediction for the number of failures
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for most months.

Figure 6.1: The number of realised and predicted failures for 12 months.
The prediction’s confidence interval (CI) and the historical number of failures
from both years (Y1 and Y2) in the estimation data are presented as well.

As the distribution of the failure times in an AFTM depends on the covariate
values, the distribution changes over time. This causes some problems with
combining the predicted number of failures for each month into a prediction
of the total number of failures for the whole year, as discussed with the
quarterly predictions. In the case of the failure times following a regular
exponential distribution, the combined monthly predictions would result in
the same yearly prediction as when predicting the yearly failures at once.
This is due to the exponential function being memoryless. With the AFTMs
in this thesis this is not the case as the failure times follow different Weibull
distributions at different times.

To further illustrate the problem with the seasonal variation we present the
monthly predictions for failure categories F, M and R in Figures 6.2, 6.3
and 6.4. Failure category F is very accurately predicted, and the combined
yearly difference between the total realised number of failures and the total
predicted number of failures is only -3%. The model predicts the number of
failures better than using the average number of historical failures as the pre-
diction. Failure category M on the other hand is extremely poorly predicted
by the model. The difference in the yearly realised failures and predicted
failures is +203%. The seasonal variations are not captured at all for the
M-failures, and the peaks in April and August are probably due to problems
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with the AFTM’s season covariate. For this category the historical monthly
averages would be a more accurate prediction on the number of failures.

Figure 6.2: Monthly predicted and realised number of failures for failure
category F. The number of failures in the estimation data are presented as
well.

Figure 6.3: Monthly predicted and realised number of failures for failure
category M. The number of failures in the estimation data are presented as
well.
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Figure 6.4: Monthly predicted and realised number of failures for failure
category R. The predicted number of failures given that the previous failure
is taken into account in the simulation are also presented. The number of
failures in the estimation data are presented as well.

In contrast to the large overestimation for category M, the number of failures
for category R are consistently underestimated and results in a combined
yearly underestimation of 42%. For this category, using historical monthly
average as the predicted number of failures would result in a better prediction,
even though it would also underestimate the number of failures.

Based on the histogram of category R failures presented in Figure 4.8b, the
average inter-failure kilometres for failure category R are long. This combined
with the information that R failures occur on average every 48 days (see
Table 5.5) would suggest that the reason for the poor prediction accuracy of
the monthly failure predictions for category R is due to the short prediction
period. As the model starts simulating failures with the assumption that a
failure has just occurred, enough R category failures do not have time to occur
in a prediction period of only 30 days. Hence, Figure 6.4 also presents the
predicted failures for category R given that the simulation model takes the
kilometres since the previous failure into account when generating the first
failure kilometre. In this case the first failure kilometre is simulated with
a season covariate value based on when the previous failure was repaired.
The model generates failure kilometres until the generated kilometre exceeds
the number of kilometres since the previous repair. This corresponds to the
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conditional probability of failure given that the rolling stock has survived
until this point without a failure occurring. We can see that for category
R this simulation approach results in an improved prediction accuracy for
January, February and March. This yields a combined yearly prediction
accuracy of -35%. However, we would expect the combined results to be
better when the kilometres since the previous failure are taken into account
in the simulation. The yearly underestimation when simulating the whole
year at once was only -16% (see Table 6.1). It might be that a prediction
period of one month is too short to accurately predict R category failures,
even if the history is taken into account.

6.1.4 Weekly Prediction

Table 6.4 presents the prediction and realisation of the number of failures on
a weekly basis for weeks 1-8 in 2019. The predicted and realised number of
failures are presented in Figure 6.5 as well. The predictions are carried out
separately for each week and the data used for model estimation is updated
for each prediction round so that it consists of data from two years backwards
from the starting date of the prediction period. The kilometres since the
previous failure are not considered. The predictions for weeks 1, 2, 7 and 8
are very accurate. For the combined eight-week period, the total number of
failures is however underestimated by 12%.

Table 6.4: The predicted number of failures per week with confidence inter-
vals, as well as the realised number of failures during the prediction period.
The Prediction/Reality-column shows the percentage of model over- or un-
derestimation.

