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Chapter 1

Introduction

Offering a constant customer experience in services where demand surpasses a
restricted capacity requires special attention from scheduling. Environments
like this are common in public services such as public healthcare. As a
(nearly) free and ever relevant service, public healthcare will unceasingly
have more demand than supply, resulting in queues and long wait times.
Improvements in queue and resource management can help offer acceptable
wait times for each customer group.

Healthcare customer groups, or service types, have different urgency lev-
els and resource requirements. The urgency level of a service type defines its
service time goal. A sudden toothache, for example, calls for a same day ap-
pointment, whereas a routine check up can wait up to several months. Some
service time goals are imposed by the government as statutory treatment
time guarantees (suom. hoitotakuu), while some goals are set by the service
providers for their own operations. In Finland, for example, urgent care has
to be accessible during the same day and non-urgent wait time should not
exceed 3 months. Additionally, some service providers have set service time
goals for semi-urgent service types (3 weeks) and follow-up appointments (1
month), to give a few examples. Healthcare resources vary from medical
personnel to operating rooms and specialized machinery. The service type of
an appointment determines which resources it requires to be served. A pub-
lic healthcare provider’s access to these resources depends on a government
dictated budget. Resource capacity can be measured in time (e.g. working
hours of medical personnel) or by number (e.g. number of operating rooms).
The incoming demand of a healthcare provider is usually in the form of ap-
pointment request calls. During a call, the service type of the request is
determined and an appointment time is scheduled. This type of scheduling,
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CHAPTER 1. INTRODUCTION 7

where scheduling decisions have to be made without any knowledge of later
requests, is called online advance scheduling (Gupta and Denton 2008).

So how far in the future should a non-urgent appointment be scheduled
to leave enough capacity for more urgent appointments requested later? This
question has been answered with intricate mathematical algorithms in the
case of a single resource (Patrick et al. 2008, Saure et al. 2012, Truong 2015,
Erdelyi and Topaloglu 2009) or a single service type (Conforti et al. 2009,
Liu et al. 2010). However, the case of a public healthcare provider in charge
of hundreds of resources and dozens of service types is too large to be tackled
with the existing methods.

This thesis develops a capacity allocation method that will enforce the
service time goals of a large scale healthcare provider by guiding the advance
scheduling process. To accomplish this task, the thesis first develops an
extensive schedule optimization model. The solution of this optimization
model is used as a base for dividing the service provider’s available resources
between its service types. The effectiveness of this resource allocation is
numerically tested in a dental care example case and the resulting wait times
are compared to the actual wait times achieved with their current scheduling
policy. The comparison is based on metrics formulated for the objective
function of the optimization model.

This thesis focuses on a case where the shape of the demand repeats at a
known cycle or can otherwise be predicted in detail. The resource capacities
of the next demand cycle are also assumed to be known. Patient wait times
during the visit to the clinic are thoroughly studied in many papers (e.g.
Erdogan and Denton 2013, Kuiper et al. 2015, Kemper et al. 2014, Castro and
Petrovic 2012) and thus excluded from the scope of this thesis. The effects
of appointment cancellations and patient ”no shows” are only considered in
passing, since they have inspired many studies of their own (e.g. Schuetz and
Kolisch 2013, Wang and Gupta 2011) and, based on the case data used in
this thesis, they do not have a significant impact in public dental care.

The rest of this thesis is divided into five chapters. Chapter 2 presents a
literature review of appointment scheduling in healthcare. Chapter 3 intro-
duces the theory behind mathematical methods used in the thesis. Chapter 4
provides a detailed description of the developed schedule optimization model
and how the capacity allocation is derived from its results. Chapter 5 re-
views an implementation of the capacity allocation method to a real life case
in public dental care. Chapter 6 concludes the thesis and presents ideas for
future development.



Chapter 2

Healthcare scheduling in litera-
ture

Bailey’s (1952) study on patient wait time and medical personnel idle time
is widely considered the first study where mathematical methods are used
to model and improve healthcare operations. Since then methods of opera-
tions research have become important tools in the development of healthcare
operations and they have inspired several studies from greatly varying per-
spectives. Historically, appointment scheduling methods have chiefly focused
on the appointment time and the wait time of patients during their visit to
the clinic, also known as direct wait time (Gupta and Denton 2008). Re-
cently, there has been more studies focusing on the appointment day and the
indirect wait time of accessing treatment. This literature review will focus on
studies concerning indirect wait times, specifically previous works in advance
scheduling and capacity allocation.

In advance scheduling systems, stochastically and dynamically arriving
jobs are scheduled to future slots without any knowledge of requests arriving
in later time slots (Parizi and Ghate 2016). This is very a common operating
practice in healthcare; patients call a service line to book an appointment
and are given one immediately during the call or by a call back service. The
most common method used in development of advance scheduling policies for
healthcare is a Markov decision process (MDP) combined with an approxi-
mation or heuristic for easier implementation.

