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1 Introduction

Infinitely repeated games are a way to model and explain long-term cooper-
ation and competition. This study focuses on equilibrium strategies of the
games with players who observe perfectly each others actions, discount their
future payoffs and use only pure strategies. The aim of the study is to intro-
duce and improve computational methods to find out equilibrium outcomes
of repeated games. Also, the payoffs produced by these equilibrium paths
are of interest.

This study discusses the computation of equilibria in infinitely repeated
games by using Bergs and Kittis idea of elementary subpaths [2]. They
proved that an enormously large sets of equilibrium paths are generated by
a collection of elementary subpaths and introduced an algorithm for comput-
ing them. In their study, some fundamental questions remain still open. Is
there a more efficient way to compute the elementary subpaths of the game?
With large discount factors, the number of these paths tends to be large,
but the study does not tell if the number of the paths is finite? Also, the
question about finding the equilibrium paths that give the smallest payoffs
to the players’ remains open. The question is fundamental, because we need
to know the payoff of that path in Bergs and Kittis algorithm. There is also
a theoretical motivation to find this path, because the path appears at the
folk theorems of repeated games [6].

Knowing the equilibrium paths provides one way to generate payoff set of the
game. The payoff set of a game contains all payoff pairs (pairs on game with
2 players) which can be achieved by using the equilibrium strategies. These
payoff sets are fractals [3], which become more dense when the discount factor
grows. The point where the fractal covers the whole feasible payoff area is of
special interest. The folk theorem of infinitely repeated games [6] states that
this happens for every game when the discount factor is close to one, but
according Stahl [10] this seems to happen even with much smaller discount
factors for some games. This motivates developing a tool for investigating
to not only equilibrium paths, but payoff sets too.

The focus of this study is on working principles of the improved algorithm
for computing equilibrium paths. The algorithm is introduced in Section
3. Section 4 analyses the efficiency of the algorithm and introduces some
examples of using algorithm to find the equilibrium and punishment paths
of the game. There is also an example where we solve the minimum factor
where the payoff set is full dimensional in Prisoners dilemma.
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2 Theory and background

In this section we first shortly introduce the main concepts of the repeated
games and previous studies. The most essential part of this section is the
idea of the elementary subpaths and using them for computing equilibrium
paths. Previous theory about payoff sets and folk theorem are outlined in
the end of this section.

2.1 Introduction to repeated games

2.1.1 Stage game

The left of Table 1 below presents a stage game in normal form. Player
1 chooses between T and B (row) and player 2 chooses between L and R
(column). The payoffs of players can be read from the cell so that first
number is the payoff of player 1 and the second number payoff of 2. The size
of the matrix and the number of player depends on the game. The outcomes
of the game are denoted by alphabets a-d in the right of Table 1.

Table 1: Game matrix of Prisoner’s dilemma and notation of actions
L R

T 3,3 0,4
B 4,0 1,1

L R
T a b
B c d

Minmax payoff for each player i is the smallest payoff, which player i can
be forced by the other players. In the example game, this payoff is 1 for
both players because when one player tries to minimize the other’s payoff,
he chooses second alternative which lets the other player choose between
payoffs 1 and 0.

2.1.2 Nash equilibrium

Nash equilibrium of a strategic game with ordinal preferences is defined
in Equation 1 [9]. Said less formally, Nash equilibrium is such a pair of
strategies (one to each player), which no player can achieve better payoff by
changing his strategy when the other players use the equilibrium strategies.
Pure strategy equilibrium means that the players use fixed actions and for
example not randomize between multiple actions.

ui(a
N
i , a

N
−i) ≥ ui(ai, aN−i), ∀i, ai ∈ Ai, ai 6= a−i (1)
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In the example game the only Nash equilibrium outcome is payoff (1,1),
because if one or another player defects his payoff drops to 0. In every other
cell at least one player could improve his payoff by changing his choice.

2.1.3 Infinitely repeated games

Repeated game consists of a series of stage games. This study considers
about infinitely repeated games, where the stage game remains the same all
the time. The average payoff of these game is received by Formula 2, where
δi is the discount factor of player i, σ current strategy profile and ak(σ) is
the action played after history k when the strategy σ is adopted

Ui(σ) = (1− δi)
∞∑
k=0

δki ui(a
k(σ)). (2)

According to the definition, the average payoff is a discounted sum of payoffs
of all stage games. Discounting means that the weight of a payoff is smaller
when it actualizes further in future. This formula allows the comparison of
average payoffs with different discount factors.

The outcome of a game is called a path and they are denoted by cda(bbd)∞,
which for example means playing first actions c, d and a and then repeating
infinitely actions b, b and d.

2.2 Equilibrium of repeated games

The strategy σ tells to the player what to do in current situation, techni-
cally, with current history of played actions. We say that the strategy is
a best response to the other players’ strategy if the player could not earn
better payoff by using any other strategy. If the players’ strategies are best
responses to each other, they are an equilibrium of the repeated game. In
this study equilibrium of a game means subgame perfect equilibrium (SPE),
which demand that the current strategy is a best response in every subgame
of the infinitely repeated game. For example dbba∞ is SPE path if and only
if every subgame (dbba∞,bba∞, ba∞, a∞) also satisfies equilibrium condition
in Equation 3 [1]. In this equations σ is the adoted strategy, vk is the payoff
achieved after current stage-game when adoting σ and v− is the punishment
payoff. This condition is called the incentive compatibility condition and the
path which satisfies this conditions in every subgame is called an equilibrium
path.