Week
Predicted
failures

Lower
CI

Upper
CI

Realised
failures

Prediction/
Reality

1 185 161 227 185 2%

2 181 161 206 190 -5%

3 180 144 208 237 -24%

4 197 174 237 271 -27%

5 197 166 219 241 -18%

6 203 173 228 249 -19%

7 197 174 217 190 4%

8 200 171 232 194 3%

Total 1 543 1 324 1 774 1 757 -12%

The graph in Figure 6.5 shows that the realised number of failures fluctuate
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largely between weeks, whereas the predicted number of failures is more
stable over time. This illustrates a limitation with the prediction model: it
does not succeed in capturing variations in shorter time intervals. Again,
it should also be noted that due to the varying failure category prediction
accuracies, the predicted number of failures should not be considered accurate
without closer examining the failure category specific failures. Using the
historical weekly average as the predicted number of failures would yield
approximately the same result as the prediction model.

Figure 6.5: Graphical presentation of the number of realised failure and the
number of predicted failures for weeks 1-8 in 2019. The prediction’s confi-
dence intervals (CI) and the historical number of failures in the estimation
data are presented as well.

For the weekly predictions we also look at the accuracy of the predicted
number of critical failures, as well as the accuracy of the total repair times.
These results are presented in Tables 6.5 and 6.6, respectively. Due to the
way the critical failures are calculated in the prediction model, the number
of critical failures is quite constant for all prediction weeks. The number of
critical failures is just a percentage of the total number of predicted failures,
which is based on the historical share of critical failures. The prediction
model does not succeed in capturing the large variations between weeks in
the number of critical failures. This might be a limiting factor for the short-
term maintenance scheduling utilising the model.

The total repair time for the eight weeks combined is underestimated by
38%. The realised fluctuations in the repair times between weeks are large
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and are not captured by the model. The weekly under- or overestimation of
the repair times vary between -57% and 5%.

We must however note that the predicted repair times and number of crit-
ical failures suffer from the same lack of accuracy as the predicted number
of failures, due to the repair times and critical failures depending on the
predicted number of failures. Hence, if the number of failures is not accu-
rately predicted this affects the accuracy of the repair time and critical failure
predictions as well.

Table 6.5: The predicted number of critical failures per week with confidence
intervals, as well as the realised number of failures during the prediction
period. The Prediction/Reality-column shows the percentage of model over-
or underestimation.

Week

Predicted
critical
failures

Lower
CI

Upper
CI

Realised
critical
failures

Prediction/
Reality

1 2.4 1.9 2.9 2 18%

2 1.6 1.3 1.9 3 -46%

3 1.6 1.1 2.0 1 57%

4 1.8 1.6 2.3 3 -39%

5 1.9 1.5 3.4 7 -72%

6 1.9 1.6 2.3 6 -68%

7 1.8 1.5 2.2 2 -9%

8 1.9 1.5 2.6 0 100%

Total 15.0 11.9 19.5 24 -38%

Table 6.6: Weekly predictions of the total repair times expressed in hours for
repairing all predicted failures (presented in Table 6.4).

Week
Predicted

repair time (h)
Lower
CI

Upper
CI

Realised
repair time

Prediction/
Reality

1 1 213 1 016 1 455 1 892 -36%

2 1 159 1 046 1 320 1 935 -40%

3 1 154 917 1 351 1 880 -39%

4 1 274 1 153 1 518 2 968 -57%

5 1 268 1 058 1 429 2 638 -52%

6 1 300 1 099 1 472 1 989 -35%

7 1 265 1 120 1 406 1 343 -6%

8 1 287 1 115 1 520 1 230 5%

Total 9 920 8 524 11 471 15 875 -38%
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A prediction period of only seven days is short. Hence, we would expect that
the timing of the previous failure would have a great effect on the weekly
failures. We want to examine this by predicting the weekly failures so that
the situation in the beginning of the prediction period is considered, i.e. the
kilometres since the previous failure are taken into account in the simulation
of failures. These results for weeks 1-8 2019 are presented in Figure 6.6. We
can see that the prediction accuracy is lower and that the predictions are more
stable between weeks, compared to the predictions presented in Figure 6.5
where the previous failures have not been considered in the simulation. This
is a surprising result, as we would expect the considering of the current
situation to improve the prediction accuracy. The short prediction period
might be the reason for the inaccurate prediction. Also, the failure category
specific results should be reviewed to see if any specific failure categories are
significantly over- or underestimated.

Figure 6.6: Weekly predictions on the number of failures when kilometres
since the previous failures have been considered.

