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Abstract
Plywood production scheduling is a difficult and time consuming task as multiple
orders, different machines and material usage have to be simultaneously taken into
account. The problem is particularly very difficult on resources that have sequence
dependent setup times like on bonding and coating machines. Those two are also
the resources that dictate the schedules on other machines and therefore they are
usually scheduled first.

In this Thesis, a mixed integer linear program is formulated for solving the scheduling
problem of bonding and coating machines. The purpose of the model is to make
a good schedule in terms of setup times, selected operations and waiting time in
an intermediate storage. The model has to be solved fast enough to be useful in a
daily work of production planners. In the Thesis, different approaches to make the
scheduling faster are introduced and studied in terms of a solution time and a goodness
of the solution using two example cases. Later a real-world implementation of the
scheduling model that is solved using a commercial optimization solver is introduced
and its usefulness is evaluated based on end users feedback. The results from the
example cases and user interviews show that the model is able to produce useful
schedules and make the daily planning work of the production planners easier.

Even though scheduling has recently been widely studied in the literature, production
scheduling in plywood industry has received very little attention. However, in related
industries such as paper production, there are multiple studies in different problem
setups. This thesis tries to reduce this gap in the literature by presenting a mixed
integer linear programming based approach to solve the plywood scheduling problem.

Keywords Optimization, MILP, Scheduling
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Tiivistelmä
Vanerituotannon aikataulutus on haastava ja aikaa vievä tehtävä johtuen työstövai-
heista eri laitteilla, materiaalien käytöstä ja suuresta määrästä tilauksia, jotka kaikki
tulee ottaa samanaikaisesti huomioon. Tehtävä on vaikea erityisesti laitteilla, joissa
on järjestyksestä riippuva vaihtoaika, kuten ladonta- ja pinnoituslaitteilla. Nämä
kaksi laitetta ohjaavat aikataulutuksen myös muilla laitteilla ja siksi aikataulu niillä
suunnitellaan yleensä ensin.

Tässä työssä formuloidaan lineaarinen sekalukuoptimointimalli aikataulutusongelman
ratkaisemiseksi ladonta- ja pinnoituslaitteilla. Mallin tavoitteina on luoda hyvä aika-
taulutus vaihtoaikojen, valittujen operaatioiden ja välivarastossa kuluvan odotusajan
suhteen. Mallin tulee luoda tuotantoaikataulu niin nopeasti, että se on hyödylli-
nen tuotannonsuunnittelijoiden päivittäisessä työssä. Tässä työssä esitellään myös
erilaisia lähestymistapoja nopeuttaa aikataulutuksen ratkaisemista, joita tutkitaan
kahden esimerkkitapauksen kautta aiktaulutuksen laadun ja ratkaisunopeuden suh-
teen. Myöhemmin työssä esitellään käytännön toteutus aikataulutusmallista, joka
ratkaistaan käyttäen kaupallista optimointiohjelmistoa. Toteutuksen hyödyllisyyttä
arvioidaan loppukäyttäjiltä kerätyn palautteen perusteella. Esimerkkitapausten tu-
losten ja loppukäyttäjien kommenttien perusteella voidaan sanoa, että malli pystyy
tuottamaan hyödyllisiä aikatauluehdotuksia ja helpottamaan päivittäistä tuotannon-
suunnittelijoiden aikataulutustyötä.

Vaikka skedulointia on viime aikoina tutkittu laajasti kirjallisuudessa, tuotannon
aikataulutus vaneriteollisuudessa ei ole juurikaan saanut huomiota. Esimerkiksi
eri teollisuuden aloilla, kuten paperiteollisuudessa, skedulointia on tutkittu laajasti
erilaisista asetelmista. Tämä työ pyrkii täydentämään kirjallisuutta esittelemällä
lineaarisen sekalukuoptimointiin pohjautuvan ratkaisun vaneriaikataulutusongelman
ratkaisemiseksi.

Avainsanat Optimointi, MILP, Skedulointi
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1 Introduction

1.1 Background

UPM is a Finnish forest company that consists of six business areas: UPM Specialty
Papers, UPM Raflatac, UPM Communication Papers, UPM Energy, UPM Plywood
and UPM Biorefining. UPM employs globally around 19000 employees and has a
turnover of 10 billion euros. In total 2400 of the employees work in the Plywood
business area. The case company has a capacity to produce yearly over million cubic
meters of birch and spruce plywood and veneers. The production is done in 9 mills
of which 7 are located in Finland. The mills have different production capabilities
and therefore also different product mixes.

The case mill in this thesis is UPM Plywood’s Joensuu mill, which is specialized in
highly processed products as they have special coating and machining capabilities.
The mill has an annual capacity of 55 000 m3 and it produces only birch plywood.
Large share of the products from the Joensuu mill are used in the transportation
industry or as an insulation components in LNG transportation ships.

Plywood production process has multiple phases and in the Joensuu mill there are
multiple parallel lines for most of the phases. Therefore, many orders can be handled
simultaneously and raw material availability has to be taken into account on all work
stations. Orders can vary by the materials used, dimensions of the product, size of
the order and by machining and coating made at the end of production chain which
all add some complexity to the scheduling of the plywood production. Different
orders may also require different setups at the production stations.

If consecutive orders at each production station are very similar, the setup time and
costs shall be minimized. But often it is not optimal to produce only similar types
of products. This is due to the raw material of the plywood; Veneers, which are
glued together to form a plywood, are peeled from logs and there is quite a good
estimate of the grade distribution of the obtained veneers. For each plywood there
are pre-determined grade requirements given by the client. Therefore, all grades
might not be used by the same distribution as veneers are obtained from the logs.
This leads to problems with an intermediate veneer storage. Usually this storage
is relatively small and, for example, balancing the use of surface and intermediate
veneers by having an optimal average thickness of a product mix is critical for the
efficiency of the mill.

The plywood production is scheduled by production planners. Because of the
complexity of the process, the scheduling takes a lot of their work time and may still
lead to a schedule that could be improved. Also the price of the raw material drives
factories to minimize their intermediate storages in order to minimize the need to
dispose veneers e.g. by burning them in energy production. Currently there is a
software to help the production planners to make the schedule and ease the planning
process. It also has very rough heuristics that can be used to schedule different
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operations. However, the base of the schedule must still be completely made by the
production planners and the end result is solely dependent on the knowledge of the
planner. Even though scheduling problems are widely studied and there are many
existing approaches for different problems in the literature, prior to this Thesis there
have not been any approaches to improve and ease this scheduling process by adding
an optimization feature to the current planning software. In the literature, this
type of plywood production scheduling can be categorized as a flow shop scheduling
problem which is assigning jobs to resources at specific times.

1.2 Objective and scope

This thesis develops an optimization model for creating a base of the schedule for
plywood production. The model should include bonding and coating phases of the
plywood production process. They were chosen because they are the work phases
that are planned first and dictate the schedule for other work phases. The other
work phases have some limitations and they are taken into account as constraints of
the model.

The solution of the model is imported into an existing planning software of UPM
Plywood and the solution can be assessed by a production planner there. Based
on the result, the planner can either accept or reject the schedule proposal given
by the optimization model. A feasible solution should be produced quickly because
creating a production plan for upcoming week is just one of the weekly tasks of the
production planners. Also in case that the solution is not accepted or if there are any
changes in the production, the planner might want to run the optimization model
again. Thus the optimization model should be fast enough to solve to be useful for
the planners.

Flow shop scheduling models are usually formulated as a Mixed Integer Linear
Programs (MILP). Because of the integer variables, it is not possible to find the
solution using only traditional fast linear optimization algorithms like Simplex.
Therefore, large models of this kind are usually computationally challenging and
some model relaxations have to be made in order to find the solution quickly.

The scope of this thesis is limited to cover only the production scheduling problem
of the Joensuu plywood mill. This Thesis does not cover what kind of orders should
be assigned for the factory in order to make a good schedule but only solving an
optimal schedule for some existing order backlog.

