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Vacation planning can be a complicated process as multiple law and contract based
rules must be respected, while at the same time the wishes of employees must be
taken into account. The problem is especially difficult in transit industry, where
demand and available manpower can vary and the products of transit industry have
no shelf life. Also, temporary workers cannot be recruited as long training is need-
ed.

In this thesis, a constraint programming formulation for solving vacation planning
problems is developed. Constraint programming allows modeling each vacation as a
single interval variable. This makes the approach more effective than modeling the
problem as MILP, which would require a large amount of additional constraints and
variables to model the problem, especially the consecutiveness of vacations. The
objective of vacation planning is to find a solution, which has as large as possible
minimum reserve of employees after all vacations are assigned. An additional ob-
jective of minimizing maximum reserve is introduced to even out the distribution of
reserve. The problem is solved to optimality with a commercial optimization solver
with running times varying from a few seconds to three minutes. The results of two
real world cases of a transportation company show that the model provides im-
provement in solution quality and the planning time needed is reduced considerably.

The issue of planning vacations has received little attention in literature. In many
cases the vacations are planned by mutual agreement or a named employee assigns
vacations by hand. This can result in a lot of manual labor after which the solution
quality might still be poor. This thesis presents the first constraint programming
based approach for planning employees’ vacations. It allows the modeling of multi-
ple constraints that are used to improve solution quality, and takes into account the
preferences of the employees, the planning personnel and the company.
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Lomien suunnittelu voi olla hankala prosessi, koska lain ja tydehtosopimuksen aset-
tamia rajoitteita pitdd kunnioittaa ja samalla tyontekijéiden toiveet pitdéd ottaa huo-
mioon. Ongelma on erityisen hankala kuljetusalalla, koska kysyntd ja tyGvoiman
madrd voivat vaihdella, ja kuljetuksia ei voi laittaa varastoon. Lisdksi véliaikaisia
tyontekijoitd ei voida palkata vaadittavan pitkdn koulutuksen vuoksi.

Téssa tyossd kehitetddn rajoiteohjelmointimalli (engl. constraint programming), jota
kéytetddn lomien suunnitteluongelman ratkaisemiseen. Rajoiteohjelmointi mahdol-
listaa yksittdisen loman mallintamisen yhteni intervallimuuttujana. Tdmi tekee
lahestymistavasta paljon tehokkaamman kuin ongelman mallintaminen MILP-
tehtédvind, mikd vaatii monia lisérajoitteita ja —muuttujia, erityisesti lomien yhden-
jaksoisuuden mallintamiseksi. Lomien suunnittelussa on tavoitteena tuottaa ratkai-
su, jossa on mahdollisimman suuri minimityontekijdreservi lomien kiinnittdmisen
jilkeen. Lisdtavoitteena otetaan kdyttoon suurimman reservin minimointi, mikd
tasoittaa reservin ajallista jakautumista. Ongelma ratkaistaan optimiin kaupallisella
optimointiohjelmistolla ja ratkaisuajat vaihtelevat muutamista sekunneista kolmeen
minuuttiin. Kaksi oikeaan dataan perustuvaa esimerkkitapausta niyttavit, etti kehi-
tetty malli parantaa tulosten laatua ja vdhentdd huomattavasti lomien suunnitteluun
tarvittavia tyotunteja.

Lomien suunnittelu on saanut vain véhin huomiota kirjallisuudessa. Monissa tapa-
uksissa lomat suunnitellaan yhteiselld sopimisella tai yksi tyontekijd suunnittelee
kasin kaikkien lomien ajankohdat. Tdma voi vaatia paljon manuaalista ty6td ja silti
tulosten laatu voi olla huono. Téssd tutkielmassa esitetdéin ensimméinen rajoiteoh-
jelmointiin perustuva ldhestymistapa tyontekijoiden lomien suunnitteluun, mika
mahdollistaa useiden ratkaisujen laatua parantavien rajoitteiden mallintamisen, otta-
en huomioon tyontekijoiden, henkildstosuunnittelijoiden ja tyonantajan preferenssit.
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1. Introduction

1.1. Background and motivation

The Finnish railway operator VR Group (VR, for short) has about 9500 em-
ployees and a turnover of 1421.1 million euros. Today, VR operates around
1500 trains daily, which consists of 300 long-distance trains, 850 commuter
trains and 350 freight trains. Most of VR’s operations are based in Finland, but
the company also has some operations in other countries, especially in Russia
and Sweden. The company has three core business sectors: passenger services,
logistic services and infrastructure engineering.

The operating environment in Finland is different from most of the European
countries, as the Baltic Sea isolates Finland from the rest of the European rail
network and the track gauge differs from the EU standard. On the other hand,
the Finnish railways are well connected to Russia, which has similar track
gauge. The winter conditions are challenging with snow causing various diffi-
culties for rail network and rolling stock. In addition, the temperatures can drop
to -40 °C. As over 90 % of the network is single tracked* and the traffic is
dense, the capacity and flexibility are limited which makes the railway opera-
tions vulnerable to delays.

In the current increasingly competitive environment, companies need to oper-
ate as cost-efficiently as possible. Personnel costs are usually one of the largest
expenses, and can be influenced by personnel resource planning. Resource
planning at VR includes planning duties for train drivers, allocating duties to
rosters and planning vacations at an annual level. Each of these areas provides
opportunities to cost savings. Efficient duty planning i.e. allocation of driving
and shunting tasks to duties reduces total working time. With efficient roster
planning duties are allocated to drivers so that the drivers’ working time limit
is utilized in its entirety without the need of overtime. Finally, with cost-
efficient vacation planning changes in personnel demand can be taken into ac-
count, which further reduces the overtime costs.

*www.vrgroup.fi/en, visited September 16, 2016



Personnel scheduling problems are widely studied and relevant in most of the
companies in various industries. The problems are especially difficult in transit
industry, as there are multiple characteristics that complicate personnel sched-
uling, e.g. irregular working hours, variable demand and variable manpower
available. Also, the demand is immediate; services of transit companies cannot
be stored in shelves such as manufactured goods (Koutsopoulos and Wilson
1987). Personnel scheduling consists of multiple sub-problems, one of which is
vacation planning.

1.2. Objective and scope

The focus of this thesis is vacation planning of train drivers. The goal of vaca-
tion planning is to assign vacations of each worker so that there is as much as
possible reserve on each day, and all law and contract based rules are fulfilled.
The reserve is important, as it allows room for sick leaves and other absences.
The reserve also makes solutions more robust for example in case of traffic
forecasts; if the actual demand is slightly higher than the forecast, reserve
workers reduce the need of costly overtime work.

For drivers, the most important issue in vacation planning is circulation of va-
cations. For example if a driver had the previous year’s summer vacation at the
beginning of June, the next summer vacation should start in mid to late July,
moving forward at least 6 weeks. Some of the other constraints for planning
include the length of vacations, the order of vacations between drivers, maxi-
mum number of drivers on vacation and dates, when a vacation cannot start.

The objective of this thesis is to develop an optimization model for vacation
planning of train drivers. Previously vacation planning at VR has been made
manually using Excel tables, so creating an automated model would greatly
reduce the time needed for planning. In addition to reducing planning time, the
model should produce more cost-efficient solutions than the previous method.
The model will be tested using real world data in order to ensure that it can be
implemented to actual vacation planning.

The scope of the thesis is limited to planning vacations for train drivers. Vaca-
tion planning for other employees such as conductors or office workers is not



considered, although the developed model could easily be adapted to different
employees and constraints. As vacation planning is made months before the
actual vacation season starts, all drivers will not know, when they need days
off. Drivers can request days off after the vacation planning, but granting or
denying those request is out of the scope of this thesis. Planning personnel de-
cide if the requests can be fulfilled when they make the rosters for the drivers,
which is approximately one month before the requested day offs.

1.3. Structure of the thesis

The rest of the thesis is structured as follows. The relevant literature including
publications about vacation planning, days-off optimization and the use of con-
straint programming in scheduling is reviewed in chapter 2. The vacation plan-
ning problem is presented in detail in chapter 3, including a constraint pro-
gramming formulation of the problem. Chapter 4 introduces example cases of
using the developed vacation planning model. Experiences of the use of the
model in planning actual vacations are detailed in chapter 5. Finally, chapter 6
concludes the thesis and discusses issues that can be addressed in future re-
search.



2. Theoretical background

2.1. Literature reviews

There are only a few papers that cover vacation scheduling, but there are mul-
tiple literature reviews about scheduling and rostering in general. A roster is a
plan that includes all the duties that an employee must perform in a planning
period which has length of usually 2-4 weeks. The literature reviews cover
some publications about vacation scheduling and closely related days-off opti-
mization which has received considerably more attention in the literature. Ernst
et al. (2004b) provide a broad overview of personnel scheduling and rostering
problems. The authors highlight multiple benefits of personnel scheduling op-
timization. Optimization allows an organization to meet customer demands
cost-effectively while simultaneously respecting multiple other criteria such as
shift equity, staff preferences, and flexible workplace agreements. Developing
mathematical models and algorithms for a rostering tool involves three phases:
demand modeling, choosing solution technique(s), and the specification of a
reporting tool. Every industry has unique characteristics which make beneficial
to develop tailored mathematical models and algorithms. The authors also pre-
sent a classification of personnel scheduling and rostering problems, which
serves as a general framework for classifying the related publications. Ernst et
al. (2004a) use the framework for presenting an extensive bibliography of per-
sonnel scheduling and rostering studies including over 700 references.

A more recent literature review is provided by Van Den Bergh et al. (2013).
The focus of the review is on articles that are published after 2004. The authors
bring up the issue that most of the papers focus purely on creating feasible
schedules for workers, and the personnel scheduling problem is rarely integrat-
ed with other scheduling problems such as machine- or operating room sched-
uling. Also, the multiple problems related to personnel scheduling (e.g. fore-
casting workload, hiring/firing, planning trainings and taking into account em-
ployees’ preferences for holidays) are rarely integrated. The authors note that



constraint programming methods are very appropriate for personnel schedul-
ing, as these problems are often highly constrained.

A comprehensive description of the different phases of personnel scheduling in
a hotel environment is presented in the four papers of Thompson (1998a,
1998b, 1998c, and 1998d). The process starts with forecasting work demand,
continues with creating duties and schedules for workers, and ends with real-
time control of the schedules.

2.2. Vacation planning

Vacation planning can be viewed as a sub-problem of a more general personnel
scheduling problem. When a crew scheduling process is described, however,
vacation planning is often ignored or left with little attention. This is possibly
because in many industries vacation planning is a fairly simple task as tempo-
rary workers are available, workload is approximately constant in time, and
new employees can be recruited to replace retired workers (Gértner et al.,
1998). However, some industries have characteristics that make vacation plan-
ning more difficult. For example, there may be unavailability of temporary
personnel, long trainings that precede recruitments, fluctuating demand be-
tween and within seasons, and varying maximum (non-overtime) working
hours between planning periods.

Koutsopoulos and Wilson (1987) highlight the importance of vacation schedul-
ing. They focus on workforce planning in the transit industry which has many
of the characteristics that make vacation scheduling difficult. The services of
transit industry have no shelf-life and demand is immediate. Service reliability
is very important while the amount of work and the available manpower on
each day is uncertain. Moreover, lengthy and specialized training is needed
before a person can work as a driver. The authors present an integrated frame-
work for operator workforce planning which includes planning on three differ-
ent levels: strategic, tactical and operational.

Their strategic model uses a planning horizon which is longer than one year
and plans are made at weekly or monthly level. It models decisions about
workforce size, hiring levels and vacation allocation. The authors propose a
model which incorporates all the strategic level decisions. The described prob-



lem is similar to an inventory control problem where employees are interpreted
as the inventory. The objective function is to minimize the annual operating
costs including salaries, benefits and overtime. As many optimal solutions are
possible, secondary objectives which include determining the ideal vacation
levels and hiring levels i.e. the number of employees on vacation and to be
hired, are also introduced. These levels are predetermined, and the authors do
not discuss how they are determined. A tactical model uses the length of the
timetable as the planning horizon and produces plans at the daily level. The
model allocates days off and leaves an optimal number of employees on duty.
An operational model is used daily to assign duties for reserve workers.

Chong and Strevell (1985) present an auction based method for distributing
vacations of military flight crews. The goal of the method is to fulfill the wish-
es of the crews as much as possible. Each crew gets a number of points which
can be used to place offers for desired vacation times. The constraint that has to
be satisfied when giving the vacations for crews is that there is a certain de-
mand for workforce in each time period which determines the minimum num-
ber of crews that must be at work in that period.