(1− δi)ui(ak(σ)) + δiv
k
i ≥ max

ai∈Ai

[(1− δi)u(ai, a−i(σ)) + δiv
−
i ] ∀i (3)
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According to the condition, the player must achieve at least as good payoff
by following the equilibrium path (left side) than choosing one-shot deviation
and then receiving punishment: minimum equilibrium payoff v−i for the rest
of game [1](right side). A path is an equilibrium path only if it satisfies this
condition for every player in every subgame. The discount factor δi has often
critical influence whether a path is SPE or not.

In Prisoner’s dilemma example, d is the Nash equilibrium of the stage game
and d∞ is the only SPE path when the discount factors of both player are
small. When the discount factor grows, path a∞ becomes also equilibrium
path at the point where payoff of a∞ (

∑∞
k=0 3·δki ) exceeds payoff of betraying,

which comes from the path bd∞ for player 1 (4 +
∑∞

k=1 1 · δki ).

2.3 Idea of elementary subpaths

Berg and Kitti present the idea of elementary subpaths in their study [2].
They show that "all the equilibrium paths will be composed of fragments
called elementary subpaths". However, as seen in Section 4, the amount
and the length of elementary subpaths are not finite for sure. With these
fragments of equilibrium paths it is possible to build a graph, which present
all the equilibrium paths of the game.

2.3.1 Definition of elementary subpaths

To determine if a path is an elementary subpath, Berg and Kitti define two
other types of paths: first-action feasible (FAF) and first-action infeasible
(FAI) paths. Definitions are based directly on Equation 3 of SPE. vk in
inequality is replaced by con(a), which is the least payoff that the player
must get in future. For each player i we can solve coni(a) from the incentive
compatibility condition:

coni(a) =
maxai∈Ai [(1− δi)u(ai, a−i) + δiv

−
i ]− (1− δi)ui(a)

δi
∀i (4)

Moreover, the least continuation payoff con(p) is recursive as equation 5 [2],
where p is a path, a is the last actions of p and pk−1 is path p without its
last action

coni(p) =
coni(p

k−1)− (1− δi)ui(a)

δi
,∀i. (5)

After solving the continuation payoff requirement of a path, it can be sorted
to FAF or FAI path according to the following condition. A finite path p is
an FAF path, if
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con(p) ≤ v−,∀i. (6)

This means that it is impossible to gain so small payoff after playing path p,
that the path is not an equilibrium path. On the other hand, a finite path
p is FAI path, if

coni(p) > max{vi|v−i = con−i(p)} (7)

This is satisfied when the players’ continuation payoffs demands are so high
that all of them (if any) cannot be reached at the same time.

In the example, we have the same punishment payoff v− = 1 for both players.
If the continuation payoff con(p) is less than 1, which is the smallest payoff
that the player can accept, the path is a FAF path. If the continuation payoff
requirement is too high, it cannot be achieved and the path is an FAI path.
Between these limits there are still paths which cannot be sorted to these
categories. Berg and Kitti call these as Neutral paths (N).

It is possible that FAF path contains FAI path. In Bergs and Kittis example
bdd is FAF path and dd FAI path and that is why bdd cannot be part of an
equilibrium path. When paths, that contain FAI paths, are removed from
FAF path list, we get the list of elementary subpaths of the game.

2.3.2 Equilibrium paths and elementary subpaths

All the equilibrium paths can be constructed from the elementary subpaths.
To get the SPE paths it is essential to consider all subgames. Every infinity
path which can be constructed from consecutive elementary subpaths is an
equilibrium path.

If we have elemetary subpaths aa, ba, and bbaa then bb(a)∞ is an equilibrium
path because we can build bb(a)∞ from bbaa and aa after that, b(a)∞ using
ba and aa infinitely and of course (a)∞ with just using aa. The path aab(a)∞

would not be an equilibrium, because we have no way to build subpath
ab(a)∞. Playing action a demands always playing a again.

2.4 Payoff sets

Equilibrium paths of a game provide a possibility to examine the payoff set.
A large set of equilibrium payoffs can be computed from the graph presen-
tation of equilibrium paths. Plot of the sets are certainly approximative due
to finite number of payoffs which is possible to generate by computer. Still,
plots of payoff set are often very illustrative.
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Figure 1: The payoff set of Prisoners Dilemma with discount factors 0.52
and 0.58

Now, we concentrate on payoff sets when players use the same discount
factor. Payoff points lay in feasible area, which is convex hull formed from
actions of the game matrix then cut by punishment payoff by players. Only
convex hull area is possible to reach by actions of the game even with not
equilibrium paths. Cutting by punishment is essential because players do not
accept smaller payoffs. By definition the punishment produce the smallest
payoff, which is possible to achieve by equilibrium strategies.

2.4.1 Payoff sets of repeated games

When discount factor is large enough, all strictly rational payoff points in
feasible area, are achieved by some equilibrium path. Feasible payoffs are
payoffs greater than minmax payoff and in the area limited by points of
the game matrix. This statement is know as folk theorem [5]. The crit-
ical discount factor is denoted as δ̄ and it is the smallest discount factor,
which leads to the full-dimensional payoff set. Figure 1 presents Prisoners
Dilemmas payoff sets with two different discount factor and it can be seen
that payoff set becomes more dense when the discount factor grows. Folk
theorem does not tell what is the smallest discount factor a specific game in
which theorem is valid. It does not tell either if the theorem is valid with
any discount factor which is smaller than one.

