Lauri Jokinen

Cyclic Placement Method for Capsule Packing
Problem

School of Science

Bachelor’s thesis
Espoo 31.8.2018

Thesis supervisor and advisor:

Prof. Harri Ehtamo

A? Aalto University
|



AALTO-YLIOPISTO KANDIDAATINTYON
PERUSTIETEIDEN KORKEAKOULU TIIVISTELMA

Tekijd: Lauri Jokinen

Tyon nimi: Syklinen sijoittelumenetelma kapseleiden pakkausongelmassa

Paivimairi: 31.8.2018 Kieli: Englanti Sivuma@ira: 5427

Koulutusohjelma: Teknillinen fysiikka ja matematiikka

Vastuuopettaja: Prof. Harri Ehtamo

Téssd kandidaatintyOssd esitetddn algoritmi kahden tasossa olevan kapselin leikkauk-
sen pinta-alan laskentaan sekd menetelmd kapseleiden pakkausogelmaan neliGssd.
Tédssd ongelmassa tavoitteena on pakata kapseleita mahdollisimman paljon nelion
sisddn siten, etteivdt kapselit ole pdillekkdin. Algoritmi minimoi annetusta alkuti-
lanteesta kapseleiden vilisid, padllekkdisid pinta-aloja, kunnes ndiden pinta-alojen
summa on mahdollisimman pieni. Esitetyssd menetelméssa liikutetaan yhtd kapselia
kerrallaan pitden muut kapselit paikoillaan.

Menetelmén tehokkuus perustuu siihen, ettd liikuttamalla yhtd kapselia suuri osa
paallekkaisistd pinta-aloista ei muutu. Optimoitaessa yhden kapselin paikkaa pitda
laskea ainoastaan siihen kapseliin vaikuttavat pinta-alat. Kaikkien kapseleiden paikat
taytyy optimoida kylldkin useita kertoja, jotta kapselit asettuvat optimaalisille paikoille.
Vaikka parannamme vain yhden kapselin paikkaa kerrallaan, timi vdhentdd laskennan
madrdd merkittavasti vaihtoehtoiseen menetelméin verrattuna.

Ty0Ossd esitettyd menetelméd verrataan vaihtoehtoiseen menetelmién, jossa kaikkien
kapseleiden paikkoja ja asentoja optimoidaan samanaikaisesti. Syklinen menetelmé
toimii pienissd ongelmissa (5 kapselia) noin 65 % nopeammin kuin vaihtoehtoinen
menetelma ja tima suhteellinen laskentateho paranee kapseleiden méaran kasvaessa.

Avainsanat: Kapselin pakkausongelma, optimointi, gradienttimenetelmi, syklinen
menetelma




AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF SCIENCE BACHELOR’S THESIS

Author: Lauri Jokinen
Title: Cyclic Placement Method for Capsule Packing Problem

Date: 31.8.2018 Language: English Number of pages: 5+27

Degree programme: Engineering Physics and Mathematics

Supervisor and instructor: Prof. Harri Ehtamo

In this thesis we present an algorithm for calculating an intersection area of two capsules
on the plane and a cyclic placement algorithm for a packing problem where capsules
are packed into a square box. The cyclic placement method finds a local optimum for
a given initial setup by minimizing the overlapping areas of capsules. In the method
asingle capsule is moved at a time and all the other capsules are kept fixed in their places.

Efficiency of the cyclic placement method is based on the fact that when moving
a single capsule, most of the overlapping areas between the other capsules remain
unchanged regardless of the position of the chosen capsule. Thus, we need to calculate
fewer overlapping areas in order to move a capsule to a somewhat better location. On
the other hand, we need to optimize the locations of all the capsules several times to
finally reach the overall optimum for all the capsules.

In this thesis the cyclic placement method is compared to an alternative method
where places and orientations of all the capsules are optimized simultaneously. In
small packing problems (5 capsules) cyclic placement method is approximately 65%
faster than the alternative method and the computational efficiency improves with
more capsules.

Keywords: Capsule packing problem, Optimization, Gradient method, Cyclic place-
ment method




iv

Preface

This thesis was mostly put together during the summer 2018, but after that it took several
months to mould it to its final form. I'd like to thank my supervisor and advisor, Professor
Harri Ehtamo, for his patience with me and my sloppy terminology. I'd like to, and will,
thank the wonderful people of the Polytech Choir, my family and most importantly Loviisa,
for their support.

Servinkuja, 27.1.2019 Lauri Jokinen



Contents

Abstract in Finnish| ii

ADb i iii

P o iV

v

I Introduction 1

2 Background 2

B Materials and methods 3
B.1 Mathematical definitionotacapsulg . . . . . . . ... ... ... ..... 3
B.2 Calculating overlapping areaoftwocapsuley . . ... ... . ... .. .. 4
B.3 Objectivefunctiony . . . . . . . . . . . . . e e e e e e 7
B.4 Optimization methodsy . . . . . . . . . . . ... .. .. .. .. .. ... 11

B.4.1 Theoretical performance . . . . . . .. . ... ... ... ..... 11
B.4.2 Cyclicplacementmethod . . . . . . . . .. ... ... ....... 13
B.4.3 Refining the gradient methodsin Matlap . . . ... ... ... .. 14
B.5 Comparison of the algorithmg . . . . . . . . . . ... ... ... ..... 14

4 Results 16

5 Summary 20

A D) [

A Intersection points with circles and line segmentg 22
IA.1 Intersection pointof two linesegmenty . . . . . .. ... .. ... .... 22
IA.2 Intersection pointsoftwocircley . . . . . . . . .. ... .. .. .. ... 22
IA.3 Intersection points of a circle and a [inesegment . . . . ... .. ... .. 23

B Simulation data and fitting 24




1 Introduction

In a packing problem considered here, the goal is to fit as many objects as possible into a
certain space, such as a square box or a cube. Such packing problem is usually studied in
two or three dimensions, but other dimensions are also possible. Packing problems have
various applications in several engineering areas such as logistics, medicine and materials
science. In this thesis we’ll look at a two dimensional packing problem where we pack a
square room, e.g. a lift car, with capsules of the same size.

