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1 Introduction 

The autoregressive conditional heteroskedasticity model, or the ARCH model, was 
introduced by Robert F. Engle in 1982. He assessed the validity of a conjecture of Milton 
Friedman (Friedman 1977). Friedman’s hypothesis was that the uncertainty about future 
prices and costs prevented entrepreneurs from investing and leads to the economical 
downturn and a recession. In applied econometrics future variations were forecasted using a 
least squares model. The problem with the ARCH model is that it assumes that the expected 
value of all squared error terms is the same. In econometrics changing uncertainty is called 
heteroskedasticity. The ARCH model solves heteroscedasticity problem treating it as a 
variance to be modelled (Engle 2004). It forecasts future variance by taking weighted 
averages of past squared forecast errors. 

The generalized autoregressive conditional heteroskedasticity model, GARCH, was 
presented by Tim Bollerslev (Bollerslev 1986). He generalized the ARCH model to an 
autoregressive moving average. The past squared residuals are weighted assuming that their 
importance declines geometrically respect to time and an estimate to the rate of decline is 
computed from data. 

GARCH models are used to characterize and model observed time series. They are 
commonly employed in modelling financial time series. Simple ARCH models with 
conditionally normal errors have been found inadequate in capturing all the excess kurtosis 
for stock returns and exchange rates. Tim Bollerslev used GARCH to model short-run 
exchange rate movements (Bollerslev 1992). Modelling and forecasting time-varying variance 
in exchange rate returns have important implications for financial decision-making including 
the pricing of derivatives and portfolio risk management. 

The main objective of this thesis is to present generalized autoregressive conditional 
heteroscedasticity and to provide an example of its applications. Chapter 2 presents structure 
and specification of GARCH model in general together with regression model and log-
likelihood function. Additionally this chapter gives a brief description of one of the many 
extension of GARCH and few alternative error distributions for error terms. In chapter 3 an 
empirical example is provided beginning with validating exchange rate data, continuing with 
model estimation and ending in model validation. 

2 GARCH specification and structure 

2.1 Volatility 
Volatility is a statistical measure the dispersion of a quantifiable phenomenon. It is 
commonly defined by standard deviation 𝜎𝜎 of continuously compounded returns of an 
instrument. Continuously compounded logarithmic return during a day 𝑖𝑖 is defined as  

 𝑢𝑢𝑖𝑖 = 𝑙𝑙𝑙𝑙 �
𝑆𝑆𝑖𝑖
𝑆𝑆𝑖𝑖−1

�, (1)  
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where 𝑆𝑆𝑖𝑖  is the value of the market variable. When we use the most recent 𝑚𝑚 observations 
on 𝑢𝑢𝑖𝑖  we can write maximum likelihood estimate of variance 𝜎𝜎𝑙𝑙2 

 
𝜎𝜎𝑙𝑙2 =

1
𝑚𝑚
�(𝑢𝑢𝑖𝑖−1 − 𝑢𝑢�)2,
𝑚𝑚

𝑖𝑖=1

 (2)  

where 𝑢𝑢� is the mean of the 𝑚𝑚 observations. For an unbiased estimate of the variance 𝜎𝜎𝑙𝑙2 ,  𝑚𝑚 
is replaced by 𝑚𝑚-1 (Hull 2005). 

2.2 Generalized autoregressive conditional heteroscedasticity 
Let us denote a real-valued discrete-time stochastic process by 𝜀𝜀𝑡𝑡  and the information set by 
𝜓𝜓𝑡𝑡 . The information set has all information through time 𝑡𝑡. Bollerslev defined GARCH(p,q) 
(Bollerslev 1986) process as follows 

 𝜀𝜀𝑡𝑡|𝜓𝜓𝑡𝑡−1
� ~ 𝑁𝑁(0,ℎ𝑡𝑡), (3)  

 
ℎ𝑡𝑡 = 𝛼𝛼0 + �𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖ℎ𝑡𝑡−1

𝑝𝑝

𝑖𝑖=1

 