1.3 Structure of the thesis

The remaining of the Thesis is structured as follows. Background of plywood
production and a literature survey on production optimization with focus on flow
shop scheduling and other scheduling approaches in related industries is given in
Chapter 2. The scheduling problem description and mathematical formulation for
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the Joensuu mill are presented in Chapter 3. The discussion on solving of the initial
model is given in Chapter 4 which also presents modifications to the initial model in
order to meet performance requirements. Results from two small example cases and
a discussion on the experiences of production planners using the model are given in
Chapter 5. Finally, in Chapter 6 discussion on the feasibility of the model and on
the issues that could be addressed in the future conclude the Thesis.
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2 Background

2.1 Plywood production

2.1.1 Plywood production process

Plywood production consists of three major phases that each include many opera-
tions. These phases are veneer manufacturing, plywood manufacturing and further
processing. Some mills only perform one or two of these phases, for example, UPM
Kalso mill manufactures only veneers. Different phases and operations are visualized
in Figure 1.

Figure 1: Plywood production phases (adapted from Wood-based panels industry
(Akkanen et al. 2018))

In the veneer manufacturing phase logs are processed into veneers. The logs are first
soaked in a conditioning pool, debarked, scanned and cut into blocks of appropriate
length (Akkanen et al. 2018). The lengths vary by the factory but usually there are
one to four lengths that are used based on the capabilities and product mix of the
mill. Next the blocks are peeled with veneer lathe into a long mat that is clipped
to dried before veneer grading (Akkanen et al. 2018). In the veneer grading the
veneers are classified in different surface and intermediate veneer qualities. Some of
the veneers are further processed before they can be used in plywood manufacturing
phase.

Plywood manufacturing phase starts with gluing veneers at lay-up station. The
veneers with correct quality and dimensions are placed for the veneer feeders. If the
length of the veneers stay the same and the width decreases only a little or stays the
same, some veneers from previous order may be used in the next order and setup
time will be smaller than on average. Otherwise all veneers have to be changed which
usually takes several minutes. Also some settings may have to be changed if the
dimensions of the product are different from the previous order. Glue is applied on
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at least every second veneer of each plywood and the type of glue may differ between
consecutive orders. Changing the type of glue causes a long setup time and therefore
at least in Joensuu mill it is done at most twice a week and only at one lay-up station.
Thickness and material of the veneers may also differ but Joensuu mill uses only 1.5
mm thick birch veneers. After gluing, the plywoods are pre pressed and hot pressed
followed by sawing to match the dimensions of the end product. In the end after
sanding the plywoods are ready for grading or further processing.

Some plywoods are further processed before grading and packaging. The last phase
includes coating and machining operations. In coating a Phenol film or other overlay
material can be pressed to one or both sides of the plywood (Akkanen et al. 2018).
Some coating machines can use multiple different overlay materials but changing
the material may take a long time, even one whole working shift at some mills. The
difficulty of setup depends on the type of coating material change. If the material
type stays the same but length of the veneer or coating pattern changes, the setup
requires changing only few material rolls to the machine which can be done in minutes.
In case that the type of material changes the setup usually takes much longer. For
example, in Joensuu mill depending on the change, the setup may take time from
few minutes up to three hours. In machining operation plywoods are machined
into different shapes and machining may include, for example, bevels and grooves
(Akkanen et al. 2018). At UPM Joensuu mill some time has to be reserved for
testing with LNG veneers. Due to high quality requirements of veneers that go into
LNG ships, quality tests must be performed before packaging and shipping the final
product.

2.1.2 Plywood production planning at UPM

Production planning in plywood mills is done by production planners. The planning
can be divided into rough-cut and fine planning. In rough-cut planning orders are
accepted to the mill in the way that weekly capacity is not exceeded on any production
phase. Also veneer balance should be taken into account during rough planning. If
the order backlog consists of only very thin plywoods, surface veneers would most
likely run out and the veneer storage would be filled up with intermediate veneers.
This creates a bottleneck in the veneer manufacturing phase and the total output of
the factory would decrease.

In fine planning the accepted order backlog is divided to operations which are
scheduled for different machines. Because most of the orders differ in materials,
dimensions and shipping dates, each order requires own operation to be scheduled
on each machine. The most relevant setups happen in cluing and coating phases and
therefore the planning usually starts from those two. When cluing is scheduled, the
material need is known at every hour and the veneer manufacturing can be planned
to match this. In the planning of coating operations the intermediate storage can
be used to obtain a schedule where setup times are minimized. This is important
because making coating for one order can take less time than changing the overlay
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material and settings at the coating machine. As in rough-cut planning, also in
fine planning the veneer balance should be taken in account by distributing the
consumption of surface veneers evenly during each week.

There may be limitations on different machines. For example, some orders can be
glued only on certain cluing machines due to dimensions of the product or gluing
material. The size of the orders may differ a lot which adds more complexity at
least in fine planning. Smallest orders only include less than 50 plywoods whereas
the largest ones may take the production capacity of the whole mill for a week.
The largest orders are usually divided into sub orders and distributed evenly during
multiple weeks especially if the end product is very thin or thick to avoid problems
with unbalanced veneer consumption. In Joensuu mill the weekly amount of LNG
products has to be taken in account in production schedules due to quality tests.
The weekly production of LNG veneers may not exceed the testing capacity.

2.2 Scheduling in literature

There are multiple papers in the literature that cover production scheduling from
very different problem settings and approaches. In this section we try to focus on
modeling of production scheduling on industries that have similar problem setup
as plywood production. This is done by starting with basic concepts followed by
studying approaches to scheduling with setup costs in Section 2.2.4 and scheduling
in industries that have some similarities in production panning to plywood industry
in Section 2.2.5. In the end we briefly study literature on the use of rolling horizon
approach to reduce the complexity of scheduling problems.

2.2.1 Scheduling in manufacturing

In manufacturing and service industries scheduling has an important role in daily
decision making of, for example, production, transportation and information pro-
cessing (Pinedo 2009). The scheduling is done by allocating different resources to
activities in order to optimize the objectives of the company. The resources can be,
for example, different machines, employees of the company or trains in transportation
scheduling. These resources are allocated to activities like stages in construction
project or operations in a workshop (Pinedo 2009). Different activities usually have
due dates, earliest possible starting times and some activities may be prioritized.
The company may have one or multiple objectives for the schedule. The objectives
can be, for example, minimizing the total time to complete all activities, minimizing
the number of activities completed after due date or minimizing the cost to complete
all the activities (Pinedo 2009).

The scientific analysis of scheduling started in the fifties with simple problems and
since the literature has advanced to address more complex problems with multiple
objectives and constraints and a large number of scientific publications have been
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made of the topic (Gupta and Kyparisis 1987). The scheduling problems are usually
modeled as linear programs (LP) or mixed integer linear programs (MILP) but there
are also other formulations such as nonlinear programs (Pinedo 2009). For example,
Barros and Weintraub (1982) described that LP and MILP models are the only
techniques that are largely used in forest planning. As many of the scheduling
problems are NP-hard, multiple heuristic methods and dispatching rules have been
developed to find a feasible solution that is close enough to the optimum. For example,
Panwalkar et al. (1993) presented a heuristic for minimizing the mean tardiness for
the single machine sequencing problem and Manson et al. (2002) proposed a modified
shifting bottleneck heuristic for minimizing total weighted tardiness in complex job
shops developed especially for scheduling in a semiconductor wafer fabrication facility.
However, these methods usually fit to solve specific type of problem and dispatching
rules such as "Earliest due date first", "Minimum slack" or "The shortest setup time
first" fail to perform efficiently with more complex objectives (Pinedo 2009).

In manufacturing the resources are often referred as machines and tasks that are
completed in those machines as jobs. A job may consist of a single or multiple
operations done on multiple machines (Pinedo 2009). Manufacturing scheduling
can be divided to different classes of models. They include, for example, Project
scheduling, Machine scheduling and Shop scheduling, Lot scheduling and scheduling
in supply chains (Pinedo 2009). The plywood production problem can be classified
as Machine scheduling and Shop scheduling. This class of models include single and
parallel machine models and shop scheduling models.