We approach the packing problem with minimization of the total overlapping areas of
all objects. Capsules can be used in many applications, for example to model humans from
above. Ellipses are also commonly used for this purpose [1], but capsules have simpler
shapes for packing problems, because overlapping areas are easier to calculate for two cap-
sules than for two ellipses. Capsules are first put randomly into the room allowing them to
overlap each other freely, and also intersect the square walls, and then this overlapping is
minimized.

Large optimization problems are usually decomposed to a number of smaller subprob-
lems that can be computed faster than the full problem. Cyclic algorithms (or coordinate
descent algorithms) are one of the first and simplest methods to optimize problems sequen-
tially [2][3]. Time has shown somewhat conflicting results with cyclic methods, and some-
times alternative and more sophisticated methods easily surpass the efficiency of cyclic
methods [2]. Yet, cyclic algorithms are used in various practical problems with good re-
sults, for example in neural networks [4] to simplify optimization problems.

A cyclic method in a packing problem allows us to reduce the objective function to a
form that is faster to evaluate. When moving a single object in the box, most of the over-
lapping areas (or volumes if the problem is three dimensional) between the other capsules
remain the same, except for the overlapping areas with the capsule under consideration.
Thus, when replacing the object we can handle only these overlapping areas at a time. The
new position is probably not the final optimal location for the object — we’ll have to opti-
mize all of the objects’ locations several times in cycles, until no capsule cannot be moved
to a better position, i.e., a local optimum is found.

In this thesis we present a way of calculating overlapping areas between capsules and
compare the cyclic placement method against a benchmark method, in which all the cap-
sules’ position parameters are optimized simultaneously with gradient method, as is also
done in [I]. The algorithm is implemented with Matlab software and its features and func-
tions, mainly Optimization Toolbox and Polygons are used for the simulations. Vector and
matrix notation is used as much as possible to make the problem easier to handle and to
extend results to three dimensions.



2 Background

In the optimization literature various packing problems have been studied a lot, especially
in the field of integer optimization. Ruokokoski studied a lift car packing problem [[]. In
particular, he modelled travellers as ellipses. The results can be used, for example, when
studying people flow capacity for large buildings. The problem can be extended by adding
people with suitcases or shopping carts. In Ruokokoski’s paper there was a problem with
ellipses occasionally overlapping each other very clearly. In this paper we implement re-
pelling factors between the objects (see Chapter B.3) which solves this problem. Ruokokoski
approached the packing problem with optimizing all the capsules’ locations simultane-
ously, that resulted in long calculations - especially for larger simulations.

A cyclic method is often coupled with a pattern search, such as an acceleration step
which helps coping with discontinuous objective functions [3], Chapter 8.5, or the method
of Hooke and Jeeves which adds some gradient descent spice to the method [3].

In a paper by A. Honkela, H. Valpola and J. Karhunen [4] coordinate descent was ap-
plied to a problem in neural networks. The paper’s approach was very similar to that of
ours and the results showed a 60%-85% reduction in the convergence times compared to an
alternative, Bayesian learning method. They coupled the cyclic method very successfully
with a pattern search, the method of Hooke and Jeeves. Not many recent papers exist on
optimization with cyclic method - and so far there is no paper, where a cyclic method is
applied to a packing problem.



3 Materials and methods

3.1 Mathematical definition of a capsule

A capsule centered at the origin can be defined with two parameters (also illustrated in
Figure [)): half of the width of the rectangle a € R, and circles’ radii r € R, . The location
of such capsule in the plane can be defined by three parameters: the angle of the capsule
with respect to the x-axis 6 € R, and a translation p € R%. We shall write

s=lg]. (D)
Ay
I r]
CIN L O s
WARNI
’ I3 a L '
C, C

(a) A capsule centered at the origin (b) Rotated capsule

AY

X

(c) Rotated and then displaced capsule

Figure 1: Parameters and transformations of a capsule

We will place the capsule at the origin, and then we’ll rotate and displace the capsule.
The rectangle’s coordinates are as follows (see Figure [I)):

=[] =) e[ el

The radius of the circles is 7 and their center points are

o <-[3)



Let a rotation matrix be

sin6 cosf

R(6) = [

We’ll rotate the capsule with an angle 6 and then displace the capsule with p, see Figures
b and [llc. The final coordinates for the rectangle’s corners are,

cosB® —sin 6]

r;=RO)r;+p, 1<i<4, (2)
and the center points of the circles are
c;=RO)c;+p, 1<i<2 3)

For further calculations we need an indicator whether a given point is in the capsule or
not. The point q is in the capsule s, if it’s in the rectangle, or in the circles. First we map
the point q to the origin state of the capsule s by first displacing it by —p and then rotating
it with R(—6). Let this point be q' = R(—6)(q — p). Now, the point q’ is in the rectangle
of the capsule iff [(—a < q} < a) A (=r £ ¢, < r)]. The point is in the right circle iff
[(q] — a)* + (¢5)* < r], and the point is in the left circle iff [(q] + a)* + (g5)* < r]. All
combined, point q is in capsule s iff

[(Ca<qi<a)A(-r<g, <]
V(g1 + @) + (g <7] @
V(@ - + (@ <r],
where q' = R(—-9)(q — p).

3.2 Calculating overlapping area of two capsules

Let’s find the overlapping area for two capsules of the same size, i.e., with the same a and r,

s; = [p] GI]T ands, = [pJ OZ]T. We'll calculate the intersection area in two steps: first
we’ll find a convex polygon that covers a part of the intersection area so that only feasible
circle segments (i.e., segments included in both capsules) are left out. Second we find and
calculate the areas for the circle segments. Capsules are convex sets and an intersection
of two convex sets is convex [6]. In particular, an intersection area of two rectangles is a
convex polygon.