2.4.2 The critical discount factor

Payoff sets of repeated games are fractals more specifically sub-self-affine
sets. Bergs and Kittis show in their study [3] how the fractal becomes more
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dense when the discount factor grows. Their study leads to conclusion that
using continuation payoff sets we can find the critical folk discount factor.
The idea is to find the smallest discount factor, where the continuation payoff
sets cover the whole feasible area. The sets are computed by a illustrative
way in Section 3.2.2, where’s also presented a tool to examine these sets
of given game. Gaps and holes in payoff set become filled only if some
assumptions are made. Either players have to use correlated strategies or
continuation payoff sets must be convex [4].

3 The computational methods

This section is for detailed description of the algorithm made for comput-
ing equilibrium paths using elementary subpaths. Algorithm also finds the
punishment paths and payoffs and returns the graph of equilibrium paths of
the game. Section 3.2 describes the methods for plotting the payoff sets and
finding the critical folk discounting.

3.1 Algorithm for computing equilibria paths of repeated
game

This algorithm returns the graph of equilibrium paths of given game. The
basic structure is presented in Algorithm 1. Algorithm input consists of
payoff vectors and a vector of players discount factors. The output is a
graph of equilibrium paths and an approximation of a payoff set, which is
generated from graph. It is notable that algorithm solves and returns also
the punishment paths, which is essential for solving all other equilibrium
paths.

The main structure of Algorithm 1 is to first find FAF paths, when punish-
ment payoff are given, this is described in Section 3.1.1. At the start point
we do not know the punishment, so the minmax payoff is used instead. The
minmax is a lower bound to punishment payoff and if the punishment payoff
is higher, collections of FAF paths contains some excessive paths. Excessive
paths are removed after solving the punishment payoffs later in run. When
we have a collection of FAF paths, it is possible to construct a graph by an
algorithm describer in Section 3.1.2.

Punishment paths are found by searching from the graph for each player the
path, which gives the smallest payoff. After finding these paths the algorithm
checks if the paths satisfies the equilibrium condition. If not, the algorithm
starts over but now using the smallest payoffs, which found from previous
graph, as the punishments. Anyway, we know that the payoff found from
the graph is smaller than the punishment. Often, there is no need to run



8

the algorithm several times, because there is no difference between FAF path
collections computed with the minmax or the punishment payoffs.

Algorithm 1: Structure of algorithm finding equilibrium paths
Input: Payoffs and discount factors
Output: Graph, punishment paths and payoffs, vizualisation of payoff set
begin

punisment ← minmax;
while Any punishment path is not SPE do

Search FAF paths // Section 3.1.1
Make the graph from FAFs // Section 3.1.2
Find and update punishment // Section 3.1.3

Plot approximation of payoff set; // Section 3.2.1

3.1.1 Finding FAF-paths

Finding FAF-paths is the first step of searching the equilibrium paths of
a game. Pseudocode of this algorithm is presented in Algorithm 2. The
algorithm sorts paths to FAF, FAI and N category by bread-first search
starting at one length paths (a,b,c and d in 2x2 game). Child paths of every
N path are added to a queue of unsorted paths (if a∈N, aa, ab, ac, ad goes to
the queue of unsorted paths). Only child paths of N paths are added, because
the children of FAI paths are always FAI paths and children of FAF paths
are FAF paths. The result can be thought as a tree where leaf nodes are
FAF or FAI paths and inner nodes are Neutral paths. This is demonstrated
in Figure 2.

Checking conditions for FAF or FAI paths comes from the Equation 6. The
idea of the condition is that a payoff outside of feasible payoff area cannot
be received. The algorithm uses tighter conditions than necessary making
the computation more simple. That is why some of FAF paths are sorted to
Neutral paths, but the child paths of these missorted paths should be sorted
correctly sooner or later. The condition used is the same than Berg and
Kitti[2] use in their algorithm.

A finite path p is a FAF path if

con(p) ≤ con(final action of p), length of p > 1 (8)
con(p) ≤ v−, length of p = 1 (9)

and a finite path p is a FAI path if

coni(p) > v̄i, for some i (10)

where v̄i is the maximum payoff for player i in the stage game.
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Sometimes the fourth category for paths is needed. If a path p (length k)
is such a FAF path that the demand for the continuation payoff of a path
p (con(pk)) is exactly the same than the path’s parents continuation payoff
(con(pk−1)) for some player, we say that the path is an Infinite path (INF).
A infinite path is an FAF path when the last action is repeated infinitely, but
we can prevent the infinite loop by removing it from the search in this stage.
This check recognize only simple INF paths, but it should be possible to
recognize more complicated infinity paths too. Implementing a proper check
for more complicated infinity paths, could help when the set of elementary
subpaths is enormously large.

When the algorithm reaches the point where are no Neutral paths in queue,
then the search is ready. At this point every single path is possible to sort
to feasible or to infeasible. Path is infeasible, if it contains any FAI path
anywhere as a part of the path. That is why some of FAF paths may be
infeasible. Removing infeasible FAF paths is done when making the graph
in the Algorithm 3.