2.2.2 Single and parallel machine models

Single machine models are useful even in multi-stage environment if there is a single
bottleneck in the system. With single bottleneck the schedule in the bottleneck
resource usually defines the schedules on other resources in the system. In this case
the schedule should be made by solving the problem with bottleneck resource first
and other operations afterwards (Pinedo 2009). Single machine models have been
studied as two types of problems that slightly differ in their formulation. The first
one belongs to lot scheduling as in it the problem is to find the optimal batch sizes
when a number of products are to be manufactured on a given machine (Gupta and
Kyparisis 1987). In this type of problem the objective is to minimize costs caused by
setups and inventory, for example, in paper mills. In the second type of problems
a number of jobs with given lot sizes are sequenced on the machine (Gupta and
Kyparisis 1987). Here the typical objectives are e.g. total tardiness, mean completion
time and number of tardy jobs. The objective may also have multiple criteria like,
for example, Sen and Gupta (1983) proposed in their approach to minimize a linear
combination of flow times and maximum tardiness of a given number of jobs on a
single machine.

Parallel machine models are also useful in multi-stage production environments as
they are generalization of single machine models. Here instead of single machine
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being the bottleneck, a stage with multiple machines in parallel is the bottleneck.
The machines may be identical or they can have different capabilities. This means
that in some cases one or some of the machines might only be able to process some
of the jobs whereas other parallel machines can process the others. There can also
be differences in operating speed or quality of work between the parallel machines
(Pinedo 2009). Only few of the efficient algorithms of single machine problem can
be used in parallel machine problem and most of the results for parallel problem
assume that the machines are identical (Graves 1981). One of early approaches to
solve the problem with non identical parallel machines was one proposed by Horn
(1973) who showed that sequencing operations in a parallel-machine environment
can be formulated as an assignment problem.

2.2.3 Shop scheduling

In shop scheduling the jobs consist of one or more operations that have to be processed
on different machines (Brucker and Knust 2012). The operations of the same job
cannot be processed at the same time and a machine can process only one operation
at a time. The most general formulation with chain precedences is called job shop
scheduling (Brucker and Knust 2012). In that each job may be processed one or
multiple times on each of the machines depending on the problem. If all of the jobs
go through same machines in the same order, the job shop scheduling problem is
called a flow shop scheduling (Pinedo 2009). The difference between the two can be
seen in figures 2a and 2b.

(a) Job shop (b) Flow shop

Figure 2: In job shop scheduling jobs may have different routes whereas in flow shop
scheduling all jobs have the same route

In flow shops the sequence may vary on different machines or it can be locked in
which case the problem is referred as permutation flow-shop problem (Brucker and
Knust 2012). In case that there are multiple machines in parallel at each or some
of the stages, the environment is called a flexible flow shop. Some formulations of
flexible flow shop models allow a job to bypass a stage in case that the job does
not need processing on there (Pinedo 2009). An example schedule for a flow shop
problem with three machines M = {1, 2, 3} and four jobs N = {1, 2, 3, 4} with an
operation Oij i ∈ M, j ∈ N on each of the machines is presented in Figure 3. As
seen from the figure, all of the jobs start from machine 1 and the operation on next
machine is not started before the previous operation of the job is completed.
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Figure 3: Example production schedule for flow shop problem with three machines
and four jobs

Due to complexity of job shop scheduling problems many have studied different
approaches to solve these problems. Balas et al. (2008) approached a job shop
scheduling problem with setup times, deadlines and precedence constraints by using
Shifting Bottleneck Procedure where they treated the single machine scheduling
problems that arise in the process as Traveling Salesman Problems with time windows.
Mousakhani (2013) compared a MILP model of flexible job shop problems with
sequence dependent setup times to minimise total tardiness with three available
models which either suffered from non-linearity or was ineffective due to its large
complexity size. He also approached large-sized problems with metaheuristic based
on iterated local search that showed good results compared to algorithms like tabu
search and variable neighbourhood search. Osman (1989) proposed a simulated
annealing heuristic to obtain an approximate solution for a permutation flow-shop
scheduling problem. He compared simulated annealing with known constructive
heuristics and with descent methods. He showed that simulated annealing produces
often a better solution than the descent methods he used and stated that descent
methods are erratic without a good starting solution.

2.2.4 Scheduling with setup costs

Interest in scheduling with setup costs or times began in the mid sixties and since in
the early 2000s on average more than 40 paper have been published yearly (Allaverdi
et al. 2008). In many industries production schedule is planned in a way that setup
times and costs are minimized. Setup times are significant, for example, in textile
industry where the time to change fabric on a machine depends on the type of current
and next fabric type and in label sticker manufacturing where the machine that glues
the surface material and liner together requires a sequence-dependent setup time
when the job changes from one class to another (Allaverdi et al. 2008). Scheduling
with setup times can also be applied in mass services such as batching in courts as



16

Simons and Russel (2002) presented in their case study.

As stated before, lately there has been a lot of research on scheduling with setup
costs. Pan et al. (2001) provided a heuristic for NP-hard single-machine scheduling
problem with due dates and class setups. The heuristic finds an approximate schedule
that minimizes the maximum lateness on a set of jobs. In their paper they address
the problem of balancing between long production runs of same product that may
make others tardy and large amount of setups that would cause the production
efficiency to decrease. Rabadi et al. (2004) approached single machine scheduling
problem using a branch-and-bound algorithm. They studied minimizing of the total
amount of earliness and tardiness with common due date for all operations. They
also stated that the problem becomes NP-hard when sequence-dependent setup times
are included. To reach optimal solution they used, a branch-and-bound algorithm
and showed that problem with up to 25 jobs can be solved in a reasonable time.

Three stage heuristic to parallel machine scheduling with sequence-dependent family
set-up times was proposed by Eom et al. (2002). The heuristic was based on dividing
jobs in small job-sets, grouping by the due date within applicable families using
apparent tardiness cost with set-up rule and scheduling families using tabu search.
In the end jobs are allocated to machines using a threshold value and a look-ahead
parameter. However, Eom et al. only considered identical machine case. A more
recent approach for both single and parallel machine scheduling with sequence-
dependent setup times and costs was proposed by James and Almada-Lobo (2011).
They combined metaheuristics and mixed integer programming to find solutions to
scheduling and lotsizing problems and compared their approach to other MIP-based
heuristics in the literature and to a state-of-the-art commercial solver.

Branch and bound algorithm is also used in flow shop scheduling problems as
Ríos-Mercado and Bard (1999a) applied it on permutation flow shops with sequence-
dependent setup times. They also proposed heuristic for minimizing the makespan
of the flow shop scheduling problem with sequence-dependent setup times (Ríos-
Mercado and Bard (1999b)). The heuristic uses a cost function that penalizes for
both large setup times and bad fitness of schedule to transform an instance of the
problem into a traveling salesman problem. Liu and Chang (2000) addressed a
scheduling problem of flexible flow shops with Sequence-Dependent Setup Effects.
They started with formulating the problem as an MIP problem and presented a
Lagrangian relaxation-based approach with search heuristic to solve that. The
approach produced near-optimum solutions in about 6 minutes of CPU time to daily
scheduling of a realistic integrated circuit testing facility of 30 machines. Moghaddas
and Houshmand (2008) stated that many researchers do not take setup times into
consideration or they model it as part of processing time. They developed a MILP
model for a job shop scheduling problem with sequence dependent setup times with
a good performance to find feasible solutions in a reasonable computation time.
However, the performance of finding optimal solutions was weak and the model was
unable to find the optimum in larger problems. Hence, they developed a heuristics
based on priority rules considering random generated setup times. Because of inability
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to find the optimal solutions with large problems in reasonable computational time,
they proposed three lower bounds, which could be implemented to evaluate different
heuristics and metaheuristics in large problems.