First we need to calculate the intersection points of two capsules’ contours, let’s call these
points ipc’s. Equations for the ipc’s are provided in Appendix [Al. An example of the ipc’s is
shown in Figure Pa, where ipc’s are illustrated as black spots. The two capsules can totally
coincide, or they may share joint contours. If this is the case, we reject the ipc’s at these
regions. In Figure [§ there are further examples that can occur. Math for these features are
included in Appendix [Al. Note, that the number of ipc’s can be 1,2,3 or 4.

We also need to define some auxiliary points, denoted in Figure { as crosses. Let’s call
these points fixed capsule points, or fcp’s. The fcp’s consist of rectangle corner points, which
are needed to calculate a correct intersection polygon. Feasible fcp’s are in both capsules,
see Equation [. The possible fcp’s on s; are,

+
R(6,) [1?] + p,, with every combination of + -signs.



(a) Black spots are ipc’s and crosses are fcp’s. (b) Convex polygon (dotted line) and seg-
ments (dark areas). In this case both of the
segments are feasible.

Figure 2: Calculating the intersection area of two capsules

Nie

Figure 3: Different kinds of shared contours between the capsules with the corresponding
convex polygons and segments.

And with capsule s, possible fcp’s are
*a
R(6,) [+r] + p,, with every combination of + -signs.

An example of feasible fcp’s is illustrated in the Figure Pa as crosses.

Next we find the smallest convex polygon containing all ipc’s and fcp’s. I used Matlab’s
own algorithm convhull [6] to find the convex hull. An example of this hull is shown in
Figure Pb. The area inside the convex polygon can be calculated with Matlab’s command

polyarea [7].
Now all that is left are the areas of the feasible segments. Let’s choose two adjacent



—

Figure 4: A capsule with fixed capsule points (fcp’s) denoted with crosses.

points, h; and h,, defined by black spots and/or crosses. Let’s find, if a feasible segment ex-
ists between the points and if the segment’s area should be included to the total intersection
area. For the two points, two conditions must be true. First, both points must lie on a same
circle on either of the capsules. Let ¢ denote the center of the capsule circle. Second, the
segment region must be included in both of the capsules, see Equation (). To find whether
this is true, we only need to know if a single point on the segment arc is inside or outside
the capsules.

<
LR

(¢}

g

(a) Case, where |lu —c¢| # 0 (b) Case, where lu —c| =0

Figure 5: Calculating the top point v for the segment arc.

Let’s solve for the segment arc’s top point v, see Figure Ba. If we start from the circle’s
center point ¢, we need a vector that has the length of the circle’s radius r, and direction
from the center point c to the middle point of the points h; and h,. Let the middle point be
u = (h; + h,)/2. The direction vector is thus —c + u. So the top point in the middle of the

segment’s arc is
u

lu

—-C
v=c+r o’ lu—c| #0. (5)

Note, that the denominator in (f) cannot be zero. If the denominator is zero, then
1
lu—cl=0 <= §(h1+h2):c,

which means that h; and h, are on the opposite sides of the point ¢. This can be true only
when h, and h, are fcp’s, because we only have half circles. Since this is the only case where
the problem occurs, we can solve it with an if-statement. If we begin from the point p, we
want a vector of length a + r and a direction of —p + c, see Figure fb. The final coordinates



Figure 6: An example of a non-feasible segment marked with light gray.

for v are c—p
p+(a+r) , whenlu—c|=0
lc—pl
V= u-—c
c+r——, when |u — c| # 0.
lu—c

If v is in both of the capsules, we’ll accept this segment, otherwise it will be excluded
from the calculations. In Figure Pb all of the center points of all the segments are in both
of the capsules and thus all the segments are feasible; see also Figure f§, where there’s a
non-feasible segment.

Finally we can calculate the area of the segment [8]:

1 h,-h
Ageg = Ei’z (p —sing), ¢ = 2arcsin M,

where ¢ is a central angle of the circle, see Figure §. When we do this for all feasible seg-
ments, the resulting areas, and the area of the convex polygon, sum to the total intersecting
area of the two capsules.

3.3 Objective functions

Let a set of capsules be S = {s;,...,s,}, and N = {1,...,n}. Let the box B be a square with
sides of length b > 0. Corner points of B are

1|xb . o .
= , with every combination of =+ -signs.
2 |[xb

For the cyclic placement method we need an objective function f,,, m € N. It will be
used to optimize location and orientation of a single capsule, s,,. The function has three
parts. The first part gives the overlapping areas of all the other capsules with the chosen
capsule s,

> Alsisp), )

ieN\{m}



where m € N, and A(s;, ;) gives the intersection area of capsules s; and s,,,. The second
part gives the area of the capsule s, that is outside of B,

A(Sm) - A(B’ Sm)’ (7)

where A(s,,) is the area of the capsule s,,, and A(B, s,,,) is the intersecting area of square
B and capsule s,,,. The third part of the function f,,, makes capsules repel each other. The

Cv
8

Figure 7: A case of two intersecting capsules. The norm of p, — p, is the distance be-
tween the center points p, and p, of the two capsules. This distance should increase, if we
minimize the penalty term.

repelling factor to be minimized is interpreted as a penalty term. It is defined as follows,

Y
Z d(s;,sp) +1° 8)

ieN\{m}

where the function d(s;, s,,) gives the distance between the center points of the capsules s;
and s,,, see the Figure [7:

d(s;,sy,) = [[P; — Ppyll2-

We multiply Equation (B) by a penalty parameter y, which we take small because the over-
lapping and overflowing areas are more important to minimize. In the simulations, and for
the rest of this thesis, a value of y = 107° is used.

Finally we define the objective function f,, as the sum of functions defined in (§), (])

and (B):
s = Y (AGusw) + L) + Ao — A5y ©)

ieN\{m} d(si’ Sm) +1

An example of a contour map of f,,(s,,) as a function of p, , with 6,, fixed, is shown in
Figure Bb for a randomly chosen capsule s, shown in Figure §a. The function is smooth
and no discontinuities arise, thus this function will work as a good objective function in
optimization.

