
Aalto University

School of Science

Degree Programme of Engineering Physics and Mathematics

Jussi Hirvonen

Stochastic approach to mid- and long-
term forecasting of ERCOT real-time
electricity price

Master’s Thesis
Espoo, April 13, 2016

Supervisor: Prof. Pauliina Ilmonen
Instructor: M.Sc. Jyrki Leino

The document can be stored and made available to the public on the
open Internet pages of Aalto University. All other rights are reserved.



Aalto University
School of Science
Degree Programme of Engineering Physics and Mathematics

ABSTRACT OF
MASTER’S THESIS

Author: Jussi Hirvonen

Title:
Stochastic approach to mid- and long-term forecasting of ERCOT real-time elec-
tricity price

Date: April 13, 2016 Pages: 111

Professorship: Statistics Code: Mat-2

Supervisor: Prof. Pauliina Ilmonen

Instructor: M.Sc. Jyrki Leino

The purpose of this work is to build understanding of real-time (RT) price creation
in Electric Reliability Council of Texas (ERCOT) and construct a stochastic
simulation methodology to create RT price time series several years to future.
Simulation methodology takes into account impact of identified drivers of RT
price.

Forecast electricity prices are needed as inputs, for example, for power plant
investment decisions. In ERCOT, revenues of power plants consist of selling
electricity in three markets (day-ahead (DA), RT, and ancillary services (AS)
markets). Traditionally, mainly DA and partly AS market are considered in
investment profitability calculations. Flexible power plants can get revenue also
from RT market. They can obtain additional profit by benefiting price difference
between DA and RT markets. Long term price forecasting is needed to support
investment decisions due to long lifetime (15+ years) of power plants.

Fundamental and stochastic models are two main classes of electricity price fore-
casting models. There are established methods for DA electricity price forecasting
and commercial software can do the task. Short term (up to a month), typically
deterministic, real-time price forecasts are used by market participants, too. How-
ever, such solutions do not exist for long-term (3+ years) RT price forecasting.

In this study, statistical analysis is conducted to identify RT price drivers. Sim-
ulation methodology is constructed using bootstrap method with several adjust-
ments. It is seen that RT price spikes can be largely explained by available
generation capacity exceeding demand and DA price. On most common RT price
level forecast error of surplus capacity, change speed of net-load, DA price and
previous behaviour of RT price explain price fluctuations. Future values of the
chosen explanatory variables can be simulated by conducting a fundamental DA
market simulation using a dedicated commercial software and calibrated model.

Functioning of simulation method is validated by comparing simulated RT price
series to historical RT price. Moreover, two case studies are conducted. It is
seen that increasing share of wind capacity in ERCOT market increases RT price
volatility.
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Tämän työn tavoitteena on mallintaa päivän sisäistä sähkönhintaa Teksasis-
sa sijaitsevalla ERCOT-markkinalla. Lisäksi kehitetään simulointimenetelmä,
jolla voidaan luoda hinta-aikasarjoja useaksi vuodeksi tulevaisuuteen. Se-
littäjämuuttujien vaikutus huomioidaan mallinnuksessa.

Sähkönhinnan ennustaminen on tärkeää esimerkiksi voimalaitosinvestointien kan-
nattavuutta laskettaessa. ERCOT:ssa voimalaitokset myyvät sähköä kolmella
markkinalla: seuraavan päivän (DA), päivän sisäisellä (RT) sekä reservituote-
markkinalla (AS). Tavallisesti vain DA-markkinan hinta huomioidaan investoin-
tilaskelmissa. Nopeat voimalaitokset voivat kuitenkin hyötyä merkittävästi RT-
markkinahinnan liikkeistä ja erityisesti sen ja DA-markkinahinnan erosta.

Sähkönhinnan ennustamiseksi on olemassa kahdenlaisia menetelmiä - fundamen-
taalisia ja stokastisia. DA-markkinahinnan ennustamiseen käytetään yleisesti tie-
tokoneohjelmia, joiden antamat tulokset ovat varsin tarkkoja niin lyhyellä kuin
pitkälläkin ennustehorisontilla. RT-markkinahinnalle ei kuitenkaan ole olemassa
vastaavia pitkän aikavälin ratkaisuja.

Tässä työssä tutkitaan tilastollisesti RT-markkinahinnan muodostumis-
ta. Löydettyihin selittäjämuuttujiin perustuen rakennetaan bootstrap-
menetelmää käyttäen stokastinen ennustemalli. Korkeiden hintapiik-
kien nähdään useimmiten tapahtuvan korkean DA-markkinahinnan
ja alhaisen vapaan sähköntuotantokapasiteetin aikoina. Tavallisimmal-
la hintatasolla selittäjämuuttujiksi valitaan DA-markkinahinta, vapaan
sähköntuotantokapasiteetin ennustevirhe, tuulituotannon ylittävän kulu-
tuksen muutosnopeus sekä edellinen RT-markkinahinta. Selittäjämuuttujien
arvot simuloidaan sähkömarkkinamallinnukseen tarkoitetulla tietokoneohjelmalla
ja Markovin ketjuihin perustuvalla stokastisella menetelmällä.

Simulointimenetelmän toimivuus varmistetaan ennustamalla menneisyyden hin-
toja ja havaitsemalla ennusteet tarpeeksi samanlaisiksi toteutuneiden kanssa. RT-
markkinahintaa simuloidaan kahdessa tulevaisuuden skenaariossa. Tuulituotan-
non määrän kasvun nähdään kasvattavan hintavaihteluita RT-markkinalla.
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Abbreviations and Acronyms

Ancillary services
(AS)

Services other than electricity production provided to
market operator by electricity generators for grid sta-
bility maintaining purpose

Annual peak load The highest load of a year
Base load A constant demand of electricity over a long time pe-

riod
Base load plant A power plant that usually does not start and stop

within day
Black-out A situation in which electricity demand of part of or

whole market cannot be served
Capacity factor Mean generation in a period as percentage of genera-

tion capacity
Clearing Action performed by market operator to match de-

mand and supply based on bids and offers provided
by electricity buyers and sellers

Combined cy-
cle gas turbine
(CCGT)

A gas turbine power plant with a steam turbine that
drives an additional generator for improved fuel effi-
ciency

Congested line A transmission line transmission capacity of which is
limiting electric current in it

Congested node A node that is connected to grid by transmission lines
that are often congested

Congestion A situation in which a current in a transmission line
is limited by its transmission capacity

Current operating
plan (COP)

A plan that generating company provides to inform
ERCOT about its intended power plant availability

Day-ahead (DA)
market

Electricity market where sold energy is delivered one
day after market clearing

Day-ahead (DA)
price

Price of electricity in day-ahead market

7
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Dispatching Process which optimises generation needed to serve
load and provides running schedule to power plants.
Conducted by market operator

Energy-only mar-
ket

Electricity market type, in which generators are not
paid for their on-line generation capacity, but only for
electricity they sell

ERCOT Electric Reliability Council of Texas. ISO of Texas.
Fundamental
model

An electricity price forecasting model that is based on
modelling generation of different power plant types

Gas turbine (GT) A gas turbine power plant
Gate closure Dead-line in minutes for bids and offers before delivery

of electricity, 5 minutes in ERCOT RT market
Grid All electric components (generation, transmission,

consumers) of a market
Grid stability Capability of power system to deliver electricity to

consumers without large frequency deviations and
black-outs

Hub A region of grid that consists of several nodes
Hub average price Electricity price that is calculated as simple average

of all ERCOT hub prices
Hub price Electricity price that is calculated as average of LMPs

within the hub
ICE Internal combustion engine
Independent power
producer (IPP)

A private company that owns generation capacity and
sells electricity to consumers

Independent sys-
tem operator
(ISO)

An organization that acts as market operator and co-
ordinates power system operation, e.g. ERCOT

Intermediate load Electricity demand that is present for 10 to 18 hours
per day due to regular daily seasonal pattern in de-
mand

Intermittent gener-
ation

Electricity generation of wind and solar power plants

Load Total electricity demand of market
Load reduction AS product in which a voluntary electricity consumer

gets compensation for committing to reduce its con-
sumption when needed

Locational
marginal price
(LMP)

Electricity price of a node
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Market operator An organization that matches load and generation in
electricity market

Net-load The load exceeding intermittent generation
Nodal market An electricity market type in which a typically large

number of nodes have separate prices, e.g. ERCOT
Node A place in grid where consumption or generation is

located
Non-intermittent
generation

Electricity generation of all other than wind and solar
power plants

Non-spinning
reserve

Ancillary service product that requires power plant to
be ready to start generating electricity in 30 minutes
when needed

Operational flexi-
bility

Ability of a power plant to change its output in short
time

Peak load The load that exceeds intermediate load
Peaking power
plant (peaker)

A power plant that only runs during peak load hours

Price-adder A mechanism that increases electricity price, when
surplus capacity in the system is low. Introduced in
ERCOT to incentivize building new generation capac-
ity.

Price-setter
(marginal power
plant)

The power plant with the highest offer price that is
dispatched

Price-taker Power plant that is dispatched, but is not price-setter
Ramp To change output power of a power plant.
Ramping capabil-
ity

Ability of a power plant to change its output quickly

Ramping con-
straint

Inability to ramp up as fast as would be needed. Can
be a problem either on the level of a single power plant
or entire system.

Real-time (RT)
market

Intra-day electricity market where sold energy is deliv-
ered typically very shortly (e.g. 5 minutes in ERCOT)
after market clearing

Real-time (RT)
price

Price of electricity in real-time market

Regulation-down Ancillary service product to decrease generation when
needed

Regulation-up Ancillary service product to increase generation when
needed
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Responsive reserve Ancillary service product that requires power plant
to be ready to start generating electricity in a few
seconds when needed

Risk premium Amount by which the expected value of risky return
must exceed risk-free return to make a market player
indifferent between risky and risk-free return

Surplus capacity Available generation capacity exceeding load
Three-part supply
offer

An offer to sell electricity that specifies (i) start-up
offer, (ii) minimum-energy offer, and (iii) energy offer
curve

Transmission
capacity

Maximum electric current of a transmission line

Utility Typically very large company that generates and dis-
tributes electricity

Zonal market Electricity market type in which prices are regional,
e.g. Nordpool



Notations

RT Real-time electricity price
DA Day-ahead electricity price
∆ = RT −DA Spread between day-ahead and real-time price
∆hist. Historical ∆ value
IGA Intermittent generation, actual (MW)
IGF Day-ahead forecast of intermittent generation (MW)
LA Demand, actual (MW)
LA Day-ahead forecast of demand (MW)
NICA Available non-intermittent generation capacity, actual

(MW)
NICF Day-ahead forecast of available non-intermittent gen-

eration capacity (MW)
FCA Available generation capacity exceeding demand, ac-

tual (MW)
FCF Day-ahead forecast of available generation capacity

exceeding demand (MW)
FCFE = FCA −
FCF

Forecast error of available generation capacity exceed-
ing demand (MW)

NLA = LA− IGA Net-load, actual(MW)
NLC Change of net-load from the previous 5-minute period

(MW)
C Dynamic time step category
Cspike Dynamic time step category corresponding to spike
nC Number of different dynamic time step categories used

in RT price simulation
Xspike Binary variable that indicates spike period, 1: spike,

0: non-spike
∆C ∈ {0, 1, 2, ...} A variable that indicates which group ∆ of certain

period belongs to
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RTC ∈ {0, 1, 2, ...} A variable that indicates which group RT of certain
period belongs to

nRTC Number of price classes used in RT price sampling
n∆C

Number of delta classes used in RT price sampling
lRTC A vector that contains limits of price classes
l∆C

A vector that contains limits of delta classes
DAlimits,C A vector that contains limits of DA price for deter-

mining dynamic time step category C
FCFElimit A limit of FCFE for determining dynamic time step

category C
NLClimit A limit of NLC for determining dynamic time step

category C
lspike,RT A limit above which all RT prices are spike prices
lspike,DA A limit above which all DA prices are spike prices
DAlimit,prob A limit of DA price for conditional probability of spike

period starting
DAlimit,prob A limit of DA price for conditional probability of spike

period starting
FCAlimit,prob A limit of FCA for conditional probability of spike

period starting
GRTc Group of historical RT prices that have occurred when

RT class was RTC , C = 0, 1, 2, ...n
G∆c Group of historical ∆ values that have occurred ∆

class was ∆C , C = 0, 1, 2, ...n
GL A set that includes lengths of historical spike periods
GRTspike A vector that contains RT prices of historical spike

periods in chronological order
Sspike Minimum share of spike prices within a spike period
Xstart Binary variable, 1: spike period starts, 0: spike period

does not start
LB Block length used in simulation of future spike prices

with block bootstrap method
XF Day-ahead forecast value of explanatory variable X
XA Actual value of explanatory variable X
XFfut. Future day-ahead forecast value of explanatory vari-

able X
XAfut. Future actual value of explanatory variable X
XFhist. Historical day-ahead forecast value of explanatory

variable X
XAhist. Historical actual value of explanatory variable X
IGFfut. Future day-ahead forecast of intermittent generation
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IGAfut. Future actual value of intermittent generation
IGFhist. Historical day-ahead forecast value of intermittent

generation
IGAhist. Historical actual value of intermittent generation
LFfut. Future day-ahead load forecast
LAfut. Future actual load
LFhist. Historical day-ahead load forecast
LAhist. Historical actual load
NICFfut. Future day-ahead forecast of available non-

intermittent generation capacity
NICAfut. Future actual value of available non-intermittent gen-

eration capacity
NICFhist. Historical day-ahead forecast of available non-

intermittent generation capacity
NICAhist. Historical actual value of available non-intermittent

generation capacity
XFC Class of day-ahead forecast of explanatory variable X
nXFC

Number of classes XFC of day-ahead forecast used in
simulation of actual value of explanatory variable X

lXFC
Limits of classes XFC of day-ahead forecast used in
simulation of actual value of explanatory variable X

lXAXFC
Limits of conditional quantilesQXA used in simulation
of actual values of explanatory variable per each class
of day-ahead forecast XFC

QXA Conditional quantile of actual value of explanatory
variable X

q Number of conditional quantiles QXA used in simula-
tion of actual values of explanatory variable

Ia(x) Indicator function

Ia(x) =

{
1, if x ≥ a

0, otherwise



Chapter 1

Introduction

Forecasting electricity price in competitive markets is a task studied a lot by
statisticians. However, most scientific work on forecasting electricity prices
until today has been about day-ahead (DA) electricity price, i.e. the price of
electricity delivered one day after the market clearing. Flexible power plant
technology allows benefiting movements of Real-Time (RT) price, i.e. the
price of electricity to be delivered in only a few minutes after market clearing.
Thanks to their ability to start and stop flexibly for just a few minutes
without starting cost or impact on maintenance, those power plants can take
advantage of all price movements. In this work we study fundamentals of
RT price creation in Electric Reliability Council of Texas (ERCOT). We also
build a method to create simulated RT price forecasts for several years. The
method is based on a statistical method known as bootstrapping with several
modifications to capture the impact of several explanatory variables.

1.1 Background

Power plant investments are typically long-term investments. A major driver
of profitability is price for which generated electricity can be sold. Future
price movements, of course, are not known with certainty at the time that
investment decision is made. Traditionally only DA market and ancillary
services (AS) market, in which different reserve products are traded, have
been considered in investment decisions (in personal communication with
M.Sc. Jyrki Leino, Senior Power System Analyst, Wärtsilä, 15 March 2016,
Turku). However flexible power plants can achieve profits by selling some or
all of their generation in RT market. A flexible power plant can also get addi-
tional profit by benefiting price differences between markets. For example, it
can sell electricity in DA market and, instead of generating electricity to fulfil

14



CHAPTER 1. INTRODUCTION 15

its commitment, buy the commitment back from RT market and not start
at all in RT. This strategy is profitable if RT price is lower than marginal
generation cost of the plant. Wärtsilä is one manufacturer of flexible power
plants and has a need to understand the value of power plant flexibility in
ERCOT. Goal of this study is to find the drivers of electricity price in ER-
COT RT market and create simulated RT price time series for several years.
Forecast price series will be used to determine profitability of power plant
investments in ERCOT.

ERCOT market was chosen for the study since electricity prices there
have been volatile in recent years. Price volatility has given opportunities
for flexible power plants to make profits by making transactions in different
markets as described above. Secondly, there is a need to understand what
impact some changes, such as growing wind generation capacity, will have on
price volatility in ERCOT. RT price volatility is mainly a result of large share
of residential consumers, the demand of which is often inflexible with respect
to the price due to low consumption and limited chances to observe electricity
price. Also, the generation in ERCOT market is more difficult to predict than
in many other markets, because of the large share of renewable generation
capacity. Renewable generation is exposed to weather changes, which leads
occasionally to unexpected events with impact on RT price. Third reason
behind volatile RT price is low transmission capacity of the interconnectors
that enable transferring electricity from or to adjacent markets. Therefore,
ERCOT is almost an electric island. Unexpected electricity grid or generation
outages cannot be compensated by co-operating with other markets and may
lead to high prices.