As seen in FAI and FAF conditions whether the path is FAF of FAI depends
critically on the discount factors and the punishment payoffs. The example
game used previously in this study, Prisoner’s dilemma, has 17 FAF paths
when the discount factor for both players is 0.51. These paths are used in the
next algorithm and they are: bdcdaaab, d, cb, ca, ba, bdcdaaaa, bdca, cdba,
bdaaac, bdaaaa, cdbdaaaa, aa, adaaaa, cdaaaa, bc, cdbdaaac and cdaaab.
There are no infinity paths with this discount factor, but with discount 1/2
there would be infinity paths like ad(a)∞.

Algorithm 2: Searching FAF paths
Input: Payoff vectors, discount factors, punishment payoffs
Output: Collection of FAF paths
begin

Set action set (ex. a, b, c, d) to queue of untested paths;
while Number of FAFs < limit & queue of untested is not empty do

p ← next path from queue of untested paths;
if con(p) satisfies condition 9 then

p → Collection of FAF paths;
else if con(p) satisfies condition 10 then

continue;
else if coni(p) = coni(p

k−1) for some i then
p → Collection of INF paths;

else
add childs of p to qeue of untested paths
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3.1.2 Constructing graph from elementary subpaths

Algorithm for making the graph is presented in Algorithm 3. The first phase
in this algorithm is collecting FAF path as a tree as in Figure 2 which presents
the FAF paths from the example in the previous chapter. The tree of FAF
paths is the figure used as a base of the graph of all equilibrium paths. AFter
that the final graph is constructed by adding every possible connection from
a branch to another.

It is essential that the path satisfies the equilibrium condition not only for
the first subgame but also for every subgame after that. The algorithm
is a bit different than Bergs and Kittis, but the result is equivalent. The
algorithm checks every FAF path separately and find possible connections
to other FAF paths. Because the equilibrium condition must be valid for
every subgame, we have to mind about FAI paths in the middle of FAF
paths. If, for example, bda is an FAF path, the connection must be feasible
for subpaths da and a too. This is done by checking that subpaths of current
FAF paths are also FAF paths. If a subpath is the beginning of another FAF
path, then the current path can be connected to that other path. When
every possible connections are added, graph is like in Figure 3.

The last, trivial, phase is removing dead-end from graph. The FAFs, which
are not elementary subpaths are removed, because they simply cannot be
connected to anywhere. The final graph is in figure 3.1.2.
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Algorithm 3: Make graph
Input: Collection of FAF paths
Output: Adjacency matrix and node list of the graph
begin

Make a tree from the collection of the FAF paths;
for Collection of the FAF paths do

pf ← current FAF path;
for sub-endparts of pf do

pf,e ← current sub-endpart of pf ;
if pf,e starts with a FAF path then

Continue to sub-endpart after found FAF;
if pf,e is start of a FAF path then

Add connection to the graph from start of pf,e to start of
found FAF;

Remove dead-ends from the graph;

3.1.3 Finding punishment

One very interesting question, when talking about repeated games, is punish-
ment paths and payoffs of a game. Generally, this is very untrivial question.
If repeating minmax action is a Nash equilibrium of repeated game then it is
also the punishment, because the minmax payoff of the repeated game can-
not be lower than minmax of the stage game [11]. A rational player never
accept a payoff lower than minmax. In every other cases it is possible that
punishment paths are complicated and there have not been any systematic
method to find them. This algorithm gives the answer to this question any-
time when the graph of the game is finite, practically when the discount
factor for both players is small enough.

The punishment path may be different for every player and the search shall
be done for every player differently. The main idea is to look at graph and
find the infinite path with the smallest payoff. Second part is the check if the
found paths are equilibrium paths. If not, the reason is that the assumed
punishment payoff is too low and there are excessive paths in the graph.
We can still use the payoff of found path as punishment of next iteration,
because it should be greater than previous assumption. With this method
the found punishment approach the real punishment by every iteration.

The main principle used to find graph minimum payoff path is to do bread-
first search for the graph. The search continues until a branch ends to a
node which the branch already contains. After finding a loop, the algorithm
assumes an infinite repetation of the loop. This is done for every possible
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branches of the graph. The method finds all possible loops of the graph
among which is the path producing the smallest payoff.

When the found path ends to an infinite loop, the algorithm computes payoff
for it and it is every infinite subpath for every player. They are stored to
a N x l matrix, where N is number of the players and l is the length of
path repeating loop once. Also, the punishment demands v−i matrix will be
computed using the incentive condition in form

vki ≥ max
ai∈Ai

[u(ai, a−i(σ))] + δiv
−
i ∀i (11)

where vki is the payoff for player i when starting at k:th action. The greatest
punishment, which makes subgame path as equilibrium is the equal case and
v−i is solved for every player and subgame. Now we can compare each player
punishment payoff demand and possible payoffs from graph. If a players
punishment path candidate demands smaller payoff than other players ac-
cept, then we can say that the punishment path candidate is not SPE and we
have to search new elementary paths with higher punishment assumption.

There is also some cutting conditions which make the search faster. One
is that if a payoff of a branch grows greater than some found infinite paths
payoff, investigating this brach is useless. On the other hand if the payoff of
a path with loop is equal to the minmax payoff, there is no need to search
for a better punishment path candidate.

3.2 Visualizing payoff set

Visualizing the payoff set is an illustrative way to examine payoffs of SPEs of
a game. For this work two method to visualize the set are developed. One is
based on the graph of SPEs and the other on the feasible areas of the game.
First is meant for visualizing actual payoff points and its fractalic shapes.
The other is based on feasible areas and it is made for finding the critical
discount factor.

