
Lauri Jokinen

Cyclic Placement Method for Capsule Packing
Problem

School of Science

Bachelor’s thesis
Espoo 31.8.2018

Thesis supervisor and advisor:

Prof. Harri Ehtamo

aalto-yliopisto
perustieteiden korkeakoulu

kandidaatintyön
tiivistelmä

Tekijä: Lauri Jokinen

Työn nimi: Syklinen sijoittelumenetelmä kapseleiden pakkausongelmassa

Päivämäärä: 31.8.2018 Kieli: Englanti Sivumäärä: 5+27

Koulutusohjelma: Teknillinen fysiikka ja matematiikka

Vastuuopettaja: Prof. Harri Ehtamo

Tässä kandidaatintyössä esitetään algoritmi kahden tasossa olevan kapselin leikkauk-
sen pinta-alan laskentaan sekä menetelmä kapseleiden pakkausogelmaan neliössä.
Tässä ongelmassa tavoitteena on pakata kapseleita mahdollisimman paljon neliön
sisään siten, etteivät kapselit ole päällekkäin. Algoritmi minimoi annetusta alkuti-
lanteesta kapseleiden välisiä, päällekkäisiä pinta-aloja, kunnes näiden pinta-alojen
summa on mahdollisimman pieni. Esitetyssä menetelmässä liikutetaan yhtä kapselia
kerrallaan pitäen muut kapselit paikoillaan.

Menetelmän tehokkuus perustuu siihen, että liikuttamalla yhtä kapselia suuri osa
päällekkäisistä pinta-aloista ei muutu. Optimoitaessa yhden kapselin paikkaa pitää
laskea ainoastaan siihen kapseliin vaikuttavat pinta-alat. Kaikkien kapseleiden paikat
täytyy optimoida kylläkin useita kertoja, jotta kapselit asettuvat optimaalisille paikoille.
Vaikka parannamme vain yhden kapselin paikkaa kerrallaan, tämä vähentää laskennan
määrää merkittävästi vaihtoehtoiseen menetelmään verrattuna.

Työssä esitettyä menetelmää verrataan vaihtoehtoiseen menetelmään, jossa kaikkien
kapseleiden paikkoja ja asentoja optimoidaan samanaikaisesti. Syklinen menetelmä
toimii pienissä ongelmissa (5 kapselia) noin 65 % nopeammin kuin vaihtoehtoinen
menetelmä ja tämä suhteellinen laskentateho paranee kapseleiden määrän kasvaessa.

Avainsanat: Kapselin pakkausongelma, optimointi, gradienttimenetelmä, syklinen
menetelmä

aalto university
school of science

Abstract of the
bachelor’s thesis

Author: Lauri Jokinen

Title: Cyclic Placement Method for Capsule Packing Problem

Date: 31.8.2018 Language: English Number of pages: 5+27

Degree programme: Engineering Physics and Mathematics

Supervisor and instructor: Prof. Harri Ehtamo

In this thesis we present an algorithm for calculating an intersection area of two capsules
on the plane and a cyclic placement algorithm for a packing problem where capsules
are packed into a square box. The cyclic placement method finds a local optimum for
a given initial setup by minimizing the overlapping areas of capsules. In the method
a single capsule ismoved at a time and all the other capsules are kept fixed in their places.

Efficiency of the cyclic placement method is based on the fact that when moving
a single capsule, most of the overlapping areas between the other capsules remain
unchanged regardless of the position of the chosen capsule. Thus, we need to calculate
fewer overlapping areas in order to move a capsule to a somewhat better location. On
the other hand, we need to optimize the locations of all the capsules several times to
finally reach the overall optimum for all the capsules.

In this thesis the cyclic placement method is compared to an alternative method
where places and orientations of all the capsules are optimized simultaneously. In
small packing problems (5 capsules) cyclic placement method is approximately 65%
faster than the alternative method and the computational efficiency improves with
more capsules.

Keywords: Capsule packing problem, Optimization, Gradient method, Cyclic place-
ment method

iv

Preface
This thesis was mostly put together during the summer 2018, but after that it took several
months to mould it to its final form. I’d like to thank my supervisor and advisor, Professor
Harri Ehtamo, for his patience with me and my sloppy terminology. I’d like to, and will,
thank the wonderful people of the Polytech Choir, my family andmost importantly Loviisa,
for their support.

Servinkuja, 27.1.2019 Lauri Jokinen

v

Contents
Abstract in Finnish ii

Abstract iii

Preface iv

Contents v

1 Introduction 1

2 Background 2

3 Materials and methods 3
3.1 Mathematical definition of a capsule . 3
3.2 Calculating overlapping area of two capsules 4
3.3 Objective functions . 7
3.4 Optimization methods . 11

3.4.1 Theoretical performance . 11
3.4.2 Cyclic placement method . 13
3.4.3 Refining the gradient methods in Matlab 14

3.5 Comparison of the algorithms . 14

4 Results 16

5 Summary 20

Appendices

A Intersection points with circles and line segments 22
A.1 Intersection point of two line segments 22
A.2 Intersection points of two circles . 22
A.3 Intersection points of a circle and a line segment 23

B Simulation data and fitting 24

1 Introduction
In a packing problem considered here, the goal is to fit as many objects as possible into a
certain space, such as a square box or a cube. Such packing problem is usually studied in
two or three dimensions, but other dimensions are also possible. Packing problems have
various applications in several engineering areas such as logistics, medicine and materials
science. In this thesis we’ll look at a two dimensional packing problem where we pack a
square room, e.g. a lift car, with capsules of the same size.

We approach the packing problem with minimization of the total overlapping areas of
all objects. Capsules can be used in many applications, for example to model humans from
above. Ellipses are also commonly used for this purpose [1], but capsules have simpler
shapes for packing problems, because overlapping areas are easier to calculate for two cap-
sules than for two ellipses. Capsules are first put randomly into the room allowing them to
overlap each other freely, and also intersect the square walls, and then this overlapping is
minimized.

Large optimization problems are usually decomposed to a number of smaller subprob-
lems that can be computed faster than the full problem. Cyclic algorithms (or coordinate
descent algorithms) are one of the first and simplest methods to optimize problems sequen-
tially [2][3]. Time has shown somewhat conflicting results with cyclic methods, and some-
times alternative and more sophisticated methods easily surpass the efficiency of cyclic
methods [2]. Yet, cyclic algorithms are used in various practical problems with good re-
sults, for example in neural networks [4] to simplify optimization problems.

A cyclic method in a packing problem allows us to reduce the objective function to a
form that is faster to evaluate. When moving a single object in the box, most of the over-
lapping areas (or volumes if the problem is three dimensional) between the other capsules
remain the same, except for the overlapping areas with the capsule under consideration.
Thus, when replacing the object we can handle only these overlapping areas at a time. The
new position is probably not the final optimal location for the object – we’ll have to opti-
mize all of the objects’ locations several times in cycles, until no capsule cannot be moved
to a better position, i.e., a local optimum is found.