1.2 Research problem

The purpose of this thesis is to understand RT electricity price creation in
ERCOT and build a methodology to create forecast price time series for sev-
eral years. Due to significant uncertainty related to future events we do not
try to create one precise RT price prediction. Instead, we simulate hundreds
of time series and study the distribution of price among all forecast series. We
put a special emphasis on studying the impact of increasing wind generation
capacity on price volatility. The needed steps are (i) building hypotheses
and conducting statistical analysis to identify explanatory variables of RT
price movements, (ii) determining quantitative measures of correlation be-
tween RT price and each explanatory variable, (iii) constructing a stochastic
price creation method based on correlations and forecast time series of ex-
planatory variables, (iv) creating simulated price scenarios using predictions
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of explanatory variables provided by ERCOT, and (v) performing ”what-
if” analyses to see what impact e.g. demand and wind generation capacity
growing slightly faster than expected could be expected to have on future
prices.

1.3 Methods

We conduct different statistical analyses to identify drivers of electricity price
in ERCOT RT market. The methods include univariate (e.g. duration curves
and empirical autocorrelation functions) and bivariate (e.g. scatter plots)
analyses. We use price data from years 2011-2015 and a lot of other market
data published by ERCOT and collected and delivered to us by Genscape..
Data selection is based on topic understanding achieved through reviewing
literature and interviewing electricity market experts.

To create future price scenarios, we use bootstrap method that was intro-
duced by Bradley Efron [7] and has since been used in many contexts, such as
machine learning [2], volatility prediction in stock market modelling [28], and
sex determination [26]. Bootstrap is a simple method to apply when reliable
history data is available. The principle is easy to understand intuitively even
though the method has rigorous mathematical foundation. It also does not
need too many assumptions about the unknown underlying distribution that
generated the observations. For more information about bootstrapping see
e.g. [8] or [5].

We use bootstrap method to generate a large number of scenarios for
electricity price in ERCOT RT market for several years. The historical ob-
servations of RT price and spread between DA and RT price are used as
bootstrapping populations. The impact of different explanatory variables
determined by the statistical analyses is taken into account when construct-
ing price forecasts for each future time step. Our approach differs in many
ways from fundamental electricity price market modelling methods often used
to create short-term price forecasts. Instead of building one prediction of fu-
ture price we create several possible scenarios. This approach enables us to
more robustly determine price distribution than in single point estimation
by fundamental modelling and explicitly take into account the uncertainty
related to future. A large number of price series can also be used in price
risk evaluation of power plant investment. Statistical approach was chosen
because of future uncertainty and complicated nature of RT price creation
involving many drivers. Some of the drivers may be unknown to us and some
of them are virtually impossible to observe. Our forecast series are not accu-
rate predictions based on explanatory variable values. But neither would be
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any prediction based on any explanatory variables, as there is always uncer-
tainty about future in electricity markets. However, the long forecast horizon
tends to cancel out forecast errors made in estimating prices of individual
future time-steps. Therefore, the estimate of overall price volatility can be
expected to be far more accurate than estimates of RT prices of individual
future time steps.

1.4 Structure of the study

We start the study by going briefly through in Chapter 2 the functioning of
modern electricity markets, where price of electricity is determined through
auctions arranged every few minutes. We define many technical terms that
are needed to understand the remaining parts of the work and specifically
take a look at the structure and most important market processes of ERCOT.
Next, we briefly review literature on electricity price forecasting. In Chapter
3 we conduct statistical analyses to identify drivers of ERCOT RT price. In
Chapter 4 we build a stochastic model to create simulated RT price series.
We apply the method to two future scenarios and compare simulated RT
price series in the scenarios. We see how increasing share of wind generation
capacity in ERCOT market impacts RT price volatility. Finally, in Chapter 5
we present our conclusions from the study and propose some ideas for future
research.



Chapter 2

Electricity markets

Many electricity markets have liberalised from the 1990s’ regulated fixed-
price contract markets to modern competitive markets where electricity price
is determined in auctions organised for example every five minutes [22]. Elec-
tricity sellers and buyers send their offers and bids to a computer system held
by market operator. Then market operator clears the market by matching
demand and supply and dispatches power plants, i.e. schedules power plants
to run so that generation and demand equal every second.

To incentivize building new capacity, some markets have deployed so
called capacity market. In such markets, generators receive payments for
each megawatt of their on-line generation capacity. Energy-only markets do
not include such capacity payments and all revenues for generators come
from selling energy and AS products.

A zonal market is divided to several zones, each of which has its own price
for electricity. It is possible that price in one zone is consistently higher than
in an other zone. This may happen as a result of congestion, i.e. limited inter-
zonal transmission capacity between the two zones. Price difference may
encourage investors seeking greatest returns on their investments to build
new generation capacity in the high-price zone. Added generation capacity
may lead to prices in zones to converge. One example of zonal market is
Nordpool [1]. Sometimes significant congestion can occur also within a zone.
In zonal market setting intra-zone congestion does not encourage building
more capacity in the region with greatest scarcity. Therefore, nodal market
structure has been introduced in many markets. In such setting there is
individual price for each node, i.e. connection point for load or generation,
of the grid. In this work we study one such market, ERCOT.

18
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2.1 Characteristics of electricity

With today’s technology, electricity can not be stored for long times in large
quantities in a cost-efficient way [31], [33]. Therefore, consumption and gen-
eration must be matched every second. This work is done by market operator
by dispatching power plants as needed to serve the demand and, if adjusting
is needed, by deploying regulating reserves. Reserves are generation capaci-
ties that are able to respond to required quick output changes. Generators
receive monetary compensation for providing this adjustment service to the
system. For a comprehensive presentation of matching electricity demand
and generation, see [22] and [25].

2.1.1 Demand

Electricity is consumed by households, firms and public sector in different
ways. Aggregate electricity demand exhibits several seasonal patterns that
differ by country [22]. In cold countries, such as Finland, demand in winter
time is generally higher than in summer time because of the greater need for
electricity for lighting and warming houses. In warm regions the demand is
higher in summer due to the greater need for air conditioning. Intra-day and
weekly patterns are highly similar in many countries. The demand is low
during people’s low-activity time, i.e. at night and at weekend. The demand
is often highest in the working days’ afternoons when public traffic consumes
a lot of energy and appliances such as washing machines and computers are
switched on in many homes. However, there are differences in electricity
consumption patterns between consumer groups. Industrial customers have
less clear seasonal patterns than residential customers. Therefore, the dif-
ference between the highest and lowest demand of a day is often greater in
countries with lower share of industrial electricity consumption. Demand is
often called load, when discussed from generation and transmission system
point of view.

2.1.2 Generation

In the traditional electricity markets, there were only a few generating com-
panies that sold electricity to all consumers [22]. The number of companies
selling electricity has increased rapidly with market liberalisation. For exam-
ple ERCOT has 198 certified competitive retail electric providers [12]. Large
public companies, utilities, may have a fleet of dozens of power plants. Some
firms, independent power producers (IPP), may operate only a single plant.
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Table 2.1: Some characteristics of most common power plant types in ER-
COT.

Type
Investment
(USD/kW)

Base-load, intermediate-load,
peaker, intermittent

Variable operational
cost (USD/MWh)

Typical plant
size (MW)

Coal 1000 base 25 2000
Nuclear 4000 base 7 3000
CCGT 700 base/intermediate 50 1000
OCGT 500 peaker 70 100
Engine 600 intermediate/peaker 60 100
Wind 1000 intermittent 5 100
Solar 3000 intermittent 6 10

All types of power plants have their own role in the well-functioning
power system. So called base load plants can generate electricity at very
low cost and their output is kept stable regardless of load. Nuclear and coal
power plants, as well as combined cycle gas turbine plants (CCGT) are often
base load plants. Base load plants have often very high generation capacity
and require high construction investment. Intermediate plants operate only
when load exceeds the total capacity of the base load plants. Their cost
per start and required initial investment are often high. Intermediate plants
can not generate electricity at as low a cost as base load plants. Therefore,
the electricity price is generally higher, when intermediate plants are needed
to serve the load. For example, CCGTs may be operated as intermediate
plants. Peaking power plants run only during high-demand periods. They
have lower cost per start than base load plants and intermediate plants and
they are capable of adjusting their output power very fast. Initial investment
is often low compared to base load and intermediate plants, but they have
higher marginal generation cost resulting from poor fuel-efficiency. Suitable
peaker technologies include gas turbines (GT) and internal combustion en-
gines (ICE).

Power plants that use renewable energy sources can generate electricity
at very low cost since their fuel is free. In many markets their generation is
always used when it is available [24]. However, generation of wind and solar
power plants is intermittent by nature as their electricity production stops
immediately, when the sun stops shining or there is no more wind. Generation
of wind and solar power plants is therefore called intermittent generation. In
many markets renewable technologies are subsidised by political decision,
because they would not be economic choice otherwise. Table 2.1 shows some
characteristics of different power plant types discussed above [22], [21], [19].
Numbers are only directional.

The share of load that can not be served by intermittent plants is called
net-load. It can change in two ways, (i) when load changes or (ii) generation
of intermittent plants changes. Net-load changes require ramping from non-
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intermittent plants, which requires some degree of operational flexibility from
them. Current trend of adding intermittent generation in many markets will
make net-load changes faster and larger. Therefore, need for flexible gener-
ation capacity will increase in future. Figure 2.1 illustrates load, net-load
and intermittent generation of one example day in ERCOT. Graph shows
load increasing from 25 GW to almost 45 GW during the day. Simultaneous
decrease in wind generation from 12 GW to less than 4 GW makes net-load
growth even faster than load growth. This kind of rapid net-load growth
requires non-intermittent power plants to ramp up fast.

Figure 2.1: Load, wind generation, and net-load of October 22 2015 in ER-
COT. Load is the black line on top of the graph. Wind generation is the
green region on top of the graph. Net-load is the blue region below wind
generation. Load is the sum of net-load and wind generation. Load increases
until it reaches its maximum of approximately 44000 MW. Wind generation
is strong in the night, but decreases at the same time that load increases
making the net-load change even more rapidly than load. Steep increase of
net-load is seen as rapid widening of the blue region at night and in the
morning.

2.1.3 Transmission

Electricity is transmitted to the place of consumption as electric current via
transmission lines. However, there is upper limit for current called trans-
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mission capacity of transmission line. All transmission lines and nodes of a
market together are called grid. A node is a place where load or generation
is electrically connected to a transmission line. A transmission line which is
transmitting at its full transmission capacity, is called congested line, and the
situation when one or more transmission line of a grid is congested is called
congestion. A congested node is a node that is connected to a transmission
line that is often congested. It is a task of market operator to ensure that
the price of electricity for the users in each node is the cheapest possible. If
a node is connected to a low-cost generation unit by transmission lines with
abundant capacity, the price in that node will probably be often cheaper
than price in an other node that is very congested and has only high-cost
generating units near it. The prices of two nodes can differ, if and only if,
all transmission lines connecting these nodes are congested or not function-
ing at all due to line outages. Therefore, one way to reduce market price
of electricity is reducing congestion by increasing transmission capacity of
transmission lines that are most often congested. It would be technically
possible to remove all congestion by adding transmission lines with higher
transmission capacity, but it might require high investments. As a result the
total cost of electricity to the users might be even higher than in situation
where occasional differences in prices of congested nodes occur.

2.2 Different markets

In competitive markets, such as ERCOT, electricity price is determined by
demand and supply, and is free to fluctuate as the two change. Electricity
is sold in two main markets: DA market and RT market. In addition there
is AS market, where market operator buys several reserve products from
generators. Reserves are needed to ensure that unexpected events do not
risk grid stability, leading at worst case to black-outs.

2.2.1 Day-ahead market

In DA market, a daily auction is arranged, where electricity buyers and sellers
provide their bids. The clearing of market is executed by market operator
one day before actual delivery of electricity. Therefore, by definition, DA
market commitments are future contracts, where the underlying is certain
amount of electricity and delivery time is specified to a certain time of next
day. In many markets, such as ERCOT, DA market is hourly. Hourly DA
market means that market participants can give separate bids for each hour
of the next day [20].
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2.2.2 Real-time market

Even the best predictions of electricity demand made for next day are just
estimates and many things can change before the delivery time of DA con-
tracts. Matching demand and generation exactly for next day would be
virtually impossible and often one or both of the two would differ. Differ-
ence between generation and demand might lead occasionally to a situation
where a part of the regions load would have to be shed to avoid black-out
in the whole grid. For that reason there is RT electricity market, which is
sometimes called intra-day market. In RT market electricity auctions are
arranged very often, even every five minutes. Delivery of electricity happens
e.g. five minutes after gate closure, which is a dead-line for sending bids and
offers. Dispatching is executed by market operator in a similar way to DA
market. All plants can participate in the market, but slow-ramping plants
can only be dispatched respecting their ramping limits.

A plant that has sold electricity in DA market can sometimes use RT
price movements to its advantage. Flexibility is required to make operative
decisions only a few minutes before action is needed. Often power plants
simply fulfil their DA commitments by generating the electricity that they
have sold. Alternatively they can buy electricity in RT market and deliver it
to the grid (not physically), so fulfilling their commitment without starting
at all. This is more profitable strategy, if buying the electricity from RT
market is cheaper for the power plant than generating it themselves. Such
situation occurs, when RT price is lower than the marginal generation cost
of the power plant.

2.2.3 Ancillary services market

Unexpected generator or transmission outages can occur after RT-market
clearing or load may be slightly different than was expected. If there would
not be any way to compensate for these changes in supply and demand,
there would be a good chance that the generation and load would not equal.
It would be seen in the frequency of alternating current, and might lead
to black-outs in extreme cases. AS products are used if system stability is
in danger. Market operator buys these products from generators as com-
mitments to increase or decrease their output when needed. Regulation up
capacity sold by a power plant means that it must increase its output by
certain amount, whenever the frequency of alternating current falls below
a certain threshold. Regulation down is a commitment of a power plant to
decrease its output by certain amount whenever the frequency exceeds a cer-
tain threshold determined by market operator. Regulation products can be
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provided only by power plants that can respond to changes in frequency very
quickly, only in a few seconds. There are also reserves that can be deployed
by market operator in a situation where a power plant trips, or for another
reason generation suddenly drops significantly. One product that can be used
to avoid load shedding is load reduction. It is a commitment of a voluntary
electricity consumer, e.g. a large industrial site, to reduce its consumption
when needed [18]. Some power plants, such as ICEs, can get a large share
of their revenue from selling AS products on top of their energy sales, by
e.g. selling their entire output in the DA market and regulation-down in AS
market. Some power plant types, e.g. nuclear, hardly ever participate in
AS market. For a thorough discussion of frequency response, see [21]. The
purpose and functioning of different reserves are discussed in [25]. In this
work we do not study AS market or prices.

2.3 Forecasting electricity prices

Ability to forecast electricity prices is important for many parties. Power
plant owners do investment decisions based on long-term forecasts and oper-
ative decisions based on short-term forecasts of future prices. For example,
building new flexible generation capacity requires enough price volatility to
be profitable. Regulators and politicians try to create market rules so that
they encourage building sufficient generation capacities of different types so
that load can be served reliably and cost-effectively.

Different methods to create price forecasts exist. Selection of methodol-
ogy depends on intended purpose of forecast future price time series. Two
main approaches to price forecasting are deterministic and stochastic models.
Deterministic models are used to create one prediction of time series, some
kind of maximum likelihood estimate. Deterministic models are often used
for short-term (up to a month) forecasting. One example of use of deter-
ministic price modelling is creation of power plant bidding strategy for DA
market by a trader working for a utility. Stochastic models are based on
simulating many forecast price time series, and studying the distribution of
simulated time series. For example, 95 % confidence intervals of electricity
price of next years Christmas could be created using stochastic modelling.

There are established methods for DA price forecasting, and commercial
software can do the task. Short-term RT price forecasts are used by many
market participants, too. However, we do not know any such solutions for
long-term RT price forecasting. In this work we build a RT price modelling
method that uses simulated DA price time series and several other input
variables. A study that introduces a forecasting method for AS price is done
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in [16].

2.3.1 Day-ahead price forecasting

DA price creation is well-known on fundamental level and there are several
methods to create forecasts. Commercial software products exist for short-
term and long-term forecasting [16], [17], [3]. electricity market participants
can use them supporting their decision making [32].

For more information on DA price forecasting models see e.g. [34], [32],
[4], or [23].

In this work we do not focus on DA price forecasting, but we use simulated
DA price series as input for our RT price forecasting method. It is possible
to forecast DA price accurately enough to be used as an input for stochastic
RT price forecasting model.

2.3.2 Real-time price forecasting

Fundamental models for short-term forecasting of RT price exist and are used
by market participants. However, methodologies to forecast RT price reliably
many years to future do not exist (Rhodri Williams, Regional director - ER-
COT, Genscape, Boston, 10 February 2016). Generally RT price forecasting
is more difficult than forecasting DA price, as RT price is more volatile (short
but very high spikes) and impacted by many more variables. In this work we
build a stochastic method to create simulated RT price forecasts for several
future years.

2.4 ERCOT

2.4.1 Overwiev

ERCOT market covers about 90 % of Texas load and serves 24 million con-
sumers [12]. Installed generation capacity of ERCOT is more than 74 GW
and current record demand, 69.6 GW, occurred on August 10 2015. ERCOT
is a nodal energy-only market, which means that generating companies re-
ceive all their revenues from selling energy and AS products, not from their
on-line capacity. There is a separate RT price, locational marginal price
(LMP), for each node. LMPs differ from each other when congestion occurs
[11]. So called hub prices are average prices of node LMPs. We will forecast
hub average price in this study, which is the simple average of all ERCOT
hub prices.
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As mentioned earlier, ERCOT is almost an electric island due to lim-
ited capacity of interconnections with adjacent markets. This transmission
capacity is only 1.3 GW [9].