To shorten the notation, we’ll define two functions:

4

Gl(Si, Sm) = A(Si, Sm) + m,

(10)
GZ(Sm) = A(Sm) - A(B’ Sm)’



12
10
18
=
i
-10 -5 0 5 10
X
(a) A setup with 16 capsules, where, (b) Contour map of the objective function f,,(s,,) as a
in this case, no capsules overlap. The function of p,, of capsule s,,,. The capsule’s angle 6, is
contours on the right are calculated kept fixed as in the Figure on the left.

with respect to the white capsule, s,,,.

Figure 8: A plot of the objective function f,,(s,,) in the box B which is drawn as a black
square.

so that,
Fu(Sm) =Y Gi(S1,8m) + GalSpm). (11)
ieN\{m}

The function f,, gives the sum of the overlapping areas between a chosen capsule and all
the other capsules. We also need a function that gives areas for combinations of every two
capsules. This function will be used as an objective function for the benchmark method,
with which the cyclic placement method is compared. This function can be used to mini-
mize the total overlapping area of the capsules. Let’s start by summing f,,, with respect to
every capsule:

n

d £ =>"| D Gilsis)) +Gals))
Jj=1

Jj=1 LieN\{j}
n
= D Gilspsp)+ Y Gls))
i,jEN, i#j j=1

The first sum of this expression has duplicate terms, because G,(a,b) = G,(b, a). Hence we
can replace i # jwithi < j. Let’s call the resulting function F(S), where S = {s, ..., s, }:

n

F(S)= Y Gisps)+ Y Gysp) (12)
i,jeN, i<j k=1

Here f,, and F have many convenient properties; e.g., a change of s,,, affects the value of

fm(s,,) the same amount as it affects the value of F(S), more formally written in the follow-
ing theorem.



10

Theorem 3.1. Let’s assume that we have a set of capsule locations Sy = {8y, ...,8,_1}. If we
add an arbitrary capsule s,, to the set S, we get a set S. If we add an arbitrary capsule s,, to
the set Sy, we get a set S’. For these two sets it holds that F(S) — F(S") = f,(s,) — f,, (s),).

Proof. Using Equation ([I2) we can form F(S,) as
n-1
F(Sp) = Z Gy(s;;8)) + Z G, (sp),
i,JENy, i<j k=1
where N, = {1, ...,n — 1}. The first sum’s indices of F(S,) are listed in Table [I] beneath the

Table 1: Indices of the first sum in Equation (I2). Indices under the double line is used
with S, and the whole Table is used for sets S and S’.

i<jiez,
ni|{1,2,..,n—3,n-2n-—1}

n—1|1{1,2,.,n—3,n—2}
n—-21{1,2,..,n—3}

31 {1,2}
2 | {1}

double line. When we add a new capsule s,, to the system, we’ll make use of the expression
for F(S,) and add missing terms whose indices are listed above the double line in Table [l.
Together these indices give the whole sum. For the second sum, we only need to add one
term, G,(s,,), to complete the sum. Thus,

n-—1

F(S) = F(So) + Y Gi(s1,8,) + Ga(sy,)

i=1

—FS)+ Y Gi(sisy) + Gylsy) (13)
ieN\{n}

= F(So) + fu(sn)»
where N = {1, ..., n}. With Equation (13) we can write
F(S) = F(S") = F(So) + fu(sn) = F(So) = fu (s})
= fa(8n) = fu (S0),
proving the claim. Ol

In order to calculate a gradient with respect to a single capsule, we need three partial
derivatives, i.e., with respect to p and 6. Let’s take 6 as an example:

8F(S) _ . F(S")— F(S)
56, Al



11

where S’ is the same as S, except for 6;, = 6,, + h. Using Theorem B.1 we have,

OF(S) _ i FS)=F(S) _ | [ (i) = f(m) _ Ofn(Sm)

aem B h—0 h h—0 h aem

We can construct the partial derivatives for p the same way. Now we can write

VE(S) = [VAG)T VAT - Ve . (14)

where,
Ofm(Sm)  fm(sm) Imlsm)]"
Pmx  OPmy 96
Thus, we can use whichever function in our gradient method to obtain the same results.

Furthermore, if we’re optimizing the position of a single capsule s,,, with gradient method,
we can use which ever objective function, f,,(s,,) or F(S), to obtain the same results.

me(sm) =

3.4 Optimization methods
3.4.1 Theoretical performance

Let’s consider calculating the gradient in Equation ([I4). Let’s assume that functions G; and
G, (see Equations ([L()) are evaluated in constant times, T, > 0 and Tg, > 0. We can
calculate the time to evaluate f,, in Equation (ILT):

Tfm = Z TGl + TGZ = (n — 1)TG1 + TGZ' (15)
ieN\{m}

We approximate the gradient numerically. Gradient of f,,, has three components, so we
need to sample f,, in four different locations,

Pmy|>| DPmy ’pmy+h
Om Om

pm,y
6, +h

Pmx| [Pmx+h Pim,x ] [ P,
Thus, the evaluation of V f,,(s,,,) takes the computation time
Typ, 1=4T;, =4((n—DTg + Tg,) = (4n — 4)Tg, + 4T5,,
and the computing time for all the n capsules takes the time
nTyp, = (4n* —4n)Tg, + 4nTg,.
With Equation (1) we can calculate the computation time for F(S):

Z TGl"‘ZTGz—

i,jeN, i<j

TG] + nTG2



12

T T G T
50 || —4n® — 4n S 50 | —4n ]
---(3n® —2n® —n)/2 . ---3n%+n
40 ,/I n 40 |- ,', -
30 |- a 30 a
20| .
10 - o :
0 =T | | | | 0 | | | | |
1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4
n n
(a) The coefficient for T5;. (b) The coefficient for T,.

Figure 9: Coefficients for T, and T,. Dashed line is with Ty and solid line for nTy .

To calculate the gradient using Equation (12) for F, as was done in [[1], rather than using
the gradient given in ([4), we need to calculate the initial state plus 3n calculations to cover
all the variables of all the capsules. That results in a total time of,

3 —2n’—n

TVF = (1 + 3n)TF = )

TGl + (3n2 + n)TGZ.