= 𝛼𝛼0 + 𝐴𝐴(𝐿𝐿)𝜀𝜀𝑡𝑡2 + 𝐵𝐵(𝐿𝐿)ℎ𝑡𝑡 , 

(4)  

where  

 𝑝𝑝 ≥ 0,     𝑞𝑞 > 0 

𝛼𝛼0 > 0,     𝛼𝛼𝑖𝑖 ≥ 0,     𝑖𝑖 = 1, … , 𝑞𝑞, 

𝛽𝛽𝑖𝑖 ≥ 0,     𝑖𝑖 = 1, … ,𝑝𝑝. 

(5)  

In equation (4), 𝐿𝐿 is a time-series lag-operator and it produces kth previous element: 

 𝐴𝐴(𝐿𝐿)𝜀𝜀𝑡𝑡2 = �𝛼𝛼1𝐿𝐿 + 𝛼𝛼2𝐿𝐿2+. . . +𝛼𝛼𝑞𝑞𝐿𝐿𝑞𝑞�𝜀𝜀𝑡𝑡2 (6)  

 𝐵𝐵(𝐿𝐿)ℎ𝑡𝑡 = �𝛽𝛽1𝐿𝐿 + 𝛽𝛽2𝐿𝐿2+. . . +𝛽𝛽𝑝𝑝𝐿𝐿𝑝𝑝�ℎ𝑡𝑡  (7)  

GARCH consist of three different weighted variance forecasts, long-run average 𝛼𝛼0 for 
constant variance, variance forecast made in the previous period for current period and the 
new information in this period. We assume that 𝜀𝜀𝑡𝑡  is normally distributed, but other 
distributions can also be applied. When we set 𝑝𝑝 = 0 we have an ARCH(q) process.  

The ARCH process takes into consideration differences between conditional and 
unconditional variances. The conditional variance changes over time as a function of past 
errors but unconditional variance remains constant. In the GARCH process lagged 
conditional variances are also included. This attribute makes the GARCH model some sort 
of adaptive learning mechanism (Bollerslev, 1986) and it can thought of as Bayesian 
updating. The GARCH process, as defined in (3) – (4), is wide-sense stationary if 𝐸𝐸(𝜀𝜀𝑡𝑡) =
0, 𝑣𝑣𝑣𝑣𝑣𝑣(𝜀𝜀𝑡𝑡) = 𝛼𝛼0(1 − 𝐴𝐴(1) − 𝐵𝐵(1))−1 and 𝑐𝑐𝑐𝑐𝑣𝑣(𝜀𝜀𝑡𝑡 , 𝜀𝜀𝑠𝑠) = 0 for 𝑡𝑡 ≠ 𝑠𝑠 and if and only if 
𝐴𝐴(1) − 𝐵𝐵(1) < 1. For proof see Bollerslev (1986). 
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The GARCH(p,q) process can be expressed as an infinite ARCH process. From (4) we get 

 [1 − 𝐵𝐵(𝐿𝐿)]ℎ𝑡𝑡 = 𝛼𝛼0 + 𝐴𝐴(𝐿𝐿)𝜀𝜀𝑡𝑡2 

ℎ𝑡𝑡 =
𝛼𝛼0

1 − 𝐵𝐵(𝐿𝐿) +
𝐴𝐴(𝐿𝐿)

1 − 𝐵𝐵(𝐿𝐿) 𝜀𝜀𝑡𝑡
2 

ℎ𝑡𝑡 = 𝛼𝛼0
∗ + �𝛼𝛼𝑖𝑖∗𝜀𝜀𝑡𝑡−𝑖𝑖2

∞

𝑖𝑖=1

, 

and 1 − 𝐵𝐵(𝑧𝑧) ≠ 0. 