Figure 2.2 shows shares of installed generation capacity in ERCOT in
2014 by fuel type. 55 % of generation capacity is natural gas -fired. Coal
power plants account for 24 % and nuclear plants for 6 %. Wind accounts for
14 % of installed capacity and wind generation capacity continues to grow
in future years [9]. Solar capacity is less than 1 % of installed capacity.

Figure 2.2: Shares of generation capacities by fuel in 2014 in ERCOT [12].

Therefore, we do not treat it separately in this study. However, the trend is
increasing in ERCOT [9], which means that impact of solar generation may
need to be added to price forecasting models in future. Since solar generation
has very low marginal production cost, but is intermittent by nature, it can
be supposed that addition of solar generation will lower prices on sunny
days. On the other hand, solar generation can be supposed to increase price
volatility by increasing magnitude of net-load changes and need to dispatch
fast-ramping power plants.
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2.4.2 Different markets of ERCOT

In ERCOT, there are two energy-only markets: DA energy market and RT
energy market. For ancillary services (AS) there is only DA market. An
overview to market procedures of each market is provided in [11]. A thorough
description of all market rules and processes can be found in ERCOT market
rules and protocols, e.g. [14] and [10].

2.4.2.1 ERCOT Day-ahead energy market

DA market clearing is performed every morning at 10 a.m. for electricity
delivery of the next day. DA market is hourly. Participating in DA market
is voluntary for generators. The generators provide for each hour their three-
part supply offers, specifying their start-up offer (USD they want for starting
to generate), minimum-energy offer (minimum stable load and respective
price), and energy offer curve (price-quantity pairs above minimum stable
load). Market is cleared by ERCOT as least-cost solution. This means that
ERCOT optimises the system based on all offers from generators so that the
generation equal to load will be carried out with least cost possible to the
electricity consumers [11].

2.4.2.2 ERCOT Real-time energy market

RT market clearing is made every five minutes. Gate closure is five minutes,
which means that actual electricity delivery happens five minutes after mar-
ket clearing. Generators provide their three-part supply offers, as they do in
DA market. Market clearing is done as least-cost solution [11]. Volume of
RT market in MW is lower than that of DA market. However, prices in DA
market and longer-term forward markets that are bigger in volume closely
follow RT price, which makes financial impact of RT market bigger than its
MW-volume suggests [29].

2.4.2.3 ERCOT Day-ahead ancillary services market

In ERCOT, there are four AS products: regulation up, regulation down,
responsive reserve, and non-spinning reserve. Like DA energy market, AS
market is cleared at 10 a.m. for the next day. AS market is hourly [15].
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Statistical analysis of RT price

3.1 Analysis of RT electricity price and its

potential drivers

We will next study historical market data published by ERCOT and collected
and delivered to us by Genscape. The goal is (i) to build quantitative under-
standing of drivers of RT price and (ii) to choose an appropriate simulation
methodology to create future time series of RT price.

3.1.1 DA price

As explained in chapter 2, DA price DA is determined by market clearing
executed by ERCOT on basis of bids and offers sent by market participants.
Bidding behaviour of market participants is largely impacted by expectations
of probabilities of specific conditions occurring on the next day (in personal
communication with Kevin Hanson, Supervisor, Market Operations Support,
ERCOT, 8 February 2016, Taylor TX).

Figure 3.1 shows DA price from the beginning of year 2011 to the end
of year 2015. Price is most of the time less than 100 USD/MWh. Median
price is 27.44 USD/MWh. The highest prices are in summer of 2011, around
2500 USD/MWh. Periods when price is above 500 USD/MWh are rare.
Such periods have occurred less than ten times in years 2011-2015. Even
though there are only a few high spikes in DA price, they have a signifi-
cant financial impact on electricity sellers and buyers. Duration curve is a
graph commonly used to illustrate empirical distribution of electricity price.
Vertical axis represents prices from the smallest to highest in the period of
interest. Horizontal axis represents the hours of year (8760 in total). It
can be scaled if the inspection period length differs from one year. Then it
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Figure 3.1: Day-ahead price from year 2011 to 2015. Most of the time
DA price is below 100 USD/MWh, but occasional spikes of more than 100
USD/MWh occur.

represents average hours of year in the inspection period. Duration curve
shows how many hours in a year (value on horizontal axis) electricity price
was above any price level (value on vertical axis). Duration curve is always
decreasing. Exactly same information could be shown in empirical cumula-
tive distribution function or histogram (though infinite number of intervals
would be needed in histogram in general case). Duration curve of DA price
in figure 3.2 shows that highest DA price in 2011-2015 has been around 2600
USD/MWh and lowest has been approximately zero. DA price has exceeded
100 USD/MWh only a few hundred hours per year. Figure 3.3 shows DA
price and demand of an example week in June 2014. Both variables show
clear seasonal variation at one day season length. Values of both variables are
often low at night and high in the day-time. Demand of last two days of the
inspection period is higher than in the other days. DA price has reached its
maximum in these days, too. DA price is largely impacted by demand since
price is determined by the dispatched power plant with the most expensive
offer price. In low-demand times it is enough to dispatch renewable and base
load plants with cheap offer prices. As demand increases intermediate and
peaking plants with higher offer prices need to be dispatched to serve the
demand. Consequently price increases.
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Figure 3.2: Duration curve of DA price in top figure shows that only a tiny
share of DA prices was above 500 USD/MWh. Bottom figure shows part
of duration curve where DA < 150. Price is below 50 USD/MWh approxi-
mately 8000 hours per year. Almost linearly decreasing duration curve shows
that price distribution is rather uniform between 0 and 50 USD/MWh.

3.1.2 RT price

ERCOT has specified a price cap, which limits how high the RT price RT
can be. Table 3.1 shows historical levels of price cap as specified in [6].
Figure 3.4 shows RT price from the beginning of year 2011 to the end of
year 2015. Price is most of the time less than 100 USD/MWh. Median RT
price is 25.2 USD/MWh. Cap prices have occurred unregularly in the five-
year period and comparison with figure 3.1 shows that high RT prices are
more frequent than high DA prices. Because of greater height and frequency,
the financial impact of price spikes on market participants is even larger in
RT than DA market. However, as the DA price is hourly and RT price is
5-minute price, the duration of RT spikes can be, and often is, a lot shorter
than in DA. A histogram of historical durations of price spikes is shown in
figure 3.5. Majority of spikes lasts only 5 minutes and only a tiny share of
spikes is longer than 3 hours (36 5-minute periods). A power plant that can
capture the value of short price spikes by being able to ramp up and down
very fast, can make significant profit in RT market in addition to its DA
market profit [30]. Majority of the highest RT prices are in the year 2011,
on cap level 3000 USD/MWh. The reason for high prices in the summer
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Figure 3.3: Top graph shows DA price of an example week in June 2014 and
bottom graph shows demand in the same period. Both time series have a
clear seasonal variation at one day season length. Price is often high, when
demand is high, and opposite.

of 2011 was very hot weather in Texas leading to very high demand and to
generation outages [27]. The price spikes in February 2011 are a result of
generation outages and problems with gas equipment caused by very cold
weather [27]. In RT price not only prices above 1000 USD/MWh, but also
prices between 500 and 1000 USD/MWh are more frequent than in case of
DA price. These prices are mainly due to quick net-load changes that require
GTs to be started, since there is not enough cheaper fast-ramping power
plant generation capacity available (in personal communication with Kevin
Hanson, Supervisor, Market Operations Support, ERCOT, 8 February 2016,
Taylor TX). GTs have high cost per start and the need to dispatch them
increases the price to a high level for at least the first 5-minute period that
they are running.

Duration curve of RT in figure 3.6 shows that highest price in 2011-
2015 has been approximately 5000 USD/MWh and lowest has been negative,
approximately -250 USD/MWh, where also price floor is located. RT has
exceeded 100 USD/MWh only a few hours per year. Excluding both ends
of duration curve, the rest is very stable. This means that more than 8500
hours a year, price has been inside a small interval. As spikes are so rare, we
can model them separately in the forecasting method.
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Figure 3.4: Real-time price from year 2011 to 2015. Most of the time price
is low, but there are sometimes spikes. Year 2011 shows most huge price
spikes of 3000 USD/MWh. Prices between 500 and 1000 USD/MWh are
most frequent in the period starting at second half of 2012.

RT is strongly positively autocorrelated on short lags. This can be seen
in figure 3.7, showing the empirical autocorrelation function of RT . At lag
100, i.e. 8 hours, autocorrelation has almost vanished already, but there is
some positive 24-hour seasonal autocorrelation, around lag 288. This is due
to daily variation that was seen even more clearly in DA and is also present
in RT . To account for the strong autocorrelation of RT price, we can use the
price of previous time step to explain the next price.

Figure 3.8 shows RT and DA of an example week in June 2014. DA
moves seasonally up and down by time of day and RT follows it to some

Table 3.1: ERCOT price cap 2011-2015
Start date Price cap
N/A 3000
1 Aug 2012 4500
1 Jun 2013 5000
1 Jun 2014 7000
1 Jun 2015 9000
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Figure 3.5: Histogram of durations of historical price spikes. More than 400
of total 600 spikes lasts only 5 minutes (one time step). The longest price
spike in 2011-2015 has been almost 6 hours (70 5-minute periods) long.

extent. However, RT movements are not as regular as those of DA. highest
RT price is often lower than highest DA price of the day. This systematic
difference between RT and DA can be seen as a risk premium. It represents
the expected profit loss that risk-averse electricity buyers are willing to accept
in DA market to avoid having to buy their electricity in RT market where
price volatility is higher and consequently risk of price spike is higher. Load
is low at night and unexpected events occur less often than in the day-
time. Consequently risk of price spike is lower at night. Therefore, risk-
premium is lower at night (in personal communication with Kevin Hanson,
Supervisor, Market Operations Support, ERCOT, 8 February 2016, Taylor
TX). An estimate of risk premium can be obtained from mean difference
of RT and DA, which is 2.97 USD/MWh. Risk premium estimated in the
same way using only prices that have occurred between 3 p.m. and 4 p.m.
is a lot higher, 19.65 USD/MWh. This difference results from the higher
spike probability of RT price spike in the afternoon. In addition, there are
two short spike periods in RT in the example week. The risk of extremely
high price realized for electricity buyers that have not bought their electricity
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Figure 3.6: Duration curves of DA and RT price in top graph shows that huge
majority of both prices are low. Huge prices of above 1000 USD/MWh and
negative prices are rare. Bottom graph shows part of duration curve where
price is in range 0-100 USD/MWh. It can be seen that DA prices in range
40-100 USD/MWh are slightly more frequent than RT prices in the same
range. On the contrary, RT prices below 40 USD/MWh are more frequent,
and especially very low prices are relatively more frequent in RT than in DA
market.

from DA market. Figure 3.9 shows empirical joint distribution of DA and
RT . There is no clear linear or non-linear correlation visible. However, vast
majority of points in the graph is close to origin, which makes it virtually
impossible to draw conclusions from the graph. It is possible that there is a
dependency between DA and RT , when both are at their most common level.
A zooming to prices below 100 USD/MWh is shown in figure 3.10. There
is clear linear correlation between DA and RT when DA is between 0 and
around 40 USD/MWh and then the two prices are often almost equal. When
DA is higher than 40 USD/MWh, RT price distribution is more uniform and
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Figure 3.7: Empirical autocorrelation function of RT price shows strong pos-
itive autocorrelation on lags shorter than 50 time-steps (5-minute periods).
There is seasonal autocorrelation at lags near 288, i.e. 24 hours.

RT is more often below DA. This results from the risk premium relating
to DA and RT markets described above. DA is often almost equal to RT ,
when there is little uncertainty related to RT . In such situations prices are
often low. When uncertainty of RT is greater, DA is more often above 40
USD/MWh and RT does not correlate so strongly with DA.
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Figure 3.8: DA and RT prices of last week of June 2014. RT price does not
show as clear daily pattern as DA price. There are two RT price spikes in
the period. Highest DA price of day is often above the highest RT price of
day.

Figure 3.9: Scatter plot of DA price and RT price. Vast majority of points
are close to origin. RT prices above 1000 USD/MWh have occurred at all
levels of DA price, but their relative share is greater when DA price exceeds
500 USD/MWh. Negative RT prices have only occurred when DA price has
been at low level.
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Figure 3.10: Scatter plot of DA price and RT price when both are below 100
USD/MWh. Grey dashed line represents situation when RT and DA prices
are equal. RT price clearly increases as DA price increases between 10 and
40 USD/MWh. Systematic increase of RT price with DA price stops when
DA price exceeds 40 USD/MWh.
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3.1.3 Spread between RT and DA price

We denote the spread between DA and RT price by ∆ = RT −DA. Figure
3.11 shows ∆ of years 2011-2015 as a function of time. There are large
positive ∆ values in the same periods that RT has spiked. Due to price floor
RT can be significantly below DA only when DA is high. Therefore, large
negative ∆ values can occur only at periods that DA is high. As high DA
prices have been rare, there are only a few large negative ∆ values in the
period.

Figure 3.11: ∆, i.e. spread between RT and DA price from year 2011 to
2015. Most of the time ∆ is close to zero. Occasional large negative and
positive deltas occur. Majority of them are positive.

Duration curve of ∆ in figure 3.12 shows that the highest ∆ value in
2011-2015 was around 5000 USD/MWh and lowest ∆ value was around -
3000 USD/MWh. Absolute value of ∆ exceeded 100 USD/MWh only a few
hours per year. Duration curve is flat when both ends are excluded. This
means that more than 8500 hours a year, spread between DA and RT has
been very small. Mean ∆ is −2.97 USD/MWh, meaning that on average RT
is that much lower than DA.

Empirical autocorrelation function of ∆ is shown in figure 3.13. ∆ exhibits
strong positive autocorrelation on lags shorter than 50 time-steps (5-minute
periods). There is a positive seasonal autocorrelation at lags near 288, i.e.
24 hours, much stronger than in case of RT . This is possibly a result of risk
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Figure 3.12: Duration curve of ∆ shows that vast majority of ∆ values are
close to zero, but tails of ∆ distribution are very long.

premium of DA regularly widening in high-load day-time and getting smaller
in the night-time.

Scatter plot of DA price and ∆ in figure 3.14 shows clear negative corre-
lation between the two variables. This is obvious, resulting from the way we
defined ∆ as RT − DA. Vast majority of points are close to origin. Large
positive ∆ values are possible only when DA price is low enough due to price
cap. Similarly, large negative ∆ values are possible only when DA price is
high enough due to price floor. As we saw in figure 3.10, RT follows DA
closely when DA is in its most common level of less than 40 USD/MWh.
Then ∆ is often close to zero and small unexpected events in market can
make it slightly negative or positive. The uniform distribution of ∆ means
that DA being below 40 USD/MWh, RT price simulation can be carried out
by first simulating DA and then sampling ∆ and adding it to RT . However,
simulation of RT can not be conducted in the same way when DA is above 40
USD/MWh since distribution of ∆ is strongly dependent on DA as we saw
in figure 3.14. In that region, however, distribution of RT is rather uniform
as seen in figure 3.9. Therefore, we can simulate RT price by sampling RT
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Figure 3.13: Empirical autocorrelation function of ∆ shows strong positive
autocorrelation on lags shorter than 50 time-steps (5-minute periods). There
is clear positive seasonal autocorrelation at lags near 288, i.e. 24 hours.

directly, when DA ≥ 40.

3.1.4 Demand

Figure 3.15 shows demand of electricity in ERCOT from the beginning of
year 2011 to the end of year 2015. The demand varies between 20000 and
70000 MW. There is clear yearly seasonal variation in demand because of
the greater need for air-conditioning in summer and for warming houses in
winter. There might also be an increasing trend as the demand seems to
increase slightly towards the end of the period. Furthermore, there is a clear
seasonal variation in demand on daily basis as we saw in figure 3.3. Load
increases in the morning. Night-time load is often significantly lower than
in the day-time. Figure 3.16 shows a duration curve of demand. It can be
seen that demand being over 60000 MW is rare, but maximum demand is
around 70000 MW. This means that upper tail of demand distribution is
long. To be able to serve the demand in the highest demand times even if
some outages occur, system needs more than 10000 MW of capacity, that
is unused most of the year. Seasonal qualities at different lengths described
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Figure 3.14: Scatter plot of DA price and ∆ shows clear negative correlation
between the two variables. Vast majority of points are close to origin. Large
positive ∆ values have occurred only when DA price is low enough due to
price cap. Similarly, large negative ∆ values have occurred only when DA
price is high due to price floor.

above can be seen in the empirical autocorrelation function of demand, too,
shown in figure 3.17, where clear peak is seen around lags 288 (=24 hours)
and its multiples. This results from the fact that demand is usually close
to what it was 24 hours earlier. Autocorrelation on short lags is close to
one, meaning that demand changes between consecutive 5-minute periods
are often rather small.