Patrick et al. (2008) use MDP with approximate dynamic programming
(ADP) to model the scheduling of diagnostic services for one type of resource,
one appointment duration, and multiple urgency levels. Their model mini-
mizes used overtime, appointment lateness, and the number of unscheduled
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CHAPTER 2. HEALTHCARE SCHEDULING IN LITERATURE 9

appointments. The implementation of the policy is mostly possible with a
set of simplified steps, but in some cases an integer program needs to be
solved every day.

Saure et al. (2012) apply an extension to Patrick et al.’s (2008) work in
a radiation therapy case with consideration of consecutive appointments and
multiple appointment durations. The solution is stated as an approximate
policy of four steps. Parizi and Ghate (2016) utilize a similar method com-
bining MDP and ADP in the scheduling of elective surgeries with multiple
service types and resource categories, but in implementation the developed
mathematical program needs to be solved every day.

Liu et al. (2010) use MDP to form an index policy for appointment
scheduling with a single service type. The method requires initial param-
eter estimations and some daily calculation. Feldman et al. (2014) extend
this method with patient preference input.

Gocgun and Puterman (2014) use MDP and ADP to derive a scheduling
policy in a chemotherapy case (one resource type, multiple service types)
where different tolerance limits are set to the patient wait time. No schedul-
ing cost is incurred for scheduling patients within their tolerance limits, linear
cost for scheduling early or late. Implementation requires solving the devel-
oped ADP every scheduling day. Zhang et al. (2019) combine MDP, ADP,
and stochastic programming in an elective surgery scheduling case where re-
quests can be rejected and a full week of demand is collected before making
scheduling decisions.

Besides MDP based methods there are some other advance scheduling
approaches. Conforti et al. (2009) introduce an integer programming solution
for scheduling consecutive radiation therapy appointments. A larger set of
appointment requests is scheduled over the next weeks. Truong (2015) found
an optimal dynamic programming solution for a case with one resource type
and two service types (urgent and non-urgent).

The advance scheduling works described above all assume a service provider
operating offline in the sense that they collect all appointment requests of a
day (or other collection period) before making the scheduling decisions. This
gives the scheduling policies more data to operate on, but it does not work for
service providers who schedule their appointments online, before knowledge
of any appointments requested later. Erdelyi and Topaloglu (2009) define
statistically approximated protection level policies suited for online schedul-
ing in a case with one resource type. And, more recently, Dai et al. (2020)
detail two heuristics based on their MDP model, that could be used for im-
mediate scheduling in a case with one resource type, one service type, and a
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moving booking window.

Another approach used to guide appointment scheduling is capacity allo-
cation. It is a method of dividing available resources between different service
types and it can be set in place far in advance while still offering purposeful
structure for scheduling decisions. In the field of healthcare, capacity allo-
cation is most frequently used in operating room scheduling and solved with
linear programming.

Ozkarahan (2000) develops an integer linear program (ILP) for minimiz-
ing personnel idle time and over time during one operating day after an ad-
vance scheduling process has scheduled possible surgeries for that day. Ogu-
lata and Erol (2003) tackle a general surgery scheduling case in a large hospi-
tal. Three hierarchical ILP formulations are used to decide weekly operating
room schedules, maximize capacity utilization, balance allocation distribu-
tion, and minimize patient wait time. Beliën and Demeulemeester (2007)
develop a mixed integer linear program (MILP) based heuristics to minimize
expected total bed shortage with stochastic urgent cases and surgery dura-
tion. Mannino et al. (2012) tackle another cyclic master surgery schedule
with a MILP formulation minimizing overtime and balancing patient queue
lengths. Holte and Mannino (2013) utilize robust optimization to find a pol-
icy that minimizes queues in the worst demand scenario. Tang and Wang
(2015) take a robust optimization model to an elective surgery case to mini-
mize worst case revenue loss.

This thesis will use the notation and formulation of capacity allocation
ILP methods to form an online advance scheduling policy for a large scale
service provider.



Chapter 3

Methods

3.1 Linear Programming

Linear programming (LP) is a subcategory of mathematical programming,
or mathematical optimization, which is used to determine the best numerical
outcome of a mathematical model. All linear programs can be described in
three lines as presented in (3.1) (Bertsimas and Tsitsiklis 1997):

min cT x

s.t. Ax ≤ b (3.1)

x ≥ 0 .

In the formulation above a linear objective function cTx is minimized
subject to linear constraints Ax ≤ b and x ≥ 0. Vector x is the vector of
decision variables, while vector b, vector c and matrix A are parameters with
known values. In a basic linear program the decision variables are continuous.
If any of the decision variables are defined for a set of integers the problem
is categorized as a mixed integer linear programming (MILP). Integer linear
programming (ILP) which is a special case of linear programming where all
model variables are integers. The most commonly used integer variables are
binaries, x ∈ {0, 1}, which can only take two different values, 0 or 1.