3.2.1 Plotting payoff set from equilibrium paths

Plotting a payoff set is always approximative, because the number of possible
paths is infinite except in a few special cases. This algorithm just takes
random steps in the graph. After taking certain amount of the steps, the
algorithm stops when it arrives to the next loop. Then it calculates payoffs
for every player and then we have one point which is ready to plot. Usually
a few thousand points are needed to an illustrative figure. Two payoff sets
of the Prisoner’s dilemma was presented earlier in Figure 1. These figures
can contain two or three players payoffs at once.
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Algorithm 4: Search punishment paths
Input: Graph, games payoffs, discount factors
Output: Punishment path and payoff for each player
begin

for each player i do
Put start node to qeueu of untested paths;
while queue of untested path is not empty AND bestCandidateForI
6= minmax do

p ← next path from queue of untested paths;
for every chilf of p (pc) do

if payoff of p > payoff of bestCandidateForI then
continue;

if end of pc is loop then
uc ← Compute payoffs of for all players from every
subgame of pc assuming repeating loop infitely;
ucdemand ← Compute con. payoff demands for all players
from in every subgame;
if uc = minmax then

bestCandidateForI ← pc;
break;

else if uc < minmax for some i then
continue;

else if uc < bestCandidateForI then
bestCandidateForI ← pc;

else
pc → queue of untested paths;
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Figure 5: Two steps of making figure of the payoff set with the tool

3.2.2 A tool visualizing the critical folk discount factor

Another tool for examining the payoff sets was made especially to find the
critical folk discounting. The working principles of the tool are described
in this section. The tool needs the game matrix and discounting as input
and gives instantly figure of area covered by the payoff set. Third necessary
input is the punishment payoff, which can be different for both players.
If punishment payoffs are not trivial they can be solved by the algorithm
presented before. It is also important manually update punishment respond
to discounting.

Making the figure consist on two phases:

1. First step is to create the convex hull from points of the game matrix
and scale that hull among discounting for each action. The scaling is
done by affine transform y=Ax+b, where

A =

[
δ 0
0 δ

]
and b =

[
1− δ
1− δ

]
∗
[
u1(a) u2(a)

]
(12)

These areas are those which can be achieved even theoretically when
one action has been played. This is presented for Prisoner’s dilemma
in Figure 5 left.

2. Second step is to cut the convex hull by punishment payoff and get
feasible payoff area. Also each subarea need to be cut. Cutting points
of those are get by scaling original punishment point by the same affine
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transforms than subareas in the previous step. The unfeasible areas of
the subareas as removed in Figure 5 right.

In Figure 5 left is four areas which are the basic structure of the fractal. The
fractal consist on these four areas when they are copied in smaller scale over
and over again. The area becomes full at the time when these four areas
cover the whole feasible area. It is easy see where is the last uncovered area
with this kind of figure.

4 Analysis and examples

There is analysis and result from testing algorithm to various problems in
this section. In addition there are examples of punishment paths and find-
ing the critical folk discounting of the game in this section. The punishment
path example is about No-Conflict game and critical discounting example
about Prisoner’s dilemma, but the idea of these works as well in any re-
peated game. The algorithm’s ability to compute elementary paths with
high discount factors seems to be very limited so there is no final answer
whether the collection of elementary subpaths is finite or not. Instead some
new knowledge about the punishment paths is presented with the example of
computing punishment paths. The method to compute the critical discount
factor is brand new.

4.1 Analyzing equilibrium paths

When the discount factors grow, the number of elementary subpaths and the
length of the paths usually explode after some discount factor much lower
than one. In this case the algorithm stops searching paths after the limits set
by user. In this case the graph remains incomplete: there are some missing
equilibrium paths and if returned punishment payoff is not minmax payoff
for all players, it is possible that punishment path is not found. The main
problem of equilibrium paths is the huge amount of elementary subpaths
when the discounting grows over some critical point depending on the game.
The figures in Appendix 1 show amounts and lengths of elementary subpaths
paths of the Prisoners Dilemma and No-Conflict game. We would get same
kind of figures for other 10 symmetric 2x2 games.[7] The limit for the number
of FAF paths of those figures was 1000, but the rapid increasing both number
of paths and length of longest path is perceptible. Increasing the limit has
only a little effect, because in tested cases length of paths grows so rapidly. It
is notable that rapid growth of computing task happens often a much before
of the critical folk discounting.
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When looking for computation elementary subpaths games seem to divide to
easy and futile. The complete computation with every discount factor prob-
ably requires at least a different approach. Anyway these runs are made by
assuming minmax payoff for punishment and in some special cases knowing
the real punishment could reduce computing task to doable.

4.2 An example of punishment paths

The question about the punishment path and payoff of a game is fundamental
because of it is used as well as computing elementary subpaths as in this
study, but also in the proofs of folk theorems for different game types [8] [11]
[6].

Among 12 symmetric 2x2 there are three games under special interest: No-
conflict, Anti-No-Conflict and anti-Stag Hunt. Punishments paths of all
other 9 games are just repeating equilibrium action of the stage game, which
is easy to detect from the game matrix. In three exceptional games the
minmax payoff is achieved only at some higher discount factor.

