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Abstract: 
 

Failures of technical systems can cause extensive physical, material or financial damage to both 
people and the environment. Fault tree analysis is a method to quantify and model the causes of 
these failures. In this method, a system is decomposed into components that fail with a given 
probability and the failure of the system is modeled as a function of these probabilities. 

 

Failure probabilities can be reduced by securing them, which reduces also system failure probability, 
i.e., system unreliability. This can be accomplished, e.g., by replacing a component with a parallel 
configuration of identical components. However, reducing a failure probability has a cost and budget 
available is typically limited. For this reason, only a strict subset of components can be secured. This 
subset is called a risk reduction portfolio. 

 

In this thesis, a mixed-integer linear programming (MILP) problem is formulated to minimize system 
unreliability within a budget. The solution of the problem is the set of components that are secured, 
and it is called an optimal risk reduction portfolio. The MILP problem is utilized in two types of 
computational experiments. First, optimal risk reduction portfolios are solved as a function of budget. 
Second, uncertainty on failure probabilities is modeled with probability intervals. In this case, 
potentially non-dominated portfolios and approximate core indices of components are computed by 
solving the MILP problem with point-estimate probabilities taken randomly from their respective 
intervals. 

 

Computational experiments are performed with two systems. First, an example test system is 
analysed. The structure of this system allows checking without a great effort that the solutions of the 
MILP problem were reasonable. This was observed to be the case. The second system is based on 
a residual heat removal system of a nuclear reactor. The optimal risk reduction portfolios as a 
function of budget revealed that the optimal order to secure components in this system resembles 
roughly the Fussel-Vesely risk importance order of the components. With probability intervals, 97 
potentially non-dominated porfolios of ten components were found and core index approximations 
suggested that the securing of particular components should be prioritized while the securing of 
particular others should be the last priority. 
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Tiivistelmä: 
 
Teknisten järjestelmien, kuten liikennevälineiden, tietoverkkojen ja voimalaitosten, vikaantuminen voi 
aiheuttaa merkittäviä materiaalisia ja taloudellisia vahinkoja. Vikapuuanalyysi on menetelmä näiden 
vikaantumisten aiheuttajien kvantitatiiviseen analysoimiseen. Tässä menetelmässä järjestelmä 
jaetaan komponentteihin, joille arvioidaan vikaantumistodennäköisyys, ja koko järjestelmän 
vikaantuminen mallinnetaan yksittäisten komponenttien vikaantumisten funktiona. 
 
Komponenttien vikaantumistodennäköisyyksiä voidaan pienentää varmentamalla komponentteja. 
Tällöin myös koko järjestelmän vikaantumistodennäköisyys, eli järjestelmän epäluotettavuus, 
pienenee. Komponentti voidaan varmentaa esim. vaihtamalla se usean vastaavanlaisen 
komponentin rinnankytkentään. Varmentamistoimenpiteet aiheuttavat kuitenkin kustannuksen, ja 
käytettävissä oleva budjetti on yleensä rajoitettu. Näin ollen vain aito osajoukko komponentteja 
voidaan varmentaa. Tällaista osajoukkoa kutsutaan tässä työssä riskinalentamisportfolioksi. 
 
Tässä työssä muotoillaan lineaarinen kokonaislukutehtävä (engl., mixed-integer linear programming 
problem; MILP problem), joka ratkaisee järjestelmän epäluotettavuuden minimoivan 
riskinalentamisportfolion budjetin rajoissa. Ratkaisua kutsutaan optimaaliseksi 
riskinalentamisportfolioksi. MILP-ongelmaa käytetään kahdenlaisissa kokeissa. Ensiksi ongelman 
avulla ratkaistaan optimaaliset riskinalentamisportfoliot budjetin funktiona. Toiseksi 
vikaantumistodennäköisyksien epävarmuuksia mallinnetaan todennäköisyysintervalleilla, jolloin 
optimointimallia käytetään potentiaalisten ei-dominoitujen portfolioiden ja approksimatiivisten 
ydinlukujen laskemiseen valitsemalla pistetodennäköisyydet todennäköisyysintervalleilta. 
 
Kokeet suoritetaan kahdella järjestelmällä. Aluksi analysoidaan seitsemän komponentin 
esimerkkijärjestelmää, jonka rakenne mahdollistaa tulosten oikeellisuuden tarkistamisen ilman 
huomattavaa työtä. Tulosten havaittiin olevan järkeviä. Lisäksi työssä analysoidaan ydinreaktorin 
jälkilämmönpoistojärjestelmää. Tälle järjestelmälle optimaaliset riskinalentamisportfoliot budjetin 
funktiona paljastivat, että komponenttien optimaalinen varmistusjärjestys vastaa karkeasti 
komponenttien Fussel-Vesely-riskitärkeysmitan mukaista järjestystä. Todennäköisyysintervalleja 
käytettäessä puolestaan löytyi 97 potentiaalisesti ei-dominoitua kymmenen komponentin portfoliota, 
ja ydinlukuapproksimaatiot antoivat suosituksia tiettyjen komponenttien varmentamisen 
priorisoimiseen ja toisten komponenttien varmentamisen sivuuttamiseen. 
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1 Introduction

Failures of technical systems, such as means of transportation, information
networks and power plants can cause extensive physical, material or financial
damage to both people and the environment. For example, the failure of the
trim servo motor control system caused the accident of the Boeing 707 aircraft
at Paris-Orly airport in 1962 [1]. The accident involved 132 occupants of
which 130 were fatally injured. These accidents are often analysed to prevent
or mitigate their harmful consequences.

Fault tree analysis is a method to quantify and model causes of failures in
a technical system. In this method, the system is decomposed into compo-
nents. The failures of these components are modeled with probabilities, and
the failure of the system is modeled as a function of these component fail-
ures. The system failure probability is called system unreliability. Fault tree
analysis is used in the field of probabilistic risk assessment (PRA), which is
widely applied in, e.g., construction, energy, military and aerospace [2]. For
instance, Boeing engineers chose fault tree analysis as the method to analyse
the safety of an aircraft when they built the Boeing 747 [3].

A method to reduce the failure probability of a technical system is to secure
components by allocating redundancy [4]. This means that a component
is replaced with a parallel configuration of several components identical to
the original one. This parallel configuration fails iff all the components in
the configuration fail, which typically is more unlikely than the failure of a
single component. However, securing components has a cost and available
resources are typically limited. For this reason, it is sensible to consider
which components should be secured when the budget is limited. The set of
components that are secured is called a risk reduction portfolio.

This thesis develops a mathematical model that solves which components
should be secured within a budget when the failure probability of a system
is reduced. The optimal set of secured components with a given budget
minimizes system failure probability over all sets of secured components that
are feasible within the given budget. This optimal set is referred to as the
optimal risk reduction portfolio.

Previously, system failure probability minimization has been studied in the
case of a series system [5]. The analysis of a series system reliability has
been extended to consider optimal redundancy allocation [6]. In this case,
the series configuration consists of subsystems, and the optimal number of
components for each subsystem is solved to minimize system failure proba-
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bility.

The failure probabilites of components may contain uncertainties. These
uncertainties can be modeled with probability intervals. That is, the failure
probability of a component is estimated to be on a real interval, but the exact
value of it is unknown. Probability intervals have been applied, e.g., in the
reliability analysis of a series-parallel system [7]. In this thesis, risk reduction
portfolios are analysed also in the case of probability intervals. To compare
different portfolios, the concept of dominance relation is defined and applied
in the analysis.

The rest of this thesis is structured as follows. Section 2 reviews previous
studies on risk reduction in technical systems. Section 3 formulates the op-
timal risk reduction portfolio problem. Section 4 applies the problem in
optimal redundancy allocation while Section 5 applies the problem in the
analysis of epistemic uncertainties. Section 6 covers computational experi-
ments related to optimal redundancy allocation and the analysis of epistemic
uncertainties.

2 Optimal risk reduction of systems

The problem of system failure probability, i.e., system unreliability mini-
mization under a budget constraint has been studied before. Cho and Sung
formulated a nonlinear binary integer programming problem and derived a
branch-and-bound algorithm to maximize the reliability of a series system
with multiple-choice constraints and a budget constraint [5].

In the problem formulation of Cho and Sung, the structure of a system is
limited to a series configuration of components. Each component is selected
from a set that is specific to the corresponding stage in the series configu-
ration. This selection process is modeled with multiple-choice constraints.
In addition, each component consumes a specific amount of budget, and the
budget constraint ensures that the total consumption stays within a budget.
From the budget constraint, it follows that the component with the highest
reliability cannot always (if ever) be selected in each stage.