11
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3.2 Rolling horizon

Rolling horizon is a solution heuristic for optimization models extending over
long periods of time. The need for a solving heuristic can arise either from
uncertainty of input data or from the large scale of the model (Bischi et al.
2019). In both cases the full time horizon is divided into multiple shorter
intervals and each interval is solved separately to find a sub-optimal (or op-
timal) approximation of the full horizon result. Figure 3.1 shows an example
of commonly used rolling horizon structure. In the case of uncertain input
data, each interval will have an active period to be optimized and a predic-
tion period with predictive data to be considered in the optimization. In the
case of a large scale model, both active and prediction period are optimized,
but only the active period results are locked as final. Additionally, some
information from past intervals can be considered to keep the result coher-
ent in both cases. To give a few examples: in a production planning case,
future demand forecasts are considered in the prediction horizon in order to
anticipate production needs (Silvente et al. 2015); in an operational schedul-
ing case, the past values of a yearly-basis performance constraint have to be
taken into account in every interval as past information (Bischi et al. 2019).

Figure 3.1: Example of rolling horizon structure.

The use of a heuristic will most likely lead to sub-optimality of the result
and the scale of the inaccuracy might be difficult to measure. While the
use of a heuristic cannot always be avoided, this should be addressed when
considering the results.



CHAPTER 3. METHODS 13

3.3 Discrete-event simulation

Simulation is used for numerical estimation of real-life systems. There are
many subcategories of simulation, but the focus of this section is to introduce
the basics of a dynamic and discrete simulation, also called discrete-event
simulation. Dynamic simulation refers to systems that evolve over time and
discrete dynamic simulation to models where the time is depicted in discrete
intervals rather than continuously (Law and Kelton 2000).

Building blocks of discrete-event simulation models are system state, sim-
ulation clock, event list, statistical counters, initialization routine, event rou-
tine, and library routines (Law and Kelton 2000). A simple example is to
study the queue of a customer service desk. The systems state includes vari-
ables needed to describe the current state of the system. In this case they
would be the number of customers in the queue, number of service desks, and
whether each service desk is currently occupied by a customer. A simulation
clock keeps track of the current simulation time. The event list contains the
arrival times of new customers to the queue. Statistical counters store infor-
mation about the system performance. For example, queuing time of each
customer and the number of customers served. The initialization routine of
the simulation sets the system state for simulation time 0. At the opening
of the service desk there might be no queue and two empty service desks.
The event routine updates the system state when events occur. When a new
customer arrives the event routine first checks if there is a queue. If there is
no queue, the routine advances to check if any service desks are free. If there
is a free service desk the customer is moved to occupy that desk. Library
routines generate a service time for the customer from a given distribution
and add a ”leaving customer” event to the event list.

A simulation is stochastic if it includes any probabilistic components,
such as the customer service time described above. Stochastic simulations
produce a random output and should be run multiple times before drawing
any conclusions. Static, or deterministic, simulations have no stochastic ele-
ments and their output is also predetermined by the event list and the initial
system state.

There are two main approaches for advancing the discrete-event simula-
tion clock: fixed-increment and next-event (Law and Kelton 2000). With
fixed-increment approach the simulation clock is advanced by the same in-
crement every step and events that occur during the same time slot appear
to happen simultaneously. With next-event approach the simulation clock is
advanced to the next event time and the increments can vary in length.



Chapter 4

A model for finding a good ca-
pacity allocation for appointment
scheduling

Figure 4.1 presents a simplified overview of the capacity allocation method
developed in this Chapter. Initially, the available capacities (Figure 4.1i.)
and past appointment requests are known. Next, appointments requests of
different service types (pattern) and different duration (size) are scheduled
to the available capacities with an optimization model (Figure 4.1ii.). The
optimization results are summarized to daily service type slots by combining
the durations of same type appointments scheduled to the same resource
(Figure 4.1iii.). When using the capacity allocation, a scheduler can simply
book appointments to the first available slot allocated to the right service
type (Figure 4.1iv.).

Figure 4.1: Developed capacity allocation method in simple terms

14
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4.1 Assumptions

From the models’ perspective all appointments scheduled for the same time
slot happen at the same time. This is acceptable as long as the constraints
make sure that resource requirements of appointments scheduled for a time
slot do not exceed its resource capacities.

This thesis focuses on a healthcare network where resources in the near
future (within a year) can be considered set, because their budget is deter-
mined well in advance. In the model the resource capacities are considered
immutable, meaning no overtime or additional personnel are considered.

Based on the data of the dental care case of this thesis, the cancella-
tion and patient ”no show” rate in public dental care is very low. While
appointment cancellations and ”no shows” can be important to plan for in
scheduling cases with high probabilities for them, they are not in the scope
of this thesis.

Data analysis of the case service provider’s requested appointments over
past three years showed that weekly and even daily demand distributions
have stayed near identical each year. This study will consider the appoint-
ments requested on a past year a fair approximation of future demand.