First the crews mark their desired vacation times in a calendar which is visible
to everyone. As crews see what vacation times the others desire; they can move
their desired vacation times to periods with fewer requests. In the second
phase, the times of vacations are fixed, and crews can place offers for the vaca-
tion times they have chosen (each crew has 20 points for placing offers). Each
vacation time is granted to the crew that has made the greatest offer. Other
crews who have bid for the same time get their points back and can use them to
bid for vacation times that are still free. This method gives each crew an equal
chance to get a vacation time that they want, and distributes the requests for
vacation times more evenly through the year. After implementing the new
method for distributing the vacations, the crews’ satisfaction was increased
considerably.

Dewess (2010) focuses on vacation planning in a German public transport
company. He considers the problem of planning the annual holidays while tak-
ing into account legal constraints, company issues and the preferences of driv-
ers. German local public transport companies have up to 10 000 drivers and
each driver has around 30 days of annual holiday. Vacation planning is a time-
consuming task, if computer aided systems are not used. Manually created so-



lutions are suboptimal and can violate some constraints. The author proposes a
new model for vacation planning. First, drivers apply for a vacation in their
preferred dates. Each application includes a minimum duration, a maximum
duration, an earliest beginning date and a latest end date of the vacation. A
point system is suggested in order to make vacation requests for popular days
more expensive than those for other days. Often, the drivers’ preferences for
holiday dates are very rigid and conflicts can occur frequently even if conflict
avoiding measures are adopted.

Each vacation request is assigned a score, which measures company issues,
driver issues and social acceptability. The score is calculated for each applica-
tion that is approved and a penalty is given for each application that is denied
in the schedule. Binary decision variables are used to indicate, if an application
is approved or not. The objective of vacation planning is to maximize the total
benefit, where penalties of denied vacations are subtracted from scores of ac-
cepted vacations. The problem is solved with a two-stage heuristic approach.
First a conflict resolution heuristic is utilized to get a feasible solution. After
that iterative repair heuristic is used to improve the solution (allow more ap-
plied holidays to be granted). The algorithm produces good solutions with real
world data; both decision makers and workers preferred generated solution in
comparison to previous manually created one.

Gartner et al. (1998) discuss how vacations can be taken into account, when
designing rosters. On average 15 % of the Austrian employees are on sick
leave, vacation, or other absence. The timing of the absences is only partially
known. The authors evaluate multiple techniques for dealing with vacations
including company vacations (i.e. all or most of the employees have vacation at
the same time), postponing less important tasks, using temporary workers, in-
creasing the amount of workers, using overtime and dedicated reserve workers.
In a case study, a new roster for the employees of a small plant is created.
Spring and summer seasons are considered separately, assigning a higher
amount of vacations for summer. Previously, the plant had 18 employees, high
overtime costs and 7 % of sick leaves. It was found out that 2 new employees
were needed in order to take absences fully into account. When the new rosters
with 20 workers were adopted, overtime costs and the amount of sick leaves
were lowered considerably.



Vacations are considered in the scheduling model of Azmat & Widmer (2004),
who present the first approach introducing the notion of holiday weeks within
annualized hours planning. Constraints for annual work hours and the number
of annual holiday weeks are included. The authors present a three step algo-
rithm for solving the problem. The first step is to calculate a minimal work-
force size. After that, the need of overtime is estimated by taking into account
the weekly demand and each worker’s amount of annual holiday weeks. A
quota for holidays is assigned for each week so that the need of overtime is
minimized. The final step is to allocate holidays and work days to workers. A
manager assigns the holiday weeks to employees according to their wishes
while respecting the holiday quotas determined earlier. Work days are allocat-
ed to workers who are not on holiday, and the workload is balanced between
workers. The algorithm produces feasible solutions, but these solutions can be
improved by considering optimization criteria such as increasing the amount of
consecutive holiday weeks.

The model is developed further by Azmat et al. (2004) by considering a set of
Swiss legal constraints. Constraints related to the vacations include that the
employees must receive four holiday weeks per year out of which at least two
must be consecutive, and workers wishes must be considered when fixing the
vacation periods. Objectives of workforce scheduling include determining a
minimal workforce to satisfy the weekly demand, minimizing the weekly over-
time hours, minimizing the annual overtime hours, balancing the workload
among the employees, and generating a workforce schedule for a whole year.
The authors use the approaches of Azmat and Widmer (2004) for the first two
objectives, and propose an MIP model for fulfilling the remaining three objec-
tives. Two options for assigning holiday weeks are presented, one where em-
ployees choose their holidays from a set of possible holiday weeks, and another
where an MIP model assigns holiday weeks. In total, 4 different MIP models, 2
for each option of assigning holidays were evaluated using 20 test problems.
Differences between the solutions of the two strategies were minor. When the
MIP model was used to choose holiday weeks, the solutions included less vari-
ation in the working hours assigned to different workers in small problems, but
more variation was observed in large problems. Differences in overtime hours
were negligible between all the models. In most of the cases, an optimal solu-
tion could not be found, but the solutions obtained were feasible and gave a
balance of the working hours among the employees which was satisfactory
enough in order to make the solutions implementable.



2.3. Days-off optimization

Days-off optimization is closely related to vacation scheduling. In both prob-
lems periods without work are assigned to employees. In days-off optimization,
single days without work are assigned to a work roster, which usually covers 2-
4 weeks, whereas in vacation scheduling weeks without work are assigned to a
yearly (or longer) plan. In a number of studies there is a demand that must be
satisfied, and a minimum number of workers needed to fulfill the demand is
calculated. In other types of approaches vacation- or days-off schedules are
created for workers, with the objective function minimizing the sum of multi-
ple worker preference based soft constraint violations. The vacation planning
model developed in this thesis differs from most of the vacation planning and
days-off optimization approaches in the literature, as it has an objective func-
tion of maximizing the smallest amount of surplus workers after assigning va-
cations (i.e. reserve after all the forecasted work and vacations are assigned to
workers). In the model presented in this thesis, the employees cannot be hired
or fired, so minimum workforce size is not relevant. Hard constraints are used
to enforce solutions to be in accordance with the worker preferences.

One of the earliest models for a days-off optimization problem is presented in
Baker and Magazine (1977). The authors present a solution method for a days-
off optimization problem where weekdays require N workers and weekend
days require n workers. A closed form expression for the minimum number of
workers needed as a function of daily demand of workers is also derived. Burns
(1978) presents a formula for calculating the optimal workforce size (the min-
imum amount of workers that can perform the required work). The problem
can have differing daily demand for each day of the week. Constraints impose
that each worker must have 10 workdays in a 14-day period, each worker must
have at least every second weekend off, and a worker cannot have more than
six consecutive working days. Burns’ formulation is the first one that works for
problems where workers must have some weekends off. Bartholdi et al. (1980)
use constrained network flow problems for solving cyclic days-off optimiza-
tion problems. The authors also present a rounding algorithm which enables
getting an integer solution from a linear relaxation solution of the problem.
Morris and Showalter (1983) model a days-off optimization problem as a set
covering problem which is then solved by using a cutting plane method.
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Multiple papers deal with days off optimization in presence of hierarchical
worker categories where workers with higher qualifications can substitute low-
er qualified worker. Emmons and Burns (1991) present heuristic algorithms for
days-off scheduling of a hierarchical workforce in a case where the demand of
workforce is constant. Narasimhan (1997) develops an algorithm which can
produce optimal solutions for a single shift scheduling problem of hierarchical
workforce. In this problem, work demand is different for weekdays and week-
ends. Each employee must have two days off every week, every 4 out of B
weekends off, and 5 maximum consecutive working days. Hung (1994) ex-
tends the problem by adding variable demand. Workers must have at least n
days off in a week (n € {2,3,4}). The objective is to find a schedule which has
the lowest labor cost and satisfies labor and day off requirements. The author
derives necessary and sufficient conditions for feasibility of hierarchical work-
force shifts. He also presents an algorithm for generating feasible schedules
and proposes a one-pass method for calculating an optimal labor mix. Billionet
(1999) presents a similar problem as in Hung (1994), but uses integer pro-
gramming methods for solving the problem. Optimal solutions can usually be
found in a short time. He then extends the model by maximizing the amount of
consecutive days off. Binary indicator variables and two constraints on them
are used to ensure maximum consecutive days off in the solution.

One way to make scheduling more flexible is to use annualized hours. An an-
nualized hours agreement includes a yearly quota of working hours for each
worker, and overtime is given only if the yearly quota is exceeded. This makes
it possible to schedule more work in busy periods without the need of overtime
hours or hiring temporary workers. As a disadvantage, the use of annualized
hours impairs employees’ working conditions by making working time irregu-
lar and also complicates the planning of their working time. In the model by
Hung (2009), annualized hours are used to meet fluctuating demand. Working
days and days off are scheduled for the whole year in order to ensure an even
working hours distribution among the workers. Holidays are not considered.
Corominas et al. (2007) develop an MILP model for solving annualized hours
scheduling problems. An example case in a production plant shows that a com-
pany’s profit can be increased when annualized hours are introduced and the
annual working time is reduced to compensate for the irregularity of work.
Workers have a period of 6 weeks of holiday annually, divided into one 2 week
and one 4 week period. All the workers get holidays at the same time and the
plant is shut down during the holiday weeks. Annualized hours agreements
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allow creating inventory just before the holiday weeks, and this reduces lost
demand even though the total yearly working hours are reduced. Hertz et al.
(2010) use also an MILP model for annualized hours planning. The workers
have 3 holiday weeks annually, and two of them must be consecutive. The au-
thors introduce dummy variables to impose consecutiveness constraint, and this
leads to the need of multiple additional constraints. Four different objective
functions are presented, but a multi-criteria model is not considered. Instead,
the created model can act as a decision management tool by offering multiple
objectives to choose from.

Beaumont (1997) describes a days-off optimization problem, in which the
amount of work for a whole year is considered for a service company. The
problem is formulated as a MILP. The focus in building the model is on long-
term solution. Short changes in the amount of workers needed (caused for ex-
ample by weather and sick leaves) are taken into account by hiring external
contract workers or by using workers who agree to do overtime. Cycles of
work days and days off must fulfill the contracts made by the workers and
management of the company:

— There must be 4-7 consecutive working days.

During a calendar week there can be at most 5 working days.

— There must be at least 2 and at most 4 consecutive days off.

— There must be 223 or 224 working days during a 47 week cycle.

A cutting plane method was used for solving the problem, and the computation
was made with the commercial solver CPLEX. The new approach for creating
rosters makes it possible to create different cycles much faster and easier com-
pared to the previous methods used.

Carter and Lapierre (2001) consider a scheduling problem for emergency room
physicians, which is considered one of the most challenging physician schedul-
ing problems. Emergency rooms are open 24 hours in each day of the week.
The authors present two case studies in which they developed rosters for two
hospitals in Montreal.

One of these, Charles-Lemoyne Hospital, used a manually made cyclic roster,
which was identical for every physician and included whole weekends off only
every third weekend. A new automated rostering method was developed by
using Tabu Search metaheuristics. In the new roster physicians had every sec-
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ond weekend off, but not as regularly as before. Physicians’ satisfaction for
their rosters was improved after implementing the new rosters. The Jewish
General Hospital used a roster which was made in many phases, partly manual-
ly, partly using computers. The roster was not cyclic. It took 40 hours of work
to make a roster for three months. In addition it took 6 weeks to gather all the
required information, because physicians go to work irregularly and personal
input of vacation and day-off wishes from each physician was needed. The
authors modified a certain previously used algorithm to take into account the
needs of the hospital, and they got positive feedback from the physician, who
was in charge of making the rosters. The model for the Jewish General Hospi-
tal was not completed, but the authors expected that the schedules created with
it would be better than the old ones.

Beaulieu et al. (2000) formulate an optimization model for scheduling emer-
gency room physicians. Cyclic scheduling methods (scheduling shifts and
days-off in repeating cycles) are not applicable for scheduling emergency room
physicians because there are too many rules and constraints. Non-cyclic meth-
ods must be used instead and those can be based on human expertise and the
use of spreadsheets or optimization approaches. Advantages of optimization
approaches include the fact that little human intervention is needed and more
rules can be handled simultaneously. On the downside, developing an optimi-
zation model can take years. With the presented optimization model, results
could be obtained in less than one day (human experts needed 5 days in this
application) and the solution quality was also improved as fewer soft constraint
violations were made.