System unreliability minimization has been studied also in the context of
redundancy allocation. Kuo and Prasad considered optimal redundancy al-
location in a coherent system that consists of a series configuration of sub-
systems [6]. They defined a coherent system as a system in which replacing
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failed components by working components will not cause system failure when
the system is functioning.

Unlike Cho and Sung, Kuo and Prasad assumed less on the subsystem struc-
tures of the stages in a series configuration. In the study of Cho and Sung,
each stage consists only of one component that was selected from a set that is
specific to this stage. While this is one possible substructure in the study of
Kuo and Prasad, also alternative substructures exist. The redundant com-
ponents in a stage can form, e.g., a parallel configuration or a k-out-of-m
configuration, in which all the components have the same reliability.

Kuo and Prasad presented a method to solve the optimal number of redun-
dant components in each stage given that the lower and the upper bound
for the number of components in each stage is known. Their problem formu-
lation includes also budget constraints for different types of resources. The
consumption of a particular resource in a particular stage is a function of the
number of components in that stage.

Interval probabilities have been applied to the problem of optimal redun-
dancy allocation by Feizollahi and Modarres [7]. In their study, system
structure is limited to a series-parallel configuration of components. That
is, a system is represented as a series configuration of parallel configurations
whose numbers of components are to be solved. In addition, the components
in a parallel configuration are assumed to be identical in the sense that their
reliability intervals are equal.

Feizollahi and Modarres defined a scenario as the vector of reliabilities whose
values are taken from their respective intervals. They presented four exact
algorithms to find the solution with the minimal deviation in reliability from
the solution with the maximal reliability over all scenarios and combinations
of components. This solution is called a min-max regret solution. In addition,
the problem formulation contains budget constraints that are similar to the
corresponding constraints in the formulation of Kuo and Prasad.

3 Methodological development of the opti-

mal risk reduction portfolio problem

The problem of minimizing system unreliability by securing components is
introduced and described in two parts. First, the problem is formulated and
explained. Second, a simple example case is studied to help the understand-
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ing of the problem formulation. A solution of this problem is the set of
components, i.e., a portfolio, that reduces the unreliability of a system the
most. Because unreliabilty of a system can be viewed as a risk, this problem
is called an optimal risk reduction portfolio problem. In addition, a scaling
method to overcome numerical difficulties is presented.

3.1 Problem formulation

In fault tree analysis, the failure of a technical system is modeled as a set
of basic events and logical connectors between them. A basic event is the
failure event of a component, and basic events are assumed to be statistically
independent. Logical connectors, such as AND and OR gates define the
relationships between basic events [8]. The basic events in a fault tree can
be enumerated from 1 to n, so the set of all basic events can be defined as

BE = {1, ..., n} .

Together, basic events and logical connectors form the top event of a fault
tree. The top event indicates whether the entire system fails, which occurs
if a particular set of basic events occur.

A minimal set of basic events that leads to system failure is called a minimal
cut set (MCS) [9]. The probability of a minimal cut set is the probability of
the event in which all the basic events in the MCS occur. Thus, a minimal
cut set probability is the product of basic event probabilities with respect to
the basic events in the MCS. Minimal cut sets can be enumerated from 1 to
N , and the minimal cut set j is denoted as

MCSj ⊂ BE.

System failure probability, i.e., system unreliability Q, can be derived from
the fault tree presentation of a system. It can be approximated by the sum
of all minimal cut set probabilities

Q ≈
∑N

j=1

∏
i∈MCSj

pi,

where pi is the probability of the basic event i and
∏

i∈MCSj
pi is the proba-

bility of the minimal cut set j. This approximation is called the rare event
approximation, and it gives an upper bound for system unreliability [8]. The
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approximation is close to the exact value when all basic events have low
probabilities [10].

Assume that the probability of basic events can be reduced from pi to pri < pi
with a cost ci. A risk reduction portfolio P ⊂ BE is defined as the set of
basic events whose probabilities are reduced. This portfolio is denoted by P .

For each basic event i, a binary indicator variable is defined as

bi =

{
0, i /∈ P

1, i ∈ P
. (1)

Using this definition, the total cost of a risk reduction portfolio P is
∑n

i=1 bici.
A risk reduction portfolio P is optimal with a budget B iff portfolio P is a
solution of the problem

min
P

Q

s.t.
∑n

i=1
bici ≤ B

The problem of finding an optimal risk reduction portfolio P can be formu-
lated as a mixed-integer linear programming (MILP) problem. The parame-
ters of the MILP problem are listed and described in Table 1 and the decision
variables in Table 2.

A probability product decision variable qj,i in Table 2 denotes the probability
product of i basic events in the minimal cut set j. These basic events and the
multiplication order of their probabilities is specified by the first i elements
in the ordering vector mj. Consequently, the probability product qj,|MCSj |
equals to the probability of the minimal cut set j.

An ordering vector mj in Table 1 denotes the ascending order of the basic
events in the minimal cut set j. Thus, the dimension of the vector equals to
|MCSj|. However, the vector could denote an arbitrary order instead of the
ascending one. This is because multiplication of real numbers is commutative
and the vector mj specifies the order in which basic event probabilities are
multiplied to construct the probability of the minimal cut set j. For instance,
if MCSj = {4, 5, 1}, then mj = (1, 4, 5), but the MILP model would work
with, e.g., mj = (4, 1, 5) or mj = (5, 4, 1), as well.

The binary indicator variables bi are collected into the vector

b = (b1, ..., bn) , (2)
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Table 1: The parameters of the optimal risk reduction portfolio MILP prob-
lem.

n The number of basic events in the fault tree.

pi The original probability of the basic event i.

pri The reduced probability of the basic event i.

ci The cost of reducing the probability of the basic event i.

B The budget.

N The number of minimal cut sets in the fault tree.

mj A vector representing the ascending order of the basic events in
the minimal cut set j.

Table 2: The decision variables of the optimal risk reduction portfolio MILP
problem.

bi A binary variable that indicates whether the basic event i
belongs to the risk reduction portfolio.

qj,i The product of the first i basic events probabilities in MCSj.
The multiplication order is specified by the vector mj.

and the probability products qj,i are collected into the set

Qp = {qj,i} ,

where j ∈ {1, ..., N} and i ∈ {1, ..., |MCSj|}. For instance, consider a fault
tree of a system that contains the basic events BE = {1, 2, 3} and the min-
imal cut sets MCS1 = {1, 2} and MCS2 = {3}. In this case, the binary
indicator vector is b = (b1, b2, b3) and the set of probability products is
Qp = {q1,1, q1,2, q2,1}. In addition, the ordering vectors are m1 = (1, 2) and
m2 = (3). Let qi denote the probability of the basic event i after risk reduc-
tion decision. That is, qi = pi iff bi = 0 and qi = pri iff bi = 1. Using this
notation, q1,1 corresponds to q1, q1,2 to q1q2 and q2,1 to q3.

The objective of the MILP optimization problem is formulated as

min
b,Qp

∑N

j=1
qj,|MCSj | (3)

The objective function in Equation (3) is the rare event approximation of
system unreliability. Thus, the objective function is the sum of minimal cut
set probabilities qj,|MCSj | over j ∈ {1, ..., N}. This sum is to be minimized to
reduce the upper bound of system unreliability as much as possible.
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The constraints of the MILP problem are:

bi ∈ {0, 1} ∀i ∈BE (4)∑n

i=1
cibi ≤ B (5)

qj,1 = pmj,1

(
1− bmj,1

)
+ prmj,1

bmj,1
∀j ∈ {1, ..., N} (6)

qj,i ≤ pmj,i
qj,i−1 + bmj,i

∀j ∈ {1, ..., N} , (7)

∀i ∈ {2, ..., |MCSj|}
qj,i ≥ pmj,i

qj,i−1 − bmj,i
∀j ∈ {1, ..., N} , (8)

∀i ∈ {2, ..., |MCSj|}
qj,i ≤ prmj,i

qj,i−1 +
(
1− bmj,i

)
∀j ∈ {1, ..., N} , (9)

∀i ∈ {2, ..., |MCSj|}
qj,i ≥ prmj,i

qj,i−1 −
(
1− bmj,i

)
∀j ∈ {1, ..., N} , (10)

∀i ∈ {2, ..., |MCSj|}

In this formulation, mj,i denotes the i:th element of the vector mj. The con-
straint (4) restricts the indicator variables bi to be binary, and the constraint
(5) ensures that the overall cost of the portfolio stays within the budget B.