Punishment payoff of the three special games follows the same pattern. When
the discount factors are small, punishments are just repeating the only equi-
librium action. With discount factors near one punishment are either re-
peating minmax action or some series generating payoff very close minmax
as folk theorem predicts. The interesting region is between them: in this
region punishment paths are complicated, payoffs are close to minmax and
new punishment path appear often when discounting grows even a bit.

Figure 6 presents punishment payoffs of No-Conflict game as function of
discount factor. The payoff matrix of the game is in Table 2 below. A more
detailed representation of these paths is found at Appendix 2. As seen in
the figure, the punishment between discount factors 0.44 and 0.49 are only
best found solution and we cannot say for sure if there are some equilibrium
paths with smaller payoffs. Despite that it is clear that punishment payoff
is not monotonic, which lead to situation where a path can be SPE at some
discount factor, but not at some higher discount factor.

Table 2: The payoffs of No-Conflict game
L R

T 5,5 3,4
B 4,3 2,2
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Figure 6: Punishment (average) payoffs of No-Conflict game with different
discount factors

4.3 Finding the critical discount factor of the payoff set

Fractalic nature of the payoff provide possibility to solve the critical folk
discount factor. The method is based on geometric areas of payoff set and
that is why it can be only used if all player’s are discounting with the same
factor. With different discount factors, the payoff sets tend to be malformed
and there is no exact area to fill.

The idea of this method was presented previously in Theory and background
section 2.4.2. For further study, we have developed a visualization tool with
Mathematica software. The same phenomena are seen in payoff sets made
from fractalic points, but the Mathematica tool makes possible to instantly
visualize where the unreachable payoffs are. The tool can handle 2x2 games
with different discount factors. By this way it is easy to find the last not-
covered part of the fractal. Solving the critical folk discount factor is usually
easy, because areas the are scaled linearly by the discount factor.

4.3.1 Finding the critical discount factor for Prisoners Dilemma

In this example fulfilling point of Prisoner’s dilemma is solved. With mathe-
matica tool we see that the last uncovered area is at the edge of the possible
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payoff area. The areas are presented in figure 7. The critical discounting
seems to be somewhere near 0.65. At the critical discount factor the corner
points of two areas come together. Because the both points move along the
same line, we can only look at x- or y-coordinates of points.

The idea of Equations 13 and 14 is to find the discount factor where the points
at edge of gap area meet each others. Equation 13 is about x-coordinates of
gap on the upper edge and Equation 14 solves y-coordinates of gap on the
right edge. When the game is symmetric, it is necessary to solve only one of
these equations. Notation of payoffs is basically same than before: a1 means
payoff for player 1, when action a is played.

The left side of equation Equations 13 is the x-coordinate of left corner
point of the upper edge of the gap. It moves linearly from b1 to d1 when
the discount factor goes from 0 to 1. This comes straight from Affine scaling
12. The right side is same kind of formula for the right edge of the gap.
When these point are the same, we get Equation 13 where the discount
factor can be solved. At asymmetric game we need to look area which is
the last uncovered area, so we can write the critical discount factor in form
presented in Formula 15. Setting payoffs like in Table 1 gives the critical
discount factor 2/3, which corresponds to previous results [10].

Figure 7: Almost full payoff set. The last uncovered area is easy to detect.

b1 + δ(d1 − b1) = c1 − δ(c1 − a1) (13)

c2 + δ(d2 − c2) = b2 + δ(b2 − a2) (14)
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δ̄ = max[
c1 − b1

d1 − a1 + c1 − b1
,

b2 − c2
d2 − a2 + b2 − c2

] (15)

Case where the last uncovered area is at the edge limited by punishment
payoff is more complicated to solve, if the punishment changes in surrounding
of the critical discounting. Equations are tricky, but they should be doable
at least in all 2x2 cases.

5 Conclusions and discussion

The study provide an improved method for solving the equilibrium paths of
the game with given discount factors. The method is based on Berg and
Kittis method [2]. The code works regardless of the size of the game matrix
or the number of players, but computing work seems to explode at some point
when discount factors increase. For that reason, most of the cases can be
divided to easy or impossible to be practical. There is no proof that amount
of the paths is infinite, but computing all the paths demand at least a new
kind of approach when discount factors are high. Approximative solution
can still be computed and payoff sets of these can be still illustrative.

As presented in Section 3.1.3 the algorithm uses an iterative method for
solving the punishment paths and payoffs. Abreu shows how the threat of
punishment payoff makes a path to equilibrium[1], but he does not have a
method to find that payoff unless in special cases. The payoffs of punishment
paths are used in proofs of folk theorems, but there have not been method to
solve these paths or their payoffs. This study discovers that the punishment
payoffs are not monotonic when discount factor grows, so some SPE path
may not be a SPE anymore when discount factor is a bit higher.

Having a way to compute elementary and punishment paths can support
further research. Obvious questions are what happens when the number of
equilibrium paths explode and are the collections of these paths still finite?
This study shows that punishment paths can be repeating long pattern, but
could these paths be infinitely long without a pattern? A punishment like
this cannot be found with described algorithm, but the question is essential
in theoretical mean.