Top graph of figure 3.18 shows scatter plot of demand and RT price. It
seems that demand does not explain RT price movements. High prices are
rather evenly distributed at all demand levels excluding lowest demand values
of the period. Slightly more cap prices occur when demand is close to its
maximum than otherwise. Bottom graph shows scatter plot of demand and
∆. Like high RT values, high ∆ values have occurred evenly at all demand
levels. However, large absolute values of ∆ are a lot more frequent when
demand is high, over 60000 MW. These are caused by demand being almost
equal to total available generation capacity. Price increases naturally when
more expensive generation has to be dispatched, but also through price-
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Figure 3.15: ERCOT demand 2011-2015 varies between 20000 and 70000
MW. There is clear yearly seasonal variation, summer-time demand being
higher than rest of the year. There are also some high-demand periods in
winter-time, especially in years 2011, 2014, and 2015.

adder, that was deployed in ERCOT in 2014. Price-adder increases price
when surplus capacity, i.e. available generation capacity exceeding demand
is less than 5 GW [13]. A zooming to most common ∆ level in figure 3.19
shows that distribution of ∆ is rather uniform at its normal levels conditional
on demand. Therefore, we do not need demand as an explanatory variable
of ∆. Most high RT prices that have occurred at high-demand times are not
a result of high demand itself, but rather of low surplus capacity.

Scatter plot of day-ahead forecast and actual demand in figure 3.20 shows
very strong positive correlation between the two variables. This means that
demand forecast errors are small most of the time. Sometimes, though, actual
value differs slightly from forecast. Both ends of point cloud are thinner than
middle part. It suggests that forecasts are often more accurate when demand
is close to its annual maximum or minimum. However, this may as well be a
result of natural variation and a lot more points being in the middle of cloud.
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Figure 3.16: Duration curve of demand shows that there are less than 500
hours per year in which demand exceeds 60000 MW. Majority of hours,
demand is between 30000 and 50000 MW.

Figure 3.17: Autocorrelation function of demand shows very strong autocor-
relation at lags shorter than 20 time-steps, i.e. around two hours. There is
very strong seasonal 24-hour autocorrelation.
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Figure 3.18: Top graph shows scatter plot of demand and RT price. No clear
correlation is visible. However, there are slightly more high RT prices when
demand is close to its maximum due to cap prices of the year 2011. Bottom
graph shows scatter plot of demand and ∆. Variance of ∆ is higher when
demand is high.
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Figure 3.19: Scatter plot of demand and ∆ limited to −30− 30 USD/MWh,
its most common level. There is no clear correlation between the two vari-
ables.
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Figure 3.20: Scatter plot of forecast and actual demand shows very strong
positive correlation between the two variables. Both ends of the cloud are
slim, which tells us that very strong and very weak wind conditions are easiest
to forecast.
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3.1.5 Wind generation

Rapid increasing trend in installed wind generation capacity makes studying
impact of wind generation on RT price very important for the purpose of
our study. If we could not capture the impact accurately enough, there
would be a good chance that our forecast series would not exhibit true future
characteristics of future ERCOT RT price.

Figure 3.21 illustrates ERCOT wind generation from year 2011 to 2015.
Top graph shows that wind generation varies between close to zero and more
than 10000 MW. There is an increasing trend as a result of growing installed
wind generation capacity. Bottom graph shows wind generation as a per-
centage of installed capacity. For example, 100% would mean that all wind
generating units are generating at their full capacity. There is no clear trend
and each year the values have varied from close to zero to a little over 80
%. A mean of all these values, capacity factor, is 32 %, which tells that on
average each wind generating unit has run on 32 % of its maximum output
in 2011-2015. This number sounds reasonable, as it is a lot lower than 100
%, which would require idealistic perfect wind conditions and no mainte-
nance breaks at generators. Top graph of figure 3.22 shows duration curve
2011-2015 of wind generation in MW. It shows that generation of more than
8000 MW has occurred only 1000 hours per year on average. However, this
graph is not very informative due to rapid growth of installed wind gener-
ation capacity. Bottom graph shows duration curve of wind generation as
a percentage of installed capacity. We saw in figure 3.21 that there is no
trend in percentage values. Therefore, percentage values give more constis-
tent information about wind conditions. Output exceeding 80 % of installed
capacity is rare (100 hours per year) and zero generation situations occur
hardly ever. Distribution between these extremes is rather even. Empirical
autocorrelation function of wind generation on top graph of figure 3.23 shows
very strong autocorrelation at lags shorter than 50 time-steps, i.e. around
four hours, because of slowly moving weather fronts. There is also a weak
seasonal 24-hour component in autocorrelation possibly due to regular daily
variation of wind speed in Texas. Bottom graph shows empirical autocorre-
lation function of error of day-ahead forecast of wind generation. It exhibits
strong short-term autocorrelation, too, but not as strong as wind generation.
There is no clear 24-hour peak in the graph. As we may expect, accuracy
of forecasts made for same time of two consecutive days do not correlate.
Top graph of figure 3.24 shows scatter plot of wind generation and RT price.
There seems to be no clear correlation between the two variables. High RT
prices, though, occur a little more frequently, when wind generation is low
than otherwise. Bottom graph shows scatter plot of wind generation and
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Figure 3.21: Top graph shows wind generation from 2011 to 2015. It varies a
lot between 0 and more than 10000 MW. There is an increasing trend visible.
The highest values are in the end of year 2015 due to windy conditions
and largest installed wind generation capacity. Bottom graph shows wind
generation as a percentage of installed capacity. There is no clear trend and
each year the values have varied from close to zero to a little over 80 %.

∆. There is no clear correlation visible. Absolute value of ∆ is almost al-
ways very small, when wind generation exceeds 10000 MW. Scatter plot of
historical day-ahead forecast made by ERCOT and actual wind generation
in figure 3.25 shows that the values of the two variables often differ only a
little. It means that wind generation forecasts are relatively accurate most
of the time. A few points are far from the cloud, which means that actual
wind generation sometimes differs significantly from forecast. The ends of
the cloud are slim. Forecasts are generally more accurate, when there is very
strong or hardly any wind, than when wind speed is normal. This is pos-
sibly a result of the usual shape of generation curve of a wind generator as
function of wind speed. Generation increases rapidly at intermediate wind
speeds causing more variance in generation output, when it is at its middle
level [22].
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Figure 3.22: Top graph shows duration curve of wind generation in MW. It
shows that generation of more than 8000 MW has occurred only 1000 hours
per year on average. The highest values are even more rare. Bottom graph
shows wind generation as a percentage of installed wind generation capacity.
Wind generation exceeds 30 % of installed capacity on average 4000 hours
per year. Zero generation situations occur hardly ever.
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Figure 3.23: Empirical autocorrelation function of wind generation on top
graph shows very strong autocorrelation at lags shorter than 50 time-steps,
i.e. around four hours. There is also seasonal 24-hour component in auto-
correlation. Bottom graph shows empirical autocorrelation function of wind
generation forecast error. It exhibits strong short-term autocorrelation, too,
but not as strong as wind generation. There is no clear 24-hour peak in the
autocorrelation function.
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Figure 3.24: Top graph shows scatter plot of wind generation and RT price.
No clear correlation is visible. However, there are slightly more high RT
prices when wind generation is close to zero. Bottom graph shows scatter
plot of wind generation and ∆. There are no clear correlations either. ∆ is
almost always very small in absolute value, when wind generation exceeds
10000 MW.



CHAPTER 3. STATISTICAL ANALYSIS OF RT PRICE 52

Figure 3.25: Scatter plot of day-ahead forecast and actual wind generation
shows positive correlation between the two variables, indicating that wind
generation forecasts are relatively accurate most of the time. There are
some points far from the middle of the cloud, which means that actual wind
generation sometimes differs significantly from forecast. The ends of the
cloud are slim, which shows that forecasts are generally more accurate, when
there is very strong or hardly any wind, than when wind speed is normal.
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3.1.6 Net-load

Figure 3.26 shows a scatter plot of net-load and RT on top graph. There is
no clear correlation between the two variables. High prices occur at all levels
of net-load except the lowest net-loads of less than 20000 MW. Bottom graph
shows scatter plot of net-load and ∆. It seems that net-load does not explain
occurrence of high ∆ values very well. Largest negative ∆ values, however,
have occurred at very high net-load times. Possibly DA is high because
of high probability of high RT due to forecast surplus capacity being low.
However, sometimes the risk does not realize and RT is consequently low.

When net-load increases rapidly, only fast-ramping power plants can re-
spond to the change. Some of these power plants, especially GTs, have
high marginal generation cost. Need to dispatch them leads to high electric-
ity prices. Therefore, we can expect to see positive correlation in net-load
change speed and RT . Top graph of figure 3.27 shows scatter plot of 5-
minute net-load change, NLC, and RT . NLC is positive when net-load is
increasing. Clearly, there are more high RT values at positive than negative
net-load change values. Bottom graph shows scatter plot of NLC and ∆.
Large negative ∆ values are more frequent when NLC is negative. Similarly,
large positive ∆ values are more frequent when NLC is positive. The clearest
limit for ∆ is not NLC = 0, but NLC = 200 MW. We can use NLC being
above or below 200 MW to explain ∆ distribution.
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Figure 3.26: Top graph shows scatter plot of net-load and RT price. No clear
correlation is visible, but it seems that RT price has always been close to zero
when net-load has been below 20000 MW. Bottom graph shows scatter plot
of demand and ∆. Large negative ∆ values are more frequent, when net-load
is high.
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Figure 3.27: Top graph shows scatter plot of 5-minute net-load change and
RT price. Positive value means growing net-load. High prices are more
frequent when net-load change is positive. Bottom graph shows scatter plot
of net-load change and ∆. Large negative ∆ values are more frequent when
net-load change is negative and large positive ∆ values are more frequent
when net-load change is positive.
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3.1.7 Non-intermittent generation

Actual available non-intermittent generation capacity, NICA, represents the
maximum net-load that could be served with available generation resources.
Generators submit their current operating plans (COP) to ERCOT. COPs
submitted for next day can be used as day-ahead forecast of available capac-
ity, NICF . Figure 3.28 shows scatter plot of NICF and NICA. The graph
shows very strong positive correlation between the two variables, indicating
that last-day changes to COPs are small most of the time. There are several
points far from the rest of points, which means that sometimes moderate de-
viations from forecast have occurred. These deviations are possibly a result
of unexpected power plant outages.

Figure 3.28: Scatter plot of day-ahead forecast and actual values of avail-
able on-line non-intermittent generation capacity shows very strong positive
correlation, indicating that forecast errors are very small most of the time.
There are several points far from the rest of the cloud, which means that
sometimes moderate changes from forecast occur.
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3.1.8 Surplus capacity

ERCOT implemented an Operating Reserve Demand Curve (ORDC) on June
1, 2014 to incentivize building new generation capacity. ERCOT Investment
Incentives and Resource Adequacy in 2012 had showed that system reliability
might be threatened otherwise [27], [13]. As a result, scarcity pricing mecha-
nism increases RT price when available reserves are below 5000 MW. Scatter
plot of actual surplus capacity FCA = NICA + IGA − LA and RT price
in figure 3.29 shows that spike prices mostly occur when surplus capacity is
low. Surplus capacity represents the amount by which available generation
capacity exceeds load. This is partly a result of scarcity pricing mechanism
and partly of power plants with higher offer prices being dispatched.

We can use amount of surplus capacity as an explanatory variable for
price spike probability in our simulation methodology.

Figure 3.29: Scatter plot of surplus capacity and RT price shows that high
prices mostly occur when surplus capacity is low. Share of high RT prices is
a lot higher, when surplus capacity is below 7000 MW.
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3.1.9 Forecast error of surplus capacity

We define forecast error of surplus capacity, FCFE, as difference between ac-
tual surplus capacity FCA and day-ahead forecast FCF , FCFE = FCA−
FCF , where FCA = NICA+ IGA−LA and FCF = NICF + IGF −LF .
Therefore, FCFE represents the difference between actual surplus capacity
and day-ahead forecast of surplus capacity, which was available when DA
market was cleared. Negative FCFE means that actual surplus capacity is
lower than was expected day-ahead. Figure 3.30 shows histogram of FCFE.
Most of the time FCFE is between −5000 and 2000 MW.

Figure 3.30: Histogram of forecast error of surplus capacity. Positive value
means that actual surplus capacity is larger than day-ahead forecast. His-
togram shows that forecast slightly underestimates actual surplus capacity
most of the time.

We expect that RT is often higher than DA, when FCFE is negative,
since there is less extra resources available than was expected. Figure 3.31
shows one example night from June 2014, when a price spike occurred be-
cause of largely negative FCFE. Top graph shows actual and forecast wind
generation. It can be seen that after 22:00 actual generation drops rapidly
even though it was forecast to increase slightly. Middle graph shows forecast
error of surplus capacity in the same period. It falls sharply from close to
zero to −8000 MW. At the same time there is a huge spike in ∆, shown in
the bottom graph. This occurred six days after ORDC was implemented and
price-adder was one factor that increased RT price.

Figure 3.32 shows scatter plot of forecast error of surplus capacity and RT
price on top graph. There is no clear correlation between the two variables.
Bottom graph shows scatter plot of forecast error of surplus capacity and
∆. Large negative values of ∆ occur only, when forecast error of surplus



CHAPTER 3. STATISTICAL ANALYSIS OF RT PRICE 59

Figure 3.31: A graph of wind generation of one example night in June 2014
shows how the generation unexpectedly drops rapidly from 8000 MW to less
than 3000 MW. Middle graph shows that forecast error of surplus capacity
drops consequently to -8000 MW. Bottom graph shows that a large negative
∆ has occurred at the same time.

capacity is positive and large positive values of ∆ are more frequent, when
forecast error of surplus capacity is negative. Therefore, we can use forecast
error of surplus capacity to explain ∆ movements. Clearest difference in
∆ distribution is seen when FCFE is divided into two classes with limit
FCFE = −1800 MW.
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Figure 3.32: Top graph shows scatter plot of forecast error of surplus capacity
and RT price. Positive value on horizontal axis means that actual surplus
capacity is larger than day-ahead forecast. There is no clear correlation
between the two variables. Bottom graph shows scatter plot of forecast error
of surplus capacity and ∆. Large negative ∆ values are more frequent, when
forecast error of surplus capacity is positive. Large positive ∆ values are a
little more frequent, when forecast error of surplus capacity is negative.
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3.1.10 Node prices and hub prices

We have used as RT price in analyses the hub average RT price, which is
simple average of hub prices in ERCOT. Next we will briefly study differences
in prices of different nodes and hubs. Each power plant can choose whether
it sells its electricity for node price or hub price (in personal communication
with M.Sc. Matti Rautkivi, Origination, Wärtsilä North America, 8 Febru-
ary 2016, Taylor TX). Therefore, it is important to know what impact on
profitability the selection of reference price has.

Figure 3.33 shows that congestion causes larger differences in RT price
between hubs (bottom graph) than within a hub (top graph). This is just
one example analysis and a lot more node prices should be analysed to build
comprehensive understanding of general differences in hub and node prices.
We will do simulations in this study using hub average price. If future prices
of a specific node are needed, it is safest choice to do simulations for the price
of that node. It is simple as only one input time series needs to be changed.
However, there is a risk that adding new generation or transmission capacity
to that node has an impact on future prices. Therefore, hub price is more
conservative choice, as it is more robust with respect to local changes in the
grid.

3.2 Selection of simulation methodology

As expected, our analysis did not show perfect correlation between RT price
and any other variable. However, we found some patterns that explain a
part of RT price variation. Because of no perfect correlations and significant
future uncertainty that is present in our simulations we can use a stochastic
method in RT price simulation. Due to large variation in RT price we di-
vide it to several price classes. We build a modified bootstrap model where
price class is sampled first and then price from the right class. Explanatory
variables have impact on sampling probabilities of price classes. Since DA
market modelling is relatively straightforward and accurate, we can use DA
market modelling software to create simulated DA price and DA-forecasts
of explanatory variable values as inputs for our RT price modelling method.
We will sample ∆, when DA < 40 and RT otherwise. Stochasticity and im-
pact of explanatory variables are applied to selection of price class for each
time-step.

We simulate spike prices separately and define spike period loosely as
a period in which RT price is mostly in it highest percentile. A precise
definition will be given later in the study. We will use the surplus capacity
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Figure 3.33: Comparison of example hub prices and node prices. Top graph
shows RT price of Houston hub on horizontal axis and RT price of one node
in Houston hub on vertical axis. Prices differ only a little from each other.
Prices of hub average and West hub, shown on bottom graph, differ more
often than intra-hub prices on top graph.

FCA and DA price DA to determine spike starting probability with limits
7000 MW and 30 USD/MWh, respectively.

We also found that RT price being on non-spike level, variation can be
explained by forecast error of surplus capacity FCFE, change speed of net-
load NLC, DA price DA, and price class of previous time-step. Limits for
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Table 3.2: Division points of variables used in non-spike situations.
FCFE -1800 MW
NLC -200 MW
DA [25,40] USD/MWh
RT (t− 1) [16.7, 19.1, 21.3, 22.9, 24.5, 26.2, 28.8, 32.6, 39.8]
∆(t− 1) [−13.7,−8.6,−6.0,−4.2,−2.7,−1.5,−0.4, 0.7, 2.4]

explanatory variables FCFE,NLC, and DA that make clear difference in
price distribution are shown in table 3.2. Table also shows limits of price
classes and delta classes determined as deciles of hub average RT price and
∆.