6.1.5 Comments on the Prediction Accuracy

We can conclude that there are problems with the prediction accuracy and
we notice that the predictions vary depending on the length of the prediction
period. The prediction accuracy also differs between periods, e.g. between
months. Especially for some failure categories the lack of prediction accuracy
is significant. For example, the number of category R failures are consistently
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underestimated, but the yearly prediction is better than the monthly predic-
tions. In contrast, category F failures are accurately predicted on both a
yearly and a quarterly basis. We identify a number of possible reasons for
the lack of prediction accuracy in some failure categories:

• The failure process is partly random and hence cannot be accurately
modelled.

• Covariates identified as relevant for the failure process do not describe
the failure process well enough.

• The failure categories are too broad.

• The quality of the data is not good enough.

• The data used for model parameter estimation is from a too short time
period.

A key question in the evaluation of the model’s prediction power is the ran-
domness of the failure processes of the rolling stock. If the failures to a
large extent occur randomly, they cannot be assumed to be altogether ac-
curately modelled. The concordance indices presented in Table 5.5 portray
the AFTMs’ descriptive accuracy of the historical data; the low index value
of 0.57 for failure categories D, H and J indicates that these models do not
describe the data very well, which may be due to randomness of the failure
processes. We would hope for concordance indices of 0.7, as presented in
Section 5.4.1.

The low concordance indices can also be due to including the wrong co-
variates in the AFTMs. In this thesis we examine the effect of five factors
on the failure process. There might however be additional factors better
describing the failure process and the potential lack of relevant covariates
might very much affect the prediction accuracy of the model. For example
a weather covariate could have a significant impact on the time to failure.
The ability to consider different types of weather in the failure prediction
would be especially useful for budgeting purposes, where scenario analysis is
relevant. Comparing the difference in number of predicted failures for a bad
year weatherwise to that of a good year weatherwise, would allow for the
comparing of worst case scenario versus best case scenario for the next year’s
total number of predicted failures. A weather covariate might also better
capture the seasonal fluctuations in the number of failures.

The lack of seasonal variations in the predictions is a notable issue with the
current model. The results imply that the seasonal covariate does not succeed
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in capturing the variations. Hence, investigating alternative covariates for
including the seasonal variations is encouraged. The main issue with the
current seasonal covariate is that it is specified for the month the failure
time is generated in. However, the effect of the seasonal variate in the data
is based on the when the failure occurs. For example, if a failure is noticed in
February, it contributes to the season covariate value in February. However,
as the average inter-failure times are longer than a month for all failure
categories, the effect of the season is delayed in the simulation model. Instead
of basing the season variate on the historical failure intensity of the month,
the season covariate should consider the failure intensity of upcoming months.
This could be done with a combined probability distribution which considers
the conditional probabilities of failure in upcoming months, given that the
individual has survived until then. This way, simulating a failure time in
February would not solely be based on the historical average of February’s
failure intensities, but rather include the failure intensities of all other months
as well.

The model’s broadness might be another explanation for the inaccurate fail-
ure predictions. As the model gives a prediction for all failure types, the
failure type specific models have not necessarily been calibrated as well as
they could have. This was clearly visible when comparing the yearly failure
category specific predictions. The failure categories lacking in prediction ac-
curacy should be developed further. This could be done by including other
covariates in the AFTM to better describe the failure process, or using a
completely different approach to the modelling of these failures. Also, de-
veloping component specific prediction models would presumably improve
the prediction accuracy, but this requires component specific failure data.
A problem in the current category specific models is that the occurrence of
one failure might not affect the occurrence of the next failure in the same
category. With component specific failure models this issue would be elim-
inated. In addition to the need for large enough component specific failure
datasets, the number of models to be developed would be huge as a rolling
stock consists of a lot of components.

We noticed that the length of the prediction period affects the prediction
accuracy of some failure categories, which is probably due to the seasonal
covariate value. The monthly predictions for category R were worse than
when predicting the whole year at once. We tested if taking into account the
kilometres since the previous failure would improve the monthly prediction
accuracies for type R failures, and some improvement could be seen. By test-
ing prediction periods of different lengths and with different starting dates,
we could identify the months when the seasonal covariate values yield good
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results and what length on the prediction period gives the most accurate pre-
diction. This information could be used in the further improvement of the
prediction model. Also, for all failure categories we should test what effect
the considering of the current situation in the simulation of failures has on
the prediction.