4.2 Schedule optimization model

The schedule optimization model schedules a set of appointments, I = {1, ..., nI},
over a set of time slots, J = {1, ..., nJ} ∪ {3000}, in such a way that overall
appointment lateness and unused resource capacity are minimized. The time
slot j = 3000 represents an unknown future time where appointments that
do not fit to the optimization capacity can be scheduled. Each requested
appointment i is allocated one appointment time that cannot be before the
request time, bi ∈ J . A binary decision variable xij ∈ {0, 1} defines whether
appointment i is booked for time slot j or not. Constraint (4.1) ensures that
each appointment is booked exactly once, and constraint (4.2) makes sure
that appointments cannot be booked before their request time:
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∑
j∈J

xij = 1 ∀ i ∈ I , (4.1)

bi−1∑
j=1

xij = 0 ∀ i ∈ I . (4.2)

Besides being scheduled to a certain time slot, the appointments are as-
signed to certain resources from the set of all resources, R = {1, ..., nR}∪{φ}.
The resource r = φ represents an additional resource that is only active in
the additional time slot j = 3000. A binary decision variable yijr ∈ {0, 1}
defines whether appointment i is booked for time slot j and resource r. Each
resource r has a capacity, ajr ≥ 0, for each time slot j. The additional re-
source, φ, has an unlimited capacity when j = 3000 and no capacity in the
other time slots (a3000,φ = ∞ and aj,φ = 0 ∀ j ∈ J\{3000}). The sum of
appointment durations, di ≥ 0, booked for the resource cannot exceed this
capacity, as stated in constraint (4.3):

∑
i∈I

yijrdi ≤ ajr ∀ r ∈ R\{φ}, j ∈ J\{3000} . (4.3)

Furthermore, the resource r assigned for appointment i has to be the
right kind. The resources of the model are classified to nC different resource
categories, C = {1, ..., nC}. A binary parameter zic ∈ {0, 1} states whether
appointment i requires a resource of category c ∈ C or not, and binary pa-
rameter krc ∈ {0, 1} whether resource r belongs to category c. The additional
resource, φ, belongs to all resource categories (kφ,c = 1 ∀ c). A resource can
be part of multiple resource categories and it can serve appointments that
require one or more of the categories it belongs to, as stated in constraint
(4.4):

∑
r∈R

krcyijr ≥ xijzic ∀ i ∈ I, j ∈ J, c ∈ C . (4.4)

For example, the resource in Figure 4.2 belongs to categories c1 and c3.
Appointments 1, 2, and 4 in the same figure can be scheduled to the resource
but appointments 3 and 5 cannot.
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Figure 4.2: Example of a resource, its resource categories, and appointments
it can serve.

In addition to satisfying the hard constraints of sufficient resource capac-
ity and the right resource category, the model aims to serve each appoint-
ment within its service time goal. The model has a set of service types,
S = {1, ..., nS}, and each requested appointment i belongs to one service
type si ∈ S. The service types have a service time goal gs > 0 that deter-
mines within how many time slots from the request an appointment should
be scheduled. Lateness of an appointment is defined as the difference be-
tween the scheduled time slot and the goal time slot, divided by the service
time goal for comparability between different goals. The lateness of all ap-
pointments, L(X), as defined in equation (4.5), is minimized in the objective
function of the model:

L(X) =
∑
i∈I

nJ∑
j=bi+gsi+1

j − (bi + gsi)

gsi
xij +

∑
i∈I

M xi,3000 , (4.5)

where X is a matrix of the decision variables xij and M >> nJ is a large
parameter representing lateness from booking an appointment to the addi-
tional time slot. Summing the above equation over all time slots would mean
that scheduling two appointments (of the same service type) to the time slot
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matching their service time goal would be considered as valuable as serv-
ing one appointment three days early and one three days late. However,
the performance of the service provider studied in this thesis is measured
by the maximum service time rather than the average. It should be more
valuable to serve both appointments in time than to serve one of them late,
regardless of how early the other one would be served. In this model the
lateness penalty is only affected for time slots later than the service time
goal ({j ∈ J | j > bi + gsi}). Otherwise the penalty is zero. For example,
the lateness of an appointment ι requested at time slot 0 (bι = 0) and with
a service time goal of 30, the lateness is:

L(ι) =


0, if 0 < j ≤ 30
j−30
30
, if 30 < j ≤ nJ

M, if j = 3000

. (4.6)

While the capacity of resources cannot be exceeded (constraint (4.3)), the
model aims to utilize as much of the available capacity as possible. Unused
capacity of resource r is the difference between its availability ajr and the
sum of appointment durations di assigned to it. The model minimizes the
sum of unused capacity over all resources and time slots denoted by:

U(Y) =
∑

r∈R\{φ}

∑
j∈J\{3000}

(ajr −
∑
i∈I

yijrdi) , (4.7)

where Y is a matrix of the decision variables yijr. The unit of U(Y) is
minutes and each minute is as valuable as another so no scaling is necessary.
Unused capacity of resource φ is not included in U(Y).

4.3 Rolling horizon heuristic

The demand of the assessed healthcare provider is affected by weekends,
holidays, holiday seasons, and the time of the year in general. These changes
appear in a yearly cycle. Moreover, some appointments might already be
booked as far as six months away. In order to take into account the yearly
demand cycle and to get ahead of the partially booked resource capacities,
the optimization horizon needs to cover a full year. With this time horizon
and the numerous resources and appointments linked to it, it is likely that
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the problem will be computationally too large to be solved in one piece. In
this case a rolling horizon heuristic will be utilized.