The formation of a minimal cut set probability qj,|MCSj | is accomplished by
the conditional multiplying of basic event probabilities in the constraints
(6)-(10). The constraints form two either-or constraints: either

qj,i = pmj,i
qj,i−1,

or
qj,i = prmj,i

qj,i−1.

The constraint (6) selects either the original probability pmj,1
or the reduced

probability prmj,1
to be the first factor of the minimal cut set probability

qj,|MCSj |. The constraints (7)-(10) perform the same type of selections for
the rest of the basic events in the minimal cut set j. The product of the first
i basic event probabilities is formed by multiplying the product of the first
i−1 basic event probabilities either with the original probability pmj,i

or with
the reduced probability prmj,i

. This conditional multiplying is continued until
the value of the minimal cut set probability qj,|MCSj | is finally determined.

3.2 Example

A fault tree consisting of only two basic events, 1 and 2, and one AND gate
is presented in Figure 1. The failure of this system, i.e., the top event T, is
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T

·

1 2

Figure 1: The fault tree of a system consisting of only two basic events, 1 and
2, and one AND gate. The top event T indicates the failure of the system,
which occurs if both of the basic events occur.

determined by only one minimal cut set, MCS1 = {1, 2} . Thus, the rare
event approximation of the system unreliability is the product p1p2, where
p1 and p2 denote the probabilities of the basic events 1 and 2, respectively.

The ordering vector m1 of the minimal cut set 1 is m1 = (1, 2). If the original
basic event probabilities p1 and p2 can be reduced to pr1 and pr2 with the costs
c1 and c2 and a budget B is given, the optimal risk reduction portfolio P for
this system can be solved. This can be accomplished by defining the decision
variables

b = (b1, b2) ,

Qp = {q1,1, q1,2} ,

and solving the MILP problem

min
b,Qp

q1,2

s.t. b1, b2 ∈ {0, 1}
c1b1 + c2b2 ≤ B

q1,1 = p1 (1− b1) + pr1b1 (11)

q1,2 ≤ p2q1,1 + b2 (12)

q1,2 ≥ p2q1,1 − b2 (13)

q1,2 ≤ pr2q1,1 + (1− b2) (14)

q1,2 ≥ pr2q1,1 − (1− b2) . (15)

The decision variables b1 and b2 indicate whether the basic events 1 and
2 are included in the optimal portfolio P , i.e., whether their probabilities
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Table 3: All the possible values of the decision variables q1,1 and q1,2 as a
function of the decision variables b1 and b2. In this example, the value of q1,2
equals to the value of the objective function.

b1 b2 q1,1 q1,2

0 0 p1 p1p2

1 0 pr1 pr1p2

0 1 p1 p1p
r
2

1 1 pr1 pr1p
r
2

are reduced. In addition, the decision variables q1,1 and q1,2 construct the
probability of MCS1.

The constraints (11)-(15) form the probability of MCS1. If b1 = 0, the value
of the variable q1,1 is determined to be p1, which can be seen by substituting
b1 = 0 into the constraint (11). Similarly, if b1 = 1, the constraint (11)
determines the value of the variable q1,1 to be pr1.

If b2 = 0, the constraints (12)-(13) force the value of the variable q1,2 to be
p2q1,1 because inequalities q1,2 ≤ p2q1,1 and q1,2 ≥ p2q1,1 are both valid if and
only if q1,2 = p2q1,1. In this case, the constraints (14)-(15) become redundant,
because pr2, q1,1 and q1,2 are probabilities and, thus, pr2q1,1 − 1 ≤ 0 ≤ q1,2 ≤
1 ≤ 1 + pr2q1,1. Similar kind of reasoning applies also to the case b2 = 1. All
the possible values of the variables q1,1 and q1,2 as a function of the variables
b1 and b2 are listed in Table 3.

The objective function q1,2 is the probability of MCS1. Because this example
system contains no other minimal cut sets, the probability of MCS1 repre-
sents the rare event approximation of the system unreliability, which was to
be minimized.

If the costs were ci = 1 for both components, the budget were B = 1, the
original probabilities were p1 = p2 = 0.1 and the reduced probabilities were
pr1 = 0.02 and pr2 = 0.04, then the optimal solution would be to reduce the
failure probability of the component 1. This can be seen in Table 4 that lists
the numerical values of the decision variables.
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Table 4: The total costs of risk reduction portfolios P and the numerical
values of the decision variables q1,1 and q1,2 as a function of the decision
variables b1 and b2. A portfolio P is marked feasible if its total cost is less
than the budget B = 1. The optimal solution is in bold.

P

b1 b2
∑2

i=1 bici Feasible q1,1 q1,2

0 0 0 Yes 0.1 0.01

1 0 1 Yes 0.02 0.002

0 1 1 Yes 0.1 0.004

1 1 2 No 0.02 0.0008

3.3 Scaling method to overcome numerical difficulties

MILP solvers may feature a feasibility tolerance parameter to control how
much the constraints of a model are allowed to be violated. However, the
minimum value of this parameter may be too high for an optimal risk re-
duction portfolio problem. The probability products qj,i in the constraints
(7)-(10) can become smaller than this minimum value, which causes rounding
errors in the probability products qj,i.

The problem with a feasibility tolerance parameter can be alleviated by scal-
ing minimal cut set probabilities qj,|MCSj | with a scaling factor s > 1. In the
MILP problem formulation, this is accomplished by replacing the constraints
(6)-(10) with the constraints

qj,1 = s
(
pmj,1

(
1− bmj,1

)
+ prmj,1

bmj,1

)
∀j ∈ {1, ..., N} (16)

qj,i ≤ pmj,i
qj,i−1 + sbmj,i

∀j ∈ {1, ..., N} , (17)

∀i ∈ {2, ..., |MCSj|}
qj,i ≥ pmj,i

qj,i−1 − sbmj,i
∀j ∈ {1, ..., N} , (18)

∀i ∈ {2, ..., |MCSj|}
qj,i ≤ prmj,i

qj,i−1 + s
(
1− bmj,i

)
∀j ∈ {1, ..., N} , (19)

∀i ∈ {2, ..., |MCSj|}
qj,i ≥ prmj,i

qj,i−1 − s
(
1− bmj,i

)
∀j ∈ {1, ..., N} , (20)

∀i ∈ {2, ..., |MCSj|}

The constraint (16) is responsible for multiplying a minimal cut set prob-
ability qj,|MCSj | with a scaling factor s, and the constraints (17)-(20) work
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in the similar manner as the constraints (7)-(10) because s ≥ sqj,i ∀j ∈
{1, ..., N} ∀i ∈ {1, ..., |MCSj|}. Now, all the minimal cut set probabilities
and, thus, the objective function becomes scaled by the scaling factor s.
Consequently, the value of the optimal solution returned by a MILP solver
must be multiplied with s−1 to cancel out scaling.

4 Optimal redundancy allocation

The unreliability of a system can be reduced by allocating redundancy [4].
This can be accomplished by securing a component with a parallel configu-
ration of two or more components identical to the secured one. For example,
the first level of redundant arrays of inexpensive disks (RAID) technology
specifies that a hard disk is mirrored with an identical one to reduce the
unreliability of a data storage system [11]. The degree of redundancy d is
defined to be the number of components in a parallel configuration.

In fault tree modeling, securing a component with a parallel configuration
of identical components can be interpreted as connecting the basic event of
the secured component to an AND gate with new basic events that all have
the same probability as the original basic event. For example, redundancy
can be allocated in the fault tree of Figure 1 by connecting the basic event
2 to an AND gate with a new basic event 3 that has the same probability
as the basic event 2. As a result, the original probability p2 is reduced to
pr2 = p2 ·p2 = (p2)

2. The effect of this redundancy allocation for the fault tree
is illustrated in Figure 2. However, in the case of connecting a basic event
to an AND gate with new basic events, the failures of the components in a
parallel configuration are assumed to be independent.

Redundancy can be allocated optimally by utilizing the optimal risk reduc-
tion portfolio problem. Assume that the degrees of redundancies di are known
for each component and the reduced probabilities pri can be computed as a
function of the degrees di. In this case, an optimal risk reduction portfolio
can be solved. This yields the set of components that should be secured by
allocating redundancy optimally, i.e., in such a way that system unreliability
is minimized.
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Figure 2: The fault tree of the example in Section 3.2 after the component 2
is secured with the degree of redundancy d = 2.

4.1 Common-cause failures

The independence of component failures can be an unrealistic assumption.
This is because, e.g., identical components manufactured in the same produc-
tion process are likely to share the same defects. These types of dependencies
can be modeled with common-cause failure (CCF) models.