In this thesis we present a way of calculating overlapping areas between capsules and
compare the cyclic placement method against a benchmark method, in which all the cap-
sules’ position parameters are optimized simultaneously with gradient method, as is also
done in [1]. The algorithm is implemented withMatlab software and its features and func-
tions, mainly Optimization Toolbox and Polygons are used for the simulations. Vector and
matrix notation is used as much as possible to make the problem easier to handle and to
extend results to three dimensions.

2

2 Background
In the optimization literature various packing problems have been studied a lot, especially
in the field of integer optimization. Ruokokoski studied a lift car packing problem [1]. In
particular, he modelled travellers as ellipses. The results can be used, for example, when
studying people flow capacity for large buildings. The problem can be extended by adding
people with suitcases or shopping carts. In Ruokokoski’s paper there was a problem with
ellipses occasionally overlapping each other very clearly. In this paper we implement re-
pelling factors between the objects (seeChapter 3.3)which solves this problem. Ruokokoski
approached the packing problem with optimizing all the capsules’ locations simultane-
ously, that resulted in long calculations – especially for larger simulations.

A cyclic method is often coupled with a pattern search, such as an acceleration step
which helps coping with discontinuous objective functions [3], Chapter 8.5, or the method
of Hooke and Jeeves which adds some gradient descent spice to the method [3].

In a paper by A. Honkela, H. Valpola and J. Karhunen [4] coordinate descent was ap-
plied to a problem in neural networks. The paper’s approach was very similar to that of
ours and the results showed a 60%-85% reduction in the convergence times compared to an
alternative, Bayesian learning method. They coupled the cyclic method very successfully
with a pattern search, the method of Hooke and Jeeves. Not many recent papers exist on
optimization with cyclic method – and so far there is no paper, where a cyclic method is
applied to a packing problem.

3

3 Materials andmethods

3.1 Mathematical definition of a capsule
A capsule centered at the origin can be defined with two parameters (also illustrated in
Figure 1): half of the width of the rectangle 𝑎 ∈ ℝ+, and circles’ radii 𝑟 ∈ ℝ+. The location
of such capsule in the plane can be defined by three parameters: the angle of the capsule
with respect to the 𝑥-axis 𝜃 ∈ ℝ, and a translation p ∈ ℝ2. We shall write

s = [
p
𝜃
] . (1)

a

r′r2 r′r1

r′r3
c′c2 c′c1

r′r4

x

y

r

(a) A capsule centered at the origin

x

y

θ

(b) Rotated capsule

p
x

y

(c) Rotated and then displaced capsule

Figure 1: Parameters and transformations of a capsule

We will place the capsule at the origin, and then we’ll rotate and displace the capsule.
The rectangle’s coordinates are as follows (see Figure 1):

r′1 = [𝑎𝑟] , r′2 = [−𝑎𝑟] , r′3 = [−𝑎−𝑟] , r′4 = [𝑎−𝑟] .

The radius of the circles is 𝑟 and their center points are

c′1 = [𝑎0] , c′2 = [−𝑎0] .

4

Let a rotation matrix be
𝑅(𝜃) = [cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃] .

We’ll rotate the capsule with an angle 𝜃 and then displace the capsule with p, see Figures
1b and 1c. The final coordinates for the rectangle’s corners are,

r𝑖 = 𝑅(𝜃)r′𝑖 + p, 1 ≤ 𝑖 ≤ 4, (2)

and the center points of the circles are

c𝑖 = 𝑅(𝜃)c′𝑖 + p, 1 ≤ 𝑖 ≤ 2. (3)

For further calculations we need an indicator whether a given point is in the capsule or
not. The point q is in the capsule s, if it’s in the rectangle, or in the circles. First we map
the point q to the origin state of the capsule s by first displacing it by −p and then rotating
it with 𝑅(−𝜃). Let this point be q′ = 𝑅(−𝜃)(q − p). Now, the point q′ is in the rectangle
of the capsule iff [(−𝑎 ≤ 𝑞′1 ≤ 𝑎) ∧ (−𝑟 ≤ 𝑞′2 ≤ 𝑟)]. The point is in the right circle iff
[(𝑞′1 − 𝑎)2 + (𝑞′2)2 ≤ 𝑟], and the point is in the left circle iff [(𝑞′1 + 𝑎)2 + (𝑞′2)2 ≤ 𝑟]. All
combined, point q is in capsule s iff

[(−𝑎 ≤ 𝑞′1 ≤ 𝑎) ∧ (−𝑟 ≤ 𝑞′2 ≤ 𝑟)]
∨[(𝑞′1 + 𝑎)2 + (𝑞′2)

2 ≤ 𝑟]
∨[(𝑞′1 − 𝑎)2 + (𝑞′2)

2 ≤ 𝑟],
(4)

where q′ = 𝑅(−𝜃)(q − p).

3.2 Calculating overlapping area of two capsules
Let’s find the overlapping area for two capsules of the same size, i.e., with the same 𝑎 and 𝑟,
s1 = [p𝑇1 𝜃1]

𝑇
and s2 = [p𝑇2 𝜃2]

𝑇
. We’ll calculate the intersection area in two steps: first

we’ll find a convex polygon that covers a part of the intersection area so that only feasible
circle segments (i.e., segments included in both capsules) are left out. Second we find and
calculate the areas for the circle segments. Capsules are convex sets and an intersection
of two convex sets is convex [6]. In particular, an intersection area of two rectangles is a
convex polygon.

First we need to calculate the intersection points of two capsules’ contours, let’s call these
points ipc’s. Equations for the ipc’s are provided in Appendix A. An example of the ipc’s is
shown in Figure 2a, where ipc’s are illustrated as black spots. The two capsules can totally
coincide, or they may share joint contours. If this is the case, we reject the ipc’s at these
regions. In Figure 3 there are further examples that can occur. Math for these features are
included in Appendix A. Note, that the number of ipc’s can be 1,2,3 or 4.

We also need to define some auxiliary points, denoted in Figure 4 as crosses. Let’s call
these points fixed capsule points, or fcp’s. The fcp’s consist of rectangle corner points, which
are needed to calculate a correct intersection polygon. Feasible fcp’s are in both capsules,
see Equation 4. The possible fcp’s on s1 are,

𝑅(𝜃1) [
±𝑎
±𝑟] + p1, with every combination of ± -signs.

5

(a) Black spots are ipc’s and crosses are fcp’s. (b) Convex polygon (dotted line) and seg-
ments (dark areas). In this case both of the
segments are feasible.

Figure 2: Calculating the intersection area of two capsules

Figure 3: Different kinds of shared contours between the capsules with the corresponding
convex polygons and segments.

And with capsule s2 possible fcp’s are

𝑅(𝜃2) [
±𝑎
±𝑟] + p2, with every combination of ± -signs.

An example of feasible fcp’s is illustrated in the Figure 2a as crosses.
Next we find the smallest convex polygon containing all ipc’s and fcp’s. I usedMatlab’s

own algorithm convhull [6] to find the convex hull. An example of this hull is shown in
Figure 2b. The area inside the convex polygon can be calculated with Matlab’s command
polyarea [7].