Costa et al. (2006) also present a non-cyclic problem. Demand is fluctuating
and the number of total work days for each employee is fixed. Employees must
have 2-3 consecutive days off per week so that in a month there is at least one
sequence of three consecutive days off. Multiple constraints are needed to pro-
hibit any other types of days off patterns than two or three consecutive days
off. The authors present a three step algorithm that is based on discrete tomog-
raphy and maximum flow search for solving the problem. The algorithm pro-
duces solutions in polynomial time.

Day and Ryan (1997) present a method for rostering flight attendants of short-
haul airline operations. Rosters are 14 days long and the problem is non-cyclic.
In their approach, days-off allocation and duty allocation problems are solved
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separately. In the days-off allocation problem all the possible days-off combi-
nations are enumerated (when legal constraints are considered) and a set parti-
tioning problem is solved to obtain a feasible days-off roster. Days off combi-
nations are assigned a base cost representing how much desirable they are.
Penalty costs are based on crew preferences. For example a single work day is
penalized. In days-off optimization, a single days-off combination is chosen for
each crew member so that every day has enough available employees to handle
the daily demand. The method was applied to design rosters for flight attend-
ants of Air New Zealand and the solutions found were superior to the manually
generated ones in both fairness and days-off distribution.

Knust and Schumacher (2011) develop a model for scheduling tank trucks and
truck drivers of a small oil company. The drivers of the company have different
skills and there are many types of trucks. The goal of the model is to assign a
driver to each duty while taking into account safety and legal regulations. Ad-
ditional goals include to even out the working time among different drivers and
to respect their wishes for vacation times. The model is formulated as a MIP
which includes 8 hard constraints and 4 soft constraints. The objective function
is to minimize the weighted sum of some soft constraint violations. The model
is so complicated that optimal solutions cannot be calculated without using an
expensive commercial optimization software, and the company does not want
to buy one. Consequently, the authors decided to use a two phase solution pro-
cess. First a reduced MIP is solved, where the two least important soft con-
straints are removed. The second phase is to improve the solution with respect
to the previously ignored soft constraints. Good solutions are obtained already
with computing times of about 10 minutes. The commercial optimization soft-
ware CPLEX could solve the whole problem, and yielded better results, but the
computing times were several hours. The developed method for scheduling
was considered a good improvement over the previous manual planning pro-
cess, as feasible solutions were hard to find and there were significant differ-
ences in the amount of work assigned to different drivers.

Multiple other types of modeling and solution methods for days-off optimiza-
tion problems are also presented in the literature. Al-Zubaidi and Christer
(1997) use simulation models to evaluate different maintenance management
policies of maintenance work for a hospital building. Emmons and Fuh (1997)
derive formulas for calculating minimal cost full time workforce when part
time workers are available. Also, a constructive algorithm for generating
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schedules is presented. Full time workers must have 2 days off in a week and
every A out of B weekends off. Bellanti et al. (2004) present a greedy-based
neighborhood search approach for scheduling nurses in which days off and
shifts are scheduled simultaneously. The algorithm also considers holidays and
requested days off. Nurmi et al. (2011) utilize a population-based local search
method with greedy hill-climbing mutation for scheduling bus drivers. A real
world application for a Finnish transit company is presented. Days-off schedul-
ing and shift scheduling are considered separately, and the objective of days-
off scheduling is to minimize the weighted sum of some soft constraint viola-
tions. The weights of the soft constraints represent their importance. The com-
pany was very satisfied with the results produced by the algorithm. The time
needed for creating rosters was reduced, shifts and days off were more bal-
anced among drivers, and drivers had less idle time than before.

2.4. Scheduling with constraint programming
methods

Constraint programming methods have been used in various scheduling appli-
cations. They are especially useful for highly constrained problems, as they
allow handling complex and diverse constraints. Constraint programming is
also very effective for finding feasible solutions to constraint satisfaction prob-
lems (He and Qu 2012).

Laborie and Rogerie (2008) present a framework for scheduling problems,
which is based on a new type of variables called conditional time-interval vari-
ables. Conditional intervals represent tasks which may be included in a final
schedule, but are not mandatory. These are important in many applications. In
constraint-based scheduling, conditional time-intervals are usually modeled by
imposing global constraints over ordinary integer variables. Time-interval vari-
ables embed conditionality intrinsically, which simplifies modeling. The au-
thors also present various constraints that can be imposed on the time-interval
variables. Later, Laborie and Rogerie (2009) introduce additional concepts for
modeling scheduling problems with the conditional time-interval framework.
For example cumul function expressions can be used in scheduling problems
that involve usage of cumulative resources to sum the contributions of individ-
ual interval variables. Detailed description about conditional interval variables,
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cumul functions and their usage on the problem of vacation planning is pre-
sented in chapter 3.3.

Constraint programming has been used in solving various nurse rostering prob-
lems. Cheng et al. (1996 and 1997) use constraint programming with a redun-
dant modeling approach, where semantically redundant constraints are used to
increase the propagation and pruning of original constraints. Nurse Rostering is
modeled as a constraint satisfaction problem, and constraint programming tools
are used to build up a constraint solving engine. Soft constraints are modeled as
choices in solution search tree. Two different models are created, one with
nurses as variables and shifts as their domain and another one with shifts as
variables and nurses as their domain. Authors use redundant modeling for
pruning and propagation of constraints between sub models. This speeds up the
solution process considerably. Models are connected with channeling con-
straints which express relationship among variables in different models.

The authors state that there are three main approaches for modeling nurse ros-
tering problems. The first one is to use mathematical modeling and to apply
operations research methods. It provides relatively fast solution times, but it is
rigid. The second option is to design problem-specific heuristics. These are not
generic and successful algorithms for one problem do not necessarily perform
well for different problems. The third approach is to use constraint program-
ming. It is flexible as small changes in the problem can be implemented with
small changes in the model, and has great expressiveness. On the downside,
representation of variables and constraints might not be easy. The authors high-
light that soft constraints are often mutually incompatible. The constraint pro-
gramming methodology allows a high level of flexibility in changing the prob-
lem specifications which is difficult to achieve with the two other approaches.

He and Qu (2012) present a constraint programming based column generation
(CP-GQG) solution procedure for solving complex nurse rostering problems. A
simple heuristic is used to get initial solutions instead of using specific propa-
gation algorithms. First, all soft constraints are treated as hard, and then relaxed
one by one until a feasible solution is found. At each iteration of the column
generation algorithm, the pricing sub-problem is solved to find columns with
negative reduced cost. The column with the smallest reduced cost is not neces-
sarily the column that causes the largest decrease in the objective function.
Actually, any feasible column with negative reduced cost is a candidate to en-



16

ter master problem. It is easier to generate feasible rather than optimal col-
umns, but then the convergence to the optimum can be slower. The pricing
problem is solved by constraint programming, and also columns with reduced
cost larger than the minimum are added to the master. However, all columns
with cost larger than a predefined upper bound are ignored. Also Depth
Bounded Discrepancy Search (Walsh 1997) is used to improve the efficiency
of CP. The proposed method is competitive compared to previous approaches
although it does not include any metaheuristics.

Constraint programming has also been used in generating solutions for crew
scheduling problems. Fahle et al. (2002) present a CP-GG approach for solving
airline crew rostering problems. The authors state that usually these problems
are divided into sub-problem, which is used to generate legal rosters, and a
master problem, where the generated rosters are assigned to crew members.
The airline regulations considered in this study are however so complex that
previous approaches cannot be used to model all of them. To overcome this
difficulty, the authors formulate the sub-problem as a constraint satisfaction
problem which allows modeling all the constraints. The proposed method is
tested with real data.

Sellman et al. (2002) present two algorithms for solving airline crew rostering
problems: the CP-GG algorithm presented by Fahle et al. (2002) and a con-
straint programming based heuristic tree search. The authors describe strengths
and weaknesses of both algorithms and test their performance. Finally, the al-
gorithms are combined to overcome their intrinsic limitations. Results of test
cases show that the hybrid algorithm is superior compared to the two original
algorithms.

Hybrid approaches are also used by Yunes et al. (2005). They deal with a crew
management problem of a bus company that operates in Belo Horizonte, Bra-
zil. The crew management problem is split into two sub-problems, a crew
scheduling problem and a crew rostering problem. Mathematical programming
and constraint logic programming are applied for solving each problem, and
finally hybrid column generation approaches that combine both methods are
developed. Examples with real world data are used to test the different algo-
rithms. Hybrid approaches were the best performers producing high-quality
solutions with reasonable computational times.
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3. Vacation optimization model

3.1. Background

Finland’s train drivers go to work from about 25 depots. Each driver starts
working from his/her home depot. Drivers cannot be transferred between de-
pots but some of the workload can be transferred through duty re-planning if
needed. On average, 650 freight and long distance trains are driven each day.
In many cases the traffic is seasonal, so there can be considerable changes in
the amount of trains driven, especially on a single depot level. Drivers must
also participate in various trainings to maintain their license to drive. The fre-
quency of different types of trainings varies from 1 to 5 years. In addition, the
drivers have licenses for different types of locomotives; not all drivers can
drive all the train types that start from his/her home depot.

Each driver is granted a certain amount of vacations for each calendar year; law
and contract based rules set the constraints on how the vacations must be
planned. A calendar year is split into three vacation seasons: spring (January-
May), summer (June-September) and fall (October-December). Most of the driv-
ers have 5 weeks of “ordinary” vacation in a calendar year, but experienced driv-
ers have a larger vacation allowance of 6 weeks. Drivers earn extra vacation days
for the fall if they do not have all the possible summer vacation days in the
summer vacation season. When extra days are taken into account, there are 3
main possibilities for dividing the vacation allowance of a driver inside one year.
Short vacation drivers can have (including extra days, spring, summer and fall)
either 12 + 15 + 9 = 36 days or 9 4+ 18 + 6 = 33 days of vacation, and driv-
ers with long vacation allowance usually have 15 + 18 + 12 = 45 days of vaca-
tion. In vacation modeling, weeks are split into two parts (half weeks): Monday-
Wednesday and Thursday-Sunday. Each such half week consumes three vaca-
tion days while Sundays and public holidays do not consume vacation days.

Drivers’ rosters are planned for 3 week planning periods; a driver has a maxi-
mum working time of 114 hours and 45 minutes in 3 weeks. However, if a
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planning period includes public holidays, the maximum working time limit is
lowered by 8 hours for each such public holiday. This means that in a planning
period that includes public holidays more drivers are needed to perform the
same amount of work as in a period without public holidays. The public holi-
days in Finland that have the greatest impact on vacation planning process are
Christmas, Easter and Midsummer. If a driver’s workload exceeds the maxi-
mum working time, the driver gets overtime, which is expensive for the train
operator.

In addition to normal work, drivers can be in training, on vacation, or absent
for other reasons. Absent drivers are mostly on sick leave, and the share of ab-
sent drivers is nearly constant through the whole year. Trainings reduce the
amount of normal work that a single driver can do in a planning period. For
example, if the maximum working time is 114 hours and 45 minutes and a
driver has 16 hours of training, he/she can work on driving duties for 98 hours

and 45 minutes. Each vacation day that a driver has in a certain planning period
114.75
21
(about 5 hours and 28 minutes), where 21 is the number of days in a 3 week
planning period and 114.75 are the maximum working hours of the planning

period.

reduces the driver’s maximum working time in that period by hours

Until late 2014, drivers’ vacations were planned manually using Excel. The
amount of drivers allowed on vacation was forecasted only at the vacation sea-
son level while in reality, for example, the planning period that includes the
holidays of Christmas allows giving a very limited amount of vacations before
overtime work is needed. As plans were made by hand, making even a small
change in the plans, for example, to fulfill a wish of a single driver resulted
often in a lengthy operation. Often, when one vacation is moved, multiple other
vacations must also be shifted slightly forward or backward to balance the
amount of vacations and to ensure sufficient workforce at work. As a result of
these challenges, an optimization model for vacation planning was created and
it was used in planning the drivers’ vacations for the year 2016.