A widely utilized CCF model is the beta factor model [12]. This single-
parameter model assumes that all the components in a redundant system
(e.g., a parallel configuration of identical components) fail when a CCF oc-
curs. In this model, the probability that k out of d components fail is defined
as

pk =


(1− β) p , k = 1

0 , 1 < k < d

βp , k = d

, (21)

where p is the failure probability of a component, p1 is the probability that
a component fails independently, pd is the probability that all components
in a configuration fail because of a CCF, and β estimates the proportion of
common cause failures to all failures. The beta factor can be expressed as
the fraction

β =
λc

λc + λi
,

where λc is the rate of common cause failures and λi is the rate of inde-
pendent failures. Statistical data can be utilized to estimate the value of
the parameter β. For instance, a typical value for equipment in industrial
process control is 1-10 % [13].
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Assume that a component is secured by replacing it with a parallel config-
uration of d identical components. The failure probability of the secured
component is derived in the following way. Let event A denote the event
that the secured component fails, and let p be the probability of this event.
Similarly, let event Ak denote the event that the component k in the parallel
configuration fails. After the component is secured, i.e., redundancy is allo-
cated with the degree d, the secured component fails iff all the components
in the parallel configuration of d identical components fails. That is, A oc-
curs iff all of the events A1, ..., Ad occur. Thus, the probability of event A is
reduced to

pr = P
(⋂d

k=1
Ak

)
, (22)

where P (E) denotes the probability of an event E. Let C denote the event
of a CCF. Consequently, the probability of a failure event Ak due to an
independent failure is

P
(
Ak |CC

)
= (1− β) p, (23)

where CC is the complement event of C, and the probability of a failure event
Ak due to a CCF is

P (Ak |C) = 1. (24)

The value (1− β) p in Equation (23) is derived from Equation (21), and
Equation (24) results from the fact that in the beta factor model all compo-
nents will fail with absolute certainty if a CCF occurs. By the law of total
probability, the reduced probability of event A is

P

(
d⋂

k=1

Ak

)
= P

(
d⋂

k=1

Ak |C

)
P (C) + P

(
d⋂

k=1

Ak |CC

)
(1− P (C)) . (25)

With similar reasoning as in Equation (24), it follows that

P
(⋂d

k=1
Ak |C

)
= 1, (26)

and the probability of a CCF

P (C) = βp (27)

is equal to the probability that all components fail because of a CCF. This
probability is presented in Equation (21). In the event

⋂d
k=1Ak with the con-

dition CC all components fail independently. For this reason, the probability
of the conditional event can be computed with the help of Equation (23)

P
(⋂d

k=1
Ak |CC

)
=
(
P
(
Ak |CC

))d
= ((1− β) p)d . (28)
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Finally, by substituting equations (25)–(28) into Equation (22), the reduced
probability of event A and, thus, the failure probability of the secured com-
ponent becomes

pr = βp+ ((1− β) p)d (1− βp) . (29)

4.2 Example

Consider the two-component example system in Section 3.2 with the original
probabilities p1 = p2 = 0.1. Assume that redundancy can be allocated by
securing the component 1 with a parallel configuration of d1 = 2 identical
components and the component 2 with a parallel configuration of d2 = 3
identical components.

In addition, if the proportion of common-cause failures to all failures were
β = 0.1, the reduced probabilities would be pr1 = 0.01802 and pr2 = 0.01072.
These probabilities are computed from Equation (29).

Now, assume that it were cheaper to acquire three components identical to
the component 2 than two components identical to the component 1. In
this case, the optimal way of allocating redundancy would be to secure the
component 2 with a parallel configuration of d2 = 3 identical components.
This is because pr2 = 0.01072 < 0.01802 = pr1.

5 Analysis of epistemic uncertainties

In probabilistic risk assessment, failure probabilities are often based on expert
opinions [2]. However, these opinions are prone to biases, such as overconfi-
dence and anchoring. Also, expertise is often gathered from multiple experts
from different fields, which results in a need of combining the opinions of these
experts. Furthermore, the failure probabilities to be estimated are related to
events that are typically rare, and, thus, estimation using statistical methods
is based on only a few observations. For these reasons, estimating a failure
probability by aggregating the information and expertise available to a single
point estimate may exaggerate the current knowledge of the probability.

Epistemic uncertainties are uncertainties that originate from the lack of
knowledge [14]. In contrast, aleatory uncertainties are uncertainties that
originate from inherent variation (contingencies) in a system. While aleatory
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uncertainties are irreducible, epistemic uncertainties can be reduced by ob-
taining new observations.

Epistemic uncertainties in failure probabilities can be modelled with proba-
bility intervals. The end points of an interval define the range in which the
probability is estimated to locate. Consequently, a point-estimate probabil-
ity p can be converted to a probability interval, e.g., by defining the interval
[p− ε, p+ ε], where the parameter ε describes the uncertainty in the failure
probability.

Obtaining new observations can result in the change of probability intervals.
For example, if a failure probability is estimated to locate in the interval
[0.03, 0.06] and new knowledge is obtained, the interval may be reduced to
[0.04, 0.05]. After this interval reduction, the failure probability is estimated
to be known more accurately than before. However, the opposite could occur
equally well. That is, the interval may be changed to [0.02, 0.07] if new
knowledge reveals that the originally estimated interval was too narrow to
describe the confidence on the failure probability.

5.1 Dominance relation

With probability intervals, risk reduction portfolios can be compared through
dominance relations. These relations are determined by system unreliability
Q, which is approximated by the rare event approximation

Q (p,b) ≈
∑N

j=1

∏
i∈MCSj

(pi)
1−bi · (pri )

bi ,

where p is a vector containing basic event probabilities pi, b is the binary
indicator vector of a portfolio P defined in Equation (1) and (2), N is the
number of minimal cut sets and reduced probabilities pri < pi are computed
as a function of original probabilities pi, e.g., from Equation (29).

Definition 1 Portfolio P1 (b1) dominates portfolio P2 (b2), denoted, P1 �
P2, with budget level B if and only if

∑n
i=1 cibk,i ≤ B ∀k ∈ {1, 2} and

(i) ∀p ∈ [0, 1]n : plb ≤ p ≤ pub, Q (p,b1) ≤ Q (p,b2)

(ii) ∃p ∈ [0, 1]n : plb ≤ p ≤ pub, Q (p,b1) < Q (p,b2)
,

where n is the number of components, ci is the cost incurred by reducing
original probability pi to pri , the vector plb contains the lower bounds of the
intervals and the vector pub the upper bounds.
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Definition 1 implies that dominance relations form a partial order. That is,
they are irreflexive, asymmetric and transitive. Irreflexivity means that a
portfolio cannot dominate itself, i.e., Pi � Pi ∀i. Asymmetricity implies that
Pi � Pj ⇒ Pj � Pi ∀i 6= j. Transitivity gives: Pi � Pj and Pj � Pk ⇒
Pi � Pk ∀i, j, k. From these properties it follows that such pairs of portfolios
may exist that neither of the portfolios dominates the other. Especially, the
set of portfolios that are not dominated by any other portfolio may contain
more than one portfolio. These non-dominated portfolios are interesting for
a decision maker because no other portfolio can yield lower unreliability for
any probabilities p: plb ≤ p ≤ pub [15].

The set of non-dominated portfolios can be approximated by optimal risk
reduction portfolios with point-estimate probabilities. If a risk reduction
portfolio Po is the unique optimum with the probabilities p0, i.e., no other
portfolio yields equally low unreliability with p0, it follows that the condi-
tion (i) in Definition 1 cannot hold for any dominance comparison where
it is investigated if some other portfolio dominates Po. However, if Po is
not unique, then it may not be a non-dominated portfolio because another
portfolio P1 may exist that dominates P0. In that case, also P1 would be
optimal with the probabilities p0 because otherwise the condition (i) in Def-
inition 1 would not hold for the dominance P1 � P0. In addition, it is
noteworthy that a non-dominated portfolio may not be optimal for any fixed
p0 ∈ [0, 1]n : plb ≤ p0 ≤ pub [16].

However, in this thesis it is not investigated whether an optimal risk reduc-
tion portofolio is the unique optimum (if such exists), and for this reason, an
optimal portfolio is called a potentially non-dominated portfolio and the set
of them is said to be approximative with respect to the set of non-dominated
portfolios. Potentially non-dominated portfolios are computed by selecting
point estimates of failure probabilities randomly from their respective inter-
vals and solving the corresponding optimal risk reduction portfolios.