(8)  

An alternative parameterization by Pantula (1986) for GARCH(p,q) is 

 
𝜀𝜀𝑡𝑡2 = 𝛼𝛼0 + �𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗2

𝑝𝑝

𝑗𝑗=1

−�𝛽𝛽𝑗𝑗𝑣𝑣𝑡𝑡−𝑗𝑗 + 𝑣𝑣𝑡𝑡 ,
𝑝𝑝

𝑗𝑗=1

 (9)  

with 

 𝑣𝑣𝑡𝑡 = 𝜀𝜀𝑡𝑡2 − ℎ𝑡𝑡 = (𝜂𝜂𝑡𝑡2 − 1)ℎ𝑡𝑡 , (10)  

where 𝜂𝜂𝑡𝑡  is identically, independently and normally distributed random variable with mean 
zero. 

The parameterization (9) – (10) is more meaningful from a theoretical point of view whereas 
(3) – (4) is more suitable for practical purposes (Bollerslev 1986). 

2.2.1 GARCH(1,1) 
GARCH(1,1) is one of the most commonly employed models describing volatility dynamics 
of financial return securities. This is the simplest model and it has only one lag. Variance for 
GARCH(1,1) is 

 ℎ𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝜀𝜀𝑡𝑡−1
2 + 𝛽𝛽1ℎ𝑡𝑡−1, (11)  

and it satisfies wide-sense stationary if 𝛼𝛼1 + 𝛽𝛽1 < 1 (Bollerslev 1986). 

Usually this model is set to predict one period ahead but longer forecasts can also be made. 
GARCH models are mean reverting, meaning that the longer the forecast is the more closer 
it comes to the long-run average variance. The parameters 𝛼𝛼1 and 𝛽𝛽1 determine how quickly 
the variance changes with respect to new information and how quickly the variance estimate 
reverts to long-run mean (Engle 2004).  

The distribution given in the equation (3) for 𝜀𝜀𝑡𝑡  is conditionally normal. Let us examine the 
unconditional distribution of the GARCH model. The unconditional variance of 
GARCH(1,1) is 

 𝔼𝔼[𝜀𝜀𝑡𝑡2] = 𝔼𝔼[𝔼𝔼[𝜀𝜀𝑡𝑡2|𝜓𝜓𝑡𝑡−1
�] ]       

           = 𝛼𝛼0 + 𝛼𝛼1𝔼𝔼[𝜀𝜀𝑡𝑡−1
2 ] + 𝛽𝛽1[𝔼𝔼[𝜀𝜀𝑡𝑡−1

2 |𝜓𝜓𝑡𝑡−2
� ]] 

           = 𝛼𝛼0(1 − 𝛼𝛼1 − 𝛽𝛽1)−1. 

(12)  

 
 
The fourth-order moment under the assumption of normally distributed 𝜀𝜀𝑡𝑡   is  
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   𝔼𝔼[𝜀𝜀𝑡𝑡4]  =

3𝛼𝛼0
2(1 + 𝛼𝛼1 + 𝛽𝛽1)

(1 − 𝛼𝛼1 − 𝛽𝛽1)(1 − 𝛽𝛽1
2 − 2𝛼𝛼1𝛽𝛽1 − 3𝛼𝛼1

2)
, (13)  

which exists only if 𝛽𝛽1
2 − 2𝛼𝛼1𝛽𝛽1 − 3𝛼𝛼1

2 < 1. Combining (12) – (13) we can write the 
coefficient of kurtosis of the GARCH(1,1) 

 
𝜅𝜅 =

𝔼𝔼[𝜀𝜀𝑡𝑡4]
(𝔼𝔼[𝜀𝜀𝑡𝑡2])2 =

3𝛼𝛼0
2(1 + 𝛼𝛼1 + 𝛽𝛽1)(1 − 𝛼𝛼1 − 𝛽𝛽1)
(1 − 𝛽𝛽1

2 − 2𝛼𝛼1𝛽𝛽1 − 3𝛼𝛼1
2)

. (14)  

The GARCH(1,1) process shares a property of leptocurticity with ARCH(q) process. It 
means that there is a concentration of probability mass around the zero mean and also heavy 
tails. The third moment is zero because normal distribution is symmetric.  