In the new vacation planning process, forecasts for the amount of work and
trainings are made at planning period level for each depot. As the forecasts are
made at a more accurate level than before, gathering the required information
is more difficult. On the other hand, the increased level of detail makes it pos-
sible to limit the amount of allowed vacations in the planning periods which
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include public holidays or a large amount of trainings. After the working hour
forecasts are made, the amount of forecasted work for each planning period is
divided by the amount of maximum working hours in the corresponding plan-
ning period. In this way, base level information about the number of workers
needed for each planning period is obtained. The number of workers available
in each half week period must also be determined. Information about retire-
ments, new recruitments and fixed absences (such as maternity/paternity leave)
is gathered, and their effect on the number of available workers is calculated.
Next, the forecasted amount of workers needed at work is subtracted from the
number of workers available in the personnel base. The result is the number of
reserve workers available after all the forecasted work is assigned to the work-
ers. The amount of reserve workers in each period sets an upper bound for the
amount of possible vacations in that period.

When the amount of reserve for each half week is obtained, the information is
entered into the optimization model. The goal of the vacation optimization is to
maximize the minimum reserve (i.e., the amount of surplus workers) for each
depot and for each vacation season after all the vacations are assigned to the
workers. This forces the reserve of the personnel base to be split as evenly as
possible over all the half-weeks of the vacation season, and leaves as much as
possible room for sick leaves, other absences and unexpected changes in de-
mand and training needs.

As an example, consider a base with 52 drivers. If the forecasted amount of
work for a planning period is 5000 hours and the maximum working time is

114 hours and 45 minutes, the amount of drivers needed to perform the work
5000
114.75

for another period with 5000 hours of work is 106 hours and 45 minutes, the

150060: : = 46.83, s0 47 drivers are needed. Thus, the pe-

riod with 106 hours and 45 minutes of maximum working time needs 3 more
drivers at work. This means that if the optimal reserve is 4 drivers, 52 — 44 —

= 43.57, so 44 drivers would be needed. If maximum working time

same calculation gives

4 = 4 drivers can be on vacation at the same time in the first planning period
but only 1 driver can be on vacation at the same time during second planning
period.

A comparison of expected (forecasted) results of vacation planning between
the former planning method and the new vacation planning optimization model
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is presented in Figures 1 and 2 for a time period of 17 planning periods, which
is close to one year. The first 6 periods are in the summer vacation season,
where the demand for trains is smaller than in the rest of the year and drivers
must have long vacations. The planning periods 7-11 belong to the fall vaca-
tion season and the planning periods 12-17 to the spring vacation season. The
black line represents the number of drivers which decreases in time due to re-
tiring drivers, but has one jump upwards as new drivers are recruited. The bars
represent how many drivers are needed in each planning period, with a legend
describing the maximum working hours in each planning period. A driver can
be driving trains, in training, on vacation or absent for other reasons. The num-
bers in the bars present the average amount of drivers on vacation in each plan-
ning period.

The former model for allocating vacations (Figure 1) uses equally sized vaca-
tion groups. In the summer there are about 160 drivers on vacation, in the fall
about 103 drivers on vacation and in the spring about 108 drivers on vacation.
The only thing that influences the amount of drivers on vacation in addition to
the change of vacation season is the retirement of drivers, which causes a slow
decrease in the amount of vacations. There are 5 planning periods where the
number of drivers needed is at least 20 bigger than the number of drivers avail-
able. In the worst case, there is a shortage of 52 drivers (over 6 % of the avail-
able workforce). This causes a need for costly overtime work which raises the
company’s personnel costs considerably.

The number of drivers needed for driving trains and trainings is fixed for each
planning period, and the buffer for other absences is a fixed percentage of the
drivers. Thus, the only number that can be changed is the number of drivers on
vacation. The new vacation planning model was created with the goals of mak-
ing vacation allocation more cost-efficient and less time-consuming. The ex-
pected results of the new model (Figure 2) include no planning periods with
significant need for overtime. There are some planning periods with greater
number of drivers needed than available, but the maximum shortage is only 7
drivers, which is under 1 % of the available workforce. Now the amount of
drivers on vacation varies significantly between and within the vacation sea-
sons, and the vacations are used to make the number of workers needed in each
planning period to be as close as possible to the amount of workers available.
With these vacation plans, the company would have only small needs for over-
time, and could reduce personnel costs significantly.
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Figure 1: Expected results of the former vacation planning model
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Figure 2: Expected results of the new vacation planning model



22

3.2. Problem description

This chapter describes the vacation planning problem at VR. The problem is
described for a single personnel base and a single vacation season. The person-
nel base has workers m = 1,2, ..., M and the vacation season contains half
weeks n = 1,2,...,N. These half weeks (Monday-Wednesday or Thursday-
Sunday) are referred to by periods. A worker is either on vacation or at work.
Special cases such as workers who are retiring are not included in the optimiza-
tion problem, but are taken into account in base data for the problem. The prob-
lem’s base data includes maximum amount of workers allowed on vacation p,,
in each period n. Also, previous year’s vacation start period for each work-
er l,,,, ending period of vacation in the previous vacation season for each work-

. . a
er v, and vacation allowance in days a,, (Tm € N) for each worker are known.

Sundays and public holidays do not consume vacation days.

The base data includes information about special skills j = 1,2, ..., ] for each
worker. These are represented with:

P { 1, if worker m has special skill j
™J | 0, otherwise '

The maximum for workers with skill j on vacation at the same time S;4y.j,

j=1,2,..,] is also given. Finally, the base data includes information about
forbidden vacation start periods (vacations cannot start on public holiday peri-
ods and second periods of each planning period):

h(n) = {

1, if vacations cannot start at period n
0, otherwise '

The following constraints must be satisfied, when the vacations are planned:

(Cl1)  Each worker has exactly one continuous vacation in the vacation sea-
son.

(C2) In the basic case, the length of the vacation is the same as vacation
allowance. If the vacation overlaps multiple public holidays, the
length of the vacation is increased by one period, i.e. 3 days (exclud-
ing the public holidays that are on Sunday, because Sundays already
do not consume vacation days).

(C3)  Each worker’s vacation must start at least f periods after the previous
year’s vacation start period in the same vacation season.
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If worker A’s previous year’s vacation has started before worker B’s
previous year’s vacation, worker A’s vacation must start before or at
the same time as worker B’s vacation. The vacations for workers that
had previous year’s vacation close to the end of the vacation season
must “jump” to the beginning of vacation season because of the previ-
ous constraint. The start periods of these vacations that jump to an ear-
lier period 7 because of the previous constraint are modeled as n + N
in order to satisfy constraint (C4).

The amount of workers on vacation in each period is less than or equal
to the maximum amount of workers allowed on vacation p,,.

The amount of surplus workers in each period (p,, — the amount of
workers on vacation in period n) must be equal to or greater
than wy,;,.

The amount of surplus workers in each period must be equal to or
smaller than w4,

The maximum amount of workers with skill j allowed on vacation at
the same time 1S Spqy, j-

A vacation cannot start in the second period of a planning period (pe-
riod which starts on the first Thursday of a 3-week planning period) as
it would leave only 3 working days in the beginning of planning peri-
od, making the work of roster planning personnel difficult.

Vacations cannot start on public holiday periods.

Vacations cannot start so late that the ending point of the vacation
belongs to the next vacation season

Vacations must start at least g periods after the ending period of vaca-
tion in the previous vacation season. This difference of g periods is re-
ferred to as the minimum gap between vacations.

There is also one additional constraint that is not always necessary, but which
is useful for improving solution quality in some problems, where vacations
tend to shift forward too much.

(C13)

The maximum number of periods that the vacation of the first driver
can shift forward is f + f,4x, 1.€. the shift forward must be in the

range [f, f + fimax]-

For the purpose of imposing constraints (C3), (C4) and (C12) the set of the N
periods is viewed circularly so that, for example the fifth period after
od N — 2 is considered to be period 3. In order to simplify the model, we use N
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additional periods N + 1, N + 2, ..., 2N to model vacation starts that are moved
to an earlier period with respect to the previous vacation season due to con-
straints (C3), (C4) and (C12). We will also informally say that such vacations
“jump” to the beginning of the vacation season.

The objective of the vacation planning is to maximize the minimum surplus
workers w,,;, over all periods. This objective ensures that a sufficient amount
of workers are available in every period, leaving room for absences such as
sick leaves. In addition, minimizing the maximum surplus workers wy,, can
be added to the objective in order to even out the distribution of surplus work-
ers as much as possible. For example if there are 10 periods and the optimal
Wpmin Wwould be 3, the surplus workers for each period could be
[3,3,3,3,3,3,3,3,3,10]. By adding the second criteria to the objective the solu-
tion could change to [3,3,3,4,4,4,4,4,4,4] (if constraints allow it).

The first approach that was tested for solving the vacation planning problem
was to formulate it as an MILP by defining a binary variable for each period of
each driver (taking value 0 if the period is a working period and value 1 if the
period is a vacation period). This model proved to be inefficient in tests with
real world data. Especially the consecutiveness requirement of vacations in-
creased the amount of constraint needed radically, making running times long
if optimal solution even could be found.

A constraint programming approach was tested next and it proved to be much
more efficient compared to the MILP. Optimal solutions were found quickly,
even the largest real world problems could be solved in a few minutes. The
approach was implemented for practical use for planning vacations of train
drivers for the year 2016. Concepts used in modeling the vacation planning
problem with constraint programming are presented in Chapter 3.3. and a con-
straint programming formulation of the problem is presented in Chapter 3.4.

3.3. Modeling with constraint programming

Laborie and Rogerie (2008 and 2009) present concepts that are useful in pre-
senting a constraint programming formulation of the vacation planning prob-
lem. The authors introduce a new type of variables, called conditional interval
variables. These are very useful in modeling vacations as they allow express-
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ing each vacation period with a single variable, which has an innate character-
istic of consecutiveness. Another concept that is used in the formulation is that
of cumul functions, which allow summing the conditional interval variables.
The notation used in this thesis is adapted to practical use in vacation planning.
For a more formal description of the concepts presented in this thesis the reader
is referred to Laborie and Rogerie (2008 and 2009).

In the case of vacation planning, the vacation of each driver m is represented
by a single decision variable x,,, which is an interval variable. The domain of
the variable is [b,N + 1)|b,N € Z, b < N + 1, where b is the first period of
vacation season being planned and N is the last period of vacation season being
planned. The upper bound for the variable value is N + 1 because if a vacation
includes period N, it ends just before period N + 1 starts. Each interval varia-
ble x,, has an integer start time b,,,, an integer end time e,, and a non-negative
integer duration z,,, = e, — b,.

As an example, three vacations are presented as interval variables in Figure 3.
The domain of the vacations is now [1,19) and driver A has a vacation x, with
start time by = 3, end time e, = 6 and duration z, = 3 periods. Vacations are
marked with green color and working periods with red color.

1 2 3 4 5 6/ 7 8 91011 12|13 14 15 16 17 18

Figure 3: Vacations as interval variables

Drivers’ vacation lengths are predetermined, but as public holidays do not con-
sume vacation days, some vacations must be extended by 1 period. For this
reason, conditional interval variables are used. Conditional interval variables
have one additional characteristic compared to interval variables, namely, an
execution status r;,,. If a conditional interval variable X, is executed, it is said
to be present (1;,, = 1) and it has a start time time b,,, an end time e,, and a
duration z,,. If a conditional interval is not executed, it is said to be absent
(1, = 0) and it does not have any start time, end time or duration. Absent in-
terval variables are not considered by constraints. To deal with the possibility
of vacation extension due to public holidays, each driver m is assigned two
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conditional interval variables X, (k =0,1) with start time time b,,, end
time e, , duration z,, , and presence Ty,  (Tmy = 1, if the corresponding in-
terval variable is present and 73, , = 0, if the corresponding interval variable is
absent). The value of k indicates how many vacation periods are added to the
length of a driver’s vacation in addition to the driver’s vacation allowance.
Both possible vacations start at the same time, but X,,, ; has a one period longer
duration. One of the variables X, , for each driver is always present and the
other one is absent. The variable X,  that is present is the vacation that the
driver gets, and the other one is ignored. The vacation that is actually assigned
to driver m is modeled by using an interval variable x,, (X, = X0 OF Xpy =
Xm,1) which was presented in previous paragraph. As all variables x,,, are pre-
sent, those can be modeled as interval variables without conditionality.

The choice between conditional intervals X, o and X, ; is illustrated in Figure
4. In this example the driver has a vacation allowance of 2 periods, and period
5 has public holidays, so if vacation overlaps it, the vacation is extended by 1
period. If the vacation of the driver starts at period 3 or earlier, x,, = X, 0,
because the vacation ends before the public holiday period. If the vacation of
the driver starts at period 4, x,;, = X,,, 1, because the second period of the vaca-
tion X, o overlaps the public holiday period, which does not consume vacation
days. The vacation cannot start at period 5, because of constraint (C11). If the
vacation starts at period 6 or later, x,,, = X, o, because the vacation does not
overlap the public holiday period.