5.2 Core index

Basic events under probability intervals can be analysed with core indices.
The concept of core index is defined in [16] as a part of robust portfolio
modeling (RPM) methodology. The core index CI of a basic event BE
denotes the proportion of non-dominated portfolios containing the event to
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all non-dominated portfolios and is denoted as

CI (BE,plb,pub, B) =
| {P ∈ PN (plb,pub, B) |BE ∈ P} |

|PN (plb,pub, B) |
,

where PN (plb,pub, B) denotes the set of non-dominated portfolios with the
probability intervals plb ≤ p ≤ pub and budget B.

The core index CI of a basic event BE can be approximated by solving
Npnd (plb,pub, B) potentially non-dominated portfolios and by computing the
fraction

CI (BE,plb,pub, B) ≈
∑Npnd(plb,pub,B)

k=1 χk (BE)

Npnd (plb,pub, B)
, (30)

where χk denotes the characteristic function of the k:th potentially non-
dominated portfolio. That is, χk (BE) = 1 if the basic event BE belongs
to the k:th portfolio and χk(BE) = 0 in the opposite case. In this thesis,
only approximations of core indices are computed. This is accomplished by
selecting point estimates of failure probabilities from their respective intervals
and solving the optimal risk reduction portfolio problem for NMILP times.
This yields a set of Npnd (plb,pub, B) ≤ NMILP potentially non-dominated
portfolios. The cardinality of the set can be smaller than the number of
MILP problems solved because the solutions of several MILP problems can
be the same.

Core indices divide basic events into three categories. First, the basic events
with core index equal to 1 are called core events. They belong to all non-
dominated portfolios and reducing their probabilities should be prioritized.
Second, the basic events with core index less than 1 but greater than 0 are
called border events. Finally, the basic events with core index equal to 0
are called exterior events. They do not belong to a single non-dominated
portfolio and reducing their probabilities should be the last priority.

6 Computations and results

Two types of computational experiments are conducted. First, it is studied
how budget affects on system unreliability and on the contents of optimal
risk reduction portfolios. This is accomplished by solving optimal risk reduc-
tion portfolios when budget varies between the maximal value that results in
an empty portfolio and the minimal value that results in a portfolio contain-
ing all components. This type of an experiment is referred to as a budget
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experiment. Second, uncertainties on failure probabilities are modeled as
probability intervals and non-dominated portfolios and core indices are com-
puted. This type of an experiment is referred to as an interval experiment.

Instead of exact system unreliability, the rare event approximation is utilized.
This approximation simplifies the sumproduct expression of system unreli-
ability by reducing the number of terms, and it provides an upper bound
that is accurate enough when all basic events have low probabilities [10]. In
addition, only potentially non-dominated portfolios are computed by solving
optimal risk reduction portfolios when failure probabilities are selected ran-
domly from their respective intervals. Based on potentially non-dominated
portfolios, approximative core indices are computed from Equation (30).

Experiments were performed with two data sets: an example system con-
sisting of seven components and a residual heat removal system (RHRS) of
a nuclear reactor. Both data sets are the same as in [17], and the latter is
said to be representative instead of exact in terms of fault tree structure and
failure probabilities. The data sets do not include information on costs of
reducing failure probabilities. All costs were set to the value of 1.0, which
simplifies the computations. Also, the data sets do not contain any informa-
tion on reduced failure probabilities. It was assumed that each component
can be secured with another component in a parallel configuration, so the
degree of redundancy was d = 2. The CCFs were taken into account by uti-
lizing the beta factor model with the parameter value β = 0.1. The reduced
failure probabilities were computed from Equation (29).

All MILP problems are solved with CPLEX 12.4 [18]. CPLEX was run on a
system with an Intel Core i3-2330M CPU @ 2.20 GHz and 4 GB of RAM.

6.1 Example system with seven components

The reliability block diagram of the system is illustrated in Figure 3. The
diagram consists of In, Out and component nodes and paths between the
nodes. Because the system is functioning when there is a path of working
components from In node to Out node, the minimal cut sets of the system
can be derived from the diagram. The minimal cut sets are listed in Table
5.

In [17] this system was analysed under interval probabilities, and one choice
of intervals was [0.01, 0.03] for each component. The same interval for each
component is used also in this thesis in the interval experiment of this system,
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Figure 3: The reliability block diagram of a system with seven components.
The system is functioning when there is a path consisting of working com-
ponents from the In node to the Out node.

Table 5: The minimal cut sets of the example system with seven components.

1. {1, 3, 7} 3. {2, 3, 7} 5. {1, 3, 5, 6} 7. {2, 3, 5, 6}
2. {1, 4, 7} 4. {2, 4, 7} 6. {1, 4, 5, 6} 8. {2, 4, 5, 6}

and in the budget experiment the original probabilities were chosen to be the
midpoints of the intervals, i.e., p = 0.02. Thus, the reduced probabilities in
the budget experiment were pr = 2.3234 · 10−3, which was obtained from
Equation (29) with the parameter values p = 0.02, d = 2 and β = 0.1.

The optimal risk reduction portfolio MILP problem for this system contains
35 decision variables, of which seven are binary indicator variables and 28
real-valued probability products. In addition, the MILP problem contains 89
constraints.

Budget experiment

Eight MILP problems were solved in the budget experiment. The total com-
puting time that CPLEX reported was 0.2964 s while the average computing
time for one MILP problem was 0.03705 s.

The results of the budget experiment are drawn in Figure 4 and Figure 5.
Figure 4 represents system unreliability Q as a function of budget B in both
the optimal and the worst case. Figure 5 represents the optimal risk reduction
portfolios P as a function of budget B.
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Figure 4: System unreliability Q as a function of budget B in the example
system with seven components. Unreliability Q is represented in both the
optimal and in the worst case.

Figure 4 shows that unreliability Q can be reduced to less than 15 % of its
original value by investing to securing just one component. On the other
hand, it can also be seen that investing to securing more than three compo-
nents would yield at maximum only the reduction of 1.4 percentage points in
unreliability compared to the situation where exactly three components were
secured. When all the components are secured, unreliability is reduced to
Q = 5.028 · 10−8, which is 0.1541 % of its original value. Figure 4 shows also
that the difference between the optimal solutions and the worst solutions is
notable.

Figure 5 shows that when a single component can be secured, the best choice
is the component 7. This can be explained as the follows. Table 5 shows
that there are four minimal cut sets of both cardinalities three (the minimal
cut sets 1-4) and four (the minimal cut sets 5-8). All components belong
to four minimal cut sets, and the component 7 belongs to all minimal cut
sets of cardinality three. Thus, when failure probabilities are equal, reducing
the failure probability of the component 7 reduces the objective function
the most. With similar reasoning, it can be inferred that components 1-4
are the next best choices because each of them belongs to two minimal cut
sets of cardinality three and two of cardinality four. Finally, components 5
and 6 should be the last choices because they are in all minimal cuts sets of
cardinality four. That is, reducing their probabilities reduces the objective
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Figure 5: The optimal risk reduction portfolios P as a function of budget B
in the example system with seven components. A component is marked with
a dot if it belongs to an optimal portfolio P with a budget B.

function the least. The described selection order can be observed in Figure
5.

Interval experiment

In the interval experiment, the budget was fixed to B = 4, i.e., four com-
ponents out of seven could be secured. In total, 200 MILP problems were
solved, which yield Npnd = 4 potentially non-dominated portfolios. That
is, the solutions of the 200 MILP problems contained four different portfo-
lios. The total computing time that CPLEX reported was 8.1901 s while the
average computing time for one MILP problem was 0.04095 s.

The frequencies f of the components in the solutions of the 200 MILP prob-
lems are presented in Figure 6. The figure shows that the component 7
belongs to all computed portfolios and the remaining three components are
selected from the set {1, 2, 3, 4} while the components 5 and 6 do not belong
to any optimal portfolio.

As Figure 6 implies, the Npnd = 4 potentially non-dominated portfolios con-
sist of the component 7 and three of the components 1, 2, 3 and 4. Conse-
quently, the core indices were CI ≈ 3/4 for the components 1-4, CI ≈ 0 for
the components 5-6 and CI ≈ 1 for the component 7. Thus, the component 7
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Figure 6: The frequencies f of the example system components in the optimal
solutions of the 200 MILP problems. The failure probabilities were taken
from probability intervals.

can be called a core component, the components 1-4 border components and
the components 5-6 exterior components. The approximations were com-
puted from Equation (30).

6.2 Residual heat removal system

The system consists of 31 components and 147 minimal cut sets. The failure
probability point estimates and intervals and the minimal cut sets are pre-
sented in Appendix A. The optimal risk reduction portfolio MILP problem
for this system contains 363 decision variables, of which 31 are binary in-
dicator variables and 332 real-valued probability products. In addition, the
MILP problem contains 888 constraints.