As seen in Figure [, as n is large, the computing time nTy, is clearly smaller than Typ,
which makes f,, better for optimization. Let’s construct a measure about how large nTy
is compared to Tyr. Let’s just divide them:

nlyys, (4n?* — 4n)Tg, + 4nTg,
Torp (33 =212 —n)Tg /2 + (3n2 + n)Tg,

Let’s define g > 0 as Tg; = gT5,. Then we have,

nlTyyp, (4n* —an) T8 + 4nTes
Top  (3n3—2n2 —n)T38/2 + (32 +n) Ty
3 (4n® — 4n)g + 4n
T (Bn3—2n2—n)g/2+3n2+n
_ 8g(n—1)+38
T GBn+)(gn—g+1)

t(n,g) :=

A key observation is that
lim t(n,g) =0,
n—-oo

which means that nV f,, is faster to evaluate than VF, when n is large, regardless of the
value of g.

Let’s find minimum and maximum for t(n,g), with respect to g. The equation
ot(n,g)/dg = 0 does not have solutions that meet the conditions g,n > 0. However, we



13

can study the endpoints g — 0, and g — oo:

_ 4

9= 5 @
lim t(n, g) = . 17
Jim 1(n,8) = 37 a7

The function t(n, g) reaches its minimum at n > 1 when g — 0, and maximum when

1.2

‘l —g—>0

---g o

1

0.8

0.6

t(n, g)

0.4

0.2

5 10 15 20

Figure 10: Minimum and maximum for ¢(n, g) with respect to g.

g — oo, shown in Figure 0. This means that the true value for t(n, g) lies between these
boundaries. A value for g can be measured to make the approximations more explicit. Note
that the theoretical performance does not apply exactly for comparing the cyclic placement
method and benchmark method, since in cyclic placement method we move the capsules
into new places along the evaluation of the gradient. Nevertheless, this is still a significant
result and can give us a hint of the difference in the algorithms’ performance.

3.4.2 Cyclic placement method

Here, cyclic placement method means that we’re optimizing only one capsule s,, at a time
and fix other capsules s;c g to their current positions. The cyclic method applied here
differs from the commonly known cyclic coordinate method [B] slightly, as we minimize
not only one parameter of the objective function, but three parameters (p and 6) at once
using gradient method.

One full cycle of iterations to the set of all the capsules S = {s, ..., s,,} is in pseudo code
as follows.

0. Given information: set of capsules S with initial positions in the square box, number
of capsules n and the box side length b.

1. Setm = 1.

2. s,, < s, where f,,(s;,,) < f,(s,,). Here a local minimum for f,, is found with
gradient method.



14

3. m« m+ 1. If m < n, go to step P. Otherwise the cycle is complete.

The convergence of this method is ensured, if the inequality in Step @ holds, i.e., the gradient
method converges.

A cyclic method is sometimes coupled with a pattern search, such as acceleration step,
or the method of Hooke and Jeeves [B], which makes the method rather effective. However,
neither of these methods benefit the cyclic placement algorithm considered here. Optimal
step sizes can be calculated for different pattern searches and results are very close to the
original step size. On top of that, the method of Hooke and Jeeves also uses line search,
which in this case requires relatively heavy computing. Therefore we prefer the pure cyclic
method with no pattern searches, which seems to be the most effective method for our
purposes.

3.4.3 Refining the gradient methods in Matlab

Gradient methods are used with both the cyclic method and the benchmark method. We’ll
be using algorithms from Matlab’s Optimization Toolbox, which has many options for
the algorithms. We use the constrained minimization function (fmincon) coupled with
an active-set algorithm. Matlab’s unconstrained optimization method, quasi-Newton
method, was also tested, but in our case, it isn’t faster in any way. Another down side with
the quasi-Newton method is that we can’t easily constrain the capsules inside the box -
the method would need a modification to the objective function to prevent capsules of
wandering far beyond the box’s boundary.

In Matlab, it is possible to set iteration limits for the algorithms. A large limit could
be set, because Matlab’s optimization algorithms use pattern searches that uses previous
iterations for its advantage. On the other hand we want the algorithms to return the result
as fast as possible which would leave us with a low iteration limit. Also, with the cyclic
method we don’t want to waste time finding a precise optimal place for a single capsule in
the middle of the iterations, because it will probably change in the next iteration anyway.
Optimal limits were calculated for both of the algorithms by empiric testing. For the cyclic
placement method, the minimization in the Step P in Chapter B.4.2, the iteration limit is
set to 3 and for the benchmark method the iteration limit happens to be the same, 3.

3.5 Comparison of the algorithms

We are interested of the speed of the algorithms of finding local minima. We also let the
algorithms stop to differing local optimum points. To decide if a setup is at it’s local mini-
mum, we need to see if the gradient of the objective function is close to zero. Let € > 0. The
algorithms are run, and the consumed time is measured, as long as inequality

n

ST (VEEGSm) - Vn(sm) > (18)

m=1

holds. Due to Theorem B.1, we can use f,,, 1 < m < n, in Equation ([L§) for both of the
algorithms. We use a value of
£=3-10"*n?/b?,



15

because this value resulted in consistent results with different box sizes and different num-
ber of capsules in the system. Evaluation of the statement in Equation ([L§) requires many
calculations of overlapping areas and so comparison of the algorithms may be unfair if the
result of another algorithm is checked more frequently than the other. Therefore we stop
the timer during the gradient’s evaluation.

To compare different setup sizes we’ll simulate the algorithms with various box sizes
b = 20,40, 60 and different number of capsules n = 5,10, 20,40. Capsule size will be
constant with a = 2.5 and r = 3. Initial setups will be generated with a pseudo-random
generator with

(X; —1/2)b
27X,

for all i € N and where X , ; are random numbers uniformly distributed between 0 and 1.
The generated setups should fulfill the inequality in the Equation ([§), and we will generate
new setups, until we find a setup where this statement holds. The random configuration is
then optimized by both of the algorithms. Because high-level programming languages, like
Matlab, are not always consistent with computing times, we’ll choose randomly the order
of the algorithms. All simulations will be run on a HP Z240 desktop computer with Intel®
Xeon(R) CPU E3-1230 v5 @ 3.40GHz x 8 processor, 31.3GB of memory and Ubuntu 16.04
LTS. Version of Matlab used is 2018a and computation times are measured with Matlab’s
command cputime [9].