Vacation start at period 3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Xm,D qu

Xm,l

Vacation start at period 4

1 2 3 4 56 7 8 1 2 3 4 5 6 7 8
Xm,o qu

Xm,l

Vacation start at period 6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Xm,O qu

Xm,l

Figure 4: Choice of x,, illustrated for a vacation allowance of two periods
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Laborie and Rogerie (2009) also present the notion of cumul function to enable
modeling cumulated usage of resources, which are produced and consumed by
activities. Individual activities can be modeled as interval variables or fixed
intervals of time. Elementary cumul functions are used to describe the contri-
butions of individual activities. The usage of a cumulative resource can be
modeled with pulse function and resource production/consumption can be
modeled with step function. The elementary cumul functions are presented in
Figure 5, where a is an interval variable, and [u, v] is a fixed interval of time
and h is the height of the step. The two functions on the top row are defined
with the fixed time interval, and the interval variable is used to define the rest
of the functions.

pulse(u,v,h) step(u,h)

hd hf

0 I > I >
u v u

‘E pulse(a,h) hmax ﬁ pUIse(a’hmjn’hmax)

h 4+ p— @t

0 | . min . .
[ a ] [ a ]

. ‘F stepAtStart(a,h) by $ stepAtStart(a,h, . h )

0 } . min | N
[ a ] [ a |

. % stepAtEnd(a,h) B @ stepAtEnd(a,h_, )h )

s : . min : R
[ a ] [ a |

Figure 5: Elementary cumul functions (Laborie and Rogerie 2009)

In the vacation planning model the starting points of vacations and their usage
of reserve are modeled with stepAtStart functions. Those can be simplified to
step functions when resource consumption h is set to be 1 for each vacation
and the point u where the reserve is consumed is set to be b,. Similarly, the
ending points of the vacations are modeled with stepAtEnd functions which can
be simplified to step functions by setting u = e,,, and h = 1. Figure 6 illus-
trates how these step functions can be used to obtain the total amount of drivers
on vacation on each period. In the upper figure, red color cells with entry 0
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indicate a working period and green color cells with entry 1 indicate a vacation
period. The figure labeled vacations started shows the step function modeling
the sum of started vacations and the figure labeled vacations ended shows the
step function modeling the sum of ended vacations. The number of ongoing
vacations is calculated by subtracting the vacations ended from the vacations
started, and the corresponding step function is shown in the figure “ongoing
vacations”.

Vacations of drivers
1 2 3 4 5 6|7 8 91011 12|13 14 15 16 17 18

m g O m >

Vacations started

000112 2233335555535

Vacations ended

Ooo0o0O0OO0OOODO0O1I12 2333 34

Ongoing vacations

ooo0112223221322221

Figure 6: Calculating the amount of ongoing vacations

The amount of ongoing vacations in each period can be subtracted from the
maximum amount of allowed vacations p,, to obtain a function which describes
the surplus workers (reserve) in each period. Now w,,;, can be set to be the
lower bound for surplus workers and w,,,,, can be set to be the upper bound for
surplus workers to enable modeling the required objective function.
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3.4. Constraint programming formulation of the
vacation planning problem

3.4.1. Decision variables

Decision variables X, , (m = 1,2, ..., M, k = 0,1) are conditional interval var-
iables (see Chapter 3.3.). Each variable represents a single possible vacation.
The conditional interval variables are characterized by a start value b,,, an end
value e, ., a duration z,, ., and a presence 7y, y (" = 1, if the corresponding
interval variable is executed and 7, = 0, if the corresponding interval varia-
ble is absent). Parameter k indicates how many periods are added to the vaca-
tion on top of the vacation allowance. Each driver’s actual vacation is repre-
sented as an interval variable x,,, (X, = Xp, 0 OF X;, = X, 1), Which has start
time b,,, end time e,, and duration z,,.

Dummy interval variables d,,are used to model cases where b,, > N. The
dummy interval variables have start value by, , end value e, and duration z, .
The dummy interval variables are vacation interval variables x,, shifted back-
wards by N periods: by, = by, — N, eq = ey, — N and z; = z,. The total
amount of vacations in each period n = 1... N is obtained by summing the va-
cation interval variables and dummy interval variables. Variables modeling the
minimum surplus workers wy,,;;, and maximum surplus workers wy,,, are also
included in the model.

3.4.2. Expressions involving decision variables

Step functions are used to count how many vacations have started and ended.
First each worker’s vacation start time (of the actual vacation x,,) is modeled
with the step function

0, n<b
Vstart,m(n) = {1 n> b:, m=12,..,M. (3.1)

Step functions are also used to model the start times of dummy interval varia-
bles
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0, 1< ba, 1,2,..,M 3.2
Dstart,m(n) - 1, n 2 bdm’ m=1,.,..., . ( . )
By summing the step functions for vacation and dummy variables we obtain
M
Vstart(n) = z Vstart,m (TL) (3'3)
m=1
M
Dstart(n) = z Dstart,m(n) (3'4)
m=1

The total amount of vacations started in periods n =1, ..., N is obtained by
summing the step functions for vacation variables and dummy variables.

Vstart,total(n) = Vstart (M) + Dgpgre(n) (3.5)

The same process is repeated for the ending of vacations. First each vacation’s
and dummy interval’s ending point is represented with the step functions

0, n<e
Venam(m) = {1 nze. M=L2..M, (3.6)
O, n< edm
Denam(n) = {1 nse,  M=LZ.M (3.7)
Then, the ending functions are summed
M
Vena () = ) Venaym (), (39)
m=1
M
Dena(n) = Z Dend,m(n)- (3.9
m=1

The total amount of vacations ended in periods n =1, ..., N is obtained by
summing vacation- and dummy variable step functions

Vend,total(n) = Vena (n) + Dena (n). (3.10)

Total amount of workers on vacation in periods n = 1,..., N is obtained by
subtracting the total amount of vacations ended from the total amount of vaca-
tions started

Viotal (n) = Vstart,total (n) — Vend,total(n)- (3.11)
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For each special skill j, the total amount of workers with skill j on vacation in
each period is obtained in a similar way as the total amount of workers in vaca-
tion. The starting points of each vacation and dummy variable are represented
with the step functions of equations (3.1) and (3.2). The total amount of work-
ers with skill j who have started vacation is obtained by multiplying each vaca-
tions step function with s,, ; and summing the multiplied functions

M
Vstart,j (n) = Z Sm,jVstart,m (n), i=12,..], (3.12)
m=1
M
Dstart,j(n) = Z Sm,jDstart,m(n)' ji=12..] (3.13)
m=1
The total amount of vacations started for workers with skill j is then obtained
as

Vstart,j,total(n) = Vstart,j (n) + Dstart,j(n)' i=12,..,]. (3.14)

The same process is repeated for the ending of vacations for workers with spe-
cial skill j. First each vacation’s and dummy interval’s ending point is repre-
sented with a step function given by equations (3.6) and (3.7). The total amount
of workers with skill j who have ended vacation is obtained by multiplying
each vacation step function with s, ; and summing the multiplied functions.

M
Vend,j(n) = Z Sm,jVend,m (n), i=12..], (3.15)

m=1

M
Dend,j(n) = Z Sm,jDend,m(n)f ji=12..,] (3.16)

m=1

Total amount of vacations ended for workers with skill j is obtained as
Vend,j,total(n) = Vend,j(n) + Dend,j(n)' j=12..,] (3.17)

The total amount of workers with skill j on vacation for each periodn =1...N
is obtained by subtracting the total amount of vacations ended from the total
amount of vacations started

Vtotal,j(n) = Vstart,j,total (n) — Vend,j,total(n)' j=12,..,]. (3.18)
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Surplus workers W (n) for periods n = 1...N can now be calculated by sub-
tracting the total vacations from the allowed vacations

Wn) = Pn — Viotar (). (3.19)

3.4.3. Constraints

Each worker’s vacation must start at least f periods after the previous year’s
vacation start period in the same vacation season due to constraint (C3). If a
worker’s vacation jumps from the end of the vacation season to a period n in
the beginning of the vacation season because it is shifted forward, then the va-
cation is given a starting period N + 7. This constraint is modeled as follows

by =L, +f, m=12,..,M. (3.20)
Equation (3.20) ensures that constraint (C3) is fulfilled.

If worker A’s previous year’s vacation has started before worker B’s previous
year’s vacation, worker A’s vacation must start before or at the same time as
worker B’s vacation. Workers can be sorted by previous year’s vacation start
date in the base data, so the constraint can be presented in a simple form

by =bpmy, m=23,..,M. (3.21)

Another constraint is needed to ensure that the vacation start of the last driver
1s not after the vacation start of the first driver

by = by — N. (3.22)
Equations (3.21) and (3.22) add constraint (C4) to the model.

The maximum number of periods that the vacation of the first driver can shift
forward can be set with the constraint

by <l + f + fimax (3.23)

Equation (3.23) is used to add constraint (C13) to the model, when necessary.

The duration of a vacation is usually the same as the vacation allowance, but it
must be increased by 1 period, if a vacation overlaps multiple public holiday
days. For this reason the durations of possible vacations X,, ; are set to be

Zmk = am T k, m=12,..M, k=0,1. (3.24)
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Each worker’s vacation end period is equal to the start period plus the duration
(for example, if a vacation’s duration is 3 periods and the starting period is 5,
the vacation period will end at the beginning of period 8)

em’k = bm + Zm,k- (325)

Each worker m has exactly one vacation, so always either X, o or X;, ; is cho-
sen as the actual vacation x,,. This can be represented using the presence char-
acteristic of the conditional interval variables X,, , by imposing the constraint

Tmo *tTm1 =1, m=172,..,M. (3.26)

With equation (3.26) Constraint (C1) is fulfilled as each driver gets exactly
one vacation.

The duration of a vacation of driver m must be extended to be a,, + 1, if the
vacation overlaps multiple public holidays. When n' is used to mark a period
with multiple public holidays, the extension of vacation can be modeled with
the constraint

Tm1 =1, bp=n"—a,+1,..,n. (3.27)

Equation (3.27) is used to enforce constraint (C2).

Constraints are also used to forbid vacation start at certain periods i.e. public
holiday periods and second periods of each planning period (periods starting at
the first Thursday of each planning period). If period n is a forbidden vacation
starting period, h(n) = 1, otherwise h(n) = 0. The forbidden vacation starting
periods are modeled with

b,, # nh(n), n=12..,N. (3.28)
Equation (3.28) ensures that constraints (C9) and (C10) are fulfilled.

A vacation also cannot start in a period which would lead the ending point of
the vacation to be on the next vacation season

emrk <N +1, m=12,..,M, iftb,,=1,..,N, (3.29)
emr < 2N + 1, m=1,2,..., M otherwise. (3.30)
Constraint (C11) is fulfilled with equations (3.29) and (3.30).
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The amount of workers on vacation in each period must be less than or equal to
the maximum amount of workers allowed on vacation

Viotar(M) < P, n=1,..,N. (3.31)

Equation (3.31) forces fulfillment of constraint (C5).

The amount of surplus workers in each period must be equal to or greater than
Wnin

Wn) = wpin, n=1,..,N. (3.32)
Equation (3.32) adds constraint (C6) to the model.

The amount of surplus workers in each period must be equal to or smaller than

Wmax
Wn) < Wi n=1,..,N. (3.33)

Equation (3.33) enforces constraint (C7).

The maximum amount of workers with skill j allowed on vacation at the same
time 1S Spqy, j

Viotar,j(M) < Smax,j» n=1,..,N, j=12,..,]. (3.34)
Constraint (C8) is fulfilled with equation (3.34).

Finally, constraint (C12) states that vacation must start at least g periods after
the ending period of vacation in the previous vacation season. This can be
modeled with equation

by =v,+g, m=12,..,M. (3.35)

3.4.4. Objective function

The most important objective of the vacation planning is to maximize the min-
imum number of surplus workers w,,,;,,. This ensures that the surplus is split as
evenly as possible in order to have room for unexpected events and absences
such as sick leaves. Another objective is to minimize the maximum number of
surplus workers w,,,,,. The objectives can be presented in a single objective
function
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maX(Wmin - quax): (3-36)

where q is a parameter which can be altered to change the relative importance
of the two optimization criteria.
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4. Examples

In this chapter, the constraint programming formulation presented in the previ-
ous chapter is used to solve vacation planning problems. In chapter 4.1 a small
problem with two workers is solved to illustrate how the constraint program-
ming model works. After that, a description of two real world problems and
results obtained with the constraint programming model are presented in chap-
ters 4.2. and 4.3. The model was implemented for use in real world problems
with IBM ILOG CPLEX CP Optimizer and solved using a computer with an
Intel Core 17-4810Q CPU, 16GB of RAM memory and a 64-Bit operating sys-
tem.