Budget experiment

In the budget experiment, 32 MILP problems were solved. The total com-
puting time that CPLEX reported was 7.0668 s while the average computing
time for one MILP problem was 0.2208 s.

The results of the budget experiment are drawn in Figures 7 and 8. Figure 7



23

0 5 10 15 20 25 30
0

0.5859

1.1718

1.7577

2.3436

2.9295

3.5154

4.1012

4.6871

5.273

5.8589
x 10

−3

U
nr

el
ia

bi
lit

y 
/ Q

Budget / B
0 5 10 15 20 25 30

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Figure 7: System unreliability Q as a function of budget B in the residual
heat removal system.

shows system unreliability Q and Figure 5 optimal risk reduction portfolios
P as functions of budget B. According to Figure 7, securing one component
reduces unreliability to 46.71 % of its original value and securing six compo-
nents reduces it to 9.34 %. Securing all 31 components reduces unreliability
to 6.97 %.

The components in the RHRS data set are sorted according to their Fussel-
Vesely risk importance measure values. These values measure the fractional
contribution of a component to the overall risk [19]. Figure 8 shows that
the selection order of the components roughly resembles the Fussel-Vesely
risk importance measure order. That is, first, the component 1 is selected,
second, the component 2 is selected etc.

Interval experiment

In the interval experiment, the budget was fixed to B = 10, i.e., ten compo-
nents out of 31 could be secured. In total, 4000 MILP problems were solved,
which yield Npnd = 97 potentially non-dominated portfolios. That is, the
solutions of the 4000 MILP problems contained 97 different portfolios. The
total computing time that CPLEX reported was 967.0 s while the average
computing time for one MILP problem was 0.2418 s.

The core indices of the components were computed from Equation (30) and
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Figure 8: The optimal risk reduction portfolios P as a function of budget B
in the residual heat removal system. A component is marked with a dot if it
belongs to an optimal portfolio P with a budget B.

are presented in Figure 9. The figure shows that the components 1, 2, 3 and
6 can be considered as core components while the components 16, 19 and
21-31 can be considered as exterior components. The remaining components
are categorized border components.

The distribution of the 97 portfolios in the 4000 MILP problem solutions is
presented in Figure 10, which demonstrates the difference in using probability
intervals instead of point estimates. While the optimal portfolio with the
highest frequency of 702 is the same as the optimal portfolio with point
estimate probabilities and budget B = 10 shown in Figure 8, now also other
potentially equally good, i.e., non-dominated, alternatives exist.

An interval experiment was repeated for budgets B = 5, 10, ..., 30 to see
how core indices CI behave as a function of budget. For each budget B,
1000 MILP problems were solved and core indices of the components were
computed from Equation (30). The results are displayed in Figure 11. The
figure shows that for most of the components core index is increasing as a
function of budget. The only exception is the component 28, whose core
index is CI ≈ 0.0164 with the budget B = 10 and CI ≈ 0 with B = 15.
However, this is difficult to observe in Figure 11. Also [15] shows a case
in which robust portfolio modeling is applied and not all core indices were
monotonous functions of budget.
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Figure 9: The core indices CI of the components in the RHRS when 4000
MILP problems were solved yielding 97 different portfolios and the point
estimates of failure probabilities were taken from probability intervals.
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Figure 10: The distribution of optimal portfolios P in the interval experiment
of the RHRS. In total, 4000 MILP problems were solved, which yield 97
potentially non-dominated portfolios.
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Figure 11: The core indices CI of the components in the RHRS as a function
of budget B. The darker the rectangle of a component, the closer the core
index of the component is to 1.0. That is, the core index of 1.0 is marked
as a black rectangle and the core index of 0.0 as a white rectangle. For each
budget B, 1000 MILP problems were solved.

7 Discussion

This thesis develops a MILP model that minimizes unreliability of a system
that is presented as a fault tree. In contrast, the reliability optimization
models of Cho and Sung [5], Kuo and Prasad [6] and Feizollahi and Modarres
[7] assume more on system structure. Fault trees enable a detailed analysis
of system failure and are widely applied in different fields of industry.

Minimization in the MILP model of this thesis is subject to two types of
constraints. First, the reduction of component failure probability has a cost.
Second, the overall cost of risk reduction is not allowed to exceed a budget.
This budget constraint is similar to the budget constraint in the problem
formulation of Cho and Sung and dissimilar to the formulations of Kuo and
Prasad and Feizollahi and Modarres. That is, in this study the costs of
reducing failure probabilities are commensurable while risk reduction of a
component may consume many different types of resources in the formula-
tions of Kuo and Prasad and Feizollahi and Modarres.

The MILP problem formulation in Section 3.1 contains redundant deci-
sion variables. This is because the intersection of minimal cut sets may
not be empty. For example, if a system contained the minimal cut sets
MCS1 = {1, 2, 3} and MCS2 = {1, 2, 4}, then the MILP problem would
have six probability product decision variables for the probabilities of these
MCSs. However, it would be sufficient to have only four of them because
MCS1

⋂
MCS2 = {1, 2} and the first two probability product variables could

be common for both MCSs.
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The MILP model can be applied in optimal redundancy allocation to deter-
mine which components should be replaced with parallel configurations of
identical components to minimize system unreliability. However, the degrees
of redundancy are assumed to be known for each component unlike in the
models of Kuo and Prasad and Feizollahi and Modarres. In these models,
also the degrees of redundancy are solved. The model in this thesis can take
CCFs into account, e.g., with the beta factor model. On the other hand, if
the proportion of CCFs to independent failures is large for a parallel config-
uration of identical components, then it may not be reasonable to allocate
redundancy for this type of components at all.

The model of this thesis was utilized with two systems to analyze which
components in a system should be secured when a budget is reserved for
securing. The model was utilized also in the case where failure probabilities
were uncertain. In this case, failure probabilities were modeled as probability
intervals instead of point estimates. With probability intervals, the model of
this thesis does not yield exact solutions unlike the model of Feizollahi and
Modarres.

MILP problems were solved with CPLEX that features a feasibility tolerance
parameter to control how much the constraints of a model are allowed to be
violated [20]. However, the minimum value of this parameter is 10−9, which
is high for the MILP model. The problem with the parameter was alleviated
with the scaling method presented in Section 3.3. Without scaling, it was
sometimes observed that probability products were rounded to zeros, which
in turn resulted in incorrect results.

CPLEX may terminate optimization if it has found a solution that is provably
sufficiently close to the optimal solution [21]. This can cause inaccuracies in
the results of computations. For each solution, CPLEX reports a relative
optimality gap (ROG) that denotes how close the solution is relatively to the
optimal solution. For instance, if the ROG were 0.05, then CPLEX might
terminate optimization after it has found a solution that is within five percent
of the optimum. For the vast majority of the MILP problem computations
CPLEX reported ROGs of 0.00 %. The remaining ROGs were mostly 1.00 %,
but in the worst case a ROG of 62.00 % was observed.
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8 Conclusions

The computations with the seven-component example system show that the
MILP model in this thesis is applicable to analyse optimal risk reduction of
systems. These computations show also that the model is applicable when
uncertainties of failure probabilities are modeled with probability intervals.
However, with this model, it is not possible to solve exact solutions when
probability intervals are utilized. In addition, the quality of these approxima-
tive solutions, i.e., how close they are to the exact solutions, is not analysed
in this thesis. In addition, the model can be applied in optimal redundancy
allocation.

The MILP model can be utilized with any system that can be described as a
fault tree. This set of systems is extensive and includes, e.g., a residual heat
removal system of a nuclear reactor that was analysed in this thesis. The
optimal risk reduction portfolios for the RHRS were computed as a func-
tion of budget in 7.0668 s. This shows that the model can be utilized in a
reasonable time with problems based on real-world data. The optimal risk
reduction portfolios suggest that the optimal order of securing components
in the RHRS is roughly the same order as the Fussel-Vesely risk impor-
tance order of the components. With probability intervals, 97 potentially
non-dominated portfolios of ten components were found. The core index ap-
proximations suggested that the securing of the components 1, 2, 3 and 6
should be prioritized while the securing of the components 16, 19 and 21-31
should be the last priority.
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[15] Liesiö, J., Mild, P., Salo, A. Robust Portfolio Modeling with Incomplete
Cost Information and Project Interdependencies. European Journal of
Operational Research, Volume 190 (2008), Issue 3, Pages 679-695.
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A Residual heat removal system data

The data of the system is the same as in [17].

The component failure probabilities, both point estimates and intervals, and
the Fussel-Vesely risk importance values of the RHRS.