Strong autocorrelation exhibited by RT price is supposedly obtained in
simulated time series as a result of strongly autocorrelated explanatory vari-
ables, by taking into account the price of previous time-step when sampling
prices, and by sampling prices for spike periods as blocks of historical spike
prices instead of sampling each price separately.



Chapter 4

Stochastic RT price simulation

In this chapter we introduce a simulation method and use it to obtain future
time series of RT price. The main idea of our simulation methodology is
to determine historical correlations between the explanatory variables and
dependent variable RT price, and then use these correlations together with
simulated future values of explanatory variables in stochastic simulation of
future RT price. By correlation we do not mean Pearson correlation co-
efficient or any other specific statistic, but any quantity that can be used
to statistically measure the association between two variables. The most
commonly used measure of correlation in our simulation is (empirically esti-
mated) conditional probability.

First we divide the historical RT price data into price classes and estimate
empirical probabilities of price belonging to each price class. Then we sim-
ulate future time series of explanatory variables using DA market modelling
software and stochastic methods. Finally, we conduct a stochastic simula-
tion of RT price based on simulated explanatory variables and estimated
probabilities.

As explained in Chapter 3, we can divide the time steps to two subsets by
DA. When DA < 40, we will simulate ∆, i.e. the spread between DA and
RT . Otherwise we simulate directly RT . To take into account the impact
of explanatory variables on RT price, we introduce a concept of dynamic
time step category C, which is calculated for all time steps. In our modelling
approach C is the reason behind different price patterns occurring in different
conditions. Not all variation of RT price can be explained by C, but we have
used all information that was determined useful in our analysis. Biggest
weakness of our simulation approach that is based on bootstrap method is
imperfect prediction accuracy. It results from the wide intervals in which
the explanatory variables can vary within a dynamic time step category.
Assuming that the values of explanatory variables are precise, accuracy could

64
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be improved by using for example some regression method. However, our
approach enables us to create thousands of future RT price time series, and
individual errors caused by random selection of values can be assumed to
cancel in large number of simulations. Secondly, the future time series of
explanatory variables are far from precise. Therefore, greater accuracy in
prediction would not help to improve accuracy of RT price prediction. For a
thorough discussion of bootstrap methods in time series simulation, see [5].

4.1 Calculating needed historical inputs

We start our simulation by dividing the historical RT prices RT into groups
corresponding to nRTC price classes GRTC = {RT |RT ∈ RTC}, RTC =
0, 1, ..., nRTC −1 and historical deltas ∆ = RT −DA into groups correspond-
ing to n∆C

delta classes G∆C
= {∆|∆ ∈ ∆C},∆C = 0, 1, ..., n∆C

−1. A simple
way to determine delta classes and price classes is to use p∆% and pRT% per-
centiles of historical data, respectively, where p∆ = 100

n∆C

and pRT = 100
nRTC

. For

example, if n∆C
= 4, we will have all ∆ values below the first quartile of ∆

in ∆C = 0, values of ∆ below median, but above the first quartile in ∆C = 1,
etc. The prices of time steps t with DA(t) ≥ DAlimits,C(1) are divided into
price groups GRTC , and deltas of time steps t with DA(t) < DAlimits,C(1) are
divided into delta groups G∆C

.
We group the values of explanatory variables into variable dynamic time

step category C = 0, 1, ..., n(C), which is calculated separately for each time
step and includes all needed information about the conditions that apply
during time step t and previous price class or delta class. The largest C,
Cspike corresponds to spike time step. Definitions of all dynamic time step
categories C for n∆C

= nRTC = 12 are shown in table 6.1 in appendix.
When we have determined C(t) and ∆C(t) or RTC(t) for each historical

time step (5-minute period) t, we can calculate empirical conditional prob-
ability distributions of (i) ∆ belonging to each ∆C , P (∆C |C), and similarly
of (ii) RT belonging to each price class RTC , P (RTC |C) conditional on C
of that time-step. Conditional probabilities are calculated in the usual way
by dividing the number of time-steps with each C and ∆C or RTC by total
number of periods with that C. The probability distribution of delta classes
becomes

P (∆C |C) =
n(∆C ∩ C)

n(C)
, C 6= Cspike,

where n(x) is the number of periods in the history data with the quality x.
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The probability distribution of price classes becomes

P (∆C |C) =
n(∆C ∩ C)

n(C)
, C 6= Cspike.

Because of huge variation in RT and DA, we treat periods of spiky price
separately. We build a vector GRTspike containing the prices of spike periods
in a chronological order. We also determine empirical probabilities of spike
starting conditional on the amount of surplus capacity FCA, and DA price
DA. These probabilities will be used later in simulation of future spike
periods.

To give a precise definition of spike period, we first specify a limit lspike,RT ,
above which all RT are spikes, and a similar limit lspike,DA for DA. We
denote by binary Xspike each time step being spike (Xspike = 1) or non-
spike (Xspike = 0). If RT or DA (or both) of time-step t exceeds the limit,
RT (t) ≥ lspike,RT or DA(t) ≥ lspike,DA, a spike period starts. The spike period
length is determined as the longest possible L such that the share of spike
prices in the spike period is at least Sspike, a percentage parameter specified
in advance.

Exact description of methodology is shown in algorithm 1.

Algorithm 1 Historical correlations

Data Historical time series of RT price and explanatory variables
RTt = Real-time price
DAt = Day-ahead price
IGAt = Intermittent generation, actual
NICAt = Available non-intermittent generation capacity, actual
LAt = Load, actual
IGFt = Intermittent generation, forecast
NICFt = Available non-intermittent generation capacity, forecast
LFt = Load, forecast
NLCt = Net-load change from previous time step
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Output
Grouped RT prices, deltas, and spike lengths
G∆C

= {∆hist|∆hist ∈ ∆C} = Historical ∆ values of delta class ∆C ∈
{0, 1, 2, ..., n∆C

− 1}
GRTC = {RThist|RThist ∈ RTC} = Historical RT prices of price class

RTC ∈ {0, 1, 2, ..., nRTC − 1}
GRTspike = [RThist(t)|Xspike,hist(t) = 1] = Historical RT prices of spike

periods in chronological order
GL = Lengths of historical spikes
Estimated probabilities
P (∆C |C) Estimated probabilities of delta classes ∆C ∈

{0, 1, 2, ..., n∆C
− 1} conditional on dynamic time step category C

P (RTC |C) Estimated probabilities of price classes RTC ∈
{0, 1, 2, ..., nRTC − 1} conditional on dynamic time step category C

P (Xstart|IDAlimit,prob
(DA), IFCAlimit,prob

(FCA)) Estimated probabilities
of spike starting conditional on day-ahead price and actual surplus capacity

Parameters
lspike,RT limit above which all RT prices are spike prices
lspike,DA limit above which all DA prices are spike prices
DAlimit,prob = Division point of DA for conditional probability of spike

period starting
FCAlimit,prob = Division point of FCA for conditional probability of

spike period starting
Sspike = Share of time steps that must have spike price within a spike

period
lRTC = vector that contains limits of price classes
l∆C

= vector that contains limits of delta classes
DAlimits,C = vector that contains limits of DA for determining C
Lhistory = number of historical time steps
FCFElimit = limit of FCFE for determining C
NLClimit = limit of NLC for determining C

procedure
Spike periods
Xspike ← 1− (1− Ilspike,RT

(RT ))(1− Ilspike,DA
(DA))

t← 1
while t ≤ Lhistory do . Go through all history data

C0(t) = 4[IDAlimits,C(1)(DA(t)) + IDAlimits,C(2)(DA(t))] +
2IFCFElimit

(FCFE(t)) + INLClimit
(NLC(t))
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if Xspike(t) = 0 then . Non-spike time step
if t > 1 then

if Xspike(t− 1) = 1 then
C(t) = C0(t) + 12(n∆C

+ nRTC )
else

C(t) = C0(t) + 12
[
∆C(t − 1) + IDAlimits,C(1)(DA(t −

1))[n∆C
+RTC(t− 1)−∆C(t− 1)]

]
end if

else . First time step

C(t) = C0(t) + 12
[
∆C(t) + IDAlimits,C(1)(DA(t))[n∆C

+

RTC(t)−∆C(t)]
]

end if
if DA(t) ≥ DAlimits,C(1) then

RTC(t) = IlRTC
(1)(RT (t)) + IlRTC

(2)(RT (t)) + ... +
IlRTC

(nRTC
−1)(RT (t))

GRTC(t) ← [GRTC(t), RT (t)]
else

∆C(t) = Il∆C
(1)(∆(t))+Il∆C

(2)(∆(t))+ ...+Il∆C
(n∆C

−1)(∆(t))
G∆C(t) ← [G∆C(t),∆(t)]

end if
t← t+ 1

else . Spike period starts
for all τ = 1, 2, ..., Lhistory − t+ 1 do

S(τ) =
Xspike(t)+Xspike(t+1)+...+Xspike(t+τ−1)

τ

end for
Ls ← min(τ |S(τ) < Sspike)− 1 . Last consecutive time step

with share of spike prices large enough
td ← 0
while td ≤ Ls do . Cut off non-spike prices from end

if Xspike(t+ Ls − 1− td) = 0 then
td ← td + 1

else
L← Ls − td
Xspike(r), r = t, t+ 1, ..., t+ L− 1← 1
td ←∞

end if
end while
GL ← [GL, L] . Save length and prices
GRTspike ← [GRTspike , RT (t), RT (t+ 1), ..., RT (t+ L− 1)]
t← t+ L . Go to the end of this spike and continue

end if
end while

end procedure
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4.2 Creating future time series of explana-

tory variables

We will use actual values of the explanatory variables and day-ahead forecasts
of them to create forecast electricity price scenarios. In particular, we will
use the difference between the simulated day-ahead forecast and simulated
actual value of several explanatory variables (non-intermittent generation
capacity, wind generation, demand) to determine the probability of price
being on different levels. One possible way to create future time series of
explanatory variables would be simulating future actual values first, and then
bootstrapping forecast errors from historical forecast errors to achieve future
forecast values of explanatory variables. However, since we can simulate
the forecast values using commercial electricity market modelling software,
we will do the same procedure in the opposite order. We simulate forecast
values first and then we simulate actual values of explanatory variables.

It is important to understand that we do not try to predict what the
demand and values of other explanatory variables will be each hour of the
next years in ERCOT. Instead, we will create several different forecast time
series, none of which is likely to be precisely accurate. However, all simulated
time series will approximately exhibit the statistical quantities and seasonal
patterns that have occurred in history.

4.2.1 Day-ahead market simulation

As explained in Chapter 3, there are relatively accurate modelling methods
for forecasting DA price, when several explanatory variables are known. We
can use a commercial modelling software to future DA price. The same soft-
ware can be used to create day-ahead forecasts of demand and generation,
based on historical forecast data and estimate of future changes in several
meaningful market quantities such as development of ERCOT wind gener-
ation capacity. As DA market modelling is relatively straightforward and
established methods exist, we focus in this study on creating real-time sce-
narios based on simulated DA prices and forecasts. We take DA electricity
price and day-ahead forecasts of demand and generation as given. How-
ever, it is possible that simulated time series would be biased as a result of
randomness in DA market simulation. We will carry out several stochastic
simulations of explanatory variables to reduce impact of such bias on results
of our RT price simulation.

The outputs of DA market simulation that we will use as inputs for our
RT market simulation are processes of day-ahead forecasts of intermittent
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generation IGFt, demand LFt, non-intermittent generation capacity NICFt,
and DA electricity price DAt.

4.2.2 Simulating actual values of explanatory variables
through Markov chain and bootstrap methods

Figure 4.1: Classes of day-ahead forecast are separated by black vertical
lines. Different colours represent the groups of actual values separated by
conditional quantiles. Within each interval separated by two vertical lines,
the ten colours correspond to deciles of values of intermittent generation in
that interval.

Forecast values obtained using DA market modelling software are used
as a starting point when we create future time series of actual values of the
explanatory variables. We use bootstrap method to choose an actual value
corresponding to each forecast value. To avoid incredibly large differences
between simulated day-ahead and actual values, we divide the forecast values
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into equally wide classes XFC . We sample each actual value from the histor-
ical actual values occurred when the historical forecast was in the same class.
To preserve the strong autocorrelation of actual values in history, we divide
the historical actual values occurred while XF was in class XFC to q sets
GXAXFC,QXA

, XFC ∈ {0, 1, 2, ..., nXFC
− 1}, QXA ∈ {1, 2, ..., q} of equal num-

ber of observations. We simulate the future groups QXA so that historical
autocorrelation is preserved. We use Markov chain approach with transition
matrix estimated from historical observations. Then we simply sample the
actual value XA(t) from the set corresponding to group QXA and class XFC .

Figure 4.1 shows the groups of IGA separated by conditional quantiles
QXA = 1, ..., q = 10 (colours). QXA = 1 corresponds to 10% conditional
quantile, QXA = 2 corresponds to 20% conditional quantile, etc. Black
vertical lines represent limits of classes XFC .

Next, we define the algorithm that can be used to simulate future actual
values of any variable X. We will use this algorithm for IGA, NICA, and
LA. Simulation methodology is shown in algorithm 2.
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Algorithm 2 Actual future values of explanatory variables
Data

Processes of variable X, i.e. the variable of interest
XAhist. = historical actual values of X
XFhist. = historical day-ahead forecast values of X
XFfut. = future day-ahead forecast values of X

Output
XAfut. = Simulated future scenario of X

Parameters
q = number of groups separated by conditional quantiles per XFC

used in simulation
nXFC

= number of equally wide intervals XF is divided into
lXFC

= vector of limits of XFC
lXAXFC

= vector of conditional quantiles of XA conditional on XFC
Lhistory = number of historical time steps
Lfuture = number of time steps to simulate

procedure
Grouping values of XAhist.
for all t = 1, 2, ..., Lhistory do

XFC(t)←
∑nXFC

−1

j=1 IlXFC
(j)(XFhist.(t)) . Class of forecast

QXA(t)←
∑q−1

k=1 IlXAXFC (t)
(k)(XAhist.(t)) . Conditional quantile

GXAXFC (t),QXA(t)
← [GXAXFC (t),QXA(t)

, XAhist.(t)] . Actual value
saved to right group

end for
Estimating empirical transition probabilities between groups
P (QXA(t)|QXA(t− 1))← n(QXA(t)∩QXA(t−1))

n(QXA(t−1))

Simulating XAfut.
for t = 1 do

Sample group QXA(t) with equal probabilities for all q groups
Sample XA(t) from QXA(t) with equal probabilities

end for
for all t = 2, 3, ..., Lfuture do

Sample group QXA(t) with probabilities P (QXA(t)|QXA(t− 1))

XFC(t)←
∑nXFC

−1

j=1 IlXFC
(j)(XFfut.(t))

XAfut.(t) sampled from GXAXFC (t),QXA(t)
with equal probabilities

end for
end procedure
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4.2.2.1 Wind generation

New wind generation units are often built in same windy regions as the
existing ones. Therefore, their output fluctuations are highly similar as wind
speed changes. The difference between forecast and actual output of one
wind generating unit is strongly correlated with another that is situated
in the same region. Therefore, output powers of units can be treated as
strongly positively correlated random variables. Thus, it can be assumed that
increasing wind generation capacity will result in forecast errors increasing
linearly in the same proportion.

To account for this linear impact of new-build generation capacity on
total output and forecast errors we divide historical IGAhist. and IGFhist.
values by historical system-wide installed wind generation capacity of each
time step. We obtain forecast and actual wind generation of each time step
as percentages IGFhist. − % and IGAhist. − %, respectively, of installed ca-
pacity. We also simulate future day-ahead forecast by DA market modelling
software as percentage of installed capacity IGFfut. − %. Now the simula-
tion algorithm for actual values used with inputs XFhist. = IGFhist. − %,
XAhist. = IGAhist. − % and XFfut. = IGFfut. − % gives also actual wind
generation time series as percentage of installed capacity IGAfut. − %. To
transform it into MW-value we can simply multiply by an estimate of future
installed capacity. This provides also a natural way to study the impact of
increasing or decreasing installed wind generation capacity on RT price. We
can create scenarios with same IGAfut. −%, but different installed capacity
and compare simulated RT price time series.

4.2.2.2 Available non-intermittent generation capacity

In case of available non-intermittent generation capacity forecast errors are
mainly due to changes in plans of generating companies. They may be a
result of e.g. unexpected outages or changes in near-term demand fore-
casts that are used as inputs for decision making of power plant operation
(Rhodri Williams, Regional director - ERCOT, Genscape, 10 February 2016,
Boston MA). We assume that the forecast errors of non-intermittent genera-
tion capacity will be linearly dependent on the total installed capacity of non-
intermittent generating units. Therefore we can use a similar methodology to
create future time series of actual available non-intermittent generation ca-
pacity NICAfut. as we used for actual wind generation IGAfut.. Obviously,
values are not calculated as percentages of installed wind generation capacity,
but of installed non-intermittent generation capacity. Data for the simula-
tion algorithm is then XFhist. = NICFhist. − %, XAhist. = NICAhist. − %
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and XFfut. = NICFfut.−%. The output time series NICAfut.−% is actual
available non-intermittent generation capacity time series as percentage of in-
stalled capacity. It can be transformed into absolute MW-value in the same
way as in case of wind generation by multiplying by an estimate of future
installed capacity. We can also study the impact of increasing or decreasing
installed non-intermittent generation capacity on RT price by creating sce-
narios with same NICAfut.−%, but different installed capacity and compare
simulated RT price time series.