As discussed in Section 4.1, there are some limitations with the failure and
maintenance records. These limitations might affect the prediction accuracy
of the model. Especially the inconsistency with reporting of failures results
in the model output not necessarily matching the reality. As the failures
are not always reported as they are found, the model predicts the reporting
of a failure rather than the actual occurrence of a failure. The unspecific
repair lead times result in the prediction of the total failure repair time
being uncertain. The failure and maintenance records should be improved
and checked for accuracy to guarantee a more reliable model.

Another limiting factor might be the length of the period the failure and
maintenance records are from. The data used for estimating the model pa-
rameters is only from a two-year period. The two-year period might be too
short for developing an accurate failure prediction model, as variations be-
tween years might be large and are not necessarily evened out with data
from only two years. The weather might be a factor significantly affecting
the number of failures, which adds to the variation of the number of failures
between years. Including a longer time period in the data for estimating the
failure prediction model parameters would probably even out this type of
yearly variations.

6.2 Model Applications

The developed prediction model presented in Chapter 5 produces a prediction
on the number of failures and the total repair times for all failures during
a given time period. The number of critical failures and their repair times
are estimated as well. The critical failures are specified, as these affect the
short-term maintenance scheduling process significantly.

Based on interviews with key maintenance personnel at VR, we have iden-
tified several application areas in the maintenance operations for the failure
prediction model. These application areas are presented in Figure 2.1:

• Short-term maintenance planning tool to give a prediction on the need
for repair during the next week.
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• Monthly and yearly prediction of repair needs with confidence intervals
are helpful in the budgeting process.

• The model facilitates the understanding of the failure process for a
rolling stock fleet, which is helpful for the fleet engineers, especially
when developing the preventive maintenance programme.

• The model helps to identify rolling stock individuals performing sig-
nificantly worse than the rest of the fleet, providing an opportunity to
more closely examine those to improve their performance.

• In the optimising of opportunistic maintenance, a model for failure
prediction serves as a building block for the optimisation model.

For the short-term maintenance planning process, more specifically for the
scheduling of next week’s maintenance actions, the failure prediction model
provides a prediction of the number of failures for the next week. An ac-
curate failure prediction allows for the scheduler to take these into account
when scheduling next week’s preventive maintenance actions. For the main-
tenance scheduler, the predicted number of critical failures are especially
interesting. The critical failures normally cause changes in the planned main-
tenance schedule, as these prevent the use of the rolling stock and need to
be repaired as soon as possible. Hence, some preventive maintenance actions
might be rescheduled due to the need for repair of the critical failures. If the
maintenance scheduler can schedule an accurate amount of time for repairing
predicted critical failures, the need for rescheduling might be reduced. The
total repair times for the predicted failures might also be of interest for the
maintenance scheduler.

Even though some category specific predictions were found lacking in Sec-
tion 6.1, we would still suggest that the prediction model is included in the
weekly maintenance scheduling for a test period to further test the accuracy
of the information it provides and to determine its usefulness. The predicted
number of failures was found more accurate than the predicted repair times
and number of critical failures. The schedulers can also use the model to pre-
dict those categories which have a better model, such as category F failures.
However, the schedulers are rather interested in the total number of failures
than failures of a specific type.

A limiting factor for the utilisation of the prediction model for predicting
the number of critical failures is the manner in which the model calculates
them. The number of critical failures is just a percentage of all predicted
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failures based on the historical share of critical failures. To improve the ac-
curacy of the predicted number of critical failures, a failure prediction model
focused solely on critical failures could be developed in the same manner as
the model presented in this thesis. However, only approximately 1% of the
overall failures are critical, which correspond to just over 200 critical failures
during the two-year period the data covers. This is too small a dataset for
estimating a failure prediction model per failure category. Hence, the de-
veloped model’s critical failure prediction is currently the best prediction at
hand. In Section 6.1 we found that the number of realised critical failures
has a large variation between weeks, but the prediction model does not suc-
ceed in catching this variation. The predicted number of critical failures is
expected to be more accurate over a longer prediction period, given that the
total number of failures are accurately predicted.