16

4 Results

When we run both algorithms with a random initial setup, we get a data point (¢, tr), where
t7 is the cputime for the cyclic placement method and ¢ for the benchmark method. To get
simple numerical results, we'll fit a slope ¢y = aty to the data, with least squares method.
If a < 1, the cyclic placement method is, on average, faster than the benchmark method
and vice versa.

Examples of three simulation scenarios are seen in Figures [34I3. In the latter two fig-
ures, one can see how the algorithms cope with impossible packing scenarios: the capsules
are spread in the box overlapping each other evenly from at least three directions.

The simulations were run at least 50 times for each setting. A case with b = 20 and
n = 40 was left out because of excessive computing times. Also, the box is quite overfilled
with capsules. The results are in favor of the cyclic placement method, as seen in Tables
P, B and Figure [2. According to the results, the cyclic placement method is faster when
the number of capsules is larger and/or the box is smaller. A case with five capsules and
a box with a side length of 20 is studied more closely in Figure [[T. As seen in Table P, the
confidence intervals are relatively small compared to the mean values which indicates good
sensitivity of the results.

A theoretical minimum for the gradient evaluation times, see Equation ([L€), is also
shown in Figure [[2, and the results somewhat follow it. The theoretical model is based
only on the evaluation speed of the gradients, and has an impossible assumption, g — 0,
but yet it is quite close to the obtained results.

The resulting objective function values from the simulations can be seen in Appendix
B, where we can see that the algorithms produce somewhat similar results. Up to four
regions are visible (e.g., case of n = 20 and b = 60), which is due to finding, or not finding,
a solution for the packing problem. For two algorithms, that makes a total of four regions.
Some problems that we simulated are impossible (e.g., n = 20 and b = 20), resulting in
one region, while other scenarios are rather easy for the algorithms to solve (e.g. n = 5 and
b = 60). Because of the repelling factors, see Chapter B.3, the objective function can never
be exactly zero.



17

n=>5>b=20 n=>5>b=20
300 I I I 20 \ \
- mm Cyclic placement method ——Data
250 H —Benchmark method | —— Fitted slope
15| |-~ 25% and 75% quartiles i
% 200 y ©
= >
S 150 [i | g 10} 8
2 £
S 5 )
= 100 8 3] -
5F il
50 H 8
o L= | L | 0 * T i
0 5 10 15 20 0 5 10 15 20
cputime cputime, tg (s)
(a) Histogram of computation times for both (b) Computation times for both algorithms.
of the algorithms. Fitted line ty = atp and 25% and 75% quar-
tiles

Figure 11: Computing times for both of the algorithms when n = 5 and b = 20. Sample
size is 500 for each of the algorithms.

Table 2: Estimations for « in different setups.

Estimate of a with b, size of box
95% confidence interval 20 40 60
5 0.226+0.021 0.334+0.027 0.327+0.032
0.128+0.011 0.164+0.019 0.197+0.021
20 | 0.0516+0.0092 0.0718+0.0056 0.0811+0.0094
40 - 0.0199+0.0012 0.0314+0.0026

n, number of capsules

Table 3: Quartiles for .

25% and 75% b, size of box
quartiles for 20 40 60
5 0.193,0.4 0.285, 0.54 0.302, 0.57
10 | 0.102,0.15 0.129, 0.22 0.144, 0.29
20 | 0.0344,0.067 0.0618,0.085 0.0645,0.11
40 - 0.017,0.024 0.0267, 0.036

n, number of capsules




Estimate for alpha
© o o o o o o
N w N (6)] (o] ~ oo

o
i

—F— b=20 with quartiles
— — Theoretical performance

o

Estimate for alpha
© o o o o
N w I (63} (o]

o
a

o

10 20 30 40

n, number of capsules

—F— b=40 with quartiles
— — Theoretical performance

Estimate for alpha

10 20 30 40
n, number of capsules

—F— b=60 with quartiles
— — Theoretical performance

10 20 30 40

n, number of capsules

Figure 12: Data plotted from the Tables
P and B. Theoretical performance is from

Equation (IL§).

18

(a) Initial, random setting. This is
now optimized by both of the algo-
rithms.

20

15

10

x AU

N

-20 -10 0 10 20
X

(b) Optimized setting with the
benchmark algorithm.

20
10
> 0 /_\
N
-10
-20
-20 -10 0 10 20

X
(c) Optimized setting with the cyclic
placement algorithm.

Figure 13: A sample where the number of
capsules (n) is 20 and size of the box (b) is 40.
In these cases local optima are found where
no capsules overlap.



(a) Initial, random setting.

) JUBQLRA
10
> 0
-10
-20
-20 -10 0 10 20
X

(b) Optimized setting with the
benchmark algorithm.

20
-
10
> 0
4
-10 =
IDUDS
-20
-20 -10 0 10 20

X
(c) Optimized setting with the cyclic
placement algorithm.

Figure 14: n = 25 and b = 40. In this case
the capsules overlap somewhat in the local

optima.

20 v )7 _S
7)) NS
Ul
10 A A

P S AR S
=V

(b) Optimized setting with the
benchmark algorithm.

20 —
10 {
-
-10é \
-20 < W\;—Q
\

-20 -10 0 10 20
X

(c) Optimized setting with the cyclic
placement algorithm.

Figure 15: n = 40 and b = 40. In this case
the capsules overlap extensively in the local

optima.



20

5 Summary

In this thesis we presented an algorithm for packing capsules with cyclic placement method
and it was compared to a benchmark method algorithm that optimizes the places of all the
capsules simultaneously. Both algorithms work as expected and a valid local minimum is
always found by both algorithms. Results show consistency, and that the cyclic placement
method is clearly faster than the benchmark method. Nevertheless, it should be noted that
if the gradient for the benchmark method had been calculated as in Equation ([I4), the
method could have taken less time compared to the cyclic placement method.