Now all that is left are the areas of the feasible segments. Let’s choose two adjacent

6

a

r

Figure 4: A capsule with fixed capsule points (fcp’s) denoted with crosses.

points, h1 and h2, defined by black spots and/or crosses. Let’s find, if a feasible segment ex-
ists between the points and if the segment’s area should be included to the total intersection
area. For the two points, two conditions must be true. First, both points must lie on a same
circle on either of the capsules. Let c denote the center of the capsule circle. Second, the
segment regionmust be included in both of the capsules, see Equation (4). To find whether
this is true, we only need to know if a single point on the segment arc is inside or outside
the capsules.

h1

h2

v

cu
�

(a) Case, where |u− c| ≠ 0

h1

h2

v c
�

r a

p

(b) Case, where |u− c| = 0

Figure 5: Calculating the top point v for the segment arc.

Let’s solve for the segment arc’s top point v, see Figure 5a. If we start from the circle’s
center point c, we need a vector that has the length of the circle’s radius 𝑟, and direction
from the center point c to the middle point of the points h1 and h2. Let the middle point be
u = (h1 + h2)/2. The direction vector is thus −c + u. So the top point in the middle of the
segment’s arc is

v = c + 𝑟 u − c
|u − c| , |u − c| ≠ 0. (5)

Note, that the denominator in (5) cannot be zero. If the denominator is zero, then

||u − c|| = 0 ⟺ 1
2(h1 + h2) = c,

which means that h1 and h2 are on the opposite sides of the point c. This can be true only
whenh1 andh2 are fcp’s, becausewe only have half circles. Since this is the only casewhere
the problem occurs, we can solve it with an if-statement. If we begin from the point p, we
want a vector of length 𝑎+ 𝑟 and a direction of−p+ c, see Figure 5b. The final coordinates

7

Figure 6: An example of a non-feasible segment marked with light gray.

for v are

v =
⎧⎪
⎨⎪
⎩

p + (𝑎 + 𝑟) c − p
|c − p| , when |u − c| = 0

c + 𝑟 u − c
|u − c| , when |u − c| ≠ 0.

If v is in both of the capsules, we’ll accept this segment, otherwise it will be excluded
from the calculations. In Figure 2b all of the center points of all the segments are in both
of the capsules and thus all the segments are feasible; see also Figure 6, where there’s a
non-feasible segment.

Finally we can calculate the area of the segment [8]:

𝐴seg =
1
2𝑟

2 (𝜙 − sin 𝜙) , 𝜙 = 2 arcsin |h1 − h2|
2𝑟 ,

where 𝜙 is a central angle of the circle, see Figure 5. When we do this for all feasible seg-
ments, the resulting areas, and the area of the convex polygon, sum to the total intersecting
area of the two capsules.

3.3 Objective functions
Let a set of capsules be 𝑆 = {s1, … , s𝑛}, and 𝑁 = {1, … , 𝑛}. Let the box 𝐵 be a square with
sides of length 𝑏 > 0. Corner points of 𝐵 are

1
2 [

±𝑏
±𝑏] ,with every combination of ± -signs.

For the cyclic placement method we need an objective function 𝑓𝑚, 𝑚 ∈ 𝑁. It will be
used to optimize location and orientation of a single capsule, s𝑚. The function has three
parts. The first part gives the overlapping areas of all the other capsules with the chosen
capsule s𝑚: ∑

𝑖∈𝑁\{𝑚}
𝐴(s𝑖, s𝑚), (6)

8

where 𝑚 ∈ 𝑁, and 𝐴(s𝑖, s𝑚) gives the intersection area of capsules s𝑖 and s𝑚. The second
part gives the area of the capsule s𝑚 that is outside of 𝐵,

𝐴(s𝑚) − 𝐴(𝐵, s𝑚), (7)

where 𝐴(s𝑚) is the area of the capsule s𝑚, and 𝐴(𝐵, s𝑚) is the intersecting area of square
𝐵 and capsule s𝑚. The third part of the function 𝑓𝑚 makes capsules repel each other. The

||p1 − p2||2
s1

s2

Figure 7: A case of two intersecting capsules. The norm of p1 − p2 is the distance be-
tween the center points p1 and p2 of the two capsules. This distance should increase, if we
minimize the penalty term.

repelling factor to be minimized is interpreted as a penalty term. It is defined as follows,∑
𝑖∈𝑁\{𝑚}

𝛾
𝑑(s𝑖, s𝑚) + 1, (8)

where the function 𝑑(s𝑖, s𝑚) gives the distance between the center points of the capsules s𝑖
and s𝑚, see the Figure 7:

𝑑(s𝑖, s𝑚) = ‖p𝑖 − p𝑚‖2.
Wemultiply Equation (8) by a penalty parameter 𝛾, which we take small because the over-
lapping and overflowing areas are more important to minimize. In the simulations, and for
the rest of this thesis, a value of 𝛾 = 10−6 is used.

Finally we define the objective function 𝑓𝑚 as the sum of functions defined in (6), (7)
and (8):

𝑓𝑚(s𝑚) =
∑

𝑖∈𝑁\{𝑚}
(𝐴(s𝑖, s𝑚) +

𝛾
𝑑(s𝑖, s𝑚) + 1) + 𝐴(s𝑚) − 𝐴(𝐵, s𝑚). (9)

An example of a contour map of 𝑓𝑚(s𝑚) as a function of p𝑚, with 𝜃𝑚 fixed, is shown in
Figure 8b for a randomly chosen capsule s𝑚 shown in Figure 8a. The function is smooth
and no discontinuities arise, thus this function will work as a good objective function in
optimization.

To shorten the notation, we’ll define two functions:

𝐺1(s𝑖, s𝑚) = 𝐴(s𝑖, s𝑚) +
𝛾

𝑑(s𝑖, s𝑚) + 1,

𝐺2(s𝑚) = 𝐴(s𝑚) − 𝐴(𝐵, s𝑚),
(10)

9

-10 -5 0 5 10
x

-10

-5

0

5

10
y

(a) A setup with 16 capsules, where,
in this case, no capsules overlap. The
contours on the right are calculated
with respect to the white capsule, s𝑚.

-10 -5 0 5 10
x

-10

-5

0

5

10

y

2

0

4

6

8

10

12

f(s
m

)

(b) Contour map of the objective function 𝑓𝑚(s𝑚) as a
function of p𝑚 of capsule s𝑚. The capsule’s angle 𝜃𝑚 is
kept fixed as in the Figure on the left.