2.2.5 Scheduling in industry

Scheduling decisions may vary a lot between different industries. Here we study a
few approaches proposed in the literature to solve scheduling problems in indus-
tries where production scheduling involves similar problems as plywood production
scheduling.

Scheduling decisions in paper production can divided to order allocation, run for-
mation and sequencing, trimming and load planning according to Keskinocak et al.
(2002) who introduced scheduling solutions for the paper industry. Due to similar-
ity to plywood production scheduling problem, the most interesting part of paper
production scheduling is the run formation and sequencing which includes forming
and sequencing of batches of similar type of paper on paper machines. This part
can be modeled as single or parallel machine scheduling problem where raw material
such as pulp with product specific recipe is turned into paper reels at paper ma-
chine. Keskinocak et al. (2002) proposed an agent-based decision support framework
for the whole scheduling process that they implemented in several paper mills in
North America. They introduced a separate model for order sequencing at paper
machines which is based on Single-Dispatch algorithm. The idea of the algorithm is
to select a job from the set of remaining jobs and schedule it as the next job on that
machine.

Santos and Almada-Lobo (2012) approached problem of integrated pulp and paper
mills planning and scheduling where the problem is to synchronize the material flow
moving through the pulp and paper mills while minimizing operation costs. They also
have to take significant sequence-dependent setups in paper type changeovers into
account while sequencing at paper machine. This is done by adding parameters for
paper lost in a changeover from one grammage to another and similarly parameters
for time lost in a changeover between different grammages, i.e. these parameters
describe setup times and setup costs. The parameters were used in constraints to
model the pulp consumption and quantity of paper produced at each sub-period.
The whole process was modeled as a stochastic mixed integer program. Santos and
Almada-Lobo proposed local search heuristic that is based on the stochastic MIP
formulation to obtain a feasible solution.

In packaging industry plants that produce multiple different types of paper bags the
machine environment can be described as a flexible flow shop. Those environments
include, for example, presses, sewing lines, pinch tuber and bottomer and self opening
sacks machines. Adler et al. (1993) approached the packaging industry scheduling
problem where different jobs have priorities and shipping dates. Also the processing
times of the jobs and setups are known in advance. They proposed a five step
algorithm that schedules the jobs at different stages of production. The first step
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is bottleneck identification which tells from which machine to start the scheduling.
The scheduler or production planner usually knows the machine and if not, some
procedure to determine that may be used. Second and third step include computation
of time windows for jobs at bottleneck resource and machine capacity computations
at the bottleneck stage. In these steps due dates, processing times and setup times
are taken in account when calculating earliest and latest start times for operations
at bottleneck resource and loads for different machines. Fourth step in the algorithm
includes scheduling at the bottleneck resource. They used ACT rule by Salvendy
(1992) to do the scheduling. After that in the fifth step the scheduling is made on
other machines. Adler et al. (1993) state that the bottleneck stage usually determines
the sequence on other stages but there might be some minor swaps that reduce the
setup time. They also state that with this algorithm incorporated into the current
production scheduling system, the production planners are able to do better schedules
in the two case factories.

Lin and Liao (2003) performed a case study on scheduling problem taken from a
label sticker manufacturing company. In label sticker manufacturing the production
system is a two-stage hybrid flow shop with sequence-dependent setup times at first
stage and dedicated machines at the second. The machine on the first stage is called
calender and it is used to glue liner and surface material together. The second stage
includes two different types of cutting machines that will be used to process different
types of end products. The objective for the problem approached by Lin and Liao
is to schedule one day’s mix of label stickers in a way that the weighted maximal
tardiness is minimized. They introduce a setup matrix that tells how long does it
take to change from one class of product to another. Depending on the previous
product, the change takes time from 6 up to 50 minutes. Because the problem is
NP-hard, Lin and Liao approached the problem by developing a heuristic. The
proposed a scheduling rule including three elements; Determine production schedule
at first production stage, dispatch the jobs in queue at second stage and develop
and improve the schedules. For these elements they used, for example, sequencing
methods such as longest processing time first (LPT) and first in first out (FIFO),
Approximate Algorithm 1 proposed by Gupta and Darrow (1986) and procedure
that includes tabu search method.

Even though production scheduling is essential part of plywood production due to
complexity of the production and material handling, the literature on the subject
is very limited in mathematical modeling point of view. One of the few papers
discussing scheduling in plywood manufacturing is one written by Kotak (1975).
He applied linear programming in production planning by balancing available raw
materials against product mix desired by sales division. This approach resembles
more rough-cut planning at UPM where orders are divided to different mills in a
way that raw material usage is steady.
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2.2.6 Rolling horizon

Difficulty of mixed integer linear programs grows considerably when more integer
variables are added to the problem. Especially with long time-horizons the scheduling
problems may become almost impossible to solve even with state of the art opti-
mization solvers. To address this problem multiple heuristics have been presented
as described in previous sections of literature survey. One approach to solve these
computationally heavy problems is to limit the number of integer variables by per-
forming the scheduling in parts of shorter time horizon. This approach is called
rolling horizon.

There are multiple ways to perform rolling horizon in a scheduling problem. The
problem may be solved forward or backward and with overlapping or non overlapping
time intervals. With overlapping intervals a part of solution from previous interval
passed as initial guess for solver in the next one. Graphical representation of rolling
horizon with five overlapping intervals is given in Figure 4. As seen from the figure,
each of the sub problems has now 73% shorter time horizon than the original problem
which means that also the number of integer variables is smaller and the problem is
computationally a lot easier.

Figure 4: Rolling horizon with overlapping intervals

However, rolling horizon scheduling rarely leads to a globally optimal solution.
Dimitriadis et al. (1997) presented the three rolling horizon algorithms and compared
their speed and solution to global optimum in medium term scheduling of multipurpose
plants. All of the rolling horizon algorithms provided good approximations for the
problem with significant reduction in computational time. Also with limited number
of maximum branch and bound nodes, all approaches were able to give a better
solution for the scheduling problem. The best performing rolling horizon approach was
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forward rolling horizon algorithm. There are also other approaches to solve scheduling
problems using rolling horizon. Beraldi et al. (2008) approached a parallel machine
lot-sizing and scheduling problem with sequence-dependent set-up costs using rolling
horizon and fix-and-relax heuristics. They showed that with lower bounds provided
by a truncated branch-and-bound, the gap between the best heuristic solution and
the lower bound never exceeds 3% in their problem setup. Ovacik and Uzsoy (1995)
used rolling horizon procedures for dynamic parallel machine scheduling problem with
sequence-dependent setup times. They stated that their computational experiments
showed that rolling horizon heuristics significantly outperform dispatching rules
combined with local search methods, both on average and in the worst case.
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3 Optimization model

3.1 Problem description

The plywood scheduling problem involves scheduling of bonding and coating opera-
tions with a time horizon of one week in a way that 1. setup times are minimized, 2.
all jobs are made in time, 3. the raw material usage is balanced, 4. plywoods are not
in intermediate storage before coating for too long and 5. jobs that have more urgent
due date are prioritized. The fifth objective is due to large number of jobs available
which means that some of the jobs will not be included in the schedule of next week.
Therefore, if too many of the jobs with long due dates are used and not the ones that
are more urgent, making a feasible schedule in the following weeks might be very
difficult. This also helps at the end of production chain because the end products
will not have to be stored for a long period of time before the transportation.

In the case mill there are three parallel bonding machines and one coating machine.
All of the plywoods are not coated which means that those jobs only contain bonding
operation. Also it is possible that some of the jobs contain only coating operation,
for example, in case that the plywoods come from other UPM factory for coating
and machining. Bonding operation must always be done before coating and there
must be 24 hour time buffer between the operations due to other production phases
between those two and cooling of the plywoods before the coating. The latest end
times for the jobs are given and they usually are determined by the shipping time
and time reserved for machining and packaging. There is also earliest start time for
jobs that include only coating operation due to arrival time of the plywood to the
mill. Also the schedule may not include too many jobs with LNG plywood due to
limited LNG testing capacity in the mill. The setup in the case mill can be seen
from Figure 5. As seen from the figure, some jobs require only bonding operation
and some only coating operation.