Overlapping area is a general way of telling how much two shapes overlap and this way
the cyclic placement method can be implemented easily, for example, to an ellipse packing
problem. In fact, the idea of the cyclic placement method is quite general and the method
can be very effective with other optimization purposes as well, where the objective function
is possible to separate into factors that can be optimized separately.

The ineffectiveness of pattern searches (see Chapter B.4.2) in the cyclic placement
method is a little surprising — in many cases pattern searches are very effective and step
sizes can be even around 100 times the regular step size [4], but in this problem they were
entirely ineffective. Many other heuristics exist for packing problems and they are not
handled in this thesis. It would be interesting to compare the cyclic placement method
against other sophisticated algorithms.



21

References

[1]

2]

Mirko Ruokokoski, Determining the number of passengers that can be fitted in a
standard-sized lift car, KONE Corporation, 2015.

Stephen J. Wright, Mathematical Programming, Coordinate descent algorithms, June
2015, Volume 151, Issue 1, pp 3-34. Accessed at https://link.springer.com/
article/10.1007/s10107-015-0892-3#citeas.

Mokhtar S. Bazaraa, Hanif D. Sherali, C. M. Shetty, Nonlinear Programming, Theory
and Algorithms, 1993.

Antti Honkela, Harri Valpola, Juha Karhunen, Accelerating Cyclic Update Algorithms
for Parameter Estimation by Pattern Searches, 2003 Kluwer Academic Publishers. Ac-
cessed at https://link.springer.com/content/pdf/10.1023/A:1023655202546.
pdf at 30.7.2018.

Wikibooks, Convexity/The intersection of convex sets is convex, https://en.
wikibooks.org/wiki/Convexity/The_ intersection_ of convex_ sets_is_
convex (Accessed on 8.8.2018).

MathWorks Documentation, convhull, Convex hull, https://se.mathworks.com/
help/matlab/ref/convhull. html (Accessed on 12.7.2018).

Wolfram Mathworld,  Polygon Area, http://mathworld.wolfram.com/
PolygonArea.html (Accessed on 12.7.2018).

Wolfram Mathworld, Circular Segment, http://mathworld.wolfram.com/
CircularSegment.html (Accessed on 12.7.2018).

MathWorks Documentation, cputime, Elapsed CPU time, https://se.mathworks.
com/help/matlab/ref/cputime.html (Accessed on 12.7.2018).


https://link.springer.com/article/10.1007/s10107-015-0892-3#citeas
https://link.springer.com/article/10.1007/s10107-015-0892-3#citeas
https://link.springer.com/content/pdf/10.1023/A:1023655202546.pdf
https://link.springer.com/content/pdf/10.1023/A:1023655202546.pdf
https://en.wikibooks.org/wiki/Convexity/The_intersection_of_convex_sets_is_convex
https://en.wikibooks.org/wiki/Convexity/The_intersection_of_convex_sets_is_convex
https://en.wikibooks.org/wiki/Convexity/The_intersection_of_convex_sets_is_convex
https://se.mathworks.com/help/matlab/ref/convhull.html
https://se.mathworks.com/help/matlab/ref/convhull.html
http://mathworld.wolfram.com/PolygonArea.html
http://mathworld.wolfram.com/PolygonArea.html
http://mathworld.wolfram.com/CircularSegment.html
http://mathworld.wolfram.com/CircularSegment.html
https://se.mathworks.com/help/matlab/ref/cputime.html
https://se.mathworks.com/help/matlab/ref/cputime.html

A Intersection points with circles and line segments

A.1 Intersection point of two line segments

Let’s define two line segments p and q as

p=pit+p,(1—-1), 0<5t<L1
q=¢q;s+q,(1-5), 0<s<1L

For an intersection point of these line segments it holds:

P=q
= p;t +p,(1—1)=q;s+q,(1—5)
= t(p, —p,) +P,=5(q,—q,) +q,
hand t(p, —p,) +s(a,—q,) =a, — P,

or in matrix form,
t
[p,—p, 4,—q] [S] =q, — P,

The inverse of a 2 X 2 matrix is

a b’ 1 [d -b
c dl ~ad—bc|-c al’

[;] =[p,-p, %] (a,-py)-

so that ¢t and s are

22

(A1)

(A2)

If requirements 0 < ¢t < 1and 0 < s < 1 aren’t fulfilled or the inverse matrix in Equa-

tion (JA2) does not exist (i.e., ad — bc

0), the intersection point does not exist. If the

values of t and s are feasible, then they can be substituted to Equation (JAl]), which gives the

coordinates of intersection point.

A.2 Intersection points of two circles

Let’s find the intersection points for two circles with a center points ¢, and ¢, and radii
and r,. Setd = |¢; — ¢,|. If d = 0, we return no intersection points, even if the circles are
identical, otherwise we’ll transform c,. First we’ll subtract ¢, from c,, and then we’ll rotate
the resulting vector so that it is on the x-axis. The rotation is accomplished with R(—a),

where

—C; + ¢,

R(a) = [ 7

cosa —sina cos o
sina cosa sin a

Now, we have a simplified system of equations

X2y =12
(x-dP+y*=r



23

for which the solutions for the intersection points, say p,_, are (solved with Mathematica):

A+t -1

1
P. =3 .
fA |y a4 R) - dt - (7 - 2)

Now, the intersection points of the original circles are q, = R(a)p,. + ¢;. Complex results
are rejected.