Figure 8: A plot of the objective function 𝑓𝑚(s𝑚) in the box 𝐵 which is drawn as a black
square.

so that,
𝑓𝑚(s𝑚) =

∑
𝑖∈𝑁\{𝑚}

𝐺1(s𝑖, s𝑚) + 𝐺2(s𝑚). (11)

The function𝑓𝑚 gives the sumof the overlapping areas between a chosen capsule and all
the other capsules. We also need a function that gives areas for combinations of every two
capsules. This function will be used as an objective function for the benchmark method,
with which the cyclic placement method is compared. This function can be used to mini-
mize the total overlapping area of the capsules. Let’s start by summing 𝑓𝑚 with respect to
every capsule:

𝑛∑
𝑗=1

𝑓𝑗(s𝑗) =
𝑛∑
𝑗=1

[
∑

𝑖∈𝑁\{𝑗}
𝐺1(s𝑖, s𝑗) + 𝐺2(s𝑗)]

=
∑

𝑖,𝑗∈𝑁, 𝑖≠𝑗
𝐺1(s𝑖, s𝑗) +

𝑛∑
𝑗=1

𝐺2(s𝑗).

The first sum of this expression has duplicate terms, because𝐺1(a, b) = 𝐺1(b, a). Hence we
can replace 𝑖 ≠ 𝑗 with 𝑖 < 𝑗. Let’s call the resulting function 𝐹(𝑆), where 𝑆 = {s1, … , s𝑛}:

𝐹(𝑆) =
∑

𝑖,𝑗∈𝑁, 𝑖<𝑗
𝐺1(s𝑖, s𝑗) +

𝑛∑
𝑘=1

𝐺2(s𝑘) (12)

Here 𝑓𝑚 and 𝐹 have many convenient properties; e.g., a change of s𝑚 affects the value of
𝑓𝑚(s𝑚) the same amount as it affects the value of 𝐹(𝑆), more formally written in the follow-
ing theorem.

10

Theorem 3.1. Let’s assume that we have a set of capsule locations 𝑆0 = {s1, … , s𝑛−1}. If we
add an arbitrary capsule s𝑛 to the set 𝑆0, we get a set 𝑆. If we add an arbitrary capsule s′𝑛 to
the set 𝑆0, we get a set 𝑆′. For these two sets it holds that 𝐹(𝑆) − 𝐹(𝑆′) = 𝑓𝑛(s𝑛) − 𝑓𝑛 (s′𝑛).

Proof. Using Equation (12) we can form 𝐹(𝑆0) as

𝐹(𝑆0) =
∑

𝑖,𝑗∈𝑁0, 𝑖<𝑗
𝐺1(s𝑖, s𝑗) +

𝑛−1∑
𝑘=1

𝐺2(s𝑘),

where 𝑁0 = {1, … , 𝑛 − 1}. The first sum’s indices of 𝐹(𝑆0) are listed in Table 1 beneath the

Table 1: Indices of the first sum in Equation (12). Indices under the double line is used
with 𝑆0 and the whole Table is used for sets 𝑆 and 𝑆′.

𝑗 𝑖 < 𝑗, 𝑖 ∈ ℤ+
𝑛 {1, 2, … , 𝑛 − 3, 𝑛 − 2, 𝑛 − 1}

𝑛 − 1 {1, 2, … , 𝑛 − 3, 𝑛 − 2}
𝑛 − 2 {1, 2, … , 𝑛 − 3}
⋯ ⋯
3 {1, 2}
2 {1}

double line. When we add a new capsule s𝑛 to the system, we’ll make use of the expression
for 𝐹(𝑆0) and add missing terms whose indices are listed above the double line in Table 1.
Together these indices give the whole sum. For the second sum, we only need to add one
term, 𝐺2(s𝑛), to complete the sum. Thus,

𝐹(𝑆) = 𝐹(𝑆0) +
𝑛−1∑
𝑖=1

𝐺1(s𝑖, s𝑛) + 𝐺2(s𝑛)

= 𝐹(𝑆0) +
∑

𝑖∈𝑁\{𝑛}
𝐺1(s𝑖, s𝑛) + 𝐺2(s𝑛)

= 𝐹(𝑆0) + 𝑓𝑛(s𝑛),

(13)

where 𝑁 = {1, … , 𝑛}. With Equation (13) we can write

𝐹(𝑆) − 𝐹(𝑆′) = 𝐹(𝑆0) + 𝑓𝑛(s𝑛) − 𝐹(𝑆0) − 𝑓𝑛 (s′𝑛)
= 𝑓𝑛(s𝑛) − 𝑓𝑛 (s′𝑛) ,

proving the claim.

In order to calculate a gradient with respect to a single capsule, we need three partial
derivatives, i.e., with respect to p and 𝜃. Let’s take 𝜃 as an example:

𝜕𝐹(𝑆)
𝜕𝜃𝑚

= lim
ℎ→0

𝐹(𝑆′) − 𝐹(𝑆)
ℎ ,

11

where 𝑆′ is the same as 𝑆, except for 𝜃′𝑚 = 𝜃𝑚 + ℎ. Using Theorem 3.1 we have,

𝜕𝐹(𝑆)
𝜕𝜃𝑚

= lim
ℎ→0

𝐹(𝑆′) − 𝐹(𝑆)
ℎ = lim

ℎ→0

𝑓 (s′𝑚) − 𝑓(s𝑚)
ℎ = 𝜕𝑓𝑚(s𝑚)

𝜕𝜃𝑚
.

We can construct the partial derivatives for p the same way. Now we can write

∇𝐹(𝑆) = [∇𝑓1(s1)𝑇 ∇𝑓2(s2)𝑇 ⋯ ∇𝑓𝑛(s𝑛)𝑇]
𝑇 , (14)

where,

∇𝑓𝑚(s𝑚) = [
𝜕𝑓𝑚(s𝑚)
𝜕𝑝𝑚,𝑥

𝜕𝑓𝑚(s𝑚)
𝜕𝑝𝑚,𝑦

𝜕𝑓𝑚(s𝑚)
𝜕𝜃𝑚

]
𝑇

.

Thus, we can use whichever function in our gradient method to obtain the same results.
Furthermore, if we’re optimizing the position of a single capsule s𝑚 with gradient method,
we can use which ever objective function, 𝑓𝑚(s𝑚) or 𝐹(𝑆), to obtain the same results.

3.4 Optimizationmethods
3.4.1 Theoretical performance

Let’s consider calculating the gradient in Equation (14). Let’s assume that functions𝐺1 and
𝐺2 (see Equations (10)) are evaluated in constant times, 𝑇𝐺1 > 0 and 𝑇𝐺2 > 0. We can
calculate the time to evaluate 𝑓𝑚 in Equation (11):

𝑇𝑓𝑚 ∶=
∑

𝑖∈𝑁\{𝑚}
𝑇𝐺1 + 𝑇𝐺2 = (𝑛 − 1)𝑇𝐺1 + 𝑇𝐺2. (15)

We approximate the gradient numerically. Gradient of 𝑓𝑚 has three components, so we
need to sample 𝑓𝑚 in four different locations,

[
𝑝𝑚,𝑥
𝑝𝑚,𝑦
𝜃𝑚

] , [
𝑝𝑚,𝑥 + ℎ
𝑝𝑚,𝑦
𝜃𝑚

] , [
𝑝𝑚,𝑥

𝑝𝑚,𝑦 + ℎ
𝜃𝑚

] , [
𝑝𝑚,𝑥
𝑝𝑚,𝑦
𝜃𝑚 + ℎ

] .