4.2.2.3 Demand

Since forecast errors of demand mainly result from errors in weather forecasts,
we can assume that forecast errors will be linearly dependent on annual peak
load, i.e. the highest demand of a year. We can use the same method to create
future series of actual demand, LAfut., that we use for actual wind genera-
tion IGAfut. and available non-intermittent generation capacity NICAfut..
Input values are calculated as percentages of annual peak load. Data for the
simulation algorithm is then XFhist. = LFhist.−%, XAhist. = LAhist.−% and
XFfut. = LFfut. −%. The output series LAfut. −% is actual demand time
series as percentage of annual peak load and it can be transformed into ab-
solute MW-value by multiplying by an estimate of annual future peak load.
Again, we can study the impact of increasing or decreasing demand on RT
price by creating scenarios with same LAfut. − %, but different peak load
growth rate, and compare simulated RT price time series.

4.3 Stochastic simulation methodology for fu-

ture RT price

We use a stochastic simulation methodology to create simulated future RT
price time series. First we simulate prices for future spike periods, and then
we simulate prices of rest of the time steps. We use groups GRTC and G∆C

corresponding to RT and ∆ values of each price class and delta class from
simulation 1 as the populations from which future RT prices and ∆ values
are sampled. Price class or delta class of each future time step is selected
randomly using estimated conditional probabilities of classes conditional on
values of explanatory variables and the price class or delta class of previous
time step. Therefore, the simulation model could be classified as a dynamic
bootstrap method.
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4.3.1 Simulating RT prices of future spike periods

We start by sampling a binary variable Xstart for each future time step indi-
cating whether a spike period starts on that time step. Sampling is performed
with conditional probabilities determined in 1. Then we sample duration of
each spike period, Lspike, from a group of historical spike lengths GL. The
prices for spike periods are obtained using block sampling method. Instead of
sampling each price separately, we sample as many blocks of length LB with
replacement until all prices of the spike period are sampled. This method
helps to get the autocorrelation of sampled time series as strong as in history.
A small correction to keep the distribution of prices of spike periods same
as historical is done in block sampling by using wrapping method. In this
method a block can start near the end of and ”continue” in the beginning of
vector GRTspike .

Algorithm 3 Spike simulation
Data

Simulated processes of explanatory variables
DAt = Day-ahead price
IGAt = Intermittent generation, actual
NICAt = Non-intermittent generation capacity, actual
LAt = Demand, actual
Sampling populations
GRTspike = RT prices of historical spike periods in chronological order
GL = Lengths of historical spike periods
Estimated probabilities
P (Xstart|IDAlimit,prob

(DA), IFCAlimit,prob
(FCA)) Estimated probabilities

of spike starting conditional on DA and FCA



CHAPTER 4. STOCHASTIC RT PRICE SIMULATION 76

Parameters
LB = Price block length
DAlimit,prob = Division point of DA for conditional probability of spike

starting
FCAlimit,prob = Division point of FCA for conditional probability of

spike starting
Lfuture = number of future time steps to simulate

procedure Simulation
t← 0
while t ≤ Lfuture do

FCA(t)← NICA(t) + IGA(t)− LA(t)
Xstart(t) chosen randomly with P (Xstart|IDAlimit,prob

(DA), IFCAlimit,prob
(FCA))

if Xstart = 1 then
Lspike sampled from GL

RTtemp ← Lspike values chosen randomly from GRTspike using
block sampling method with block length LB with wrapping

for all τ = t, t+ 1, ..., t+ Lspike − 1 do
Xspike(τ)← 1
RT (τ) = RTtemp(τ − t+ 1)

end for
t← t+ Lspike

else
t← t+ 1

end if
end while

end procedure
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4.3.2 Simulating other RT prices than spike periods

Now that we have simulated prices of future spike periods, we can simulate
prices of non-spike time steps. Dynamic time step category C is determined
first based on values of explanatory variables. Price class, if DA ≥ DAlimits,C ,
or delta class, otherwise, is sampled using class probabilities conditional on
C. Then RT or ∆ is sampled from chosen class with equal probabilities.
Simulation method for non-spike time steps is shown in algorithm 4.

Algorithm 4 Non-spike simulation
Data

Simulated processes of explanatory variables
DAt = Day-ahead price
IGAt = Intermittent generation, actual
NICAt = Non-intermittent generation capacity, actual
LAt = Load, actual
IGFt = Intermittent generation, forecast
NICFt = Non-intermittent generation capacity, forecast
LFt = Load, forecast
Xspiket = Binary vector telling whether each time step is spike or not
Sampling populations
G∆C

= {∆hist|∆hist ∈ ∆C} = Historical ∆ values of delta class ∆C ∈
{0, 1, 2, ..., n∆C

− 1}
GRTC = {RThist|RThist ∈ RTC} = Historical RT prices of price class

RTC ∈ {0, 1, 2, ..., nRTC − 1}
GRTspike = [RThist|Xspike,hist = 1] = RT prices of historical spike peri-

ods in chronological order
Estimated probabilities
P (∆C |C) Probabilities of delta classes ∆C ∈ {0, 1, 2, ..., n∆C

− 1} con-
ditional on dynamic time step category C

P (RTC |C) Probabilities of price classes RTC ∈ {0, 1, 2, ..., nRTC − 1}
conditional on dynamic time step category C
Parameters

DAlimits,C = vector that contains limits of DA for determining C
FCFElimit = limit of FCFE for determining C
NLClimit = limit of NLC for determining C
n∆C

= number of delta classes
nRTC = number of price classes
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procedure Simulation
for t = 0 do

∆C(0) chosen randomly with equal probabilities
∆(0) chosen randomly from G∆C(0) with equal probabilities

end for
for all t > 0 do

C0(t) = 4[IDAlimits,C(1)(DA(t)) + IDAlimits,C(2)(DA(t))] +
2IFCFElimit

(FCFE(t)) + INLClimit
(NLC(t))

if Xspike(t) = 0 then
if Xspike(t− 1) = 1 then . Previous was spike

C(t) = C0(t) + 12(n∆C
+ nRTC )

if DA(t) ≥ DAlimits,C(1) then
RTC(t) chosen randomly with probabilities P (RTC |C(t))
RT (t) chosen randomly with equal probabilities from

GRTC(t)

else
∆C(t) chosen randomly with probabilities P (∆C |C(t))
∆(t) chosen randomly with equal probabilities from

G∆C(t)

RT (t) = DA(t) + ∆(t)
end if

else . Previous was not spike

C(t) = C0(t)+12
[
∆C(t−1)+IDAlimits,C(1)(DA(t−1))[n∆C

+

RTC(t− 1)−∆C(t− 1)]
]

if DA(t) ≥ DAlimits,C(1) then
RTC(t) chosen randomly with probabilities P (RTC |C(t))
RT (t) chosen randomly with equal probabilities from

GRTC(t)

else
∆C(t) chosen randomly with probabilities P (∆C |C(t))
∆(t) chosen randomly with equal probabilities from

G∆C(t)

RT (t) = DA(t) + ∆(t)
end if

end if
end if

end for
end procedure
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4.4 Validating model functioning by compar-

ing historical and simulated values

4.4.1 Actual values of explanatory variables

We can create simulated time series of actual values of explanatory vari-
ables LA, IGA, and NICA using historical forecast values of LF , IGF , and
NICF as inputs. If time series simulated in this way are similar to their
historical correspondents, we can conclude that our simulation methodology
can be used to create simulated future scenarios based on forecast values
simulated by commercial DA market modelling software. We conduct three
separate simulations, one for each variable, with same parameters in each
case. We divide the historical data to nXFC

= 50 intervals each 2% wide
compared to maximum value of forecast. We divide actual values to q = 10
groups, i.e. conditional deciles of each 2 % interval of forecast. Example
weeks of all three variables are shown in figures 4.2, 4.3, and 4.4. There
are differences between historical and simulated actual values. However, the
differences are so small that they can be supposed to be a result of random
variation that is natural and desired in stochastic simulation.

Figure 4.2: Black solid line shows actual historical load of Christmas week
2015. Blue dashed line shows actual load simulated using historical inputs.
Simulated and historical demand are almost exactly equal.

Historical and simulated duration curves for each variable are shown in
figure 4.5. They coincide almost perfectly, meaning that distribution of sim-
ulated values is highly similar to that of historical.

Another measure for performance of our wind generation simulation is
capacity factor, i.e. mean of wind generation as percentage of nameplate
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Figure 4.3: Example week of actual wind generation. Black solid line rep-
resents historical actual wind generation of Christmas week 2015. Blue line
represents actual values simulated with historical inputs. The movements of
the two lines are highly similar. Perfect matching is not desired in stochastic
simulation.

Figure 4.4: Example week of actual non-intermittent generation capacity.
Black line represents actual historical values of Christmas week 2015 and
blue line represents simulated actual values with inputs of year 2015.

capacity. Historical capacity factor of years 2011-2015 is 32 %. Histogram
of capacity factors of 300 simulation runs in figure 4.6 shows that they are
generally almost exactly equal to historical.

Analysis of explanatory variables in Chapter 3 showed that they all ex-
hibit strong autocorrelation. Top row of figure 4.7 shows empirical autocorre-
lation functions of historical and bottom row of simulated actual values. All
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Figure 4.5: Duration curves of explanatory variables. Black solid lines repre-
sent actual historical values of 2015 and blue dashed lines represent simulated
actual values with inputs of year 2015. Simulated duration curves are very
close to their historical correspondents.

three simulated variables exhibit similar simple and seasonal autocorrelation
as historical.

The three graphs on left side of figure 4.8 show scatter plot of historical
forecast and actual values of load, intermittent generation, and available
on-line non-intermittent generation capacity. Graphs on the right side show
similar graphs of simulated values. Simulated time series of all three variables
exhibit similar strong positive correlation between forecast and actual value
as historical series do.

Comparisons between historical and simulated actual values of demand,
wind generation, and non-intermittent generation capacity show very close
resemblance. Based on analysis, we can conclude that our stochastic sim-
ulation methodology for actual values of explanatory variables is sufficient.
Next we need to confirm that other parts of simulation method are valid,
too. After that we can create simulated RT price scenarios.
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Figure 4.6: Histogram of capacity factors of 300 simulation runs of actual
wind generation. Black vertical line represents historical capacity factor 32
%. Simulated capacity factors are close to historical. Small differences are
desired and result from randomness in simulation.
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Figure 4.7: Empirical autocorrelation functions of historical (top) and simu-
lated (bottom) LA, IGA, andNICA. Simulate series imitate autocorrelation
structures of their historical correspondents almost perfectly.
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Figure 4.8: Scatter plots of DA-forecast and actual values of historical (left)
and simulated (right) demand, LF and LA, wind generation, IGF and IGA,
and available non-intermittent generation capacity, NICF and NICA. Con-
ditional distributions of actual values as functions of forecasts closely resem-
ble those of historical values.
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Table 4.1: Parameters used in algorithm 1
lspike,RT 93.19 USD/MWh
lspike,DA 300 USD/MWh
DAlimit,prob 30 USD/MWh
FCAlimit,prob 7 GW
Sspike 0.5
lRTC [16.7, 19.1, 21.3, 22.9, 24.5, 26.2, 28.8, 32.6, 39.8]
l∆C

[−13.7,−8.6,−6.0,−4.2,−2.7,−1.5,−0.4, 0.7, 2.4]
DAlimits,C [25, 40]
FCFElimit -1800 MW
NLClimit 200 MW
Lhistory 525600

4.4.2 RT price

To ensure that the model described above can be used to create future RT
price time series, we apply it with historical input data and compare the
output series with actual historical occurred series. If simulated RT price
time series resemble historical price, we can conclude that the model functions
as expected. All market data that we use was collected by ERCOT and
processed and delivered to us by Genscape.

Historical data that we use for simulation includes historical time se-
ries of DA and RT , explanatory variables LA, LF , IGA, IGF , NICA,
NICF , and time series of installed wind generation capacity and installed
non-intermittent generation capacity from the years 2011-2015. Individual
missing data points and periods of missing data with length less than or
equal to two hours are filled by linearly interpolating. In case of time series
of dependent variables DA and RT interpolation is not used. As changes in
the values of explanatory variables from time step to time step are often rel-
atively small, linear interpolation is a safe choice for short periods of missing
data. For large periods of missing data, interpolation is not used. Graphs of
input variables as a function of time are shown in chapter 3. All parameters
used in this simulation are shown in table 4.1.

Algorithm 1 run with inputs and parameters as specified, gives us the
empirical conditional probabilities P (∆C |C) of delta classes and price classes
as functions of dynamic time step category C. Explanations of all dynamic
time step categories C in case of 12 price classes and delta classes are shown
in table 6.1 in appendix. An example of conditional probabilities of delta
classes are shown in table 4.3 and conditional probabilities of price classes
are shown in table 4.4. Conditional spike starting probabilities are shown in
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Table 4.2: Conditional probabilities of price spike at different values of ex-
planatory variables DA price DA and actual surplus capacity FCA. All
probabilities are rather low, but at FCFE values above 7000 MW (right
column) probabilities are a lot lower.

FCFE (MW)
DA (USD/MWh) < 7000 ≥ 7000
< 30 0.002 0.0001
≥ 30 0.006 0

table 4.2.
Now we have determined all needed quantities from historical data and

can start to simulate future RT price. In this validation we do not carry
out DA market simulation or simulation of actual values of explanatory
variables to obtain simulated series of DA, LA, LF , IGA, IGF , NICA,
and NICF since we do not want randomness in these simulations to im-
pact our simulated RT price. Therefore, we use historical values of ex-
planatory variables as inputs for RT price simulation. In addition we use
grouped history data G∆C

, GRTC , GRTspike , GL and conditional probabili-
ties P (Xstart|IDAlimit,prob

(DA), IFCAlimit,prob
(FCA)), P (∆C |C), and P (RTC |C)

output in the previous step by algorithm 1 for algorithms 3 and 4. The num-
ber of time steps to simulate, Lfuture, is 1051200, i.e. 10 years. Parameter
values used for spike simulation are shown in table 4.5 and values used for
simulation of non-spike RT prices are shown in table 4.6.

One simulated week of RT price and the corresponding historical RT
price are shown in figure 4.9. Behaviour of RT prices is highly similar. It
is clear that the spike periods do not coincide and it is not desirable in our
stochastic simulation approach. There are a few price spikes in both historical
and simulated RT price. Spikes occur mainly when DA price is close to its
daily maximum. There are also short periods when RT price is close to zero.
In this example week such situations only occur at nights when demand is
low and stable. Our simulated RT price seems to preserve this quality well.
Visual inspection does not show large differences in autocorrelation between
the price series.

Median of historical RT price is 25.23 and median prices of 100 simulation
runs are shown in histogram in figure 4.10. Medians are very near to each
other, again indicating that simulated price series resemble the historical
price series. It is not desirable in our stochastic approach that median price
would be precisely same.

Duration curves of historical and simulated RT price are shown in figure
4.11. They coincide almost perfectly. Small differences are natural and de-
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Table 4.3: Example of estimated conditional probabilities of delta classes
P (∆C = i|C) conditional on dynamic time step categories C 0-7 and 12-19.
Majority of dynamic time step categories is excluded from this example.

delta class i
C 0 1 2 3 4 5 6 7 8 9
0 0.43 0.09 0.01 0.03 0.06 0.1 0.07 0.09 0.07 0.04
1 0.28 0.04 0.03 0.04 0.15 0.1 0.09 0.1 0.04 0.1
2 0.64 0.09 0.02 0.03 0.05 0.04 0.05 0.02 0.03 0.03
3 0.23 0.06 0.03 0.09 0.09 0.14 0.11 0.03 0.23 0
4 0.48 0.1 0.07 0.06 0.07 0.06 0.03 0.03 0.03 0.06
5 0.54 0.14 0.08 0.04 0.02 0.04 0.04 0.01 0.01 0.08
6 0.55 0.07 0.09 0.07 0.05 0.03 0.03 0.03 0.03 0.06
7 0.52 0.12 0.04 0.09 0 0.06 0.01 0.04 0.04 0.09
12 0.07 0.64 0.1 0.05 0.02 0.04 0.02 0.02 0.02 0.02
13 0.1 0.8 0.1 0 0 0 0 0 0 0
14 0.11 0.68 0.09 0.03 0.03 0.02 0.02 0.01 0.01 0
15 0.09 0.45 0.14 0.05 0.05 0.14 0.09 0 0 0
16 0.02 0.86 0.09 0.02 0.01 0 0 0 0 0
17 0.01 0.87 0.09 0.01 0 0 0.01 0 0 0
18 0.02 0.85 0.08 0.03 0.01 0.01 0 0 0 0
19 0.03 0.81 0.16 0 0 0 0 0 0 0
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Table 4.4: Example of estimated conditional probabilities of price classes
P (RTC = i|C) conditional on dynamic time step category C ∈
{8, 9, 10, 11, 20, 21, 22, 23, 32, 33, 34, 35, 44, 45, 46, 47, 56, 57, 58, 59}. Majority
of dynamic time step categories is excluded from this example.

price class i
C 0 1 2 3 4 5 6 7 8 9
8 0 0 0 0 0.03 0.02 0.03 0.22 0.33 0.37
9 0 0.05 0 0 0.15 0.05 0.1 0.05 0.3 0.3
10 0 0.01 0.01 0.01 0.02 0.02 0.04 0.08 0.29 0.54
11 0 0 0 0.08 0.08 0 0 0.15 0.23 0.46
20 0 0.02 0 0 0.15 0.26 0.39 0.17 0 0
21 0 0 0 0.14 0 0 0.43 0.43 0 0
22 0 0 0.03 0.05 0.16 0.08 0.51 0.16 0 0
23 0 0 0 0 0.5 0 0 0.5 0 0
32 0 0 0 0.04 0.04 0.07 0.21 0.61 0.04 0
33 0 0 0 0 0.06 0.06 0.22 0.5 0.17 0
34 0 0 0 0 0.04 0.2 0.28 0.44 0.04 0
35 0 0 0 0 0 0 0.14 0.43 0.43 0

Table 4.5: Parameters used in spike simulation.
DAlimit,prob 30 USD/MWh
FCAlimit,prob 7 GW

Table 4.6: Parameters used in simulation of non-spike RT prices.
DAlimits,C [25, 40] USD/MWh
FCFElimit -1800 MW
NLClimit 200 MW
n∆C

10
nRTC 10
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Figure 4.9: Example week. Movements of historical (black solid line) and
simulated (blue dashed line) RT price are highly similar. They do not co-
incide perfectly and, in fact, it is not desirable in our stochastic simulation
approach.

sired result of randomness in simulation. Distribution of simulated RT price
matches very closely with that of historical RT price.