Besides the active period, each rolling horizon interval will consider an
equal prediction period. While the future resource capacities cannot be ad-
justed based on the prediction, some prediction input can be used in planning
which appointments should be scheduled to the active period. Any appoint-
ments requested in the active period but also scheduled for the additional
time slot (j = 3000) are kept on to be scheduled in the later intervals.

Figure 4.3: Utilized rolling horizon heuristic

Figure 4.3 visualizes this rolling horizon approach. The set of time slots, J
(Figure 4.3i. and ii.), and the set of requested appointments, I (Figure 4.3iii.),
are divided into N intervals. The first interval of the rolling horizon considers
time slots in the active period J1a and the prediction period J1p, as well as the
appointments requested during those time slots: I1 = {i ∈ I | bi ∈ J1 } where
J1 = J1a∪J1p (Figure 4.3iv.). The additional time slot, 3000, is also included
in each interval. The optimal schedule for appointments I1 in time slots
J1 ∪ {3000} is solved and appointments scheduled for J1a are locked (Figure
4.3v.). Appointments scheduled for j = 3000 are considered unscheduled
and the ones requested during J1a are added to be scheduled in the next
interval (Figure 4.3vi.). Appointments requested during J1p are included
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in the next interval no matter where they are scheduled to. In the next
interval, n+ 1, time slots Jn+1 = J (n+1)a ∪ J (n+1)p are considered, as well as
the combination of the appointments requested during Jn+1 and unscheduled
appointments requested during Jna: In+1 = {i ∈ I | bi ∈ Jn+1} ∪ {i ∈
I | bi ∈ Jna and xni,3000 = 1} (Figure 4.3vii.). The rolling horizon intervals
are continued until they cover the full scheduling horizon. The last interval,
N , does not have a prediction period and all scheduled appointments are
locked (4.3viii.).

4.4 Resulting capacity allocation

Figure 4.4: Scheduling policy

The optimized result requires perfect knowledge of future demand. While
future demand can be expected to follow similar distribution as before, the
exact request dates and amounts are not known for any future time. Thus,
there is no need to save the optimization results variable by variable but
rather as a summary of how much capacity is allocated to each service type
in each time slot. At the beginning of the optimization each resource r has
a capacity ajr for each time slot j represented by the empty box in Figure



CHAPTER 4. FINDING A GOOD CAPACITY ALLOCATION 21

4.4i.. During the schedule optimization each resource capacity is filled with
appointments and their durations. The capacity of the example resource in
Figure 4.4 ii. has been filled with appointments of four different service types
(patterns) with different durations (sizes). Based on the optimization result,
the resource capacity, ajr, is divided into service type specific slots, ajrs, by
summing the duration of appointments of the same same service type. Any
unused capacity is allocated to the longest service type slot. An example of
this capacity allocation is seen in Figure 4.4iii..

The service type slots, ajrs, form the capacity allocation studied in this
thesis. When using the capacity allocation in scheduling, appointments can
only be scheduled to slots with their service type (Figure 4.4 iv.). Each
service type should be using just the right amount of capacity to keep the
customer wait times at a planned level.



Chapter 5

Case study

In this Chapter the developed capacity allocation method is implemented
to a public dental care case. First, the specifics and data of the case are
described and some minor adjustments are made in the optimization model.
Next, the model complexity is addressed and the rolling horizon heuristic
is validated. Finally, the solved capacity allocation is numerically tested
and the simulation results are compared to the wait times achieved with the
current scheduling system.

5.1 Case description and data

The case service provider’s current scheduling system is based on capacity
allocation. Each resource’s daily capacity is divided between different ser-
vice types and appointments can only be booked to slots with the matching
service type. However, the capacity divisions are made based on vague goal
percentages for each service type overall and not tightly monitored. Conse-
quently, the actual capacities for each service type might be far from intended
and the periodic fluctuation of demand is not taken into account.

The service provider’s dental services are divided into sixteen (16) differ-
ent service types and they are offered in twelve (12) different clinics. The
service types can be divided into four (4) main categories: general care,
urgent care, specialist care, and orthodontic care. Each clinic is equipped
to offer services for service types in one or more main categories. Urgent
care appointments all belong to the same service type and are served by one
clinic, which only handles the urgent appointments. All the capacity of this
clinic is already allocated to one service type. Keeping it in the model would

22
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only add complexity, with no added value. This leaves the case with eleven
(11) clinics, fifteen (15) service types, and three (3) categories. The service
provider employs three different types of professionals: dentists, dental hy-
gienists, and dental nurses. A dentist is always paired up with a dental nurse
and they have a designated operating room for the day. Dentists cannot work
without these other two components so this combination will just be called
”a dentist” (D). Similarly dental hygienists and independent dental nurses
get a designated room for the day, and this combination of professional and
room will be called ”a dental hygienist” (DH) or ”a dental nurse” (DN).