Stahls provided that payoff sets may become full even if the discount factors
are far smaller than one [10]. This expands folk theorem [6], which says that
every feasible payoff are achieved by some equilibrium path when discounting
is close to one. This study presents an additional tool to visualize payoff sets
as fractals. Unlike the algorithm based on equilibrium paths, this method
is suitable only for equal discount factors, but makes possible to visualizing
sets when computing is too troublesome. This leads also to possibility to
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solve the exact the smallest discount factor when feasible sets is full at least
when mixed strategies are accepted. This is also demonstrated in Prisoner’s
dilemma-game.

Equilibrium paths are a seldom used approach to examining to payoff sets
in game theory, but the methods used in this study leads to exactly same
result than in previous studies. Therefore the methods, based on computing
equilibrium paths, may be a suitable alternative when solving problems in
theory of repeated games.
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A Figures of amount and length of FAF paths in
No-Conflict and Prisoners Dilemma games
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B Table of punishment paths in No Conflict-game

Discount factor Payoff Type Path, player A
0,3 5 Reliable a∞

0,31 5 Reliable a∞

0,32 5 Reliable a∞

0,33 5 Reliable a∞

0,34 3,002121447 Reliable daaaca(aaca)∞

0,35 3,020292007 Reliable (daaa)∞

0,36 3,01735768 Reliable daac(aac)∞

0,37 3,009157874 Reliable (daa)∞

0,38 3,032012595 Reliable (daa)∞

0,39 3,054600869 Reliable (daa)∞

0,4 3,000102939 Reliable (dacaaadaa)∞

0,41 3,008570049 Reliable (dacaa)∞

0,42 3,003441404 Reliable dacacca(aacca)∞

0,43 3,021507848 Reliable daca(ccaa)∞

0,44 3,001380772 Best found (daccaaa)∞

0,45 3,000000098 Best found (daccacadaaccaaaa)∞

0,46 3,000000717 Best found (dadaacccaaaaaacaa)∞

0,47 3,000000173 Best found (dadacababaaaacaa)∞

0,48 3,000002097 Best found (daccccaacacaabaa)∞

0,49 3,00000003 Best found (dadadacaaaaadabaa)∞

0,5 3 Minmax c∞

0,51 3 Minmax c∞

0,52 3 Minmax c∞
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C Summary in Finnish

Peliteoria tarkastelee strategista toimintaa tilanteessa, jossa toimijan saamat hyödyt ja
haitat riippuvat paitsi toimijan omista, myös muiden toimijoiden, valinnoista. Tällainen
tilanne voisi olla esimerkiksi yrityksen hinnoitteluongelma, jossa yritykset valitsevat myyn-
tihintansa kahdesta vaihtoehdosta: kalliista ja halvasta. Yrityksen myynti ja voitot riippu-
vat paitsi sen omasta valinnasta varmasti myös kilpailevan yrityksen valinnasta. Pitkäaikaisen
yhteistyön ja kilpailun mallintamiseen käytetään peliteoriassa äärettömästi toistettuja
pelejä.

Kandidaatintyössä tarkastellaan pelejä, joissa pelaajat valitsevat jonkin vaihtoehdon äärel-
lisistä määrästä vaihtoehtoja tietäen kunkin valinnan seuraukset sekä itselleen että muille.
Valintansa pelaajat tekevät yhtäaikaisesti ja toisistaan tietämättä, mutta päätösten jäl-
keen he havaitsevat seuraukset. Tämän jälkeen he tekevät uudet valinnat samojen vaih-
toehtojen väliltä. Pelaajan strategia määrää, minkä vaihtoehdon hän valitsee kunkin peli-
historian jälkeen. Pelaajien käyttämät strategiat muodostavat tasapainon, mikäli kukaan
pelaaja ei voi saavuttaa itselleen parempaa tulosta poikkeamalla käyttämästään strate-
giasta, ja usein tällaisia tasapainostrategioita on samassa pelissä useita erilaisia . Tas-
apainopoluksi kutsutaan tasapainostrategian käyttämisestä syntyvää lopputulosta. Eräs
tasapainopolku voisi yritysesimerkissä olla sellainen, jossa molemmat yritykset valitsevat
toistuvasti halvat myyntihinnat ja sen seurauksena saavuttaisivat jonkin euroissa mitat-
tavan hyödyn.

Pelaajat arvottavat kauempana tulevaisuudessa saatavat hyödyt vähemmän arvokkaiksi
kuin pian realisoituvat. Tätä talousteoriasta tulevaa hyödyn nykyarvon laskentaa kutsu-
taan diskonttaukseksi ja pelaajilla ajatellaan olevan erityinen nollan ja yhden välillä oleva
diskonttauskerroin, jonka avulla he arvottavat tulevat hyötynsä. Käytännöllinen tulkinta
tälle kertoimelle on kärsivällisyys – mikäli pelaajan diskonttauskerroin on riittävän suuri,
hän saattaa suostua huonoon tulokseen lähitulevaisuudessa saadakseen myöhemmin su-
uremman palkkion. Pelaajien käyttämät diskonttauskertoimet vaikuttavat ratkaisevasti
siihen, onko jokin polku pelin tasapainopolku.

Kandidaatintyön tavoitteena oli kehittää laskenta-algoritmi annetun pelin kaikkien tas-
apainopolkujen löytämiseksi. Kun tasapainopolut tunnetaan, voidaan tietysti tarkastella
myös hyötyjä, joita pelaajat saavuttavat niitä käyttäen. Erityisen kiinnostavaa on tas-
apainopolkujen määrän ja niillä saavutettavien hyötyjen vertailu eri diskonttauskertoimilla.