Empirical autocorrelation functions of both RT price time series are shown
in figure 4.12. It can be seen from the two graphs on the left that the strong
seasonal autocorrelation of historical RT price on lags approximately 288 (24
hours) is not exhibited by simulated series. However, the graphs on the right
show that autocorrelation of simulated series on short lags resembles that of
historical price, being only slightly weaker on lags 1-10. For the purpose of
profitability calculation for a flexible power plant it does not have any impact
that the long lag autocorrelation is not preserved by our simulation. Fast-
ramping power plants can change their operating plans many times within a
day and they are not dependent on events of previous or next day.

From all graphs and quantities compared above we can conclude that our
simulation methodology can create simulated time series of RT price highly
similar to historical series in all qualities and quantities that are important
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Figure 4.10: Histogram of median prices from 100 simulated scenarios using
historical values of input variables. Median prices are generally close to
historical median price 25.23 USD/MWh.

for the purpose of our simulation. Next, we will use the simulation method
to study the impact of increasing relative share of wind generation capacity
as a percentage of demand on RT price in ERCOT.

4.5 Case studies

Next we will use our forecasting model to create simulated future RT price
time series. We consider two cases: (i) base scenario, where all important
quantities develop as predicted by ERCOT or stay stable, and (ii) growth
scenario where installed wind generation capacity and annual peak load grow
slightly faster. We run 100 stochastic simulations of each scenario using
exactly same historical inputs, RT and DA prices and explanatory variables.
We only vary the future values of installed wind generation capacity and



CHAPTER 4. STOCHASTIC RT PRICE SIMULATION 91

Figure 4.11: Duration curves of historical (black solid line) and simulated
(blue dashed line) RT price match almost perfectly.

annual peak load. Installed non-intermittent generation capacity is assumed
to develop similarly in both scenarios. We compare our simulation results
of both scenarios to reveal any differences in RT price behaviour caused by
differences in input variables.

4.5.1 Base scenario and growth scenario

Our historical explanatory variable values consist of ERCOT market data
2012-2015 published by ERCOT, processed and delivered to us by Genscape.
Data includes historical time series of DA and RT , explanatory variables LA,
LF , IGA, IGF , NICA, NICF , and time series of installed wind generation
capacity and installed non-intermittent capacity. Individual missing data
points and periods of missing data with length less than or equal to two hours
are filled by linearly interpolating, except in case of time series of dependent
variables DA and RT . Interpolation method is same that we used earlier
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Figure 4.12: Both historical (top) and simulated (bottom) RT price exhibit
strong autocorrelation on short lags (right). Simulated price, however, does
not exhibit as strong seasonal autocorrelation (left) on lags approximately
288 time steps (24 hours).

in validation of model functioning. As representations of RT and DA prices
we use hub average price, which is, as explained earlier in chapter 3, simple
average of all hub prices in ERCOT. Parameters used are same as those used
for validation runs shown in tables 4.1, 4.5, and 4.6.

Possible differences between scenarios can only result from differences in
simulation of future values of explanatory variables LA, LF , IGA, IGF . We
consider two scenarios that slightly differ from each other. As explained ear-
lier, our simulation methodology for future values of explanatory variables
enables us to create different scenarios of demand and wind generation devel-
opment. We simply change the time series of peak load and installed wind
generation capacity that we use to multiply the simulated values of wind
generation as a percentage of installed capacity and demand as a percentage
of annual peak load.

In base scenario we use stable installed wind generation capacity as input
of future development. Installed wind generation capacity grows from 18 GW
in 2016 to 23 GW in 2017 and stays stable thereafter. In growth scenario,
capacity grows 8 % per year faster. Growth speed is still slow compared to 12
% geometric mean annual growth in 2011-2015. Difference between capacity
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in the two scenarios grows gradually from zero in 2016 to 28 GW in 2025.
Growth scenario is more realistic in installed wind generation capacity growth
(8 % vs. 0 %, historical 12 % ) but it is still slightly conservative estimate.
However, the difference between scenarios is important in our simulation, not
absolute values. Graphs of development of installed wind generation capacity
in both scenarios are shown in figure 4.13.

Figure 4.13: Installed wind generation capacity grows faster in growth sce-
nario (dashed blue line) than in base scenario (solid black line). Difference
grows from zero in 2016 to 28 GW in 2025.

ERCOT estimates that peak load is 70 GW in 2016 and grows thereafter
steadily to 78 GW in 2025. We use this estimate in our base scenario. The
geometric mean of yearly peak load growth will be 1.2 % per year in 2016-
2025 in base scenario. We modify that number to 3 % in growth scenario,
which means that peak load in 2025 is 91 GW. Graphs of development of
peak load in both scenarios are shown in figure 4.14. It can be seen that
growth of peak load is stronger in growth scenario than in base scenario.
Difference grows gradually from zero in the year 2016 to 13 GW in 2025.

Growth scenario has both demand and installed wind generation capac-
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Figure 4.14: Peak load growth in growth scenario (dashed blue line) is faster
than in base scenario (solid black line). Peak-load difference between scenar-
ios grows from zero in 2016 to 13 GW in 2025.

ity growing faster than in base scenario. Growth scenario will have greater
peak load, but also greater installed wind generation capacity. Higher de-
mand, other things being equal, naturally increases electricity price as there
is less surplus capacity and power plants with higher offer prices need to
be dispatched. On the other hand, higher wind generation can be expected
to decrease prices. These two differences between base and growth scenario
can be expected to cancel impact of each other on RT price to some extent.
However, there may be some differences in simulation results, e.g. as a result
of more frequent and larger net-load ramps caused by intermittent nature of
wind generation.

4.5.2 Comparison of results in different scenarios

100 simulations were run of both scenarios and three example RT price time
series of both scenarios for years 2016-2025 are shown in figure 4.15. They
resemble each other visually, but high prices are slightly more frequent in
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growth scenario RT price time series.

Figure 4.15: Three simulated RT price series of base scenario (left) are mostly
similar to series of growth scenario (right). Growth scenario time series have
a few more 9000 USD/MWh cap prices.

Histogram of median prices of the 100 simulation runs for each scenario
are shown in figure 4.16. Median prices of growth scenario are consistently a
little higher than median prices of base scenario simulation runs. However,
difference is only a few cents per MWh. Duration curves of RT prices of all
200 simulation runs are shown in figure 4.17. There are no large differences
in graphs. Figure 4.18 shows only 200 most expensive hours of year and only
prices below 1000 USD/MWh. The dashed blue lines representing duration
curves of growth scenario are clearly higher than solid black lines of base sce-
nario. For example, RT price in base scenario simulations is only 40-70 hours
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above 400 USD/MWh, whereas RT price in growth scenario simulations is
100-160 hours above 400 USD/MWh.

Figure 4.16: Median RT prices of 100 simulation runs of both scenarios show
slight difference between scenarios. Median prices of growth scenario are
generally a little higher (21.53-21.63 USD/MWh) than median prices of base
simulation runs (21.47-21.56 USD/MWh). Difference in median prices is so
small that it has practically no impact on market participants.

The differences in duration curves suggest that the impact of wind gener-
ation capacity increasing faster in growth scenario creates more price spikes
in RT market. Increased number of high-price hours without increase in av-
erage price means that price volatility is greater in growth scenario than in
base scenario.

Systematic differences in the simulated RT price time series of different
scenarios result from differences in demand and wind generation capacity. We
can conclude that increasing wind generation capacity share of all generation
capacity increases volatility of RT price in ERCOT. This increase in volatility
may give opportunities for flexible power plants to sell energy in RT market
and benefit from transactions between DA and RT markets.
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Figure 4.17: 200 duration curves, 100 of each scenario, show hardly any
variation. The graphs are almost similar, except in the highest-price hours
(left end).
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Figure 4.18: Duration curves of 100 simulation runs of base scenario and
growth scenario. Blue dashed lines are clearly higher than black solid lines,
indicating that high prices are more frequent in growth scenario.
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Conclusions

The purpose of this work was to understand real-time (RT) price creation
in ERCOT market and build a simulation methodology that can be used
to create simulated RT price series for several future years. We conducted
statistical analyses to identify price drivers and constructed a simulation
methodology using bootstrap method with several modifications.

We began with a short introduction to electricity markets and took a
closer look at ERCOT market. Next, we examined the impact of different
factors on RT price and selected explanatory variables to be used as inputs
of our forecasting model based on results of statistical analysis. Future val-
ues of the chosen explanatory variables can be simulated by conducting a
day-ahead (DA) market simulation using a dedicated commercial software.
We introduced a stochastic model to create simulated RT price time series.
We validated its functioning by using historical inputs and comparing out-
put RT price series to historical RT price. Moreover, we carried out future
simulations to compare RT price in two future scenarios, (i) base scenario in
which installed wind generation capacity is stable and peak-load develops in
future as predicted by ERCOT and (ii) growth scenario in which installed
wind generation capacity and load grow 8 % and 3 % per year, respectively.
By comparing results of the two simulations we saw that increasing share of
wind generation capacity increases RT price volatility in ERCOT market.

The statistical analysis of RT price and its potential drivers showed us
that occurrence of price spikes can be largely explained by explanatory vari-
ables surplus capacity and DA price. We found that probability of price spike
is immensely higher when surplus capacity is below the limit of 7 GW than
when it is above the limit. On normal (non-spike) RT price level, forecast
error of surplus capacity, change speed of net-load, DA price, and previous
behaviour of RT price explain RT price movements.

We chose to build the forecasting method using bootstrap method since

99
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it makes no assumptions of specific distributions or the stochastic processes
that generate prices. There is also a strong theoretical ground for forecasting
using bootstrap method and it has been used in many applications. We
made several modifications to account for impact of explanatory variables.
New explanatory variables can be easily added to the model, if identified.
We divided historical RT prices to several sampling groups. Conditions of
each future time-step determine probabilities used in stochastic selection of
sampling groups.

5.1 Topics for future research

The model introduced here could be modified in several ways. Simulation
of actual demand could be done taking into account different user groups
and modelling their demands separately, as ERCOT does. Autocorrelation
of simulated actual wind generation and other explanatory variables could
be made stronger. One possibility would be using block bootstrap method,
instead of Markov chain and simple bootstrap of actual value as a percentage,
in a similar way that we simulate RT price within spike periods.

Impact of solar generation could be added to the forecasting model as
one explanatory variable that varies through the day stochastically, taking
into account the impact of season and hour of day. Also, differences between
node and hub prices could be studied thoroughly to see impact of congestion
on electricity price.

Accuracy of forecast RT price conditional on explanatory variable values
could be improved by increasing the number of different dynamic time step
categories by adding division points to explanatory variables. However, there
is limit to accuracy improvement using this method, since sampling groups si-
multaneously decrease in size, reducing important randomness in simulation.
Highest accuracy could be achieved by building a fundamental forecasting
model based on explanatory variables predicted accurately, but it would be
very difficult to construct. RT price is much more volatile than DA price
and often exceeds significantly marginal generation costs of power plants,
that form the basis for DA market simulations. Also, predicting explanatory
variables precisely is impossible task.

Methodology developed in this work could also be applied to an other
market with some modifications. It would only make sense in a market
where functioning RT market exists, of course. It is likely that price drivers
would be different in some other market, and same parameter values as here
could certainly not be used. Steps needed to create a stochastic RT price
forecasting method are:
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1. Interview experts to understand RT price creation in the chosen market.
Hypothesize how RT price could be modelled and what are the most
important drivers of RT price.

2. Conduct statistical analysis to decide whether RT price or spread be-
tween RT and DA prices has to be simulated. Possibly both are needed,
but in different situations depending on DA price as we did in this study.
Decision depends on which variable has more uniform distribution.

3. Conduct statistical analysis (scatter plots, empirical autocorrelation
function, empirical probabilities of price groups conditional on values
of explanatory variables) to identify price drivers

4. Conduct statistical analysis (scatter plots, conditional histograms of
RT price) to select class limits for identified price drivers and needed
lags of dependent variable as explanatory variable.

5. Build simulation methodology based on historical and future time series
of price drivers in the same way as we did in this study.

6. Validate model functioning by comparing simulated and historical RT
price time series, when historical inputs are used for simulation.

7. Simulate future inputs using DA market modelling software and stochas-
tic modelling.

8. Forecast future RT price using possibly more than one scenario of de-
velopment of explanatory variables in future. Compare results to draw
conclusions of future RT price volatility in the chosen market.
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Chapter 6

Dynamic time step categories

Table 6.1: Values of explanatory variables and category of previous
time step (delta class, price class or spike) of each dynamic time
step category C ∈ 0, 1, 2, ..., 300. C = 300 corresponds to price
spike.

C Xspike(t) ∆C(t− 1) RTC(t− 1) Xspike(t− 1) DA FCFE NLCA
0 0 0 0 DA < 25 < −1800 < 200
1 0 0 0 DA < 25 < −1800 ≥ 200
2 0 0 0 DA < 25 ≥ −1800 < 200
3 0 0 0 DA < 25 ≥ −1800 ≥ 200
4 0 0 0 25 ≤ DA < 40 < −1800 < 200
5 0 0 0 25 ≤ DA < 40 < −1800 ≥ 200
6 0 0 0 25 ≤ DA < 40 ≥ −1800 < 200
7 0 0 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
8 0 0 0 40 ≤ DA < 300 < −1800 < 200
9 0 0 0 40 ≤ DA < 300 < −1800 ≥ 200
10 0 0 0 40 ≤ DA < 300 ≥ −1800 < 200
11 0 0 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
12 0 1 0 DA < 25 < −1800 < 200
13 0 1 0 DA < 25 < −1800 ≥ 200
14 0 1 0 DA < 25 ≥ −1800 < 200
15 0 1 0 DA < 25 ≥ −1800 ≥ 200
16 0 1 0 25 ≤ DA < 40 < −1800 < 200
17 0 1 0 25 ≤ DA < 40 < −1800 ≥ 200
18 0 1 0 25 ≤ DA < 40 ≥ −1800 < 200
19 0 1 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
20 0 1 0 40 ≤ DA < 300 < −1800 < 200
21 0 1 0 40 ≤ DA < 300 < −1800 ≥ 200
22 0 1 0 40 ≤ DA < 300 ≥ −1800 < 200
23 0 1 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
24 0 2 0 DA < 25 < −1800 < 200
25 0 2 0 DA < 25 < −1800 ≥ 200