4.1. Step-by-step solution of a small problem

First the solution process of a small vacation planning problem is presented in
detail. There are two drivers A and B, who both have a vacation allowance of 2
periods, and no special skills. Previous year’s vacation starting period for driv-
er A is 1 and for driver B it is 6. The vacation season in this example is 10 pe-
riods long, which include the end of one planning period (periods 1-4) and a
full planning period (periods 5-10). There are no public holidays.

The constraints of the problem with the data of the instance are:

(C2)  The length of the vacation of each driver m is 2 periods

(C3)  Each worker’s vacation must start at least f = 2 periods after the pre-
vious year’s vacation start period.

(C5)  The number of workers on vacation in each period is less than or
equal to the maximum number p, of workers allowed on vacation
wherep = [3,3,4,2,3,3,2,2,2,2].

(C9)  Vacations cannot start in the second period of a planning period, i.e. in
period n = 6.
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(C13) The vacation of the first driver can shift forward at most f,,, = 4
periods more than the minimum shift forward f (so the vacation must
shift forward by 2 to 6 periods, see equation (3.23)).

The starting situation before allocating vacations is presented in Figure 7. An
entry zero is used to mark periods with work for each worker and a yellow col-
or indicates the position of previous year’s vacation.

1 2 3 45 6 7 8 910
A 0O 00 000O0O0O0O0
B 0O 00O O0O0O0CO0DO0O0
Max vacations 3 3 4 2/ 3 3 2 2 2 2
Vacations 0O 00 O0O0O0O0O0O0OO0
Surplus 3 3 4 2 3 3 2 2 22

Figure 7: Base data

Before the vacations are assigned to the workers, the domain (i.e., possible
values) for vacation variable’s start period for each worker is computed. When
constraints (C3) and (C13) are considered, b, € [3,4,5, 6,7]. In addition, con-
straint (C9) forbids vacations to start in period 6, so the final domain for work-
er A’s vacation start is by € [3,4,5,7].

When constraints (C3) and (C9) are considered, the domain for the vacation
variable’s starting period for worker B is bg € [8,9,10,11,12,13, 14,15,
17,18, 19, 20]. Constraint (C9) forbids vacation start also in period 16, which
corresponds to period 6 in the solution. Now, when the vacation starts in period
10 or 20, its ending point will be after the vacation season, which is not al-
lowed (constraint (C11)). The domain of by is now reduced to [8,9,11,12,
13,14,15,17,18,19]. These are the possible starting periods for driver B’s
vacation when the vacation of driver A is not considered. But when the starting
period of A’s vacation is considered, constraint propagation can be used to
reduce further the domain of bg. Constraint (C4) states that the order of the
vacations must stay the same as in the previous year. This is enforced with
equations (3.21) and (3.22). Equation (3.21) states that the vacation of driver B
cannot start before the vacation of driver A and equation (3.22) states that the
vacation of driver B cannot go past the vacation of driver A after jumping. As
the maximum for b, is 7, the maximum for by is the corresponding period after



38

jumping, period 17. Respectively, if by = 5, maximum for by is 15, if by = 4,

maximum for bg is 14 and if by = 3, maximum for bg is 13. The decisions of

assigning vacations can be formulated as a search tree with depth of three. The
starting point of A’s vacation is decided first and after that the starting point of
B’s vacation is decided:

ifb, = 3, by
ifb, = 4, by
ifb, =5, by
ifb, = 7, by

€
€
€
€

[8,9,11,12,13]
[8,9,11,12, 13, 14]
[8,9,11,12,13, 14, 15]
[8,9,11,12,13, 14, 15,17]

All in all there are 26 possibilities for assigning the vacations. The results of all
these vacation assignments are presented in Table 1.

Table 1: Results of all the feasible vacation assignments

bA bB W min Wmax | Wmin _D'Iwmax
3 8 1 3 0.7
3 9 1 3 0.7
3 11 1 3 0.7
3 12 1 3 0.7
3 13 0 3 -0.3
4 8 1 4 0.6
4 9 1 4 0.6
4 11 1 4 0.6
4 12 1 3 0.7
4 13 0 3 -0.3
4 14 0 4 -0.4
5 8 1 4 0.6
5 9 1 4 0.6
5 11 2 4 1.6
5 12 2 3 1.7
5 13 1 3 0.7
5 14 1 4 0.6
5 15 1 4 0.6
7 8 0 4 -0.4
7 9 1 4 0.6
7 11 1 4 0.6
7 12 1 3 0.7
7 13 1 3 0.7
7 14 1 4 0.6
7 15 1 4 0.6
7 17 0 4 -0.4
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When the objective function is set to be max w,,;, (no weight is given to min-
imizing the maximum surplus) there are two optimal solutions: by = 5, bg =
11 and by = 5, bg = 12. The first solution is presented in Figure 8. Cells with
a number 1 and green color represent vacations. Driver B’s vacation jumps to
the start of the vacation season. This is modeled by using a period number that
is greater than 10. Figure 9 presents, where the vacation is really assigned, by
considering each period 10 + 71 as period n.

11 12 13 14|15 16 17 18 19 20

A
B
Max vacations

Vacations
Surplus

A

B

Max vacations
Vacations
Surplus

Figure 9: The real assignment of vacations

If the objective function is changed to be max wy,;, — 0.1wy,,,, the second
solution with by = 5,bg = 12 is the only optimal solution. It has wy,,, = 3,
which is one smaller than in the solution presented in Figures 8 and 9. This
solution is presented in Figure 10.

A

B

Max vacations
Vacations
Surplus

Figure 10: Optimal solution with objective function max w,,;, — 0. 1w,,,4«
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4.2. Real world problem 1

The first real world problem we consider consists in planning the vacations of
one of the largest train driver bases in Finland. The plan is made for the fall
vacation season. The personnel base has M = 90 drivers, and there are 2 spe-
cial skills, 4 drivers have special skill 1 and 20 drivers have special skill 2. Ta-
ble 2 presents the total vacation allowance (days) a,, of each driver m, the
vacation allowance in periods a,, /3, previous year’s summer vacation starting
periods [, and the possible special skills of each driver s,,, ; and s, ,. The end-
ing periods of the vacations in the previous vacation season are not considered.

Table 2: Base data about the drivers for fall vacation season

priver | 1| 2[ 3] 4] s| e[ 7] 8| of 10[ 12] 12] 13] 14] 15[ 16] 17] 18] 19[ 20[ 21] 22] 23] 24] 25] 26] 27/ 28] 29] 30
a,, of o o o[12) 6| 9 of 9of of of o of o of 6 o 6 o 9 of 9[12] 9of of o 9 9 9 o
a,/3 | 3] 3] 3] 3] 4] 2] 3[ 3| 3 3[ 3] 3] 3] 3] 3] 2f 3] 2] 3[ 3] 3] 3] 4] 3 3] 3[ 3] 3] 3] 3
I 1 2] | 1] 2] [ 2l ] [ a] o] a1 2 3] 4 a] af 4] 4] 4] 4] 5| 6] 6 6 6 7] 7 7
Sm.a 0 0 0o O O O 0O O 0 O 0 0 1 0 O0f 0/ 0/ 0/ 0O/ 0o/ Of O/ 0/ 00 O, Of 0 O 0f O
Spm2 1/ 1| 0| 0| 0|/ 1 0Oof Of O 0o/ 0o O O 1 O oOf 1/ 0/ Oof 1 O/ 0f Oof O/ 1, o 0 0] 1] O
Driver | 31| 32[ 33] 34| 35 36[ 37] 38] 39] 40[ 41] 42[ 43] 44 45[ 46| 47] 48] 49| 50[ 51| 52] 53] 54| 55] 56 57/ 58] 59] 60
a,, o[ 12| o of 9 of o of of of of of of o 1212/ 12 9 e[ 12/ 12] 9 9o 9f o 9 9 9 6 o
a./3 | 3 3] 3] 3] 3 3 3[ 3] 3] 3] 3 3] 3[ 4 4] 4 3 a] 4 3] 3[ 3] 3] 3] 3] 3] 2 3
[ 7 7] 7] 7] 7] 7] 8] 9| 9 10| 10 10[ 10[ 10] 10 11] 11] 12] 11| 12] 12[ 12] 12 13[ 13] 13] 13 13[ 13] 14
Sm.a 0 0 0 O 1/ Of 0/ 0o/ 0o/ O Oof Oof O, 0 Of 0/ 0] 0O 0l 0f 00 0o/ 0 O O 0 O 0 O
Spm2 0 0 0o O O O O O 0 O O 0 O 21 1| 0/ 0| 0o/ O/ 0of 0of 0/ 0o/ 0 O 1] 0 O 1| 1
Driver | 61| 62[ 63 64 65| 66[ 67| 68 69] 70| 71] 72[ 73] 74| 75[ 76] 77| 78] 79[ 80[ 81| 82] 83[ 84| 85] 86 57/ 88[ 89] 90
a, | 12[12[12] of o of of o o of 6 6 1212/ 12] 9] o 9o of o 6 6 9f 9o 9o of 9 of 9 9
a,/3 | 4] a] 4] 3] 3] 3| 3] 3| 3] 3] 2] 2] 4] 4 4] 3] 3] 3] 3] 3] 2] 2] 3] 3] 3] 3] 3 3] 3] 3
I 18 18| 18] 18 18] 18] 18] 18[ 18] 18] 18] 18] 20| 21] 21[ 21] 21] 21] 21] 22[ 22| 22] 22[ 22| 22[ 22[ 23] 23] 23] 23
Sm.a 1/ 0| 0/ 0| 0o/ O/ Oof Of O] 0/ 00 O Of 0 O oOf Of O 1| 0/ O/ Of Of Of 00 00 O O] 0] O
Spm2 0 0 o0 1 of 0Of 0 1| 1 0 o0f 0O/ O 1 o©Of O Of 0o/ O of Of Of 0/ 1, 0 1| 1 0 0 ©

The fall vacation season includes 13 weeks, which correspond to N = 26 peri-
ods. The two of the first periods belong to planning period 15/2016, the next
six periods (3-8) to the planning period 16/2016, and so on. There is one public
holiday period (n = 24, with h(24) = 1), which extends the overlapping vaca-
tions. Table 3 presents the maximum amount of workers allowed on vacation
for each period p,, and the forbidden vacation starting periods with h(n) = 1.

Table 3: Base data about the periods for fall vacation season

n 1] 2| 3| 4 5 6| 7/ 8 9] 10 11] 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24| 25| 26
Py | 22| 22| 21| 19| 19| 19| 19| 19| 19| 19| 19| 19| 19| 19| 15| 15| 15| 15| 15| 15| 20| 20| 20| 20| 20| 20
h(n) O/ 0O O/ 1| 0 0O/ 0 O O 1] 0o/ 0] O O Of 1] 0/ 0o/ 0o 0o 0o 1/ o] 1] 0o O
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Given the problem data above, the problem-specific constraints are now:

(C2)  The length of the vacation of each driver m is a,,, unless the vacation
overlaps a public holiday period. See Table 2 for the values of a,,.

(C3)  Each worker’s vacation must start at least f = 8 periods after the pre-
vious year’s vacation start period in the fall vacation season.

(C5)  The amount of workers on vacation in each period is less than or equal
to the maximum amount of workers allowed on vacation p,,, see Table
3 for values of p,,.

(C8)  The maximum amounts of workers with skills 1 and 2 allowed on va-
cation at the same time are Sy,gx,1 = 1 and Spyax 2 = 5.

(C9)  Vacations cannot start in the second period of a planning period, i.e. in
periods n = 4,10, 16, 22

(C10) Vacations cannot start on public holiday period n = 24.

(C13) Vacation of the first driver can shift forward at most f;,,,, = 7 periods
more than the minimum shift forward f (so the vacation must shift
forward 8 to 15 periods).

The base data was entered to the constraint programming model and the prob-
lem-specific constraints were altered to match the requirements presented in
this chapter. The value g = 0.1 was used as the weight for minimizing the
maximum surplus workers w;,,,, making maximizing minimum surplus work-
ers Wpin 9 times more important in the objective function.