Työssä toteutettu algoritmi perustuu aiempaan tutkimukseen, mutta pyrkii vastaamaan
siinä havaittuihin puutteisiin. Yksi ongelmista on tasapainopolkujen määrän voimakas
kasvu ja siitä aiheutuvat laskennan ongelmat diskonttauskertoimen kasvaessa. Lisäksi
aiempi menetelmä tarvitsee alkutiedokseen pienimmän tasapainopolun avulla saatavan
hyödyn kullekin pelaajalle. Koska tätä ei yleensä tiedetä ennen kuin tasapainopolut
on selvitetty, on tämän ongelman ratkaisu laskennan kannalta välttämätöntä. Polkujen
lukumäärän kasvaessa kasvaa luonnollisesti myös mahdollisten hyötyjen lukumäärä. Nämä
hyödyt voidaan piirtää kuvaksi siten, että kunkin pelaajan hyöty määrittää hyötypisteen
yhden koordinaatin. Riittävän suurilla diskonttauskertoimilla saavutetaan tilanne, jossa
jokainen periaatteessa mahdolliseen hyötypisteeseen päästään jollain tasapainopolulla. Tämä
lause tunnetaan peliteoriassa folk teoreemana. Kiinnostava kysymys tähän liittyen on,
mikä on pienin diskonttauskerroin, jolla tämä täysi hyötyjoukko saavutetaan.

Vaikka tasapainopolut ovat äärettömän pitkiä ja niitä voi olla ääretön määrä, ne voidaan
usein koota joukosta äärellisiä polun pätkiä. Toteutetun algoritmin toiminta perustuu ju-
uri näiden elementaaristen osapolkujen etsintään. Lopuksi osapolut kootaan graafiksi, joka
sisältää kaikki pelin tasapainopolut. Graafista löytyy myös pienimmän höydyn tuottava
tasapainopolku, jota kutsutaan rangaistuspoluksi. Nimi johtuu siitä, että muut pelaa-
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jat voivat käyttää tätä polkua painostuskeinona. Rationaalinen pelaaja voidaan pakottaa
mihin tahansa polkuun, josta hän saa paremman hyödyn kuin rangaistuspolusta. Si-
ihen, onko jokin polku tasapainopolku, vaikuttaa siis olennaisesti kaksi asiaa: pelaajien
käyttämät diskonttauskertoimet sekä lisäksi rangaistushyöty, jolla muut pelaajat voivat
uhata pelaajaa. Graafin avulla voidaan myös piirtää kuva kaikista tasapainostrategioilla
saatavista hyötypisteistä. Nämä hyötypisteet muodostavat fraktaalin, siis kuvion, jossa
samat rakenteet toistuvat jatkuvasti aina pienemmässä mittakaavassa ja diskonttausker-
toimen kasvaessa kuvioon tulee lisää pisteitä uusien tasapainopolkujen myötä. Kuvion
täyttymisen tutkimiseksi tehtiin myös työkalu, jonka avulla löydetään helposti viimeinen
alue, joka ei ole hyötypisteiden peittämä. Käytännössä algoritmi ei löytänyt kaikkia tas-
apainopolkuja, kun niiden määrä on hyvin suuri, mutta pystyi silti tuottamaan havain-
nollisia kuvia hyötypisteistä. Sen sijaan rangaistushyötyjen laskeminen onnistui useissa
tapauksissa hyvin ja niihin liittyen tehtiin useita uusiakin havaintoja. Ensinnäkin pelaa-
jat voidaan yleisesti pakottaa sitä huonompiin rangaistuksiin, mitä kärsivällisempiä he
ovat. Tämä kehitys ei kuitenkaan ole täysin monotoninen, vaan toisinaan rangaistuk-
sesta saatava hyöty kasvaa hieman, kun diskonttauskerroin kasvaa vähän. Lisäksi rangais-
tuspolut osoittautuivat joissain tapauksissa hyvin monimutkaisiksi. Tällaisten polkujen
löytämiseksi ei aiemmin ole tehty mitään järjestelmällistä menetelmää.

Rangaistusten lisäksi saatiin mielenkiintoisia tuloksia hyötyjoukoille ja kyettiin löytämään
useille peleille tarkkoja diskonttauskertoimen alarajoja, joista lähtien hyötypistejoukko
peittää koko mahdollisen alueen. Tämä tarkoittaa sitä, että mikä tahansa rangaistusta
suurempi, mutta pelin puitteissa mahdollinen hyöty voidaan saavuttaa jollain tasapainos-
trategialla.

Kandityössä avoimeksi kysymykseksi jäi, olisiko periaatteessa mahdollista löytää kaikki
tasapainopolut myös tapauksissa, joissa niiden määrä on hyvin suuri. Kuitenkin ran-
gaistuspolkujen ja höytyjoukkojen osalta päästiin tavoiteltuihin tuloksiin. Toistettujen
pelien teoriassa hyötyjoukkoja on harvoin tarkasteltu tasapainopolkujen kautta, mutta
työssä käytetyt menetelmät johtavat lopulta samoihin lopputuloksiin kuin aikaisemmissa
tutkimuksissa. Näin ollen tasapainopolkujen etsimiseen perustuvia menetelmiä voidaan
pitää varteenotettavana vaihtoehtona ratkaistaessa äärettömästi toistettuihin peleihin li-
ittyviä ongelmia.
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