Continued on next page
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Table 6.1 – continued from previous page
C Xspike(t) ∆C(t− 1) RTC(t− 1) Xspike(t− 1) DA FCFE NLCA
26 0 2 0 DA < 25 ≥ −1800 < 200
27 0 2 0 DA < 25 ≥ −1800 ≥ 200
28 0 2 0 25 ≤ DA < 40 < −1800 < 200
29 0 2 0 25 ≤ DA < 40 < −1800 ≥ 200
30 0 2 0 25 ≤ DA < 40 ≥ −1800 < 200
31 0 2 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
32 0 2 0 40 ≤ DA < 300 < −1800 < 200
33 0 2 0 40 ≤ DA < 300 < −1800 ≥ 200
34 0 2 0 40 ≤ DA < 300 ≥ −1800 < 200
35 0 2 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
36 0 3 0 DA < 25 < −1800 < 200
37 0 3 0 DA < 25 < −1800 ≥ 200
38 0 3 0 DA < 25 ≥ −1800 < 200
39 0 3 0 DA < 25 ≥ −1800 ≥ 200
40 0 3 0 25 ≤ DA < 40 < −1800 < 200
41 0 3 0 25 ≤ DA < 40 < −1800 ≥ 200
42 0 3 0 25 ≤ DA < 40 ≥ −1800 < 200
43 0 3 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
44 0 3 0 40 ≤ DA < 300 < −1800 < 200
45 0 3 0 40 ≤ DA < 300 < −1800 ≥ 200
46 0 3 0 40 ≤ DA < 300 ≥ −1800 < 200
47 0 3 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
48 0 4 0 DA < 25 < −1800 < 200
49 0 4 0 DA < 25 < −1800 ≥ 200
50 0 4 0 DA < 25 ≥ −1800 < 200
51 0 4 0 DA < 25 ≥ −1800 ≥ 200
52 0 4 0 25 ≤ DA < 40 < −1800 < 200
53 0 4 0 25 ≤ DA < 40 < −1800 ≥ 200
54 0 4 0 25 ≤ DA < 40 ≥ −1800 < 200
55 0 4 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
56 0 4 0 40 ≤ DA < 300 < −1800 < 200
57 0 4 0 40 ≤ DA < 300 < −1800 ≥ 200
58 0 4 0 40 ≤ DA < 300 ≥ −1800 < 200
59 0 4 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
60 0 5 0 DA < 25 < −1800 < 200
61 0 5 0 DA < 25 < −1800 ≥ 200
62 0 5 0 DA < 25 ≥ −1800 < 200
63 0 5 0 DA < 25 ≥ −1800 ≥ 200
64 0 5 0 25 ≤ DA < 40 < −1800 < 200
65 0 5 0 25 ≤ DA < 40 < −1800 ≥ 200
66 0 5 0 25 ≤ DA < 40 ≥ −1800 < 200
67 0 5 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
68 0 5 0 40 ≤ DA < 300 < −1800 < 200
69 0 5 0 40 ≤ DA < 300 < −1800 ≥ 200
70 0 5 0 40 ≤ DA < 300 ≥ −1800 < 200
71 0 5 0 40 ≤ DA < 300 ≥ −1800 ≥ 200

Continued on next page
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Table 6.1 – continued from previous page
C Xspike(t) ∆C(t− 1) RTC(t− 1) Xspike(t− 1) DA FCFE NLCA
72 0 6 0 DA < 25 < −1800 < 200
73 0 6 0 DA < 25 < −1800 ≥ 200
74 0 6 0 DA < 25 ≥ −1800 < 200
75 0 6 0 DA < 25 ≥ −1800 ≥ 200
76 0 6 0 25 ≤ DA < 40 < −1800 < 200
77 0 6 0 25 ≤ DA < 40 < −1800 ≥ 200
78 0 6 0 25 ≤ DA < 40 ≥ −1800 < 200
79 0 6 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
80 0 6 0 40 ≤ DA < 300 < −1800 < 200
81 0 6 0 40 ≤ DA < 300 < −1800 ≥ 200
82 0 6 0 40 ≤ DA < 300 ≥ −1800 < 200
83 0 6 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
84 0 7 0 DA < 25 < −1800 < 200
85 0 7 0 DA < 25 < −1800 ≥ 200
86 0 7 0 DA < 25 ≥ −1800 < 200
87 0 7 0 DA < 25 ≥ −1800 ≥ 200
88 0 7 0 25 ≤ DA < 40 < −1800 < 200
89 0 7 0 25 ≤ DA < 40 < −1800 ≥ 200
90 0 7 0 25 ≤ DA < 40 ≥ −1800 < 200
91 0 7 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
92 0 7 0 40 ≤ DA < 300 < −1800 < 200
93 0 7 0 40 ≤ DA < 300 < −1800 ≥ 200
94 0 7 0 40 ≤ DA < 300 ≥ −1800 < 200
95 0 7 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
96 0 8 0 DA < 25 < −1800 < 200
97 0 8 0 DA < 25 < −1800 ≥ 200
98 0 8 0 DA < 25 ≥ −1800 < 200
99 0 8 0 DA < 25 ≥ −1800 ≥ 200
100 0 8 0 25 ≤ DA < 40 < −1800 < 200
101 0 8 0 25 ≤ DA < 40 < −1800 ≥ 200
102 0 8 0 25 ≤ DA < 40 ≥ −1800 < 200
103 0 8 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
104 0 8 0 40 ≤ DA < 300 < −1800 < 200
105 0 8 0 40 ≤ DA < 300 < −1800 ≥ 200
106 0 8 0 40 ≤ DA < 300 ≥ −1800 < 200
107 0 8 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
108 0 9 0 DA < 25 < −1800 < 200
109 0 9 0 DA < 25 < −1800 ≥ 200
110 0 9 0 DA < 25 ≥ −1800 < 200
111 0 9 0 DA < 25 ≥ −1800 ≥ 200
112 0 9 0 25 ≤ DA < 40 < −1800 < 200
113 0 9 0 25 ≤ DA < 40 < −1800 ≥ 200
114 0 9 0 25 ≤ DA < 40 ≥ −1800 < 200
115 0 9 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
116 0 9 0 40 ≤ DA < 300 < −1800 < 200
117 0 9 0 40 ≤ DA < 300 < −1800 ≥ 200
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Table 6.1 – continued from previous page
C Xspike(t) ∆C(t− 1) RTC(t− 1) Xspike(t− 1) DA FCFE NLCA

118 0 9 0 40 ≤ DA < 300 ≥ −1800 < 200
119 0 9 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
120 0 10 0 DA < 25 < −1800 < 200
121 0 10 0 DA < 25 < −1800 ≥ 200
122 0 10 0 DA < 25 ≥ −1800 < 200
123 0 10 0 DA < 25 ≥ −1800 ≥ 200
124 0 10 0 25 ≤ DA < 40 < −1800 < 200
125 0 10 0 25 ≤ DA < 40 < −1800 ≥ 200
126 0 10 0 25 ≤ DA < 40 ≥ −1800 < 200
127 0 10 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
128 0 10 0 40 ≤ DA < 300 < −1800 < 200
129 0 10 0 40 ≤ DA < 300 < −1800 ≥ 200
130 0 10 0 40 ≤ DA < 300 ≥ −1800 < 200
131 0 10 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
132 0 11 0 DA < 25 < −1800 < 200
133 0 11 0 DA < 25 < −1800 ≥ 200
134 0 11 0 DA < 25 ≥ −1800 < 200
135 0 11 0 DA < 25 ≥ −1800 ≥ 200
136 0 11 0 25 ≤ DA < 40 < −1800 < 200
137 0 11 0 25 ≤ DA < 40 < −1800 ≥ 200
138 0 11 0 25 ≤ DA < 40 ≥ −1800 < 200
139 0 11 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
140 0 11 0 40 ≤ DA < 300 < −1800 < 200
141 0 11 0 40 ≤ DA < 300 < −1800 ≥ 200
142 0 11 0 40 ≤ DA < 300 ≥ −1800 < 200
143 0 11 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
144 0 0 0 DA < 25 < −1800 < 200
145 0 0 0 DA < 25 < −1800 ≥ 200
146 0 0 0 DA < 25 ≥ −1800 < 200
147 0 0 0 DA < 25 ≥ −1800 ≥ 200
148 0 0 0 25 ≤ DA < 40 < −1800 < 200
149 0 0 0 25 ≤ DA < 40 < −1800 ≥ 200
150 0 0 0 25 ≤ DA < 40 ≥ −1800 < 200
151 0 0 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
152 0 0 0 40 ≤ DA < 300 < −1800 < 200
153 0 0 0 40 ≤ DA < 300 < −1800 ≥ 200
154 0 0 0 40 ≤ DA < 300 ≥ −1800 < 200
155 0 0 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
156 0 1 0 DA < 25 < −1800 < 200
157 0 1 0 DA < 25 < −1800 ≥ 200
158 0 1 0 DA < 25 ≥ −1800 < 200
159 0 1 0 DA < 25 ≥ −1800 ≥ 200
160 0 1 0 25 ≤ DA < 40 < −1800 < 200
161 0 1 0 25 ≤ DA < 40 < −1800 ≥ 200
162 0 1 0 25 ≤ DA < 40 ≥ −1800 < 200
163 0 1 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
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Table 6.1 – continued from previous page
C Xspike(t) ∆C(t− 1) RTC(t− 1) Xspike(t− 1) DA FCFE NLCA

164 0 1 0 40 ≤ DA < 300 < −1800 < 200
165 0 1 0 40 ≤ DA < 300 < −1800 ≥ 200
166 0 1 0 40 ≤ DA < 300 ≥ −1800 < 200
167 0 1 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
168 0 2 0 DA < 25 < −1800 < 200
169 0 2 0 DA < 25 < −1800 ≥ 200
170 0 2 0 DA < 25 ≥ −1800 < 200
171 0 2 0 DA < 25 ≥ −1800 ≥ 200
172 0 2 0 25 ≤ DA < 40 < −1800 < 200
173 0 2 0 25 ≤ DA < 40 < −1800 ≥ 200
174 0 2 0 25 ≤ DA < 40 ≥ −1800 < 200
175 0 2 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
176 0 2 0 40 ≤ DA < 300 < −1800 < 200
177 0 2 0 40 ≤ DA < 300 < −1800 ≥ 200
178 0 2 0 40 ≤ DA < 300 ≥ −1800 < 200
179 0 2 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
180 0 3 0 DA < 25 < −1800 < 200
181 0 3 0 DA < 25 < −1800 ≥ 200
182 0 3 0 DA < 25 ≥ −1800 < 200
183 0 3 0 DA < 25 ≥ −1800 ≥ 200
184 0 3 0 25 ≤ DA < 40 < −1800 < 200
185 0 3 0 25 ≤ DA < 40 < −1800 ≥ 200
186 0 3 0 25 ≤ DA < 40 ≥ −1800 < 200
187 0 3 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
188 0 3 0 40 ≤ DA < 300 < −1800 < 200
189 0 3 0 40 ≤ DA < 300 < −1800 ≥ 200
190 0 3 0 40 ≤ DA < 300 ≥ −1800 < 200
191 0 3 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
192 0 4 0 DA < 25 < −1800 < 200
193 0 4 0 DA < 25 < −1800 ≥ 200
194 0 4 0 DA < 25 ≥ −1800 < 200
195 0 4 0 DA < 25 ≥ −1800 ≥ 200
196 0 4 0 25 ≤ DA < 40 < −1800 < 200
197 0 4 0 25 ≤ DA < 40 < −1800 ≥ 200
198 0 4 0 25 ≤ DA < 40 ≥ −1800 < 200
199 0 4 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
200 0 4 0 40 ≤ DA < 300 < −1800 < 200
201 0 4 0 40 ≤ DA < 300 < −1800 ≥ 200
202 0 4 0 40 ≤ DA < 300 ≥ −1800 < 200
203 0 4 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
204 0 5 0 DA < 25 < −1800 < 200
205 0 5 0 DA < 25 < −1800 ≥ 200
206 0 5 0 DA < 25 ≥ −1800 < 200
207 0 5 0 DA < 25 ≥ −1800 ≥ 200
208 0 5 0 25 ≤ DA < 40 < −1800 < 200
209 0 5 0 25 ≤ DA < 40 < −1800 ≥ 200
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Table 6.1 – continued from previous page
C Xspike(t) ∆C(t− 1) RTC(t− 1) Xspike(t− 1) DA FCFE NLCA

210 0 5 0 25 ≤ DA < 40 ≥ −1800 < 200
211 0 5 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
212 0 5 0 40 ≤ DA < 300 < −1800 < 200
213 0 5 0 40 ≤ DA < 300 < −1800 ≥ 200
214 0 5 0 40 ≤ DA < 300 ≥ −1800 < 200
215 0 5 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
216 0 6 0 DA < 25 < −1800 < 200
217 0 6 0 DA < 25 < −1800 ≥ 200
218 0 6 0 DA < 25 ≥ −1800 < 200
219 0 6 0 DA < 25 ≥ −1800 ≥ 200
220 0 6 0 25 ≤ DA < 40 < −1800 < 200
221 0 6 0 25 ≤ DA < 40 < −1800 ≥ 200
222 0 6 0 25 ≤ DA < 40 ≥ −1800 < 200
223 0 6 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
224 0 6 0 40 ≤ DA < 300 < −1800 < 200
225 0 6 0 40 ≤ DA < 300 < −1800 ≥ 200
226 0 6 0 40 ≤ DA < 300 ≥ −1800 < 200
227 0 6 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
228 0 7 0 DA < 25 < −1800 < 200
229 0 7 0 DA < 25 < −1800 ≥ 200
230 0 7 0 DA < 25 ≥ −1800 < 200
231 0 7 0 DA < 25 ≥ −1800 ≥ 200
232 0 7 0 25 ≤ DA < 40 < −1800 < 200
233 0 7 0 25 ≤ DA < 40 < −1800 ≥ 200
234 0 7 0 25 ≤ DA < 40 ≥ −1800 < 200
235 0 7 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
236 0 7 0 40 ≤ DA < 300 < −1800 < 200
237 0 7 0 40 ≤ DA < 300 < −1800 ≥ 200
238 0 7 0 40 ≤ DA < 300 ≥ −1800 < 200
239 0 7 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
240 0 8 0 DA < 25 < −1800 < 200
241 0 8 0 DA < 25 < −1800 ≥ 200
242 0 8 0 DA < 25 ≥ −1800 < 200
243 0 8 0 DA < 25 ≥ −1800 ≥ 200
244 0 8 0 25 ≤ DA < 40 < −1800 < 200
245 0 8 0 25 ≤ DA < 40 < −1800 ≥ 200
246 0 8 0 25 ≤ DA < 40 ≥ −1800 < 200
247 0 8 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
248 0 8 0 40 ≤ DA < 300 < −1800 < 200
249 0 8 0 40 ≤ DA < 300 < −1800 ≥ 200
250 0 8 0 40 ≤ DA < 300 ≥ −1800 < 200
251 0 8 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
252 0 9 0 DA < 25 < −1800 < 200
253 0 9 0 DA < 25 < −1800 ≥ 200
254 0 9 0 DA < 25 ≥ −1800 < 200
255 0 9 0 DA < 25 ≥ −1800 ≥ 200

Continued on next page



CHAPTER 6. DYNAMIC TIME STEP CATEGORIES 111

Table 6.1 – continued from previous page
C Xspike(t) ∆C(t− 1) RTC(t− 1) Xspike(t− 1) DA FCFE NLCA

256 0 9 0 25 ≤ DA < 40 < −1800 < 200
257 0 9 0 25 ≤ DA < 40 < −1800 ≥ 200
258 0 9 0 25 ≤ DA < 40 ≥ −1800 < 200
259 0 9 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
260 0 9 0 40 ≤ DA < 300 < −1800 < 200
261 0 9 0 40 ≤ DA < 300 < −1800 ≥ 200
262 0 9 0 40 ≤ DA < 300 ≥ −1800 < 200
263 0 9 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
264 0 10 0 DA < 25 < −1800 < 200
265 0 10 0 DA < 25 < −1800 ≥ 200
266 0 10 0 DA < 25 ≥ −1800 < 200
267 0 10 0 DA < 25 ≥ −1800 ≥ 200
268 0 10 0 25 ≤ DA < 40 < −1800 < 200
269 0 10 0 25 ≤ DA < 40 < −1800 ≥ 200
270 0 10 0 25 ≤ DA < 40 ≥ −1800 < 200
271 0 10 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
272 0 10 0 40 ≤ DA < 300 < −1800 < 200
273 0 10 0 40 ≤ DA < 300 < −1800 ≥ 200
274 0 10 0 40 ≤ DA < 300 ≥ −1800 < 200
275 0 10 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
276 0 11 0 DA < 25 < −1800 < 200
277 0 11 0 DA < 25 < −1800 ≥ 200
278 0 11 0 DA < 25 ≥ −1800 < 200
279 0 11 0 DA < 25 ≥ −1800 ≥ 200
280 0 11 0 25 ≤ DA < 40 < −1800 < 200
281 0 11 0 25 ≤ DA < 40 < −1800 ≥ 200
282 0 11 0 25 ≤ DA < 40 ≥ −1800 < 200
283 0 11 0 25 ≤ DA < 40 ≥ −1800 ≥ 200
284 0 11 0 40 ≤ DA < 300 < −1800 < 200
285 0 11 0 40 ≤ DA < 300 < −1800 ≥ 200
286 0 11 0 40 ≤ DA < 300 ≥ −1800 < 200
287 0 11 0 40 ≤ DA < 300 ≥ −1800 ≥ 200
288 0 1 DA < 25 < −1800 < 200
289 0 1 DA < 25 < −1800 ≥ 200
290 0 1 DA < 25 ≥ −1800 < 200
291 0 1 DA < 25 ≥ −1800 ≥ 200
292 0 1 25 ≤ DA < 40 < −1800 < 200
293 0 1 25 ≤ DA < 40 < −1800 ≥ 200
294 0 1 25 ≤ DA < 40 ≥ −1800 < 200
295 0 1 25 ≤ DA < 40 ≥ −1800 ≥ 200
296 0 1 40 ≤ DA < 300 < −1800 < 200
297 0 1 40 ≤ DA < 300 < −1800 ≥ 200
298 0 1 40 ≤ DA < 300 ≥ −1800 < 200
299 0 1 40 ≤ DA < 300 ≥ −1800 ≥ 200
300 1
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