Professionals of the same category and in the same clinic have the capa-
bilities to perform the same services. Therefore, it would not add value to
the model to use each individual professional as a resource. Instead, this case
work will use each combination of clinic and professional category (D, DH,
DN) as resources and thus have a set of 33 resources. The daily capacity of a
resource will depend on the number of professionals working each day. The
earlier described service type categories (general, specialist, and orthodon-
tic care) and professional categories (D, DH, DN) are all used as resource
categories, giving the model a set of 6 resource categories. Each resource
belongs to one professional category and one or more service type categories,
depending on the clinic of the resource. Each appointment requires a specific
professional category and a specific service type category.

Table 5.1: Set and parameter dimensions of the case data.

nI = 19 472 Number of appointments, i ∈ I
nJ = 364 + 1 Number of time slots, j ∈ J
nR = 33 + 1 Number of resources, r ∈ R
nC = 6 Number of resource categories, c ∈ C
nS = 15 Number of service types, s ∈ S
5min ≤ di ≤ 480min Duration of appointment i
330min ≤ ajr ≤ 4485min Capacity of resource r in time slot j
1d ≤ gs ≤ 90d Service time goal of service type s
(krc) ∈ R34×6 Resource r is of category c
(zic) ∈ R19472×6 Appointment i requires a resource of category c
(vjr) ∈ R366×34 Resource r is active in time slot j
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Set and parameter dimensions for the case are listed in Table 5.1. The
matrix of the binary parameters krc, as well as example rows of zic and ajr can
be found from Appendix A. Each service type is associated with a service
goal ranging from zero to ninety days. The service goal and service type
category of each service type can be found listed in Table 5.2.

Table 5.2: Service time goal and service category of each service type.

s service time goal (d) service category
1 1 orthodontic
2 21 general
3 30 specialist
4 30 general
5 30 general
6 90 general
7 90 general
8 90 general
9 90 general
10 90 orthodontic
11 90 orthodontic
12 90 orthodontic
13 90 orthodontic
14 90 general
15 90 general

Appointment data collected from the service provider covers a time pe-
riod from January 2017 to November 2019. The requested appointments from
”2018” (October 2017 to September 2018) are used as the known demand
for the optimization model and they are scheduled over the known resource
capacities of ”2019” (October 2018 to September 2019). The requested ap-
pointment of ”2019” are used as an independent set for the numerical testing
in Section 5.4. Transition from current scheduling system to the new one
is taken into account by including appointments requested before October
2018 but scheduled for after it and keeping them in the slots they were given
originally.

There were 180 034 requested appointments during ”2018”. Since the
model already uses grouped resources, some grouping will be used for the
appointments as well to keep the model size in check. The appointments
requested on the same day, with the same service type and professional re-
quirement, are grouped to reach up to 480 minutes of combined duration.
This leaves the model with 19 472 requested appointments.
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5.2 Adjustments in implementation

Since the professional(s) and the operating room is represented by a single
resource, the resource categories required by each appointment need to be
satisfied by one resource, not a combination of two or more. This is ensured
with an additional constraint,

∑
r∈R

yijr = xij ∀ i, j , (5.1)

stating that if appointment i is scheduled for time slot j (xij = 1) then the
sum of resources r that the appointment i is scheduled to in this time slot j
must also equal one (

∑
r∈R yijr = 1).

The service time goals for 1 and 90 days are imposed by the government,
while the the other goals (21 and 30 days) are set by the service provider
itself. An additional weight parameter is added to the lateness calculation
(equation (4.5)) to represent a harder penalty from exceeding the 1 or 90 day
goals:

wij =


100, if gsi = 1

50, if j − bi > 90

1, otherwise

, (5.2)

L(X) =
∑
i∈I

nJ∑
j=bi+gsi+1

j − (bi + gsi)

gsi
xij wij +

∑
i∈I

2000 xi,3000 . (5.3)

Note that M = 2000 is chosen as the penalty for booking appointments
to the additional time slot.

5.3 Solving the capacity allocation

With the parameter dimensions listed in Table 5.1, the full model has 248
million variables and 49 million constraints. While a section covering three
months (18 million variables) can still be solved in a few hours, a section
covering 6 months (70 million variables) results in a memory error. The
rolling horizon heuristic is needed in order to solve the full problem.
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To verify the performance of the rolling horizon method described in
Section 4.4, the optimal result of a 3 month section is compared to the
rolling horizon result of three one month intervals. The achieved objective
value is only 5,3% higher in the case of three intervals, while the solve time
is only one third. The rolling horizon heuristic can be assumed to be a fair
approximation of the full horizon optimum.

The full model is solved in 12 intervals of 1 month active period and 1
month prediction period. The solving times of the intervals varied between
500 to 2 000 seconds.

Figure 5.1 shows a few months of the actual daily capacity allocation
used in 2019 and the one derived from the optimization results. The actual
capacity allocation clearly shows how the current standard of static goal
percentages of each service type is realized for each day. While there is still
a steady daily capacity of some service types in the new capacity allocation,
there is is also a fair amount of periodic fluctuation. This should match the
fluctuation of the incoming demand.