Thus, the evaluation of ∇𝑓𝑚(s𝑚) takes the computation time

𝑇∇𝑓𝑚 ∶= 4𝑇𝑓𝑚 = 4((𝑛 − 1)𝑇𝐺1 + 𝑇𝐺2) = (4𝑛 − 4)𝑇𝐺1 + 4𝑇𝐺2,

and the computing time for all the 𝑛 capsules takes the time

𝑛𝑇∇𝑓𝑚 = (4𝑛2 − 4𝑛)𝑇𝐺1 + 4𝑛𝑇𝐺2.

With Equation (12) we can calculate the computation time for 𝐹(𝑆):

𝑇𝐹 ∶=
∑

𝑖,𝑗∈𝑁, 𝑖<𝑗
𝑇𝐺1 +

𝑛∑
𝑘=1

𝑇𝐺2 =
𝑛2 − 𝑛
2 𝑇𝐺1 + 𝑛𝑇𝐺2.

12

1 1.5 2 2.5 3 3.5 40

10

20

30

40

50

𝑛

4𝑛2 − 4𝑛
(3𝑛3 − 2𝑛2 − 𝑛)/2

(a) The coefficient for 𝑇𝐺1.

1 1.5 2 2.5 3 3.5 40

10

20

30

40

50

𝑛

4𝑛
3𝑛2 + 𝑛

(b) The coefficient for 𝑇𝐺2.

Figure 9: Coefficients for 𝑇𝐺1 and 𝑇𝐺2. Dashed line is with 𝑇∇𝐹 and solid line for 𝑛𝑇∇𝑓𝑚 .

To calculate the gradient using Equation (12) for 𝐹, as was done in [1], rather than using
the gradient given in (14), we need to calculate the initial state plus 3𝑛 calculations to cover
all the variables of all the capsules. That results in a total time of,

𝑇∇𝐹 ∶= (1 + 3𝑛)𝑇𝐹 = 3𝑛3 − 2𝑛2 − 𝑛
2 𝑇𝐺1 + (3𝑛2 + 𝑛)𝑇𝐺2.

As seen in Figure 9, as 𝑛 is large, the computing time 𝑛𝑇∇𝑓𝑚 is clearly smaller than 𝑇∇𝐹 ,
which makes 𝑓𝑚 better for optimization. Let’s construct a measure about how large 𝑛𝑇∇𝑓𝑚
is compared to 𝑇∇𝐹 . Let’s just divide them:

𝑛𝑇∇𝑓𝑚
𝑇∇𝐹

= (4𝑛2 − 4𝑛)𝑇𝐺1 + 4𝑛𝑇𝐺2
(3𝑛3 − 2𝑛2 − 𝑛)𝑇𝐺1/2 + (3𝑛2 + 𝑛)𝑇𝐺2

.

Let’s define 𝑔 > 0 as 𝑇𝐺1 = 𝑔𝑇𝐺2. Then we have,

𝑡(𝑛, 𝑔) ∶=
𝑛𝑇∇𝑓𝑚
𝑇∇𝐹

= (4𝑛2 − 4𝑛)��𝑇𝐺2𝑔 + 4𝑛��𝑇𝐺2
(3𝑛3 − 2𝑛2 − 𝑛)��𝑇𝐺2𝑔/2 + (3𝑛2 + 𝑛)��𝑇𝐺2

= (4𝑛2 − 4𝑛)𝑔 + 4𝑛
(3𝑛3 − 2𝑛2 − 𝑛)𝑔/2 + 3𝑛2 + 𝑛

= 8𝑔(𝑛 − 1) + 8
(3𝑛 + 1)(𝑔𝑛 − 𝑔 + 1) .

A key observation is that
lim
𝑛→∞

𝑡(𝑛, 𝑔) = 0,

which means that 𝑛∇𝑓𝑚 is faster to evaluate than ∇𝐹, when 𝑛 is large, regardless of the
value of 𝑔.

Let’s find minimum and maximum for 𝑡(𝑛, 𝑔), with respect to 𝑔. The equation
𝜕𝑡(𝑛, 𝑔)/𝜕𝑔 = 0 does not have solutions that meet the conditions 𝑔, 𝑛 > 0. However, we

13

can study the endpoints 𝑔 → 0+, and 𝑔 → ∞:

lim
𝑔→0+

𝑡(𝑛, 𝑔) = 4
3𝑛 + 1, (16)

lim
𝑔→∞

𝑡(𝑛, 𝑔) = 8
3𝑛 + 1. (17)

The function 𝑡(𝑛, 𝑔) reaches its minimum at 𝑛 ≥ 1 when 𝑔 → 0, and maximum when

5 10 15 200

0.2

0.4

0.6

0.8

1

1.2

𝑛

𝑡(𝑛
,𝑔
)

𝑔 → 0
𝑔 → ∞

Figure 10: Minimum and maximum for 𝑡(𝑛, 𝑔) with respect to 𝑔.

𝑔 → ∞, shown in Figure 10. This means that the true value for 𝑡(𝑛, 𝑔) lies between these
boundaries. A value for 𝑔 can bemeasured tomake the approximationsmore explicit. Note
that the theoretical performance does not apply exactly for comparing the cyclic placement
method and benchmark method, since in cyclic placement method we move the capsules
into new places along the evaluation of the gradient. Nevertheless, this is still a significant
result and can give us a hint of the difference in the algorithms’ performance.

3.4.2 Cyclic placement method

Here, cyclic placement method means that we’re optimizing only one capsule s𝑚 at a time
and fix other capsules s𝑖∈𝑁\{𝑚} to their current positions. The cyclic method applied here
differs from the commonly known cyclic coordinate method [3] slightly, as we minimize
not only one parameter of the objective function, but three parameters (p and 𝜃) at once
using gradient method.

One full cycle of iterations to the set of all the capsules 𝑆 = {s1, … , s𝑛} is in pseudo code
as follows.

0. Given information: set of capsules 𝑆 with initial positions in the square box, number
of capsules 𝑛 and the box side length 𝑏.

1. Set𝑚 = 1.

2. s𝑚 ← s′𝑚, where 𝑓𝑚 (s′𝑚) < 𝑓𝑚(s𝑚). Here a local minimum for 𝑓𝑚 is found with
gradient method.

14

3. 𝑚 ← 𝑚 + 1. If𝑚 ≤ 𝑛, go to step 2. Otherwise the cycle is complete.

The convergence of thismethod is ensured, if the inequality in Step 2 holds, i.e., the gradient
method converges.