An optimal solution was found in 31.99 seconds, having w,,;, = 6 and
Wmax = 12. A visualization of the solution i1s presented in Figures 13—-14 in
Appendix A. In the figures, rows represent drivers and columns represent peri-
ods. An entry 0 is used to mark working periods and 1 is used to mark vacation
periods. The yellow color is used to mark previous year’s vacations and the
green color indicates the planned vacations. Drivers who have the special skill
1 are colored in blue and a bold font is used for drivers who have the special
skill 2. Below the row of driver 90 there are rows that report different totals for
each period: s is the amount of surplus workers, Vac is the amount of vacations
planned, PVac is the amount of previous year’s vacations, S1Vac is the amount
of drivers with the special skill 1 on vacation and S2Vac is the amount of driv-
ers with the special skill 2 on vacation.
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The average surplus is 7.57, so the obtained minimum surplus of 6 is a good
result considering the amount of constraints. The maximum surplus of 12 is
quite high, but there are only 4 periods, where the surplus is higher than 10. No
period has more than 1 worker with special skill 1 on vacation simultaneously
and there is only 1 period which has 5 workers with special skill 2 on vacation
simultaneously. The rest of the periods have 4 or less simultaneous vacations
for drivers with skill 2. The vacations overlapping period 24 are one period
longer than the vacation allowance, and no vacations start at period 24 or at the
other forbidden starting periods. The vacations of drivers from 60 to 90 jump to
the beginning of the vacation season.

The produced solution is sufficient for implementation, even though there are
some “spikes” in the amount of reserve workers. These spikes could be used
for example for planning periodical trainings. But as the model is fast in pro-
ducing new solutions, it can be easily tested, which constraints are causing the
spikes. After multiple test runs with different constraints relaxed, it was found
out that maximum surplus could be reduced by removing the constraints that
forbid vacation starting at periods 4 and 22. The reasons for this lowering of
maximum surplus can be seen from Figure 14.

The last period (n = 26) has 12 surplus workers. If vacations of drivers 50 and
51 could be moved to start one period later at the forbidden staring period 22,
the amount of surplus workers in period 26 would decrease to 10, while at the
same time the amount of surplus workers in period 21 would increase from 7 to
9. In addition, period 4 has 12 surplus workers. Vacation of worker 77 cannot
be shifted forward to start at period 3, because it would lower the minimum
surplus, and it cannot start at period 4 because of the constraint. By allowing
vacations to start in period 4, the surplus at period 4 can be lowered easily. The
combination of allowing vacations to start at periods 4 and 22 allows also
evening out the spikes at periods 8 and 10.

The results with the two relaxed constraints were obtained with calculation
time of 56.19 seconds and they are presented in Appendix A, Figures 15 and
16. Now minimum surplus is W;,;, = 6 and maximum surplus is wy,4, = 10.
Vacations starting from worker 57 jump to the beginning of the vacation sea-
son, 3 workers earlier than in the previous result. All the remaining constraints
are respected; now 3 vacations start at period 4 and 7 vacations start at period
22. These can cause some difficulties at roster planning, so all in all the result
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with no relaxed constraints is better, even though wy,,, is higher by 2. In the
test runs it was found out, that if the starting period of driver 1’s vacation
would not have an upper limit, a solution with w,,,;;, = 7 could be obtained, but
the vacations shifted forward too much for practical applications. In the runs
that were used to produce Figures 13-16, upper limit for the vacation start peri-

od of driver 1 was set to be 7 greater than the lower limit for the starting peri-
od.

4.3. Real world problem 2

The second real world problem we consider consists of planning vacations of a
medium-sized personnel base for summer and fall vacation seasons. First, the
vacation plan for the summer vacation season is made and after that the vaca-
tion plan of the fall vacation season is made while taking into account the
summer vacation plan.

The personnel base has M = 28 drivers, and there are 9 drivers with a special
skill. Table 4 presents the vacation allowance (days) a,, of each driver m, the
vacation allowance in periods a,, /3, previous year’s summer vacation starting
periods [,,, and the possible special skill of each driver s,, ;. The ending periods
of the vacations in the previous vacation season are not considered.

Table 4: Base data about the drivers for summer vacation season

wu

priver, 1| 2| 3| 4| 5| 6| 7| 8| ol10/11]12]13/14]15]16/17]18]19/20|21]22|23]24/2526|27]28
a, 18|18 18/15/15/15 1515151518 15/18/15/15/15 15/15/15/15/15/15/15/15 15 15/15/15

@./3 | 6/ 6 6 5 5 5 5 5 5 5 6 5 6 5 5 55 55 555 555 555
b 1 1) 1 3 3 6| 9 9/10/10/10/11/15/15/17 17/20/23 232326 29|29 29 30|30/30
Sma | 0/ 1/ 10/ 0 0 0/ 0 1/ 0/ 1/ 0 1/ 0 0 0 1/ 0/ 1 0 1 0 0/ 1 0 0/ 0/ 0

The summer vacation season includes 17 weeks, which consists of N = 34
periods. The first period belongs to the planning period 9/2016, the next six
periods 2-7 belong to planning period 10/2016, the periods 8-13 to the planning
period 11/2016 and so on. The last three periods 32-34 belong to planning pe-
riod 15/2016. There is one public holiday period (n = 7), which extends the
overlapping vacations. Table 5 presents the maximum amount of workers al-
lowed on vacation for each period p,, and the forbidden vacation starting peri-
ods with h(n) = 1.
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Table 5: Base data about the periods for summer vacation season

n 1| 2| 3
Px 6
h(n) 0] O] 1

6| 7] 8| of 10| 11| 12 13[ 14| 15| 16| 17| 18] 19| 20] 21| 22] 23| 24] 25 26| 27| 28] 29| 30| 31 32| 33[ 34
6/ 6/ 6/ 6/ 6/ 6/ 6/ 6 6 6 6 6 6 6 7 7 7 7 7 7 7 ¥ ¥ I T 7| 5 5 5
o 1 o 1 of of of of o 1 o o o of of 1] of of o o o 1 o o of of of 1] o

w
@

oo | &
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Given the problem data above, the problem-specific constraints are now:

(C2)  The length of the vacation of each driver m is a,,, unless the vacation
overlaps a public holiday period. See Table 4 for the values of a,,,.

(C3)  Each worker’s vacation must start at least f = 12 periods after the
previous year’s vacation start period in the summer vacation season.

(C5)  The amount of workers on vacation in each period is less than or equal
to the maximum amount of workers allowed on vacation p,,, see Table
5 for values of p,,.

(C8)  The maximum amount of workers with skill 1 allowed on vacation at
the same time iS Sygy 1 = 2.

(C9)  Vacations cannot start in the second period of a planning period, i.e.,
in periods n = 3,9, 15, 21,27, 33.

(C10) Vacations cannot start on the public holiday period n = 7.

The base data was entered to the constraint programming model and the prob-
lem-specific constraints were altered to match the requirements presented in
this chapter. The value g = 0.1 was used as the weight of minimizing maxi-
mum surplus workers w,,,,, thus making the objective of maximizing the min-
imum surplus workers w;,,;;, 9 times more important than minimizing wy, 4, in
the objective function.

An optimal solution was found in 10.23 seconds, with having wy,;, =1
and w,,,,,, = 2. A visualization of the solution is presented in Figure 11. In the
figure, rows represent drivers and columns represent periods. An entry 0 is
used to mark working periods and 1 is used to mark vacation periods. A yellow
color is used to mark previous year’s vacations and a green color the planned
vacations. Drivers who have the special skill are colored in blue. Below the
row of the driver 28 there are rows that report different totals for each period: s
is the amount of surplus workers, Vac is the amount of vacations planned,
PVac is the amount of previous year’s vacations and SVac is the amount of
drivers with the special skill on vacation.
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The obtained solution is excellent, as the difference between minimum surplus
workers and maximum surplus workers is only 1, while the constraint of hav-
ing a maximum of two workers with the special skill on vacation simultaneous-
ly is also fulfilled. The vacations overlapping period 7 are one period longer
than the vacation allowance. The vacations of drivers from 16 to 28 jump to the
start of the vacation season, as putting more vacations at the end of the vaca-
tion season would lower w,,,;,,. No vacations start at any of the forbidden start-
ing periods.

PP 10/2016 PP 11/2016 PP 12/2016 PP 13/2016 PP 14/2016 PP 15
3 4 5 8 9 10 11 12 13|14 15 16 17 18 19|20 21 22 23 24 25|26 27 28 29 30 31|32 33 34

OO0 00000

0
0
0
0
0
0
0
2

20221112122 111112211 1122222221
44 6 6 6 7 3]2 3 6 6 6 655 3 44 45 3 2 44 3443 476

Figure 11: Results for the summer vacation season

Next, the vacation plan for the fall vacation season is made. One driver retires
during the fall, so there are M = 27 drivers for which vacations are planned, 8
of which have the special skill. Table 6 presents the data for the fall vacation
season. Now also the ending periods of summer vacations v, are considered in
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making the vacation plan. The drivers are sorted by the vacation start period of
previous year’s vacations. As the order of previous year’s vacations differs
between summer and fall, the drivers are not in the same order as in the sum-
mer vacation season.

Table 6: Base data about the drivers for fall vacation season

Driver| 1| 3| 5| 6

N
@

12| 9|11 4[10[20[21] 7|18[23]24]25/26]28[19]17]16]22] 8[14]15[27
@ 112/12| 9| 6 9/ 9/ 9 6 6 6 9 9 9 9,9 9 9 96 9 6 9 6/ 6 6 6
a./3 | 4| 4| 3| 2 30303 2 2 2 3 3 3 33 3 3/ 323232222
. 13737|39|3941 41|41|43|45 4547|4749 49|51|51|51 53 53|55|55 55 56|58|58 58 58
Smi | 0 1/ 0/ 0 1 0 1/ 10 0/ 0/ 1 0 0 0/ 0 1 0 0/ 1/ 1 0 0/ 0/ 0 0 0
Ym |21/23]22|25/2232|28(31/23/29/10|11/27| 5|12|15/15/16/17| 8| 5 6 11]|28|34/34/17

a

N

The fall vacation season includes 13 weeks, which consists of N = 26 periods.
For the purpose of modeling the problem, the period numbers are set to start
again from 1. In presenting this example, however, the period numbers are
transformed so that they continue from the end of the summer vacation season.
The first period is period number 36, as period 35 has two days in the summer
vacation season and two days in the fall vacation season, so vacations cannot
be planned in it. As no vacations are scheduled in period 35, it provides a good
opportunity for trainings, as most of the drivers are at work. The first two peri-
ods belong to planning period 15/2016, the next six periods 38-43 to the plan-
ning period 16/2016, and so on. There is one public holiday period, which ex-
tends the overlapping vacations (n = 59). Table 7 presents maximum amount
of workers allowed on vacation for each period p,, and the forbidden vacation
starting periods with h(n) = 1.

Table 7: Base data about the periods for fall vacation season

n | 36| 37| 38| 39| 40| 41| 42| 43| 44| 45| 46| 47| 48| 49| 50| 51| 52| 53| 54| 55| 56| 57| 58| 59| 60| 61
Pn| 4/ 5 5/ 5 5/ 5 5 5 6/ 6 6/ 6/ 6/ 6/ 6/ 6/ 6/ 5 5 5 5 5 5 5 5 5
h(n) O O O 1] 0 0O 0 O O 1 0o/ 0 O O O 1] 0f o] 0 O

Given the problem data above, the problem-specific constraints are now:

(C2)  The length of the vacation of each driver m is a,,, unless the vacation
overlaps a public holiday period. See Table 6 for the values of a,,.

(C3)  Each worker’s vacation must start at least f = 8 periods after the pre-
vious year’s vacation start period in the fall vacation season.
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(C5)  The amount of workers on vacation in each period is less than or equal
to the maximum amount of workers allowed on vacation p,,, see Table
7 for values of p,,.

(C8)  The maximum amount of workers with skill 1 allowed on vacation at
the same time 1S Spyq, 1 = 2.

(C9)  Vacations cannot start in the second period of a planning period, i.e. in
periods n = 39,45, 51, 57.

(C10) Vacations cannot start on a public holiday period n = 59.

(C12) Vacation of each driver m must start at least g = 10 periods (5
weeks) after the ending period summer vacation vy,.