2.2.2 Autocorrelation and partial autocorrelations 
Autocorrelation and partial autocorrelation functions are useful in terms of examining time 
series behaviour. These methods were well established by Box and Jenkins 1976. 
Autocorrelation and partial autocorrelation functions measures magnitude of linear 
dependence of two random variables generated by stationary process. For the squared error 
term 𝜀𝜀𝑡𝑡2, the covariance is 

 𝛾𝛾𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑣𝑣(𝜀𝜀𝑡𝑡2, 𝜀𝜀𝑡𝑡−𝑙𝑙2 ) 

     = 𝔼𝔼[(𝜀𝜀𝑡𝑡2 − 𝔼𝔼(𝜀𝜀𝑡𝑡2)(𝜀𝜀𝑡𝑡−𝑙𝑙2 − 𝔼𝔼(𝜀𝜀𝑡𝑡−𝑙𝑙2 )] 

     = 𝔼𝔼[(𝜀𝜀𝑡𝑡2 − μ)(𝜀𝜀𝑡𝑡−𝑙𝑙2 − μ)] 

(15)  

Autocorrelation function is a series of autocorrelations 𝛾𝛾𝑙𝑙 . For GARCH(p,q) process we 
have covariance function (Bollerslev1986) 

 
𝛾𝛾𝑙𝑙 =  �𝛼𝛼𝑖𝑖𝛾𝛾𝑙𝑙−1

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝛾𝛾𝑙𝑙−1

𝑝𝑝

𝑖𝑖=1

= �𝜑𝜑𝑖𝑖𝛾𝛾𝑙𝑙−1,
𝑚𝑚

𝑖𝑖=1

 

𝑙𝑙 ≥ 𝑝𝑝 + 1, 

where 𝑚𝑚 = 𝑚𝑚𝑣𝑣𝑚𝑚(𝑝𝑝, 𝑞𝑞), and 𝜑𝜑𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑝𝑝, 

(16)  

and, additionally, 𝛼𝛼𝑖𝑖 = 0 when 𝑖𝑖 > 𝑞𝑞and 𝛽𝛽𝑖𝑖 = 0 when 𝑖𝑖 > 𝑝𝑝. Thus we can write the 
following analogue to the Yule-Walker equations, for autocorrelations coefficient we have 
now 

 
𝜌𝜌𝑙𝑙 =

𝛾𝛾𝑙𝑙
𝛾𝛾0

= �𝜑𝜑𝑖𝑖𝜌𝜌𝑙𝑙−1,
𝑚𝑚

𝑖𝑖=1

 𝑙𝑙 ≥ 𝑝𝑝 + 1. (17)  

From equation (17) we see that the first p autocorrelations for process 𝜀𝜀𝑡𝑡2  depend directly 
on 𝛼𝛼1, … ,𝛼𝛼𝑞𝑞  and 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝  through 𝜑𝜑1, … ,𝜑𝜑𝑚𝑚 , and higher lags are determined uniquely by 
𝜌𝜌𝑝𝑝 , … ,𝜌𝜌𝑝𝑝+1−𝑚𝑚 . 

 
Partial autocorrelation function for is given by following equation 

 
𝜌𝜌𝑙𝑙 = �𝜑𝜑𝑘𝑘𝑖𝑖𝜌𝜌𝑙𝑙−1,

𝑘𝑘

𝑖𝑖=1

 𝑙𝑙 = 1, … , 𝑘𝑘 (18)  
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Generally the partial autocorrelation function for 𝜀𝜀𝑡𝑡2 described above in non-zero but dies 
out. This behavior is identical to the AR(q) process (Granger and Newbold 1977).  