A cyclic method is sometimes coupled with a pattern search, such as acceleration step,
or themethod of Hooke and Jeeves [3], whichmakes themethod rather effective. However,
neither of these methods benefit the cyclic placement algorithm considered here. Optimal
step sizes can be calculated for different pattern searches and results are very close to the
original step size. On top of that, the method of Hooke and Jeeves also uses line search,
which in this case requires relatively heavy computing. Therefore we prefer the pure cyclic
method with no pattern searches, which seems to be the most effective method for our
purposes.

3.4.3 Refining the gradient methods in Matlab

Gradient methods are used with both the cyclic method and the benchmark method. We’ll
be using algorithms from Matlab’s Optimization Toolbox, which has many options for
the algorithms. We use the constrained minimization function (fmincon) coupled with
an active-set algorithm. Matlab’s unconstrained optimization method, quasi-Newton
method, was also tested, but in our case, it isn’t faster in any way. Another down side with
the quasi-Newton method is that we can’t easily constrain the capsules inside the box –
the method would need a modification to the objective function to prevent capsules of
wandering far beyond the box’s boundary.

In Matlab, it is possible to set iteration limits for the algorithms. A large limit could
be set, because Matlab’s optimization algorithms use pattern searches that uses previous
iterations for its advantage. On the other hand we want the algorithms to return the result
as fast as possible which would leave us with a low iteration limit. Also, with the cyclic
method we don’t want to waste time finding a precise optimal place for a single capsule in
the middle of the iterations, because it will probably change in the next iteration anyway.
Optimal limits were calculated for both of the algorithms by empiric testing. For the cyclic
placement method, the minimization in the Step 2 in Chapter 3.4.2, the iteration limit is
set to 3 and for the benchmark method the iteration limit happens to be the same, 3.

3.5 Comparison of the algorithms
We are interested of the speed of the algorithms of finding local minima. We also let the
algorithms stop to differing local optimum points. To decide if a setup is at it’s local mini-
mum, we need to see if the gradient of the objective function is close to zero. Let 𝜀 > 0. The
algorithms are run, and the consumed time is measured, as long as inequality

𝑛∑
𝑚=1

(∇𝑓𝑇𝑚 (s𝑚) ⋅ ∇𝑓𝑚(s𝑚)) > 𝜀 (18)

holds. Due to Theorem 3.1, we can use 𝑓𝑚, 1 ≤ 𝑚 ≤ 𝑛, in Equation (18) for both of the
algorithms. We use a value of

𝜀 = 3 ⋅ 10−4𝑛3/𝑏2,

15

because this value resulted in consistent results with different box sizes and different num-
ber of capsules in the system. Evaluation of the statement in Equation (18) requires many
calculations of overlapping areas and so comparison of the algorithms may be unfair if the
result of another algorithm is checked more frequently than the other. Therefore we stop
the timer during the gradient’s evaluation.

To compare different setup sizes we’ll simulate the algorithms with various box sizes
𝑏 = 20, 40, 60 and different number of capsules 𝑛 = 5, 10, 20, 40. Capsule size will be
constant with 𝑎 = 2.5 and 𝑟 = 3. Initial setups will be generated with a pseudo-random
generator with

s𝑖 = [
(𝑋1 − 1/2) 𝑏
(𝑋2 − 1/2) 𝑏

2𝜋𝑋3
]

for all 𝑖 ∈ 𝑁 and where 𝑋1,2,3 are random numbers uniformly distributed between 0 and 1.
The generated setups should fulfill the inequality in the Equation (18), andwewill generate
new setups, until we find a setup where this statement holds. The random configuration is
then optimized by both of the algorithms. Because high-level programming languages, like
Matlab, are not always consistent with computing times, we’ll choose randomly the order
of the algorithms. All simulations will be run on a HP Z240 desktop computer with Intel®
Xeon(R) CPU E3-1230 v5 @ 3.40GHz × 8 processor, 31.3GB of memory and Ubuntu 16.04
LTS. Version of Matlab used is 2018a and computation times are measured with Matlab’s
command cputime [9].

16

4 Results
Whenwe runboth algorithmswith a random initial setup, we get a data point (𝑡𝑓, 𝑡𝐹), where
𝑡𝑓 is the cputime for the cyclic placementmethod and 𝑡𝐹 for the benchmarkmethod. To get
simple numerical results, we’ll fit a slope 𝑡𝑓 = 𝛼𝑡𝐹 to the data, with least squares method.
If 𝛼 < 1, the cyclic placement method is, on average, faster than the benchmark method
and vice versa.

Examples of three simulation scenarios are seen in Figures 13-15. In the latter two fig-
ures, one can see how the algorithms cope with impossible packing scenarios: the capsules
are spread in the box overlapping each other evenly from at least three directions.

The simulations were run at least 50 times for each setting. A case with 𝑏 = 20 and
𝑛 = 40 was left out because of excessive computing times. Also, the box is quite overfilled
with capsules. The results are in favor of the cyclic placement method, as seen in Tables
2, 3 and Figure 12. According to the results, the cyclic placement method is faster when
the number of capsules is larger and/or the box is smaller. A case with five capsules and
a box with a side length of 20 is studied more closely in Figure 11. As seen in Table 2, the
confidence intervals are relatively small compared to themean values which indicates good
sensitivity of the results.

A theoretical minimum for the gradient evaluation times, see Equation (16), is also
shown in Figure 12, and the results somewhat follow it. The theoretical model is based
only on the evaluation speed of the gradients, and has an impossible assumption, 𝑔 → 0,
but yet it is quite close to the obtained results.

The resulting objective function values from the simulations can be seen in Appendix
B, where we can see that the algorithms produce somewhat similar results. Up to four
regions are visible (e.g., case of 𝑛 = 20 and 𝑏 = 60), which is due to finding, or not finding,
a solution for the packing problem. For two algorithms, that makes a total of four regions.
Some problems that we simulated are impossible (e.g., 𝑛 = 20 and 𝑏 = 20), resulting in
one region, while other scenarios are rather easy for the algorithms to solve (e.g. 𝑛 = 5 and
𝑏 = 60). Because of the repelling factors, see Chapter 3.3, the objective function can never
be exactly zero.

17

0 5 10 15 200

50

100

150

200

250

300

cputime

no
.o
fs
am

pl
es

𝑛 = 5, 𝑏 = 20

Cyclic placement method
Benchmark method

(a) Histogram of computation times for both
of the algorithms.

0 5 10 15 200

5

10

15

20

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 5, 𝑏 = 20

Data
Fitted slope
25% and 75% quartiles

(b) Computation times for both algorithms.
Fitted line 𝑡𝑓 = 𝛼𝑡𝐹 and 25% and 75% quar-
tiles

Figure 11: Computing times for both of the algorithms when 𝑛 = 5 and 𝑏 = 20. Sample
size is 500 for each of the algorithms.

Table 2: Estimations for 𝛼 in different setups.

Estimate of 𝛼 with 𝑏, size of box
95% confidence interval 20 40 60

𝑛, number of capsules

5 0.226±0.021 0.334±0.027 0.327±0.032
10 0.128±0.011 0.164±0.019 0.197±0.021
20 0.0516±0.0092 0.0718±0.0056 0.0811±0.0094
40 – 0.0199±0.0012 0.0314±0.0026

Table 3: Quartiles for 𝛼.