Figure 5: Problem setup in the case mill

The bonding machines have different capabilities which means that some of the
orders cannot be bonded on certain machine or machines. Also some of the bonding



22

operations must be processed at the beginning of the week due availability of certain
type of glue. Only one operation can be handled at a time on a machine and there
setup time between operations depends on the dimensions and type of current and
previous product. The next operation must start right after the previous one i.e. on
each of the bonding machines there is always production or setup with an assumption
that the there is enough raw material available all the time. Also on the coating
machine only one operation can be handled simultaneously and there is a setup time
between different operations with product dependent length. There may be idle time
on the coating machine in case that there is no operation to process or it is more
optimal to wait for some operation to be ready for processing and coat that before
making a large setup. A waiting time is not that critical on coating machine because
it is rarely the bottleneck resource of the mill and the operators can be temporarily
moved to other tasks. However, the intermediate storage before coating should be
minimized and therefore the solutions with some of the plywoods staying there for
too long are penalized.

To summarize, when scheduling operations at bonding and coating machines at case
mill, the following constraints must be satisfied:

C1 Each job has at most one operation scheduled in bonding and coating phases.

C2 Operation can be performed only on bonding machines that have capability to
handle the operation

C3 Each machine can perform only one operation at a time.

C4 The veneer consumption of surface and intermediate veneers must be within
given limits.

C5 Total number of LNG veneers produced must be below weekly testing capacity
in bonding.

C6 At bonding the start time of the next operation is end time of the previous
operation plus setup time.

C7 At coating the start time of the next operation is greater than start time of
previous operation plus setup time.

C8 If job includes only coating operation, the operation cannot be started before
earliest start time.

C9 The last operation of a job must be done before latest end time of the job.

C10 If job includes both bonding and coating operation, the coating operation
cannot be started before 24 hours have passed from end of bonding operation.

C11 Some of the operations on bonding machines must be done at the beginning of
the week due to raw material availability.
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3.2 Problem formulation

The first approach to model the problem was to model machines with binary variables
of hourly time slots in a way that to complete n hour long operation, n time slots
should be assigned to that operation. This leads to computationally too heavy a
problem as, for example, when scheduling for one week with 50 jobs, there would
be 168*50 = 8400 binary variables for each machine. A more promising approach
involves operation slots for each machine. In this formulation we have binary decision
variables for each machine that tells whether an operation is assigned to be nth
operation processed on that machine. However, by doing this we had to introduce
a new variable to track ending times of each operation in order to make sure the
operations are done in time. Also this second approach did not allow to make
operation in smaller parts, but in the end it did not matter as the larger jobs are
already split to sub jobs in the input data by production planners. In this section we
introduce this second formulation that was made to model the problem as flexible
flow shop with parallel machines at first stage and single machine at second.

3.2.1 Decision variables and parameters

In the plywood scheduling problems there is set of jobs J , set of bonding machines
B and set of coating machines C which in this case is just one machine. We also
have nB operation slots for each of the bonding machines and nC slots for the
coating machine. Decision variables Xjbn are binary variables that describe whether
bonding operation of job j ∈ J is scheduled on machine b ∈ B at operation slot
n, n ∈ {1, 2, , ..., nB}. For coating, we have similar decision variables Yjcn where the
difference is that operations are scheduled on coating machines c ∈ C with operation
slots n, n ∈ {1, 2, ..., nC}. Because there is only one coating machine in the case
factory, we can express the latter decision variables as Yjn.

In the formulation we have also other variables to model the material usage, track
the start times of operations and to model the setups. For material usage we have
two kind of variables. Pnl tells how much premium quality veneers is used until the
end of operation slot n for product length l ∈ L at all of the bonding machines. Anl

describes the material usage in a way that if the average thickness of the plywoods
until end of operation slot n is optimal for product length of l ∈ L, the value of Anl

is 0. Each of the operations have pre-calculated values that describe the deviation
from optimal thickness scaled with the size of the operation in a way that negative
values point to thickness lower than the optimal and positive to higher. At the case
factory there are two possible lengths l for the product at bonding phase which are
1300 mm and 1600 mm, i.e. L = {1300, 1600}.

RB
bn and RC

n describe the end time of the operation in operation slot n at bonding
machine b and start time of the coating machine. We also have end times for each
of the bonding and start times for the coating. Variables SB

jbn and SC
jn include the

end times of bonding and start times of coating operations of job j ∈ J if it is done
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at operation slot n at coating machine or bonding machine b. The setup time at
bonding machine b that happens before operation slot n is given as binary variable
T B

bnt where value equals to 1 if setup time t of possible setup times TrB occurs at
given time. Similar setup times for coating machine are described by variables T C

nt.
These setup related variables are included to be able to penalize different setups
based on their lengths.

In addition to variables, index sets and constants discussed here, there are few others
that are needed for the formulation including, for example, matrix of set up times
from operation i to j, i, j ∈ J and matrix of operation lengths of processing job j at
machine b. All the parameters and index sets used in the formulation of the model
are given in Table 1. The decision variables and auxiliary variables for modeling are
given in Table 2.
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Table 1: Parameters and index sets used in the formulation of plywood scheduling
problem

J Set of jobs
B Set of bonding machines
L Set of product lengths
JC Set of jobs that have only coating operation
JB Set of jobs that have only bonding operation
JBb Set of jobs that can be bonded on bonding machine b ∈ B
JLNG Set of jobs that are LNG orders
JT L Set of jobs that have to be included in schedule due to strict time limit
JU Set of jobs that are most urgent but do not have to be included
JB0

b Set of jobs that have to be bonded at the beginning of the week at machine b ∈ B
j0

b Job of latest planned operation on bonding machine b ∈ B
j0

C Job of latest planned operation on the coating machine
ET Bb End time of latest planned operation on bonding machine b ∈ B
ET C End time of latest planned operation on the coating machine
SLb First operation slot to be scheduled on bonding machine b ∈ B
nB Number of operation slots at each machine in bonding
nC Number of operation slots at coating
N Set of operation slots when material usage constraints are inspected
TrB Set of possible setup times at bonding
TrC Set of possible setup times at coating
ST B

ij Setup time at bonding machine between operations of jobs i ∈ J and j ∈ J
ST C

ij Setup time at coating machine between operations of jobs i ∈ J and j ∈ J
Pujl Premium veneer usage with length l ∈ L of job j ∈ J
Pull Hourly average premium veneer usage limit for length l ∈ L
Avjl Thickness related variable for job j ∈ J and veneer length of l ∈ L
Aul Upper limit for thickness related parameters for length l ∈ L
All Lower limit for thickness related parameters for length l ∈ L
OB

bj Operation length of bonding operation of job j ∈ J at bonding machine b ∈ B
OC

j Operation length of coating operation of job j ∈ J
Ej Latest end time for last operation of job j ∈ J
Sj Earliest start time for coating operation of job j ∈ JC

Uj Amount of plywoods at job j ∈ J
W LNG testing capacity in number of plywoods
M A large suitably chosen value
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Table 2: Decision and auxiliary variables used in the formulation of plywood schedul-
ing problem

Xjbn A binary decision variable for job j ∈ J at bonding machine b ∈ B at operation
slot n ∈ {1, 2, , ..., nB}

Yjn A binary decision variable for job j ∈ J at operation slot n ∈ {1, 2, , ..., nC}
RB

bn End time of operation slot n ∈ {1, 2, , ..., nB} on bonding machine b ∈ B
RC

n A decision variable for start time of operation slot n ∈ {1, 2, , ..., nC} on
the coating machine

Pnl Amount of premium quality veneers of length l ∈ L used until the end of
operation slot n ∈ {1, 2, , ..., nB}

Anl Sum of thickness parameters of bonded operations of length l ∈ L until the end
of operation slot n ∈ {1, 2, , ..., nB}