Component Point estimate Lower bound Upper bound Fussell-Vesely

1 3.48E-03 1.45E-03 1.31E-02 5.97E-01

2 3.13E-02 9.28E-03 8.35E-02 2.72E-01

3 3.13E-02 9.28E-03 8.35E-02 2.37E-01

4 1.00E-02 4.58E-03 1.83E-02 6.97E-02

5 1.00E-02 4.58E-03 1.83E-02 5.86E-02

6 1.68E-04 7.00E-05 6.30E-04 2.88E-02

7 3.35E-03 8.93E-04 8.04E-03 2.54E-02

8 3.35E-03 8.93E-04 8.04E-03 2.54E-02

9 1.51E-03 4.48E-04 4.03E-03 1.31E-02

10 1.51E-03 4.48E-04 4.03E-03 1.14E-02

11 2.40E-03 3.84E-04 9.60E-03 7.13E-03

12 6.00E-04 1.60E-04 1.44E-03 5.21E-03

13 6.00E-04 1.60E-04 1.44E-03 4.54E-03

14 1.92E-05 8.00E-06 7.20E-05 3.29E-03

15 3.36E-04 4.17E-05 1.04E-03 2.92E-03

16 5.79E-02 1.71E-02 1.54E-01 2.82E-03

17 5.79E-02 1.71E-02 1.54E-01 2.66E-03

18 6.43E-03 2.68E-03 2.41E-02 2.64E-03

19 3.36E-04 4.17E-05 1.04E-03 2.54E-03

20 1.20E-05 5.00E-06 4.50E-05 2.06E-03

21 1.73E-04 5.12E-05 4.61E-04 1.50E-03

22 1.73E-04 5.12E-05 4.61E-04 1.31E-03

23 1.08E-04 3.20E-05 2.88E-04 9.38E-04

24 1.08E-04 3.20E-05 2.88E-04 8.18E-04

25 1.00E-02 4.58E-03 1.83E-02 4.45E-04

26 1.00E-02 4.58E-03 1.83E-02 4.19E-04

27 2.40E-05 9.00E-07 9.00E-05 2.08E-04

28 2.40E-05 9.00E-07 9.00E-05 2.08E-04

29 2.40E-05 9.00E-07 9.00E-05 1.82E-04

30 2.40E-05 9.00E-07 9.00E-05 1.82E-04

31 1.00E-07 3.93E-10 3.54E-07 1.72E-05
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The minimal cut sets of the RHRS.
No Probability Components No Probability Components No Probability Components

1 3.48E-03 1 51 7.52E-07 28 3 101 3.63E-08 30 9

2 9.81E-04 3 2 52 7.52E-07 27 3 102 3.62E-08 25 11 10

3 3.13E-04 5 2 53 7.51E-07 25 11 3 103 3.62E-08 26 11 9

4 3.13E-04 4 3 54 7.51E-07 26 11 2 104 2.99E-08 21 22

5 1.68E-04 6 55 5.79E-07 21 7 105 2.40E-08 17 11 21

6 1.05E-04 2 7 56 5.79E-07 8 21 106 2.40E-08 16 11 22

7 1.05E-04 8 2 57 5.07E-07 10 15 107 1.87E-08 24 21

8 4.73E-05 10 2 58 5.07E-07 9 19 108 1.87E-08 23 22

9 4.73E-05 9 3 59 4.65E-07 16 8 11 109 1.50E-08 17 23 11

10 3.35E-05 8 4 60 4.65E-07 16 11 7 110 1.50E-08 16 24 11

11 3.35E-05 4 7 61 3.62E-07 23 8 111 1.44E-08 29 12

12 1.92E-05 14 62 3.62E-07 23 7 112 1.44E-08 28 13

13 1.88E-05 12 3 63 3.60E-07 13 12 113 1.44E-08 27 13

14 1.88E-05 13 2 64 2.61E-07 9 22 114 1.44E-08 30 12

15 1.54E-05 18 11 65 2.61E-07 10 21 115 1.44E-08 26 11 12

16 1.51E-05 5 9 66 2.40E-07 5 28 116 1.44E-08 25 11 13

17 1.51E-05 4 10 67 2.40E-07 27 5 117 1.17E-08 23 24

18 1.20E-05 20 68 2.40E-07 4 29 118 8.06E-09 28 19

19 1.05E-05 15 3 69 2.40E-07 30 4 119 8.06E-09 27 19

20 1.05E-05 19 2 70 2.40E-07 26 11 4 120 8.06E-09 29 15

21 8.03E-06 16 17 11 71 2.40E-07 25 11 5 121 8.06E-09 30 15

22 6.00E-06 5 12 72 2.10E-07 16 11 10 122 8.05E-09 26 11 15

23 6.00E-06 4 13 73 2.10E-07 17 11 9 123 8.05E-09 25 11 19

24 5.41E-06 2 22 74 2.02E-07 12 19 124 4.15E-09 28 22

25 5.41E-06 3 21 75 2.02E-07 13 15 125 4.15E-09 27 22

26 5.06E-06 9 7 76 1.63E-07 24 9 126 4.15E-09 29 21

27 5.06E-06 8 9 77 1.63E-07 23 10 127 4.15E-09 30 21

28 4.34E-06 17 11 2 78 1.13E-07 19 15 128 4.14E-09 25 11 22

29 4.34E-06 16 11 3 79 1.04E-07 12 22 129 4.14E-09 26 11 21

30 3.38E-06 24 2 80 1.04E-07 13 21 130 3.33E-09 16 11 29

31 3.38E-06 23 3 81 1.00E-07 31 131 3.33E-09 16 30 11

32 3.36E-06 5 15 82 8.32E-08 16 11 13 132 3.33E-09 17 11 28

33 3.36E-06 4 19 83 8.32E-08 17 11 12 133 3.33E-09 17 27 11

34 2.28E-06 10 9 84 8.05E-08 8 28 134 2.59E-09 24 28

35 2.01E-06 8 12 85 8.05E-08 27 8 135 2.59E-09 27 24

36 2.01E-06 12 7 86 8.05E-08 28 7 136 2.59E-09 23 29

37 1.73E-06 4 22 87 8.05E-08 27 7 137 2.59E-09 30 23

38 1.73E-06 5 21 88 8.04E-08 8 25 11 138 2.59E-09 24 25 11

39 1.39E-06 17 25 11 89 8.04E-08 25 11 7 139 2.59E-09 23 26 11

40 1.39E-06 16 26 11 90 6.48E-08 24 12 140 5.76E-10 29 28

41 1.39E-06 16 11 5 91 6.48E-08 23 13 141 5.76E-10 27 29

42 1.39E-06 17 11 4 92 5.80E-08 19 21 142 5.76E-10 30 28

43 1.13E-06 8 15 93 5.80E-08 15 22 143 5.76E-10 27 30

44 1.13E-06 15 7 94 4.66E-08 16 11 19 144 5.75E-10 30 25 11

45 1.08E-06 23 5 95 4.66E-08 17 11 15 145 5.75E-10 27 26 11

46 1.08E-06 24 4 96 3.63E-08 23 19 146 5.75E-10 26 11 28

47 9.06E-07 10 12 97 3.63E-08 24 15 147 5.75E-10 25 11 29

48 9.06E-07 13 9 98 3.63E-08 29 9

49 7.52E-07 29 2 99 3.63E-08 28 10

50 7.52E-07 30 2 100 3.63E-08 27 10
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B Summary in Finnish

Teknisten järjestelmien, kuten liikennevälineiden, tietoverkkojen ja voimalai-
tosten vikaantuminen voi aiheuttaa merkittäviä materiaalisia ja taloudellisia
vahinkoja. Onneksi näiden vahinkojen aiheuttajia voidaan analysoida tule-
vien vahinkojen ennaltaehkäisemiseksi.

Vikapuumallinnus on menetelmä teknisen järjestelmän vikaantumisen ai-
heuttajien kvantitatiiviseen analyysiin. Tässä menetelmässä järjestelmä jae-
taan komponentteihin, joille arvioidaan vikaantumistodennäköisyys. Koko
järjestelmän vikaantuminen puolestaan mallinnetaan yksittäisten komponent-
tien vikaantumisten funktiona, joka määräytyy järjestelmän rakenteesta. Vi-
kapuumallinnuksessa järjestelmän rakenne esitetään puuna, jonka lehtinä
ovat järjestelmän komponentit. Puun juurta kutsutaan järjestelmän epäluo-
tettavuudeksi, ja se vastaa koko järjestelmän vikaantumisen todennäköisyyttä.