2.2.3 Regression model and log-likelihood function 
In order to estimate parameters for the GARCH(p,q) in (3) - (4), we rewrite the model 
(Bollerlev 1986)  

 𝜀𝜀𝑡𝑡 = 𝑦𝑦𝑡𝑡 −  𝑚𝑚𝑡𝑡 ′𝑏𝑏, 

𝜀𝜀𝑡𝑡|𝜓𝜓𝑡𝑡−1
� ~ 𝑁𝑁(0,ℎ𝑡𝑡), 

ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡′𝜔𝜔, 

(19)  

where 𝑧𝑧𝑡𝑡′ = (1, 𝜀𝜀𝑡𝑡−1
2 , … , 𝜀𝜀𝑡𝑡−𝑞𝑞2 ,ℎ𝑡𝑡−1, … , ℎ𝑡𝑡−𝑝𝑝), 𝜔𝜔′ = (𝛼𝛼0,𝛼𝛼1 , … ,𝛼𝛼𝑞𝑞 ,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝)  and 

𝜃𝜃 ∈ Θ,𝜃𝜃 = �𝑏𝑏′,𝜔𝜔′�, where Θ is a compact subspace of Euclidean space such that 𝜀𝜀𝑡𝑡  
possesses finite second moments. In the economics literature, forecast errors 𝜀𝜀𝑡𝑡  are called 
innovations. 

Maximization of the log-likelihood function is often used in estimating 𝜃𝜃, under the 
assumption of conditional normality (3). Let us denote the log-likelihood function for a 
sample of T observations with  

 
𝑙𝑙𝑡𝑡(𝜀𝜀𝑡𝑡 ,𝜃𝜃) = ��−

1
2

log(2𝜋𝜋) −
1
2

log(ℎ𝑡𝑡) −
1
2
𝜀𝜀𝑡𝑡2

ℎ𝑡𝑡
� .

𝑇𝑇

𝑡𝑡=1

 (20)  

The parameter 𝜃𝜃 cannot be solved analytically, it requires iterative optimization routines. 

2.3 Exponential generalized autoregressive conditional 
heteroscedasticity 

The GARCH model has several limitations due to its simple structure. It assumes that only 
the magnitude and not the positivity or negativity of unanticipated excess returns determine 
feature ℎ𝑡𝑡 . Researchers, beginning with (Black 1976), have found evidence that stock returns, 
for example, are negatively correlated with changes in returns volatility. In response to good 
news about the economy, volatility tends to decrease and in response to bad news it tends to 
increase. Also GARCH models essentially specify the behaviour of the square of the data. In 
this case a few large observations can dominate the sample. The GARCH models are not 
able to explain the observed covariance between 𝜀𝜀𝑡𝑡2 and 𝜀𝜀𝑡𝑡−𝑗𝑗 . To do this conditional 
variance has to expressed as an asymmetric function of 𝜀𝜀𝑡𝑡−𝑗𝑗 .  

The exponential GARCH model was introduced by Nelson (1991) to correct the problems 
associated with linear GARCH. The EGARCH provided the fist explanation for the ℎ𝑡𝑡  
depending on both the magnitude and the sign of lagged residuals. The result was 
asymmetric model defined as follows 
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𝑙𝑙𝑙𝑙(ℎ𝑡𝑡) =  𝛼𝛼0 + �𝛽𝛽𝑖𝑖𝑙𝑙𝑙𝑙(ℎ𝑡𝑡−1)

𝑝𝑝

𝑖𝑖=1

+ �𝛼𝛼𝑖𝑖[𝜑𝜑𝑧𝑧𝑡𝑡−𝑖𝑖 + 𝛾𝛾(|𝑧𝑧𝑡𝑡−𝑖𝑖| − 𝔼𝔼|𝑧𝑧𝑡𝑡−𝑖𝑖|)],
𝑞𝑞

𝑖𝑖=1

 