SB
jbn End time of bonding operation of job j ∈ J if it is done at machine b ∈ B at

operation slot n ∈ {1, 2, , ..., nB}
SC

jn Start time of coating operation of job j ∈ J if it is done at operation slot
n ∈ {1, 2, , ..., nC}

T B
bnt A binary variable whether setup of length t ∈ TrB happens at bonding machine

b ∈ B before operation slot n ∈ {1, 2, , ..., nB}
T C

nt A binary variable whether setup of length t ∈ TrC happens at the coating
machine before operation slot n ∈ {1, 2, , ..., nC}

ETj Extra hours that plywoods of job j ∈ J stay in intermediate storage

3.2.2 Constraints

The modeling starts with adding common constraints for the model. As stated in
C1, each job must have at most one operation scheduled in bonding and coating
phases. This can be formulated as:

∑
b∈B

nB∑
n=1

Xjbn ≤ 1, ∀j ∈ J

nC∑
n=1

Yjn ≤ 1, ∀j ∈ J

We also know that some orders cannot be bonded on certain machines as stated
in Constraint C2. Also some jobs do not require coating operation. This leads to
following constraints:

∑
b∈B

nB∑
n=1

Xjbn = 0, ∀j ∈ J \ JBb

nC∑
n=1

Yjn = 0, ∀j ∈ JB
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In some situations, we might not want to perform equally many operations on all
of the bonding machines. This may be due to differences in end times of latest
already planned operations on different bonding machines or due to differences in
average lengths of operations that can be done at different machines. For example, if
latest planned operation ends at bonding machine 1 on Monday and at machine 2
on Friday, we should not schedule as many operations on both of the machines. For
this pre-calculated constants SLb were introduced in Table 1 that describes which is
the first operation slot to be scheduled on bonding machine b. Combining this with
Constraint C3 that requires each machine to perform only one operation at time we
get following formulation:∑

j∈JBb

Xjbn = 1, ∀b ∈ B, ∀n ∈ {SLb, SLb + 1, ..., nB}

∑
j∈J

Xjbn = 0, ∀b ∈ B, ∀n < SLb, n ∈ N

At coating machine the number of operations to schedule should already be chosen
suitably and the starting slot index is not needed there. Constraint C3 can be
formulated for coating as:∑

j∈J\JB

Yjn = 1, ∀n ∈ {1, 2, ..., nC}

In the formulation we use latest previously planned operation as first operation in
the next weeks schedule.

Xjbn = 1, ∀b ∈ B, j = j0
b , n = SLb

Yj1 = 1, j = j0
C

To model setup related constraints we need values ST B
ij and ST C

ij which describe
setup times between operation of jobs i and j at bonding and coating machines. All
the setup times are instances of values in possible setup times TRB and TRC . The
setups happening between operation slots in bonding can be presented as follows:

T B
bnt = 0, ∀t ∈ TrB, ∀b ∈ B, ∀n ≤ SLb, n ∈ N (3.1)

∑
t∈T RB

T B
bnt = 1, ∀b ∈ B, ∀n > SLb, n ∈ N (3.2)

T B
bnt ≥ −1 + Xjbn−1 +

∑
i∈J |ST B

ij =t

Xibn, ∀j ∈ J, ∀b ∈ B, ∀n > SLb, n ∈ N, ∀t ∈ TRB

(3.3)

Equations (3.1) and (3.2) ensure that there are not any setups before first scheduled
operation and there is always a setup between the operations. Equation (3.3) forces
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binary variable T B
bnt to be one if the setup time between operations at machine

b in slots n − 1 and n is t. Similar constraints for coating setup times are given
below:

T C
1t = 0, ∀t ∈ TrC∑

t∈T RC

T C
nt = 1, ∀n ∈ {2, 3, ..., nC}

T C
nt ≥ −1 + Yjn−1 +

∑
i∈J |ST C

ij =t

Yin, ∀j ∈ J, ∀n ∈ {2, 3, ..., nC}, ∀t ∈ TRC

The material usage constraints can be divided to thickness related and premium
veneer related constraints. As Constraint C4 suggests, for both there are limits
that can not be violated. Amount of premium veneer used after operation slot n is
formulated as:

P1l = 0, ∀l ∈ L

Pnl = Pn−1l +
∑
b∈B

∑
j∈J

XjbnPujl, ∀l ∈ L, ∀n ∈ {2, 3, ..., nB}

Similar constraints can be formulated for average thickness related values:

A1l = 0, ∀l ∈ L

Anl = A(n−1)l +
∑
b∈B

∑
j∈J

XjbnAvjl, ∀l ∈ L, ∀n ∈ {2, 3, ..., nB}

In both Pujl and Avjl values for job j are 0 if the length of the product is not l.
Also all values for already scheduled operations that are used as first operations in
the formulation, are set to 0 as they should be scheduled in a way that satisfies
Constraint C4. The limits for both Pnl and Anl are checked few times during the
week after operation slots N . For example, we might want to make sure that material
usage is steady in intervals of approximately two days because unstable material
usage can be compensated with leeway in veneer storage for periods shorter than
that.

∑
b∈B

(RB
bn − ET Bb)Pull − Pnl ≥ 0, ∀n ∈ N, ∀l ∈ L (3.4)

Anl ≤ Aul, ∀n ∈ N, ∀l ∈ L (3.5)

Anl ≥ All, ∀n ∈ N, ∀l ∈ L (3.6)

With Equation (3.4) we check that the hourly material usage is below Pull for length
l ∈ L in intervals given by N . Equations (3.5) and (3.6) make sure that in those
same intervals average thickness related parameter is within given limits.

Constraint C5 says that amount of LNG veneers produced should be limited to LNG
testing capacity W . This can be formulated as follows:
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∑
b∈B

∑
j∈JLNG

∑
n∈{1,2,...,nB}

XjbnUj ≤ W

End times of bonding and start times of coating operations and operation slots are
modeled with variables RB

bn, RC
n , SB

jbn and SC
jn. RB

bn and RC
n describe end and start

times on operation slots at bonding and coating machines. The start time of first
operation is given as end time of latest planned operation at the machine. Those
operations are included as first operation on each machine.

RB
bn = 0, ∀b ∈ B, ∀n < SLb, n ∈ N

RB
bn = ET Bb , ∀b ∈ B, n = SLb

RC
1 = ET C

RC
2 ≥ ET C +

∑
t∈T rC

tT C
2t

End times for next bonding and start times for next coating operations are calculated
as constraints C6 and C7 suggest:

RB
bn = RB

bn−1 +
∑

j∈JBb

XjbnOB
jb +

∑
t∈T rB

tT B
bnt, ∀b ∈ B, SLb < n ≤ nB, n ∈ N

RC
n ≥ RC

n−1 +
∑

j∈J\JB

Yjn−1O
C
j +

∑
t∈T rC

tT C
nt, ∀n ∈ {3, 4, ..., nC}

Start times of coating and end times of bonding operations of job j ∈ J can be
calculated using start times given by operation slot times RB

bn and RC
n . This leads

to quadratic constraints because in order to get the time of operation j ∈ J at
some machine, we need to multiply decision variable Xjbn or Yjn with corresponding
operation end or start time RB

bn or RC
n . Therefore the constraint is linearized using

following procedure proposed by Rubin (2010) in his blog post:

In case that we have two variables x and y and we have to calculate their product
z = xy, we have a quadratic problem. If one of the variables, lets say x, is binary,
the product can be linearized by introducing upper bound U and lower bound L for
value of y. Next the following constraints are added:

z ≤ Ux

z ≥ Lx

z ≤ y − L(1 − x)
z ≥ y − U(1 − x)

(3.7)

If x = 0, the first two constraints of equations (3.7) force z to be equal to 0. The
two last say that y − U ≤ z ≤ y − L, where z = 0 satisfies the inequalities. In case
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that x = 1, the first two constraints say that L ≤ z ≤ U which is satisfied by z = y
and the last two constraints become y ≤ z ≤ y which forces z to be equal to y.