Komponenttien vikaantumistodennäköisyyksiä voidaan pienentää toimenpi-
teillä, esimerkiksi huoltamalla. Komponentteja voidaan varmentaa myös vaih-
tamalla komponentti usean vastaavanlaisen komponentin rinnankytkentään.
Tällöin alkuperäistä komponenttia vastaava järjestelmän osa toimii, kun yk-
sikin rinnankytketty komponentti toimii, ja tämän osan vikaantumistoden-
näköisyys on siis aiempaa pienempi. Komponentin vaihtamista usean vastaa-
vanlaisen rinnankytkentään kutsutaan redundanssin allokoinniksi. Toimen-
piteiden suorittaminen aiheuttaa kuitenkin kustannuksen, jolloin rajallisel-
la budjetilla toimenpiteitä ei voi suorittaa kaikille komponenteille. Budjetin
rajoissa varmennettavien komponenttien joukkoa kutsutaan riskinalentamis-
portfolioksi.

Vikaantumistodennäköisyyksiin sisältyy usein epävarmuuksia. Tämä tarkoit-
taa, että niitä ei tiedetä mielivaltaisen tarkasti. Näitä epävarmuuksia voidaan
mallintaa todennäköisyysintervalleilla, jotka ovat reaalilukuvälejä, joihin vi-
kaantumistodennäköisyyksien arvioidaan kuuluvan.

Todennäköisyysintervalleja käytettäessä riskinalentamisportfolioita voidaan
verrata toisiinsa dominanssirelaatioiden avulla. Portfolion sanotaan dominoi-
van toista portfoliota tietyllä budjetilla, joss kummankaan kokonaiskustannus
ei ylitä budjettia ja järjestelmän epäluotettavuus on dominoivalla portfoliolla
aina vähintään yhtä hyvä ja joillakin intervallien pistetodennäköisyyksillä pa-
rempi kuin dominoidulla portfoliolla. Dominanssirelaatioista seuraa, että on
olemassa ei-dominoituja portfolioita, joihin verrattuna yhdelläkään muulla
portfoliolla ei ole parempi järjestelmän epäluotettavuus kaikilla todennäköi-
syysintervallien pistetodennäköisyyksillä.
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Todennäköisyysintervalleja käytettäessä komponentteja voidaan puolestaan
verrata toisiinsa ydinluvun avulla. Komponentin ydinluku määritellään kom-
ponentin sisältävien ei-dominoitujen portfolioiden lukumäärän suhteena kaik-
kien ei-dominoitujen portfolioiden lukumäärään. Näin ollen jokaiseen ei-domi-
noituun portfolioon kuuluvan komponentin ydinluku on yksi ja yhteenkään
kuulumattoman nolla.

Tässä työssä muodostettiin optimointimalli vikapuulla kuvatun järjestelmän
epäluotettavuuden minimoimiseen, kun komponentteja voidaan varmentaa
kustannuksia aiheuttavilla toimenpiteillä ja toimenpiteisiin käytettävissä ole-
va budjetti on rajallinen. Malli muotoiltiin lineaarisena sekalukutehtävänä
(engl., mixed-integer linear programming; MILP), jonka ratkaisuna saadaan
komponentit, jotka varmentamalla järjestelmän epäluotettavuus minimoi-
tuu budjetin sallimissa rajoissa. Näiden komponenttien joukkoa kutsutaan
optimaaliseksi riskinalentamisportfolioksi. Lisäksi työssä analysoidaan kahta
järjestelmää muodostetun optimointimallin avulla.

Epäluotettavuus on tulosummalauseke, jonka tulontekijöitä ovat komponent-
tien vikaantumistodennäköisyydet. Kun komponentin vikaantumistodennä-
köisyys valitaan kahden vaihtoehdon joukosta, joko alkuperäisen tai alenne-
tun todennäköisyyden, voidaan summalausekkeen yksittäinen tulotermi muo-
dostaa ehdollisella kertolaskulla.

Optimointimalli sisältää reaalilukupäätösmuuttujan jokaisen tulotermin jo-
kaiselle saman järjestyksen osatulolle. Esimerkiksi yhden pituista osatuloa
kuvaavan päätösmuuttujan arvo on joko ensimmäisen komponentin alku-
peräinen tai sen alennettu todennäköisyys. Vastaavasti kahden pituisen osa-
tulomuuttujan arvo on yhden pituisen osatulomuuttujan arvo kerrottuna jo-
ko toisen komponentin alkuperäisellä tai sen alennetulla todennäköisyydellä.
Järjestelmän komponentit on numeroitu, ja osatulojen järjestykseksi on valit-
tu luonnollisten lukujen järjestys. Lisäksi optimointimalli sisältää binääripää-
tösmuuttujan jokaiselle komponentille. Komponentin binäärimuuttuja ilmai-
see, varmennetaanko komponentti vai ei.

Työssä analysoitiin seitsemän komponentin esimerkkijärjestelmää ja ydin-
reaktorin jälkilämmönpoistojärjestelmää (engl. residual heat removal sys-
tem; RHRS). Molemmilla järjestelmillä suoritettiin sekä budjetti- että in-
tervallikoe. Budjettikokeessa ratkaistiin optimaaliset riskinalentamisportfo-
liot budjetin funktiona. Intervallikokeessa puolestaan mallinnettiin vikaan-
tumistodennäköisyyksien epävarmuuksia todennäköisyysintervalleilla ja ap-
proksimoitiin ei-dominoitujen portfolioiden joukkoa ja ydinlukuja simuloi-
malla. Simulointi suoritettiin valitsemalla pistetodennäköisyydet satunnai-
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sesti todennäköisyysintervalleilta ja ratkaisemalla optimaaliset riskinalenta-
misportfoliot arvotuilla pistetodennäköisyyksillä. RHR-järjestelmällä tutkit-
tiin lisäksi ydinlukuja budjetin funktiona.

Työssä oletettiin, että järjestelmän komponentti voidaan varmentaa vaih-
tamalla se kahden vastaavanlaisen komponentin rinnankytkentään. Rinnan-
kytkettyjen komponenttien vikaantumisia ei kuitenkaan oletettu riippumat-
tomiksi. Näiden komponenttien yhteisvikaantumiset huomioitiin betafakto-
rimallilla.

MILP-tehtävien ratkaisemiseen hyödynnettiin CPLEX 12.4 -ohjelmistoa. Oh-
jelmistoa suoritettiin tietokoneella, joka sisältää Intel Core i3-2330M -suorit-
timen 2,20:n GHz kellotaajuudella ja 4 GB keskusmuistia.

Seitsemän komponentin esimerkkijärjestelmän epäluotettavuusfunktio sisältää
kahdeksan tulotermiä, ja tälle järjestelmälle muotoillussa MILP-tehtävässä
on 35 päätösmuuttujaa ja 89 rajoitetta. Keskimääräinen laskenta-aika yh-
delle MILP-tehtävälle oli n. 0,04 s. Järjestelmän rakenne on muotoiltu siten,
että tuloksista pystyy tarkistamaan, toimiiko optimointimalli käytännössä.
Sekä budjetti- että intervallikokeen tulokset olivat järkeviä.

RHR-järjestelmän epäluotettavuusfunktio sisältää puolestaan 147 tuloter-
miä, ja tälle järjestelmälle muotoillussa MILP-tehtävässä on 363 päätösmuut-
tujaa ja 888 rajoitetta. Keskimääräinen laskenta-aika yhdelle MILP-tehtävälle
oli n. 0,25 s.

RHR-järjestelmän budjettikokeessa selvisi, että optimaalinen järjestys kom-
ponenttien varmentamiseen vastaa karkeasti komponenttien Fussel-Vesely-
riskitärkeysmitan mukaista järjestystä. Intervallikokeessa puolestaan ratkais-
tiin MILP-tehtävä 4000 kertaa budjetilla, joka mahdollisti kymmenen kom-
ponentin varmentamisen. Tällöin löytyi 97 approksimatiivisesti ei-dominoidun
portfolion joukko. Näistä portfolioista suurin frekvenssi (n. 17 %) oli portfo-
liolla, joka esiintyi optimaalisena ratkaisuna myös budjettikokeessa. Ydinlu-
kuapproksimaatiot puolestaan paljastivat, että komponenttien 1-3 ja 6 var-
mentaminen on etusijalla. Näille komponenteille ydinlukuapproksimaatiot
olivat siis yksi. Komponenteille 16, 19 ja 21-31 sen sijaan ydinlukuapprok-
simaatiot olivat nolla. Näiden komponenttien varmentaminen tulisi siis olla
viimeinen toimenpide, jos budjetti on rajallinen. Ydinluvut budjetin funktio-
na olivat enimmäkseen monotonisesti kasvavia.
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