(21)  

where 𝛽𝛽1 = 1, 𝑧𝑧𝑡𝑡 = 𝜀𝜀𝑡𝑡
�ℎ𝑡𝑡

, 𝔼𝔼|𝑧𝑧𝑡𝑡−𝑖𝑖 | = �2
𝜋𝜋
 when 𝑧𝑧𝑡𝑡~𝑁𝑁(0,1), 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 ,𝜑𝜑, 𝛾𝛾  are coefficients and in 

exception to the GARCH parameters 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖  do not have nonnegative constraints. The 
component 𝛾𝛾(|𝑧𝑧𝑡𝑡−𝑖𝑖 | − 𝔼𝔼|𝑧𝑧𝑡𝑡−𝑖𝑖|) represents the magnitude effect. If 𝛾𝛾 > 0 and 𝜑𝜑 = 0, the 
innovation 𝜀𝜀𝑡𝑡  in 𝑙𝑙𝑙𝑙(ℎ𝑡𝑡+1) is positive (negative) when the magnitude of 𝑧𝑧𝑡𝑡  in larger (smaller) 
than its expected value. If 𝛾𝛾 = 0 and 𝜑𝜑 < 0, the innovation 𝜀𝜀𝑡𝑡  in  conditional variance is 
positive (negative) when returns innovations are negative (positive). (Nelson 1992)  

The advantage of EGARCH is that conditional variances are always positive. But due to 
exponential structure of EGARCH it may tend to overestimate the impact of outliers on 
volatility. (Engle and Ng 1993) 

2.4 Other error distributions 
One of the common modifications is to use other than normal distribution for error terms 
𝜀𝜀𝑡𝑡 . The reason for this is to better account for the deviations from normality in the 
conditional distributions of returns in financial markets. The usage of Student’s t-distribution 
(Bollerslev 1987) and General Error Distribution (Nelson 1991) among other distributions 
has been widely studied by many researchers. The GED distribution family includes normal 
distribution as a special case and many other distributions, some of which are fatter tail or 
thinner tail than normal distribution. In the 2001 the Normal Inverse Distribution was 
introduced by Jensen and Lunde (2001) who showed with daily stock market data that not 
only NIG distributed error terms fit better at the tails but also at the centre of the 
distribution. 

3 Application to foreign exchange rates 

The autoregressive conditional heteroscedasticity models can be applied to any time series 
and they are relevant when the stochastic process that is not white noise. Financial time 
series usually exhibit varying variance or volatility clustering. In this chapter GARCH(1,1) 
model is employed to USD/EUR exchange rates. The literature covers quite well GARCH 
fitting into stock market returns and some exchange rates, but because EUR is relatively new 
currency it has not been much used. 

We use a sample of 3050 daily observations of USD/EUR exchange rates covering the 
period 1 January 1999 to 29 November 2010. The exchange rates and logarithmic returns are 
presented in Figure 1. Plots indicate that returns might not be uncorrelated. The returns 
exhibit higher and lower volatility periods. Between 2000 and 2002, the volatility is higher, 
between 2006 and 2008 lower, and during the year 2009 higher than on average. This 
phenomenon is called volatility clustering as noted by (Mandelbrot 1963), and it is very 
common for speculative returns. 
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Figure 1: Daily exchange rates and returns of USD/EUR. 

Returns of USD/EUR exhibit the following statistics: mean 𝜇𝜇 = 0.0000357, standard 
deviation 𝜎𝜎 = 0.0067, skewness 𝑠𝑠 = 0.1095 and kurtosis 𝑘𝑘 = 5.6791. The normal 
probability distribution has kurtosis of 3. Therefore our USD/EUR return distribution has 
so called excess kurtosis of 5.6791 − 3 = 2.6791. This means that the return distribution 
exhibits excess mass around mean and fatter tails compared to normal distribution. 