We follow this procedure by adding the following constraints to get end times for
bonding operations in (3.8) and for start times for coating operations in (3.9). Here
upper bound U is M and lower bound L is 0.

SB
jbn ≤ MXjbn, ∀j ∈ J, ∀b ∈ B, ∀n ∈ {1, 2, ..., nB}

SB
jbn ≥ 0, ∀j ∈ J, ∀b ∈ B, ∀n ∈ {1, 2, ..., nB}

SB
jbn ≤ RB

bn, ∀j ∈ J, ∀b ∈ B, ∀n ∈ {1, 2, ..., nB}
SB

jbn ≥ RB
bn − M(1 − Xjbn), ∀j ∈ J, ∀b ∈ B, ∀n ∈ {1, 2, ..., nB}

(3.8)

SC
jn ≤ MYjn, ∀j ∈ J, ∀n ∈ {1, 2, ..., nC}

SC
jn ≥ 0, ∀j ∈ J, ∀n ∈ {1, 2, ..., nC}

SC
jn ≤ RC

n , ∀j ∈ J, ∀n ∈ {1, 2, ..., nC}
SC

jn ≥ RC
n − M(1 − Yjn), ∀j ∈ J, ∀n ∈ {1, 2, ..., nC}

(3.9)

If a job includes only coating operation, it cannot be started until earliest start time
Sj as stated in Constraint C8. This can be formulated using the start time variables
SC

jn.

nC∑
n=1

SC
jn ≥ Sj

nC∑
n=1

Yjn, ∀j ∈ JC (3.10)

This constraint makes sure that if the operation is scheduled, it will be done after the
earliest start time. We also know that the last operation of job must be done before
latest end time of the job as stated in Constraint C9. This cannot be formulated
in a way that for all of the operations there is a strict constraint for being started
before the latest start time of the job, because all operations will not be scheduled
as there are more operations available than are needed to fill the schedule of the
following week. Therefore we introduce predetermined set of operations that have to
be scheduled due to strict time limit. This means that those operations have to be
done before end of the week that is being scheduled or during small buffer after that.
This set of jobs is denoted as JT L and based on which operations are required for
the job, one of the following constraints must hold:

∑
b∈B

nB∑
n=1

Xjbn = 1, ∀j ∈ JB ∩ JT L

nC∑
n=1

Yjn = 1, ∀j ∈ JT L \ JB

For all other jobs j ∈ J \ JT L we can assume that Constraint C9 holds or they can
be scheduled during following weeks as otherwise they would have been included into
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JT L. For jobs j ∈ JT L Constraint C9 can be formulated as:

∑
b∈B

nB∑
n=1

SB
jbn ≤ Ej, ∀j ∈ JB ∩ JT L (3.11)

nC∑
n=1

SC
jn + OC

j ≤ Ej, ∀j ∈ JT L \ JB

Large number of the jobs have both bonding and coating operations. For those we
have to make sure that the bonding operation is done at least 24 hours before the
coating operation starts as told in Constraint C10. To do this we have to ensure
that if a job has both coating and bonding operation to be scheduled, the coating
operation cannot be done if the corresponding bonding operation is not done during
the scheduling interval.

nC∑
n=1

Yjn ≤
∑
b∈B

nB∑
n=1

Xjbn, ∀j ∈ J \ (JC ∪ JB)

After this the 24 hour constraint can be presented as follows:

nC∑
n=1

SC
jn ≥

⎛⎝ ∑
b∈B

nB∑
n=1

SB
jbn + 24

⎞⎠ nC∑
n=1

Yjn, ∀j ∈ J \ (JB ∪ JC) (3.12)

Here also multiplication of binary and continuous variable is required and therefore
we use first two and fourth constraints of equations (3.7) to model Equation (3.12)
as linear constraints. The third constraint is left out due to inequality.

nC∑
n=1

SC
jn ≤ M

nC∑
n=1

Yjn, ∀j ∈ J \ (JB ∪ JC)

nC∑
n=1

SC
jn ≥ 0, ∀j ∈ J \ (JB ∪ JC)

nC∑
n=1

SC
jn ≥

⎛⎝ ∑
b∈B

nB∑
n=1

SB
jbn + 24

⎞⎠ − M(1 −
nC∑

n=1
Yjn), ∀j ∈ J \ (JB ∪ JC)

(3.13)

There are some bonding operations that we know have to be done at the beginning
of the week at bonding machine 3, due to material requirements. This is also stated
in Constraint C11.This can be formulated as:

SLb+|JBb |+1∑
n=SLb+1

Xjbn = 1, ∀b ∈ B, ∀j ∈ JBb
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3.2.3 Objective function

The most important thing in a good schedule is small setup times between operations.
Therefore minimization of setup times at both bonding and coating phases is included
in objective function. We also want to favor operations of most urgent jobs into next
week’s schedule to avoid too tight schedule on the following week. Third thing that
we want to include in the objective function is minimization of waiting time in veneer
storage before coating operation. This is done by allowing plywoods to be less than
24 hours in this storage and the time extra time they stay there is penalized. To
do this we introduce new variable ETj that tells how many extra hours plywood of
job j ∈ J has been in this intermediate storage. The values of ETj are calculated
by:

ETj = 0, ∀j ∈ JB (3.14)
ETj ≥ 0, ∀j ∈ J \ JB

ETj ≥
nC∑

n=1
Sjn − Sj − 24, ∀j ∈ JC (3.15)

ETj ≥ M(1 −
nC∑

n=1
Yjn) − Sj − 24, ∀j ∈ JC (3.16)

ETj ≥
nC∑

n=1
Sjn −

∑
b∈B

nB∑
n=1

SB
jbn − 48, ∀j ∈ J \ (JC ∪ JB) (3.17)

ETj ≥ M(1−
nC∑

n=1
Yjn)−M(1−

∑
b∈B

nB∑
n=1

Xjbn)−
∑
b∈B

nB∑
n=1

SB
jbn−48, ∀j ∈ J \(JC ∪JB)

(3.18)
Equations (3.16) and (3.18) make sure that if some coating operations are not
included even if they can be started, the ones that can be started earlier will get
larger penalty. 48 hours in equations (3.17) and (3.18) is due to 24 hour reserved for
other operations between bonding and coating and for cooling of the plywoods.

Now using setup related variables T B
bnt and T C

nt, set of jobs that are most urgent out
of all operations JU and extra time of plywoods in intermediate storage ETj we can
formulate the objective function that is minimized:

δ1
∑
b∈B

nB∑
n=1

∑
t∈T RB

T B
bnt+δ2

nC∑
n=1

∑
t∈T RC

T C
nt−δ3

∑
b∈B

nB∑
n=1

∑
j∈JU

Xjbn−δ4

nC∑
n=1

∑
j∈JU

Yjn+δ5
∑

j∈JU

ETj

(3.19)

Here multipliers {δ1, ..., δ5} are chosen based on discussions with production planners
about relative importance of different objectives in scheduling. The process of
choosing these multipliers is explained more deeply in next Section 3.2.4. In the
objective function (3.19) the first and the second term are the sums of all setup
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times during the optimization period. The next two terms calculate the amount of
urgent operations included in the schedule. Because the objective is minimized, these
terms are subtracted as we want to include as many urgent operations as possible
and avoid making schedule full of operations that could be done, for example, three
weeks from now. The last term calculates the total extra time of plywoods in the
intermediate storage.

3.2.4 Selection of multipliers in objective function

There are multiple different methods to select multipliers for different elements in the
objective function such as ordinal weighting methods and trade off weighting method
(Keeney and Raiffa 1976). In this case it was natural to use trade off weighting
as production planners have a good understanding what makes a good production
schedule and which attributes are more important than others. The weighting was
done together with the planners by comparing, for example, how much more setup
time we have to save in coating part if we have 1 hour more setups in bonding.
Later based on initial results, the weights can be adjusted if we clearly see that some
attributes are emphasized too much in the resulting schedule.