The base data was inputted to the constraint programming model and the value
q = 0.1 was used as the weight for minimizing the maximum surplus workers
Winax- An optimal solution for the problem was found in 7.50 seconds, having
Winin = 2 and w4, = 3. A visualization of the solution is presented in Figure
12. In this figure, next to the driver-column is also reported a column gap
which indicates the gap from the end of the summer vacation to the start of the
fall vacation in periods.

The solution is again very good; the difference between the minimum surplus
workers and the maximum surplus workers is only 1, and there is a maximum
of two workers with the special skill on vacation simultaneously. The vacations
overlapping period 59 are extended to be one period longer than the vacation
allowance. There are not vacations that start at the forbidden starting periods.
The smallest gap between the end of summer vacation and the start of fall va-
cation is 11 periods, which is acceptable.
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PP 15| PP 16/2016 PP 17/2016 PP 1/2017 PP 2/2017
36 37|38 39 40 41 42 43|44 45 46 47 48 49|50 51 52 53 54 55|56 57 58 59 60 61

2 32 23 2/2 32222233323
24443 3113 2 22 3253525425400

Figure 12: Results for the fall vacation season
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S. Experiences from schedul-
ing real world vacations

The vacation planning model presented in Chapter 3 was used in planning the
vacations of the train drivers for the year 2016 at VR. Plans for the spring va-
cation season were made in September 2015, and plans for the summer and fall
vacation season were made in February 2016. This chapter summarizes the
experiences of planning vacations with the new model.

The first step of the vacation planning is to gather the base data, which was not
a simple task. Forecasting demand for freight trains many months in advance is
especially difficult. A spreadsheet was sent to the superior of each personnel
base in order to gather information about the retirements and fixed absences
such as parental leaves. At the same time, the preferences regarding vacation
allocations of drivers with short vacation allowance were asked, as they had
two possibilities for allocating their vacations between the vacation seasons.
After that, the resource planners filled in the tables reporting the special skills
of the workers. The actual start of the vacation planning was then delayed as
much as possible to obtain better demand forecasts.

After the base data was collected, it had to be preprocessed in order to be given
in input to the constraint programming model. This included for example con-
verting previous year’s (2015) vacation start dates into vacation start periods
corresponding to periods of the 2016 vacation seasons. Information about the
vacations of retiring drivers and fixed absences of other drivers was also ex-
pressed in terms of periods and it was combined with the demand forecast to
obtain the maximum allowed vacations for each period. Finally, the drivers
were ordered according to their previous year’s vacation start period to allow a
simple formulation of constraint (C4).

The constraint programming model was used in planning the vacations of all
the personnel bases. For most of the cases, good solutions were found in less
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than a minute, while the solution time for the largest personnel bases was at
most 3 minutes. The largest personnel base had 124 drivers and the smallest
personnel base had 3 drivers. The spring vacation season had 40 periods in
which vacations were planned, the summer vacation season had 34 periods,
and the fall vacation season had 26 periods. In some of the personnel bases an
applicable solution was found with the first run of the model, but quite many of
the personnel bases needed some tweaking of the constraints or the base data in
order to improve the solution quality. Often, in the largest personnel bases, the
maximum surplus workers tended to be much larger than the minimum surplus.
The last period of a vacation season had usually less vacations than the previ-
ous periods, as vacations have different lengths, but a vacation of a driver can-
not start before the vacation of the previous driver. The forbidden vacation
starting periods posed also challenges occasionally, causing “spikes” in the
surplus drivers for some periods, but usually those did not hamper the solution
quality much. The gap constraint (C12) also caused difficulties in some of the
personnel bases. The gap from the previous vacation had to be at least 4 weeks
(8 periods), and vacations had to shift forward 7 weeks in the spring vacation
season, 6 weeks in the summer vacation season and 4 weeks in the fall vacation
season.

As an example, a driver could have had his/her spring vacation ending at the
end of May, and the previous year’s summer vacation starting at the beginning
of August. As a summer vacation must shift forward by at least 6 weeks with
respect to the previous year, the earliest possible starting time for the vacation
would be at the middle of September. But as a summer vacation is usually 3
weeks long, the vacation would not fit entirely within the summer vacation
season (June-September) even if starting at the earliest possible period, so it
must jump to the beginning of the summer vacation season. Now the constraint
(C12) forces the vacation to start at least 4 weeks after the start of the summer
vacation season, so the earliest possible starting time for the vacation would be
at the beginning of July. Overall, the constraints force the vacation to shift for-
ward by three months, while the summer vacation season is only four months
long. This is not a desirable result. In addition, the large shift forward of this
vacation forces all the vacations that must start after it to be also shifted for-
ward significantly. In some cases, situations like this one required to relax the
constraint (C4) regulating the order of the vacations start times, while the con-
straint (C12) was still always imposed.
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After the vacation plans were ready, drivers were given two weeks of time to
review them and to make requests for changes. Depending on the personnel
base, 0 to 50 % of the drivers requested changes for their vacations. The largest
percentages were on a few of the smallest personnel bases. On average around
10-20 % of drivers made requests. The requests for changing vacation timings
had to be accepted or denied by manually adjusting the optimized vacation
plans. This task consumed quite a lot of time, but allowing the drivers to re-
quest changes was important for them, as the new vacation planning model
reduced the predictability of their vacation timings.

As the base data had to be processed manually to be in the form required by the
model, a few mistakes did happen. There were a few personnel bases where the
vacation allowances of the drivers got mixed, and this was not noticed until the
preliminary vacation plans were released to the drivers. As the vacation times
were already released, a complete new plan with correct data could not be run
with the model. The vacation lengths had to be corrected by hand while keep-
ing the starting periods unchanged.

All in all the vacation planning process required much less time after the intro-
duction of the new planning model. Gathering and processing the base data
was the most time-consuming phase of the planning, whereas the plans could
be produced quickly with the model. The small running times allowed testing
multiple combinations of constraints in order to get as good as possible results.
For example, if a good result was obtained while imposing that a maximum of
5 workers with a certain special skill can be on vacation simultaneously, a new
run could also be made while imposing a smaller maximum of 4 drivers. This
allowed checking whether the other characteristics of the solution stay satisfac-
tory while the availability of workers with that special skill is increased.

At the time of finalizing this thesis, the vacations of train drivers for year 2017
were being planned. Solution times to optimal solution for the three vacation
seasons were recorded for all the personnel bases, and those are presented in
Table 8. The table includes personnel base number, number of drivers working
at the personnel base, number of different special skills at the personnel base,
and solution time (ST) in seconds for the spring-, summer-, and fall vacation
season. The number of drivers varies between 116 and 3 while the number of
special skills varies from 10 to 0. The winter vacation season has 43 periods,
the summer vacation season 35 periods and the fall vacation season 26 periods.
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All the solution times were under 50 seconds, making the solution times negli-
gible compared to the time needed for gathering base data. The solution times
decrease when the number of drivers in the personnel base decreases. Between
the vacation seasons the solution times are similar, even though the spring va-
cation season has 17 more periods than the fall vacation season. The number of
special skills does not impact solution times much either.

Table 8: Solution times for all the personnel bases

Personnel |Number of |Special ST spring |ST summer|ST fall
base drivers skills (seconds) |(seconds) |(seconds)
1 116 10 34.50 39.30 45.99
2 99 7 27.66 33.27 23.83
3 90 2 27.46 28.39 19.76
4 61 1 15.81 17.41 17.88
5 45 3 11.48 10.03 8.84
6 44 3 9.45 8.99 15.50
7 44 2 7.76 8.38 8.22
8 42 3 17.07 13.17 11.33
9 39 3 11.28 8.55 12.62
10 38 4 5.27 8.34 6.27
11 35 1 10.71 9.90 8.30
12 29 4 7.23 5.15 4.65
13 28 2 11.64 15.18 13.09
14 27 2 13.19 7.93 7.27
15 24 2 5.50 5.24 6.40
16 16 2 7.94 7.19 6.95
17 13 1 4,76 5.39 7.39
18 10 1 7.92 8.57 7.70
19 10 1 8.05 7.21 8.66
20 9 1 4.26 5.01 5.35
21 6 1 4.55 4.58 4,48
22 3 0 4.69 4.01 4.38
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6. Conclusions and discussion

The objective of this thesis was to develop an automated solution approach for
planning train drivers’ vacations, reduce the time needed for vacation planning,
and reduce the overtime costs of the company. A constraint programming for-
mulation proved to be an efficient way of modeling the problem. It allowed
including various constraints that were used to improve the solution quality for
all the stakeholders. The employees for whom the vacations are planned have
different preferences with regard to the vacation planning and the same is true
for the planning personnel or the management of the company.

Drivers’ union representatives highlighted that the new vacation planning pro-
cess must be fair for all the drivers, and that the vacations must circulate
among the drivers as was the case in the previous model. The circulation goal
was achieved to some extent by introducing a constraint imposing a minimum
shift forward for each vacation start with respect to the previous year. Two
contributing factors to the fairness of the plans were keeping the order of the
vacations the same as in the previous year, and allowing each driver an equal
chance to ask for a change in his/her vacation dates after the preliminary plans
were released.

The planning personnel needed a tool that would alleviate the workload related
to the vacation planning. As the plans were previously made on spreadsheets
by hand, the process was time-consuming and prone to errors. Also, making
changes to the plan after spotting an error was a lengthy process as a change in
a single driver’s vacation often caused a need to alter multiple other vacations
in order to balance the reserve drivers over all periods. The new model reduced
the planning time needed considerably, and decreased the amount of errors. As
new vacation plans could be made in minutes, the developed model also al-
lowed testing multiple scenarios with slightly different values for the con-
straints in order to search the best possible solution with respect to different
characteristics of the solution.



54

The company wanted to lower overtime costs, and optimizing the allocation of
drivers’ vacations was found to be an efficient solution. With the previous va-
cation planning method, vacation levels did not vary inside a vacation season,
whereby too many vacations were scheduled in planning periods with low
maximum working time (for example around Christmas), thus causing large
overtime costs. The new vacation planning model allowed taking into account
work demand forecasts at planning period level, and this enabled assigning a
much lower amount of vacations in the planning periods with public holidays.
In theory this reduces overtime costs caused by vacation allocation drastically,
but there is not yet enough data about the effects of adopting the new model to
allow drawing conclusions about this.

Drivers’ union representatives prefer the old vacation scheduling process,
which was simpler to understand and deemed to be fairer. The old process was
more constrained than the new approach. Drivers were placed on vacation in
groups of constant size. All the drivers in a vacation group had vacation at the
same time, and the timings of the vacations of the following year were also
precisely known in advance. The work amount forecasts used in the new ap-
proach are not very accurate, as those must be made months before the duties
and rosters are planned for drivers. Some of the aspects of the actual demand
and training needs are also not known at the time of vacation planning. For
example, freight traffic volumes depend on customer demand and even on
weather. As the forecasts cannot be as accurate as needed, some of the work
must be transferred between depots during the actual planning of the duties for
the drivers which takes place just a few weeks before drivers actually perform
the duties.

Still, the introduction of the new vacation planning process has been a success;
there has been surprisingly little resistance from the drivers, although the new
process lowered the predictability of vacation timings. Clear visualizations of
the solutions have been really important. Those allow the drivers to see that
they are treated equally, as the order of the vacations stays the same as in the
previous year and the vacations shift forward by approximately the same
amount of weeks from the previous year’s vacations. The planning personnel
also prefer the new model, although gathering and processing the base data for
the optimization model is still a time-consuming task. Also, dealing with the
requests of change in vacation timings takes some time. The management of
the company appreciates the new vacation planning process, as it allows more
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freedom in vacation planning. All in all the implementation of the new vaca-
tion planning model and process went well, and the goals set in the beginning
of the project were achieved.

One of the possible future developments for the model is to allow planning for
the whole year (three vacation seasons) simultaneously. This could lead to bet-
ter solutions at a yearly level as vacations are not planned in three separate sea-
sons. The model could be also adapted to plan the vacations of different em-
ployee groups, for example conductors. This should be relatively simple, as
constraint programming allows modifying the constraints easily. Lastly, the
constraint (C13) reducing the maximum shift forward of first driver’s vacation
could be formulated as a soft constraint, adding a related penalty term to the
objective function. The constraint could be imposed for all the drivers, and
both linear and nonlinear penalty functions for vacations shifting forward too
much could be tested to improve solution quality.
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Figure 13: Results of real world problem 1, part 1/2
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Figure 14: Results of real world problem 1, part 2/2
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Figure 15: Results with relaxed constraints, part 1/2
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Figure 16: Results with relaxed constraints, part 2/2
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