The GARCH model provided an adequate description of second-order dynamics for most 
exchange rates. But the assumption of normally distributed residuals does not capture the 
excess kurtosis of daily return distribution (Wang et al. 2001). Also the problem associated 
with GARCH is that it does not capture the asymmetric second moment, or so-called 
leverage effect (Black 1976), which means that negative shocks often increase volatility to a 
greater extent than positive shocks. 
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3.1 Pre-estimation diagnostics 
We now calculate autocorrelation function (ACF) and partial-autocorrelation (PACF) for 
returns and squared returns. Often the returns of a financial instrument show no correlation 
but squared returns do (Box et al. 1994). ACFs and PACFs are presented in Figure 2 with 
the upper and the lower standard deviation confidence bounds assuming that all 
autocorrelations are zero beyond lag zero. Not much can be said based on ACF and PACF 
of returns but in the case of the squared returns, the ACF indicates that variance process 
exhibits autocorrelation. The ACF of the squared returns dies out very slowly. This might 
indicate that the variance process is not stationary. 

 Figure 2: ACFs and PACFs of returns and squared returns of USD/EUR. 

To verify whether there is correlation or not we employ Ljung-Box-Pierce Q-test under the 
null hypothesis of no serial correlation (Box et al. 1994). The LBP-test statistic is calculated 
as 

 
𝑄𝑄𝐿𝐿𝐵𝐵𝐿𝐿 = 𝑇𝑇(𝑇𝑇 + 2)�

𝑣𝑣𝑘𝑘2

𝑇𝑇 − 𝑘𝑘
,

𝑠𝑠

𝑘𝑘=1

 (22)  

where T is the number of observations, s is number of coefficients to test autocorrelation 
and 𝑣𝑣𝑘𝑘  the autocorrelation coefficient (for lag k). The null hypothesis is that none of the 
autocorrelation coefficients up to lag s are statistically different from zero at the specified 
significance level. 

The test results are presented in Tables 1 and 2. The test is performed using lags of the ACF 
up to 10, 15 and 20 with 0.05 level of significance. 
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Table 1: Ljung-Box-Pierce Q-test results for daily returns of USD/EUR exchange rates. 

Lags H0 p-Value Statistic Critical Value 
10 0 0.23 12.86 18.307 
15 1 0.0254 27.4316 24.9958 
20 1 0.041 32.2242 31.4104 

 

Table 2: Ljung-Box-Pierce Q-test results for squared daily returns of USD/EUR 
exchange rates. 

Lags H0 p-Value Statistic Critical Value 
10 1 0.00 409.8744 18.307 
15 1 0.00 499.8081 24.9958 
20 1 0.00 581.1894 31.4104 

 

The null hypothesis holds only for LBP Q-test for daily returns with lags up to 10 and there 
is significant serial correlation in the squared daily returns.  

In addition we perform Engle’s ARCH test which tests the conditional heteroscedasticity of 
residuals. The null hypothesis of ARCH test is that the time series follows Gaussian 
distribution. The results in the table 3 show clear evidence that residuals are heteroscedastic. 
The critical values of Engle’s ARCH and Ljung-Box-Pierce Q-test results are the same. Both 
test statistics are Chi-Square distributed. 

Table 3: Engle’s ARCH test results for daily returns of USD/EUR exchange rates. 

Lags H0 p-Value Statistic Critical Value 
10 1 0.00 232.4917 18.3070 
15 1 0.00 252.8194 24.9958 
20 1 0.00 266.9501 31.4104 

 

3.2 Model estimation and validation 
After quantifying the serial correlation of our daily return of USD/EUR exchange rates we  
begin to estimate GACH models. We first estimate the GARCH(1,1) model using Matlab. 
The function garchfit produces estimates for our regression model in (19). The estimates and 
the statistic results for GARCH(1,1) are given in Table 4. Substituting these to the equation 
we get 

 𝑦𝑦�𝑡𝑡 =  0.00016 + 𝜀𝜀𝑡𝑡 , 

ℎ𝑡𝑡 = 2,00 ∗ 10−7 + 0.031879 ∗ 𝜀𝜀𝑡𝑡−1
2  + 0.96396ℎ𝑡𝑡−1, 

𝜀𝜀𝑡𝑡|𝜓𝜓𝑡𝑡−1
� ~ 𝑁𝑁(0,ℎ𝑡𝑡). 