The budgeting for the following year is done in autumn. The current budget-
ing process relies on historical number of failures, hence an accurate failure
prediction would presumably improve the budgeted number of failures. By
altering the number of kilometres to be driven during the following year or
by altering the covariate values, the failure prediction model can be used as
a tool for scenario analysis. The opportunity to examine different scenar-
ios in the budgeting process is probably the greatest benefit the prediction
model offers for the process. As concluded in Section 6.1, some of the failure
category specific models are not that accurate on a monthly basis. Hence, re-
lying on the monthly failure predictions in the budgeting of the total number
of failures is not to recommend. However, the number of failures in cate-
gories with a better prediction accuracy, e.g. F failures, can be predicted on
a monthly basis and used in the budgeting process, whereas the budgeted
number of failures in other categories can be based on historical values. This
approach with combining a prediction and historical values is likely to result
in a more accurate budget than relying solely on historical data.

For the fleet engineers working with improving the reliability and availability
of a specific fleet, the prediction model’s structure gives insight into the
failure process for a specific fleet and failure category. For them the predicted
number of failures is not necessarily of interest, but rather the effects the
covariates have on the failure process. They might be interested in what
type of failures occur more often during the winter or if the rolling stock
is driving at a higher speed. Identifying fleet individuals performing worse
than average is also of interest for the fleet engineer. The identified ”bad”
individuals can be examined more closely to improve their performance. For
starters, the fleet engineers can utilise those category specific models which
were found to have a good prediction accuracy. The engineers might be able
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to provide additional insight into the failure processes of the failure categories
for which accurate enough models have not yet been developed. The insight
can be used in the further improvement of these models.

For developing an optimal preventive maintenance programme, a key is to
be able to predict failures. Also, the prediction model must be able to model
the preventive maintenance actions’ effect on the failure process, which can
be done with AFTM. Hence, the developed failure prediction model can
be utilised in the development of an optimal preventive maintenance pro-
gramme, should the fleet engineers want to thoroughly examine and optimise
the current programme. However, as the model does not portray the actual
failure process very well due to the lack in prediction accuracy, utilising the
model in its current form in the optimising of the preventive maintenance
programme, might result in a programme that is not optimal for the actual
failure process.

The model can be integrated to a model for finding an optimal opportunistic
maintenance strategy. The strategy would specify what maintenance actions
are optimal to perform together. A model for predicting upcoming failures is
needed in the development of a model for opportunistic maintenance optimi-
sation. Hence, the failure prediction model serves as a building block for the
improvement of opportunistic maintenance at VR. However, as with optimis-
ing the preventive maintenance programme the limited prediction accuracy of
the failure prediction model might lead to problems in the optimisation of the
opportunistic maintenance strategy. If the failure prediction model cannot
capture the real failure process, the found strategy might not be optimal.

The developed prediction model serves as a good basis to build upon and
develop further. Some failure categories predict the number of failures ac-
curately, while the models for other categories should still be improved. As
mentioned, improvements can be made e.g. by adding relevant covariates to
the model, or by considering a dataset from a longer time period in the esti-
mation of the model parameters. The model can, for example be developed
to include censor data, hence simultaneously contributing to the further au-
tomation of condition based maintenance. A completely different approach
than the AFTM might also be better suited for the modelling of some cate-
gories. As the application areas of a failure prediction model in maintenance
operations at VR are many, the further improvement of the prediction model
is strongly encouraged. However, if the suggested improvement actions do
not increase the prediction accuracy, it might be that some failure category
failures happen too randomly to be accurately modelled.



Chapter 7

Conclusions

This thesis developed a failure prediction model for the Finnish rolling stock
maintenance company VR Maintenance Ltd. First, information on the cur-
rent maintenance operations was collected and utilisation possibilities for a
failure prediction model were investigated. Then, a literature review on meth-
ods for failure modelling was conducted. Based on the available maintenance
and failure records and the findings of the literature review, an accelerated
failure time model (AFTM) was selected as the method for modelling fail-
ures at VR. The failure and maintenance records from a two-year period were
analysed and five factors were identified to have an effect on the failure pro-
cess: the month, the average speed, the kilometres since previous preventive
maintenance action, the age of the rolling stock expressed in total kilometres
driven, and the split between ”good” and ”bad” rolling stock individuals. An
AFTM with relevant factors was developed separately for each failure cate-
gory for each rolling stock fleet. The developed prediction model provides a
prediction on the number of failures and the total repair time for all failures
during a specified prediction period. Additionally, the model specifies the
predicted number of critical failures.