Figure 5.1: Actual capacity allocation in 2019 and the capacity allocation
derived from the schedule optimization results with each color representing
a different service type.
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5.4 Simulation model

A deterministic discrete-event simulation model with fixed-increment ad-
vancement is used to examine wait times resulting from scheduling with the
derived capacity allocation. The 2019 demand data is used as an independent
random sample to evaluate the capacity allocation based on 2018 demand.
Simulation results are compared to the actual 2019 wait times, lateness of
appointments, and the number of scheduled appointments.

Figure 5.2: Simulation flow

Diagram of the simulation flow can be seen in Figure 5.2. First, an
empty demand queue and empty scheduling queues are initialized. Each
resource, r ∈ R, has a scheduling queue for each day, j ∈ J , and each service
type, s ∈ S, with capacity ajrs according to the capacity allocation. The
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additional resource, φ, in time slot j = 3000 has unlimited queue capacity and
appointments that do not fit anywhere else can be scheduled there. Results
lists for storing the lateness of appointments and the unused capacity of the
resources are also initialized, and the appointments request data from 2019 is
set as the event list. Finally, the simulation time is set to 0 (= 01/10/2018).

Appointment cancellations are handled in the first phase of the daily sim-
ulation loop. The model assumes a worst case scenario, where appointments
are cancelled just before the clinic’s cancellation policy of 24 hours. All the
appointments scheduled 1 day later than the current simulation time are
checked. If appointment i is marked to be cancelled in the request data it
is removed from the scheduling queue by adding its duration back to the
available capacity: ajrs = ajrs + di. A new appointment can be scheduled in
its place in the next phases.

The second phase of the simulation time loop collects appointments re-
quested at current simulation time to the demand queue. To imitate the
advance scheduling of a public healthcare case, the simulation has only one
demand queue operating in first-in-first-out (FIFO) basis. In the third phase
of the loop, each appointment i in the demand queue is scheduled to the
earliest scheduling queue that matches the service type si and has enough
available capacity, ajrsi ≥ di. When this queue is found, its available ca-
pacity is updated by reducing the duration of the scheduled appointment:
ajrs = ajrs − di. The scheduler is concerned about good capacity utilization.
If the new capacity of the first queue found would fall between 30 and 5
minutes (5 < ajrs < 30), the scheduler checks if there are other matching
queues during the same day whose new capacity would not fall in this in-
terval. Additionally, if scheduled queues within three days of the simulation
time have unused capacity, this capacity is released to any service types that
can be served in that clinic. Excluded from this are scheduled queues for
service types with service time goal of less than three days.

Once all of the appointments are scheduled to the earliest fitting slot (or
to the additional time slot if nothing else is available) the loop moves to the
fourth phase. Appointments scheduled for the current simulation time are
marked as served. This means that the wait time (days) and lateness (as
in equation (5.3)) of each appointment is calculated and the count of served
appointments is added to the overall count.

Simulation time is moved one tick forward and if the time is still within
the simulation horizon the loop is repeated from phase one. If the horizon is
exceeded, the simulation ends.
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5.5 Results

Tables 5.3 and 5.4 show a comparison of actual wait times in 2019 and the
wait times achieved by using the optimized service type slots, respectively.
On the simulation Table, results that are significantly better or worse are
highlighted in green and red.

The overall lateness of the simulation is 27% better than in the baseline.
Nearly all of the 95th percentile wait times, and even most of the maximum
wait times of the simulation stay under the government appointed 90 day
limit, whereas in the baseline there are many values over 100 and even 200
days. The wait time measures of service type 1 are also improved even if the
service goal of 1 day is still not steadily achieved. A clear worst performer is
service type 2 with the service time goal of 21 days. Its lateness and average
service time are considerably higher than in the baseline. Overall, the policy
goals are met and a general improvement in patient wait times is apparent.

Table 5.3: Baseline; actual booked appointments and wait times in 2019
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Table 5.4: Simulation results

5.6 Sensitivity analysis

In this Section a few alternative compositions of the weight parameter wij
are compared to see if and how the simulation results change. The weights
used in the case study are labelled ”w90 = 50”:

w1
ij =


100, if gsi = 1

50, if j − bi > 90

1, otherwise

. (5.4)

Their performance is compared to relaxing the penalty from exceeding 90
days, labelled ”w90 = 1”:

w2
ij =

{
100, if gsi = 1

1, otherwise
, (5.5)

and to adding penalty to the worst performer, ”w21 = 50”:

w3
ij =


100, if gsi = 1

50, if gsi = 21

1, otherwise

. (5.6)



CHAPTER 5. CASE STUDY 31

Figure 5.5 presents a summary of the baseline and different simulation
results. The appointments are grouped by their service time goal. The
lateness of the baseline, which changes with wij, is set to be 100 percent and
the lateness of each simulation is stated in relation to the baseline value.

Relaxing the penalty from exceeding 90 days of wait time results in a
much smaller overall lateness but there are only small differences in the other
measures. Even the added weight to appointments with 21 day service goal
does not better the performance on their part and brings the overall lateness
to the same level as the baseline. A closer look into the case data reveals that
while the overall demand for appointments with 21 day service goal stays the
same in 2018 and 2019, the shape of the 2019 demand is quite different. In
2019 this specific service goal is demanded in spikes rather than evenly all the
time. Therefore, even if the weighted optimization reserves more capacity for
this service type it cannot be utilized efficiently in the simulation. This is a
draw back for the solution, but not unexpected with the amount of weight
put on the shape of the past demand cycles.