(23)  

The sum 𝛼𝛼�1 + �̂�𝛽1 =  0.9958 < 1, the model is stationary. 
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Table 4: Estimates and Statistic results for Gaussian GARCH(1,1). 

Parameter Value Standard Error T Statistic 
α0 2,00E-07 7,34E-08 2,7240 

α1 0,031879 0,0041538 7,6747 

β1 0,96396 0,0047467 203,0785 
 

The value of the estimate α0 is quite small but the long-run variance will contribute 
significantly and eventually dominate as the length for forecasting periods grows. Let us now 
check standardized innovations (Figure 3), the innovations are divided by their conditional 
standard deviation. 

  

Figure 3: ACF of the Squared Standardized Innovations of GARCH(1,1). 

The squared standardized innovations do not show correlation, and neither do standardized 
innovations. LBP- and Engle’s ARCH –test statistics for correlation are show in Tables 5 
and 6. 

Table 5: Ljung-Box-Pierce Q-test results for squared standardized GARCH(1,1) 
innovations. 

Lags H0 p-Value Statistic Critical Value 
10 0 0.96 3.81 18.307 

15 0 0.9693 6.5351 24.9958 

20 0 0.9402 11.2226 31.4104 
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Table 6: Engle’s ARCH test results for standardized GARCH(1,1) innovations. 

Lags H0 p-Value Statistic Critical Value 
10 0 0.95 3.86 18.307 

15 0 0.9705 6.4816 24.9958 

20 0 0.9402 11.2236 31.4104 
 

Both LBP- and Engle’s ARCH test results shows no evidence of correlation. Tests also 
shows that the null hypothesis holds confirming that the GARCH(1,1) model sufficiently 
explains the heteroscedasticity in the raw USD/EUR returns. The kurtosis of standardized 
GARCH innovations is 4.0028 and it is less than the sample kurtosis 𝑘𝑘 = 5.6791. This 
means that our GARCH model does not fully capture the leptokurtosis of the sample data. 
The skewness of standardized GARCH innovations is 0.135 and it is greater than the sample 
skewness 𝑠𝑠 = 0.1095. 

Figure 4 presents the innovations of the estimated GARCH(1,1) process and corresponding 
standard deviations and returns of used data. The plot of innovations and the plot of returns 
look similar. Volatility clustering and extreme values are found from innovations plot. The 
conditional standard deviation plot shows that volatility rises sharply when extreme returns 
occur.

 
 Figure 4: GARCH(1,1) innovations, corresponding standard deviations and returns of the 
data. 
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4 Conclusions 

This thesis has presented the generalized autoregressive conditional heteroskedasticity model 
and its definition. Autocorrelation functions and partial autocorrelations functions were 
presented. The regression model and log-likelihood function were described as they are 
needed in estimating the GARCH model. 

GARCH(1,1) was employed to a data sample of 3050 daily observations of USD/EUR 
exchange rates covering the period from 1 January 1999 to 29 November 2010. We saw that 
the raw returns were not serially correlated but squared returns were and LBP Q-test and 
Engle’s ARCH test provided evidence for serial correlation. The exponential autoregressive 
conditional heteroskedasticity model was described briefly and alternative error distributions 
for error terms were also discussed. 

The GARCH model explained satisfactorily the heteroscedasticity in the raw USD/EUR 
returns but standardized residual were leptokurtic and skewed, in comparison to the normal 
distribution. Many researchers have written that stock returns, exchange rates and other 
financial time series are not normally distributed. This is indeed the case with USD/EUR 
rates in our sample. Although the assumption of normality is highly questionable the 
GARCH models are amongst the most commonly used methods in estimating time varying 
volatilities. According to the empirical literature on GARCH processes, it turns out that 
conditional normality of speculate returns is more of an exception than the rule. 

Speculative returns are nearly always skewed due to investors’ tendency to avert big losses 
especially during periods of high volatility. Advanced developments of GARCH have led to 
asymmetric models like Exponential GARCH and other GARCH models with non-normal 
error distributions. 
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