Based on interviews with key maintenance personnel at VR, the utilisation
of a failure prediction model was found to enhance several elements of the
maintenance operations at VR. For short-term maintenance scheduling, the
failure prediction model provides a prediction on the number of failures for
the next week, which can be utilised in the scheduling of preventive main-
tenance actions. Especially the number of critical failures was found to be
of interest. In long-term maintenance planning the prediction model can be
utilised in the process of developing the preventive maintenance programme.
Also, it helps to identify rolling stock individuals performing significantly
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worse than the rest of the fleet. These ”bad” individuals can then be exam-
ined more closely to improve their performance. The budgeting process was
also found to benefit from a failure prediction model. Rather than basing
next year’s budget solely on the historical number of failures, the model’s
prediction on the number of failures can be used. As the covariate values in
the prediction model can be altered, the model can also be used for scenario
analysis in the budgeting process.

Additionally, the model was found to help further future maintenance op-
eration improvement projects, such as the development of an opportunistic
maintenance model or the further automation of the condition based main-
tenance. In the development of these, the failure prediction model was found
to serve as an important building block.

Some of the failure categories could be modelled successfully with an AFTM
and provided accurate predictions, whereas there was a lack of prediction
accuracy for other categories. The accuracy of the predicted total num-
ber of failures was however found inadequate. Even though the combined
prediction of the number of failures in all failure categories gave a yearly
prediction result very close to the number of realised failures, the category
specific predictions were not all accurate enough. The number of failures
in some categories were overestimated, whereas the number of failures was
underestimated in other. This resulted in the over- and underestimations
cancelling out each other’s effect, which lead to a false accurate number of
total failures. This finding indicates that the model cannot be used in its
current form to predict the overall number of failures. Some of the failure
categories were accurately predicted and the failures in those categories can
be predicted using the developed models. The models for categories per-
forming worse in the prediction of failures should be further investigated and
improved.

The models can be improved by including additional covariates in the AFTM,
for example by adding a covariate describing the weather condition. A prob-
lem with the AFTMs performing poorly was that the seasonal variations
were not accurately captured. The season covariate used is indeed question-
able, since it considers the month of the previous failure in the generating
of the next failure. Instead, the seasonal effect of future months should be
considered, since a failure is probable to occur in a later month due to the
average time to failure being longer than a month in all failure categories.
As we cannot know beforehand when the failure will occur a combination of
conditional probabilities could be used to capture the seasonal effect of fu-
ture months. Updating the season covariate in all AFTMs to consider future
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failure probabilities would most likely improve the prediction accuracy.

Another improvement action would be to consider data from a longer time
period in the model estimation. The data was also found partly lacking in
quality and improving the quality of the data might improve the model’s pre-
diction accuracy. Additionally, component specific models could give more
accurate predictions, given that there is enough component specific data for
the estimation of a model. If these actions do not improve the prediction ac-
curacy of the AFTM, a completely different approach to the modelling of that
category’s failures might be needed. The literature study in Chapter 3 pre-
sented different methods for failure modelling. A basic exponential, Weibull
or log-normal distribution might be a suitable option, and would be easily
implemented. Another easy approach is to use the average historical number
of failures from previous years during the prediction period. This method
was found quite accurate for monthly category M failures, which were greatly
overestimated by the AFTM. A model based on Bayesian theory could be
considered if some external effect is to be included in the prediction. In
that case a proportional hazard model, which is a survival regression model
similar to the AFTM, could also be considered.

We can conclude that some failure categories could be accurately predicted
with an AFTM, whereas other categories could not. The further improve-
ment of the category specific prediction models is encouraged, since succeed-
ing in developing an accurate failure prediction model for all failures would
enhance several elements of the maintenance operations at VR. This would
improve reliability and availability of the rolling stock and reduce mainte-
nance costs. We suggest that the model is included in the weekly mainte-
nance scheduling as a pilot study, as this area of the maintenance operations
is expected to profit most from the prediction model. The category specific
predictions should be examined separately, so that the actual prediction ac-
curacies can be evaluated without over- and underestimations cancelling each
other out. The pilot study would provide information on the usefulness of
the model and its overall ability to provide accurate insights. Improvements
to the model could be done based on these pilots, ultimately making it part
of standard maintenance operations at VR.
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