A.3 Intersection points of a circle and a line segment

Let’s find the intersection points for a line segment between points r;, r,, and a circle with
center point ¢ and radius r. Let’s first subtract ¢ from the points r; and r,, and then ro-
tate them with R(—f), so that the line segment becomes parallel with the x-axis. These
transformations are accomplished with,

r; = R(=pB)(r; —¢) here [cos,@ _ Tn+r
r) =R(-f)x,—c) sinf| | -1+,

Denote y, = 1 ,. We then have a circle x*> +y* = r?, and a line of y = y,, x € R, for which

the points of intersection are,
/12 — Y3
p, = [ YO] )

B Yo
If
min{r} ,,15,} < p, < max{r; ,,r; .},

we accept the intersection point. After transformations back, the final intersection points
areq, = R(B)p, +c.



cputime, ¢ (s)

cputime, £ (s)

Simulation data and fitting

n=5>b=20
20 T T
—— Data
—— Fitted slope
15 ||~~~ 25% and 75% quartiles i
10 |- :
5 - -
0
0 5 10 15 20
cputime, tr (s)
n=10,b =20
3.5 T T T T
——Data
3 || — Fitted slope |
--- 25% and 75% quartiles
18

cputime, tg (s)

Final value of 1g F for cyclic pl. m.

Final value of Ig F for cyclic pl. m.

. et e -

-8 I I I I
-8 —6 -4 -2 0 2

Final value of g F for bechmark m.

n=10,b =20

220} .
228) .. ]

227 0 . _ :
) \ I | t
226 2.27 2.27 228 228 229 229

Final value of Ig F for bechmark m.

24



n=20,b=20
8 T T
——Data
—— Fitted slope
6 | |-~ 25% and 75% quartiles i

cputime, ¢ (s)
~
T

2 [ -
O | | |
0 20 40 60 80
cputime, tr (s)
n=25>b=40
07 T T T T T
——Data
0.6 || — Fitted slope v a
--- 25% and 75% quartiles
_05) ; .
Z
<04Ff g
:
= 03r a
=]
o
(8]
0.2 | R
0.1} R
0 \. | | | | | |
0 02 04 06 08 1 12 14
cputime, ¢y (s)
n=10,b =40
1 T T
—— Data
—— Fitted slope ’
08 ' 25% and 75% quartiles )
©)
& 06 5
[
E
5 04 5
o
Q
0.2 :
0 | |
1 2 3 4 5

cputime, tr (s)

Final value of 1g F for cyclic pl. m. Final value of 1g F for cyclic pl. m.

Final value of Ig F for cyclic pl. m.

25

n=20,b =20

2.97

2.96 o ' ' 8
2951 . . L ]
2.94 R _—
2.93 . L .

2.92 N

291 1 1 1 1 1
292 293 294 295 296 297 2098

Final value of Ig F for bechmark m.

n=>5>b=40

0 T T
2 i
4 i
_6 - |

*

_8 | | |

-8 —6 —4 -2 0

Final value of Ig F for bechmark m.

n=10,b =40
T T T
—2 ) N
4| N
-6 N
1 3 .
| | | |
—8 —6 —4 -2 0 2

Final value of Ig F for bechmark m.



cputime, £ (s)

cputime, £ (s)

cputime, ¢ (s)

n=20,b =40

3-5 T T T T
——Data
3 | |— Fitted slope A
--- 25% and 75% quartiles | .~
25| T .
2 [ -
1.5 a
1| P .
0.5 | | | | |
10 15 20 25 30 35 40
cputime, tp (s)
n=40,b = 40
3.5 \ T B
— Data o
—— Fitted slope
311--- 25% and 75% quartiles |
251 P a
2 [ -
15| - :
1 | | |
80 100 120 140 160
cputime, t5 (s)
n=>5>b=60
0.6 T T T
—— Data .
0.5 | | — Fitted slope .
---25% and 75% quartiles | -~
04| .
0.3 a
0.2 a
0.1 5
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

cputime, tr (s)

Final value of Ig F for cyclic pl. m. Final value of Ig F for cyclic pl. m.

Final value of Ig F for cyclic pl. m.

26

n=20,b =40
2 T T
1.5 N
1 | ~ - —
0.5 N
0 - -
-0.5 : : ‘
—-0.5 0 0.5 1 1.5
Final value of g F for bechmark m.
n =40,b =40
2.98 T T
2.96 - :
2.94 - a
2.92 a
291 :
2.88 ‘ : ;
2.86 2.88 2.9 2.92 2.94
Final value of Ig F for bechmark m.
n=>5b=60
-5.5 \ \
—6 - -
—6.5 a
-7+ -
~7.5} - :
_8 L L L
—7.8 —7.6 -7.4 -7.2 -7

Final value of Ig F for bechmark m.



cputime, £ (s)

cputime, £ (s)

cputime, ¢ (s)

n=10,b = 60
1.2 T \
——Data L
1 |-|— Fitted slope R
--- 25% and 75% quartiles | .-
0.8 ’
0.6
0.4
0.2
0
cputime, tx (s)
n=20,b =060
18 T T T
——Data
L6 Fitted slope |
1.4 1|~~~ 25% and 75% quartiles JPrad
1.2
1
0.8
0.6
0.4
0.2 | | | |
4 6 8 10 12 14
cputime, tp (s)
n =40,b = 60
4.5 \ \ T \
—— Data
4 | — Fitted slope .
---25% and 75% quartiles %
3.5 p -7 .
3 -
2.5 .
2 -
1.5 .

70 80 90 100 110
cputime, tr (s)

Final value of Ig F for cyclic pl. m. Final value of Ig F for cyclic pl. m.

Final value of Ig F for cyclic pl. m.

2.2

1.8

1.6

1.4

1.2

0.8

27

n=10,b =60
0 T T
¥ ! ! I
-8 -6 —4 -2 0
Final value of Ig F for bechmark m.
n=20,b=60
T T T
L L L L
-8 ) —4 -2 0 2
Final value of Ig F for bechmark m.
n =40,b =60
T T
L L ) L
0 0.5 1 1.5 2

Final value of g F for bechmark m.



	Abstract in Finnish
	Abstract
	Preface
	Contents
	Introduction
	Background
	Materials and methods
	Mathematical definition of a capsule
	Calculating overlapping area of two capsules
	Objective functions
	Optimization methods
	Theoretical performance
	Cyclic placement method
	Refining the gradient methods in Matlab

	Comparison of the algorithms

	Results
	Summary
	Intersection points with circles and line segments
	Intersection point of two line segments
	Intersection points of two circles
	Intersection points of a circle and a line segment

	Simulation data and fitting