25% and 75% 𝑏, size of box
quartiles for 𝛼 20 40 60

𝑛, number of capsules

5 0.193, 0.4 0.285, 0.54 0.302, 0.57
10 0.102, 0.15 0.129, 0.22 0.144, 0.29
20 0.0344, 0.067 0.0618, 0.085 0.0645, 0.11
40 – 0.017, 0.024 0.0267, 0.036

18

10 20 30 40

n, number of capsules

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
st

im
at

e
fo

r
al

ph
a

b=20 with quartiles
Theoretical performance

0 10 20 30 40

n, number of capsules

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
st

im
at

e
fo

r
al

ph
a

b=40 with quartiles
Theoretical performance

0 10 20 30 40

n, number of capsules

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
st

im
at

e
fo

r
al

ph
a

b=60 with quartiles
Theoretical performance

Figure 12: Data plotted from the Tables
2 and 3. Theoretical performance is from
Equation (16).

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(a) Initial, random setting. This is
now optimized by both of the algo-
rithms.

-20 -10 0 10 20
x

-20

-15

-10

-5

0

5

10

15

20

y

(b) Optimized setting with the
benchmark algorithm.

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(c)Optimized settingwith the cyclic
placement algorithm.

Figure 13: A sample where the number of
capsules (𝑛) is 20 and size of the box (𝑏) is 40.
In these cases local optima are found where
no capsules overlap.

19

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(a) Initial, random setting.

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(b) Optimized setting with the
benchmark algorithm.

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(c)Optimized settingwith the cyclic
placement algorithm.

Figure 14: 𝑛 = 25 and 𝑏 = 40. In this case
the capsules overlap somewhat in the local
optima.

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(a) Initial, random setting.

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(b) Optimized setting with the
benchmark algorithm.

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(c)Optimized settingwith the cyclic
placement algorithm.

Figure 15: 𝑛 = 40 and 𝑏 = 40. In this case
the capsules overlap extensively in the local
optima.

20

5 Summary
In this thesis we presented an algorithm for packing capsuleswith cyclic placementmethod
and it was compared to a benchmark method algorithm that optimizes the places of all the
capsules simultaneously. Both algorithms work as expected and a valid local minimum is
always found by both algorithms. Results show consistency, and that the cyclic placement
method is clearly faster than the benchmark method. Nevertheless, it should be noted that
if the gradient for the benchmark method had been calculated as in Equation (14), the
method could have taken less time compared to the cyclic placement method.

Overlapping area is a general way of telling howmuch two shapes overlap and this way
the cyclic placement method can be implemented easily, for example, to an ellipse packing
problem. In fact, the idea of the cyclic placement method is quite general and the method
can be very effective with other optimization purposes as well, where the objective function
is possible to separate into factors that can be optimized separately.

The ineffectiveness of pattern searches (see Chapter 3.4.2) in the cyclic placement
method is a little surprising – in many cases pattern searches are very effective and step
sizes can be even around 100 times the regular step size [4], but in this problem they were
entirely ineffective. Many other heuristics exist for packing problems and they are not
handled in this thesis. It would be interesting to compare the cyclic placement method
against other sophisticated algorithms.

21

References
[1] Mirko Ruokokoski, Determining the number of passengers that can be fitted in a

standard-sized lift car, KONE Corporation, 2015.

[2] Stephen J. Wright, Mathematical Programming, Coordinate descent algorithms, June
2015, Volume 151, Issue 1, pp 3–34. Accessed at https://link.springer.com/
article/10.1007/s10107-015-0892-3#citeas.

[3] Mokhtar S. Bazaraa, Hanif D. Sherali, C. M. Shetty, Nonlinear Programming, Theory
and Algorithms, 1993.

[4] Antti Honkela, Harri Valpola, Juha Karhunen, Accelerating Cyclic Update Algorithms
for Parameter Estimation by Pattern Searches, 2003 Kluwer Academic Publishers. Ac-
cessed at https://link.springer.com/content/pdf/10.1023/A:1023655202546.
pdf at 30.7.2018.

[5] Wikibooks, Convexity/The intersection of convex sets is convex, https://en.
wikibooks.org/wiki/Convexity/The_intersection_of_convex_sets_is_
convex (Accessed on 8.8.2018).

[6] MathWorks Documentation, convhull, Convex hull, https://se.mathworks.com/
help/matlab/ref/convhull.html (Accessed on 12.7.2018).

[7] Wolfram Mathworld, Polygon Area, http://mathworld.wolfram.com/
PolygonArea.html (Accessed on 12.7.2018).

[8] Wolfram Mathworld, Circular Segment, http://mathworld.wolfram.com/
CircularSegment.html (Accessed on 12.7.2018).

[9] MathWorks Documentation, cputime, Elapsed CPU time, https://se.mathworks.
com/help/matlab/ref/cputime.html (Accessed on 12.7.2018).

https://link.springer.com/article/10.1007/s10107-015-0892-3#citeas
https://link.springer.com/article/10.1007/s10107-015-0892-3#citeas
https://link.springer.com/content/pdf/10.1023/A:1023655202546.pdf
https://link.springer.com/content/pdf/10.1023/A:1023655202546.pdf
https://en.wikibooks.org/wiki/Convexity/The_intersection_of_convex_sets_is_convex
https://en.wikibooks.org/wiki/Convexity/The_intersection_of_convex_sets_is_convex
https://en.wikibooks.org/wiki/Convexity/The_intersection_of_convex_sets_is_convex
https://se.mathworks.com/help/matlab/ref/convhull.html
https://se.mathworks.com/help/matlab/ref/convhull.html
http://mathworld.wolfram.com/PolygonArea.html
http://mathworld.wolfram.com/PolygonArea.html
http://mathworld.wolfram.com/CircularSegment.html
http://mathworld.wolfram.com/CircularSegment.html
https://se.mathworks.com/help/matlab/ref/cputime.html
https://se.mathworks.com/help/matlab/ref/cputime.html

22

A Intersection points with circles and line segments

A.1 Intersection point of two line segments
Let’s define two line segments p and q as

{p = p1𝑡 + p2(1 − 𝑡), 0 ≤ 𝑡 ≤ 1
q = q1𝑠 + q2(1 − 𝑠), 0 ≤ 𝑠 ≤ 1.

(A1)

For an intersection point of these line segments it holds:

p = q,
⟺ p1𝑡 + p2(1 − 𝑡) = q1𝑠 + q2(1 − 𝑠)
⟺ 𝑡 (p1 − p2) + p2 = 𝑠 (q1 − q2) + q2
⟺ 𝑡(p1 − p2) + 𝑠 (q2 − q1) = q2 − p2,

or in matrix form,

[p1 − p2 q2 − q1] [
𝑡
𝑠] = q2 − p2.