Table 5.5: Scheduled appointments, lateness, 95th percentile of wait times
and maximum wait times of baseline and simulations with different wij.
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Conclusion

The simulated advance scheduling gives promising results about the value
of the developed model. While the number of served patients is not greatly
affected, the overall lateness and the maximum wait times are lower, which
means a more constant customer experience is offered. Sensitivity analy-
sis reveals a weakness when the shape of the demand differs greatly from
past sample, but this type of notable changes will be troublesome with any
scheduling policy.

A large part of the usefulness of the method comes from its ease of imple-
mentation. There is no need for specific parameter evaluations or calculation,
or predictive demand analysis. A visual confirmation of yearly (or other cy-
cle) demand similarities already leads to improvements in overall wait times.
The model works with simple inputs of past demand and planned future re-
source capacities. While the solving of the optimization model is somewhat
time-consuming, it needs to be solved only once a year.

In future development of the method, inclusion of predictive details in
the optimization phase could benefit the performance of the scheduling. If a
general increase in demand, or a planned ramp up of a certain service type
is expected, they could be implemented to the optimization demand set and
thus flexibility towards them would be included in the capacity allocation.
Many different shapes of the objective function could also be studied depend-
ing on the preferences of the service provider. Small reward could be added
to the j < bi+gsi side of the lateness function, or each service type or service
goal might have their own weight in the objective function.

The study and improvement of indirect wait times was a long avoided sub-
ject in the in healthcare scheduling studies. While recent studies offer some
answers to the advance scheduling problem, there are no suitable methods

32
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for a large service provider utilizing online advance scheduling. This thesis
contributes to fill this void by using a simplified but large scale version of
operating room capacity allocation ILP problem.
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Appendix A

Binary parameters in case work

Table A.1: Examples of binary parameter zic’s values.

i / c D DH DN general specialist orthodontic
1 0 1 0 1 0 0
2 1 0 0 1 0 0
3 1 0 0 1 0 0
4 1 0 0 1 0 0
5 1 0 0 1 0 0
6 1 0 0 1 0 0
7 0 0 1 1 0 0
. . . . . . .
. . . . . . .
. . . . . . .
19 470 0 1 0 1 0 0
19 471 1 0 0 0 0 1
19 472 1 0 0 0 0 1
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Table A.2: Binary parameter krc’s values.

r / c D DH DN general specialist orthodontic

clinic 1, D 1 0 0 1 0 0

clinic 1, DH 0 1 0 1 0 0

clinic 1, DN 0 0 1 1 0 0

clinic 2, D 1 0 0 1 0 0

clinic 2, DH 0 1 0 1 0 0

clinic 2, DN 0 0 1 1 0 0

clinic 3, D 1 0 0 1 1 0

clinic 3, DH 0 1 0 1 1 0

clinic 3, DN 0 0 1 1 1 0

clinic 4, D 1 0 0 1 0 0

clinic 4, DH 0 1 0 1 0 0

clinic 4, DN 0 0 1 1 0 0

clinic 5, D 1 0 0 1 0 0

clinic 5, DH 0 1 0 1 0 0

clinic 5, DN 0 0 1 1 0 0

clinic 6, D 1 0 0 1 0 0

clinic 6, DH 0 1 0 1 0 0

clinic 6, DN 0 0 1 1 0 0

clinic 7, D 1 0 0 1 0 1

clinic 7, DH 0 1 0 1 0 1

clinic 7, DN 0 0 1 1 0 1

clinic 8, D 1 0 0 1 0 1

clinic 8, DH 0 1 0 1 0 1

clinic 8, DN 0 0 1 1 0 1

clinic 9, D 1 0 0 1 0 0

clinic 9, DH 0 1 0 1 0 0

clinic 9, DN 0 0 1 1 0 0

clinic 10, D 1 0 0 1 0 0

clinic 10, DH 0 1 0 1 0 0

clinic 10, DN 0 0 1 1 0 0

clinic 11, D 1 0 0 1 0 0

clinic 11, DH 0 1 0 1 0 0

clinic 11, DN 0 0 1 1 0 0

φ 1 1 1 1 1 1
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Table A.3: Examples of binary parameter ajr’s values.

j / r clinic 1 D clinic 1 DH . . . clinic 11 DH clinic 11 DN φ
1 60 0 . . . 0 0 0
2 315 75 . . . 30 30 0
3 195 75 . . . 210 105 0
4 180 0 . . . 180 120 0
5 135 135 . . . 105 30 0
6 0 0 . . . 0 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
359 1230 660 . . . 2010 1020 0
360 1635 210 . . . 1935 690 0
361 795 660 . . . 1485 960 0
362 1245 630 . . . 1800 630 0
363 0 0 . . . 0 0 0
364 0 0 . . . 0 0 0
3000 0 0 . . . 0 0 1
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