The inverse of a 2 × 2matrix is

[𝑎 𝑏
𝑐 𝑑]

−1

= 1
𝑎𝑑 − 𝑏𝑐 [

𝑑 −𝑏
−𝑐 𝑎] , (A2)

so that 𝑡 and 𝑠 are
[𝑡𝑠] = [p1 − p2 q2 − q1]

−1 (q2 − p2) .

If requirements 0 ≤ 𝑡 ≤ 1 and 0 ≤ 𝑠 ≤ 1 aren’t fulfilled or the inverse matrix in Equa-
tion (A2) does not exist (i.e., 𝑎𝑑 − 𝑏𝑐 = 0), the intersection point does not exist. If the
values of 𝑡 and 𝑠 are feasible, then they can be substituted to Equation (A1), which gives the
coordinates of intersection point.

A.2 Intersection points of two circles
Let’s find the intersection points for two circles with a center points c1 and c2 and radii 𝑟1
and 𝑟2. Set 𝑑 = |c1 − c2|. If 𝑑 = 0, we return no intersection points, even if the circles are
identical, otherwise we’ll transform c2. First we’ll subtract c1 from c2, and then we’ll rotate
the resulting vector so that it is on the 𝑥-axis. The rotation is accomplished with 𝑅(−𝛼),
where

𝑅(𝛼) = [cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼] , [cos 𝛼sin 𝛼] =

−c1 + c2
𝑑 .

Now, we have a simplified system of equations

{𝑥
2 + 𝑦2 = 𝑟21
(𝑥 − 𝑑)2 + 𝑦2 = 𝑟22

,

23

for which the solutions for the intersection points, say p±, are (solved withMathematica):

p± =
1
2𝑑 [

𝑑2 + 𝑟21 − 𝑟22

±√2𝑑2 (𝑟21 + 𝑟22) − 𝑑4 − (𝑟21 − 𝑟22)
2] .

Now, the intersection points of the original circles are q± = 𝑅(𝛼)p± + c1. Complex results
are rejected.

A.3 Intersection points of a circle and a line segment
Let’s find the intersection points for a line segment between points r1, r2, and a circle with
center point c and radius 𝑟. Let’s first subtract c from the points r1 and r2, and then ro-
tate them with 𝑅(−𝛽), so that the line segment becomes parallel with the 𝑥-axis. These
transformations are accomplished with,

{r
′
1 = 𝑅(−𝛽)(r1 − c)
r′2 = 𝑅(−𝛽)(r2 − c)

, where [cos 𝛽sin 𝛽] =
−r1 + r2
| − r1 + r2|

.

Denote 𝑦0 = r′1,𝑦. We then have a circle 𝑥2+𝑦2 = 𝑟2, and a line of 𝑦 = 𝑦0, 𝑥 ∈ ℝ, for which
the points of intersection are,

p± = [±√𝑟2 − 𝑦20
𝑦0

] .

If
min {r′1,𝑥, r′2,𝑥} ≤ p±,𝑥 ≤ max {r′1,𝑥, r′2,𝑥},

we accept the intersection point. After transformations back, the final intersection points
are q± = 𝑅(𝛽)p± + c.

24

B Simulation data and fitting

0 5 10 15 200

5

10

15

20

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 5, 𝑏 = 20

Data
Fitted slope
25% and 75% quartiles

−8 −6 −4 −2 0 2−8

−6

−4

−2

0

2

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 5, 𝑏 = 20

Data

6 8 10 12 14 16 180.5

1

1.5

2

2.5

3

3.5

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 10, 𝑏 = 20

Data
Fitted slope
25% and 75% quartiles

2.26 2.27 2.27 2.28 2.28 2.29 2.29

2.27

2.28

2.29

2.3

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.
𝑛 = 10, 𝑏 = 20

Data

25

0 20 40 60 800

2

4

6

8

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 20, 𝑏 = 20

Data
Fitted slope
25% and 75% quartiles

2.92 2.93 2.94 2.95 2.96 2.97 2.982.91

2.92

2.93

2.94

2.95

2.96

2.97

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 20, 𝑏 = 20

Data

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 5, 𝑏 = 40

Data
Fitted slope
25% and 75% quartiles

−8 −6 −4 −2 0−8

−6

−4

−2

0

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 5, 𝑏 = 40

Data

1 2 3 4 50

0.2

0.4

0.6

0.8

1

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 10, 𝑏 = 40

Data
Fitted slope
25% and 75% quartiles

−8 −6 −4 −2 0 2

−6

−4

−2

0

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 10, 𝑏 = 40

Data

26

10 15 20 25 30 35 400.5

1

1.5

2

2.5

3

3.5

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 20, 𝑏 = 40

Data
Fitted slope
25% and 75% quartiles

−0.5 0 0.5 1 1.5−0.5

0

0.5

1

1.5

2

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 20, 𝑏 = 40

Data

80 100 120 140 1601

1.5

2

2.5

3

3.5

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 40, 𝑏 = 40

Data
Fitted slope
25% and 75% quartiles

2.86 2.88 2.9 2.92 2.942.88

2.9

2.92

2.94

2.96

2.98

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 40, 𝑏 = 40

Data

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 5, 𝑏 = 60

Data
Fitted slope
25% and 75% quartiles

−7.8 −7.6 −7.4 −7.2 −7−8

−7.5

−7

−6.5

−6

−5.5

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 5, 𝑏 = 60

Data

27

0 1 2 3 40

0.2

0.4

0.6

0.8

1

1.2

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 10, 𝑏 = 60

Data
Fitted slope
25% and 75% quartiles

−8 −6 −4 −2 0−7

−6

−5

−4

−3

−2

−1

0

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 10, 𝑏 = 60

Data

4 6 8 10 12 140.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 20, 𝑏 = 60

Data
Fitted slope
25% and 75% quartiles

−8 −6 −4 −2 0 2−8

−6

−4

−2

0

2

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 20, 𝑏 = 60

Data

50 60 70 80 90 100 1101

1.5

2

2.5

3

3.5

4

4.5

cputime, 𝑡𝐹 (s)

cp
ut
im
e,
𝑡 𝑓
(s
)

𝑛 = 40, 𝑏 = 60

Data
Fitted slope
25% and 75% quartiles

0 0.5 1 1.5 20.8

1

1.2

1.4

1.6

1.8

2

2.2

Final value of lg 𝐹 for bechmark m.

Fi
na
lv
al
ue

of
lg
𝐹
fo
rc
yc
lic

pl
.m

.

𝑛 = 40, 𝑏 = 60

Data

	Abstract in Finnish
	Abstract
	Preface
	Contents
	Introduction
	Background
	Materials and methods
	Mathematical definition of a capsule
	Calculating overlapping area of two capsules
	Objective functions
	Optimization methods
	Theoretical performance
	Cyclic placement method
	Refining the gradient methods in Matlab

	Comparison of the algorithms

	Results
	Summary
	Intersection points with circles and line segments
	Intersection point of two line segments
	Intersection points of two circles
	Intersection points of a circle and a line segment

	Simulation data and fitting