One weakness of the objective function (3.19) is that in theory the last term that
sums the extra time plywoods stay in the intermediate storage might steer the model
to favor schedules that use more jobs which have only bonding operation than would
be necessary. However, in practice this was not noticed to be a problem as the
weight for waiting time is much smaller than for setup time and urgent operations in
bonding. Furthermore, the separated model described later in Section 4.1 that is
created to solve the schedule faster does not face the same possible problem as the
bonding part is solved separately from coating part and the wait time does not affect
there on the operations selected to the schedule. There the term for wait time only
makes sure that there is no needless gaps in the coating schedule and operations will
be done in a way that the plywoods do not stay for too long in the intermediate
storage.



34

4 Solving approaches

The formulation described in Section 3.2 was implemented using Python Interface for
state of the art optimization solver Gurobi. The solver was unable to find optimum
or even feasible solutions for larger models with over 100 available jobs and thousands
of binary variables in a reasonable time. We also tried other formulations including
modeling with hourly time periods and modeling with estimate of average setup
time included in operation times and giving penalty based on which operations
were consecutive in a machine. The latter one would leave out the requirement
for binary variable for setups happening between operation slots. However, these
attempts did not improve the performance of the model and therefore were not
further investigated.

Because production planners might want to see schedule proposal multiple times
during a week or they might choose to rerun the model after some modifications to
the input data, the model has to give good enough a solution during the same day
or, even better, in a few minutes. Therefore, the original model was not suitable for
the application and we should either use some heuristic method or alter the model
to reduce the computation time in a way that the result would still be close enough
to the optimum. Due to the special requirements, for example, average thickness
and material limitations, there were no heuristic method found in the literature that
would be fully suitable for the plywood scheduling problem and at the same time be
simple enough to implement in a reasonable time.

We chose to address the problem by using different approaches to reduce the compu-
tational time required to solve the MILP model. Before meeting the computational
time requirement, multiple different approaches had to be combined including some
found during the literature survey and some discovered in the model testing. The
different approaches used were splitting model into two parts, using rolling horizon
approach, finding feasible solution first in separate model and early stopping as also
shown in Figure 6. Two first approaches are based on reducing the size of the model
and the last two are methods to reduce redundant computation time. The approaches
and their effect on the modeling are presented more in detail in the sections given in
the figure.

Figure 6: Path of using different approaches in order to meet the computation time
requirement
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4.1 Model splitting

Solving the production phases in separate models is common in different heuristic
methods and solving approaches of scheduling problems as seen, for example, in
multiple papers investigated in the literature survey (Manson et al. (2002), Balas
et al. (2008), Keskinocak et al. (2002), Adler et al. (1993), Lin and Liao (2003)).
Many of the approaches start with determining the bottleneck resource that will be
scheduled first. In the case mill the bottleneck resource is bonding and therefore
minimizing the setup times there results to higher throughput of the mill. Minimizing
the setups at the coating machine only reduce the working time required to perform
the setups and therefore the bonding phase is selected to be scheduled first. The
possible disadvantage of this approach is that when we are not taking schedule of
the coating machine into account while making the bonding schedule, there might
be operations that have to stay more time in the intermediate storage or more time
consuming setups have to be made compared to scheduling that is done in a single
model.

To address the problem of extra time consuming setups at coating machine, we
calculate the new end times for all the bonding operations EB

j in a way that some
extra time is reserved to make the coating. By doing this, in case that coating of
different grade is currently in production, there will be enough time to coat more
operations of that grade before making the material change. The latest end times of
bonding operations of jobs that have no coating operation stay the same.

The advantage of solving production phases separately is that the number of con-
straints and variables in the model is considerably reduced. In bonding only the
constraints that include bonding related variables have to be taken in account. Also
constraints (3.13) for coating starting 24 hours after the bonding end time can be
left out from the formulation as earliest start times for coating operations can be
calculated after the bonding schedule is done. The end times of bonding operations
SB

jbn are now only needed for operations with strict time limit of being ready in
less than one week plus some small time buffer. This is due to completion times of
different bonding operations can be calculated from end times of operation slots RB

bn

after the scheduling is done and end time constraints of bonding operations are not
needed for other operations as we only make the schedule for one week at a time.
Therefore Constraint (3.11) for end times of bonding operations can be reformulated
as: ∑

b∈B

nB∑
n=1

SB
jbn ≤ EB

j , ∀j ∈ (J \ JC) ∩ JT L

As the end times of bonding operations SB
jbn are now only included for operations
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with strict time limit, the constraint linearization has to be done only for those:

SB
jbn ≤ MXjbn, ∀j ∈ (J \ JC) ∩ JT L, ∀b ∈ B, ∀n ∈ {1, 2, ..., nB}

SB
jbn ≥ 0, ∀j ∈ (J \ JC) ∩ JT L, ∀b ∈ B, ∀n ∈ {1, 2, ..., nB}

SB
jbn ≤ RB

bn, ∀j ∈ (J \ JC) ∩ JT L, ∀b ∈ B, ∀n ∈ {1, 2, ..., nB}
SB

jbn ≥ RB
bn − M(1 − Xjbn), ∀j ∈ (J \ JC) ∩ JT L, ∀b ∈ B, ∀n ∈ {1, 2, ..., nB}

The objective function for bonding optimization can now be formulated as:

δ1
∑
b∈B

nB∑
n=1

∑
t∈T RB

T B
bnt − δ3

∑
b∈B

nB∑
n=1

∑
j∈JU

Xjbn

Because the complexity of the model is now considerably reduced, in case that
the steady material usage is a problem and extra focus is needed for that, we can
introduce new variables that tell us how much the average thickness deviates from
ideal situation to positive direction A+

nl and negative direction A−
nl where n ∈ N and

l ∈ L. The values for these variables are calculated as:

A+
nl ≥ 0 ∀l ∈ L, ∀n ∈ N

A−
nl ≥ 0 ∀l ∈ L, ∀n ∈ N

Anl = A+
nl − A−

nl, ∀l ∈ L, ∀n ∈ N

Now using these variables with suitably chosen multipliers δ6 and δ7 we can take the
material usage in account in the objective function. The multipliers are different for
different directions as when deviating to direction of less than ideal average thickness
the impact to quality of the schedule is usually larger.

δ1
∑
b∈B

nB∑
n=1

∑
t∈T RB

T B
bnt − δ3

∑
b∈B

nB∑
n=1

∑
j∈JU

Xjbn + δ6
∑
l∈L

∑
n∈N

A+
nl + δ7

∑
l∈L

∑
n∈N

A−
nl (4.1)

For coating model we still need to use all the variables SB
jn as the starting time of

any operation has to be larger than earliest start times given by constants Sj. We
also add starting times for operations that were made in bonding to Sj by adding
24 hours to the ending time of bonding operation of the job. Now the start time
Constraint (3.10) can be included for all operations j ∈ J \ JB and Constraints
(3.13) for 24 hour difference between bonding and coating operations can be left out
from the coating scheduling model. Because we have no bonding operations in the
coating model, we can exclude the jobs that include bonding operation but were not
scheduled in the bonding phase from the model. By doing this when modeling the
time that plywoods of job j ∈ J stays in the intermediate storage before coating, we
can leave out constraints of three equations (3.14), (3.17) and (3.18). This is due
to we have no jobs that do not have coating operation available and the jobs where
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bonding operation was scheduled in bonding phase can now be modeled as jobs with
no bonding operation with earliest possible start time Sj available.

The objective function for coating optimization includes the coating related elements
of the original objective function:

δ2

nC∑
n=1

∑
t∈T RC

T C
nt − δ4

nC∑
n=1

∑
j∈JU

Yjn + δ5
∑

j∈JU

ETj

4.2 Rolling horizon

Rolling horizon is another good approach to reduce the dimensionality of the schedul-
ing model. As in model splitting, there are disadvantages in this approach because
resulting schedule may not be global optimum. However, there are good results of
using rolling horizon in the literature, for example, as stated in literature survey
Beraldi et al. (2008) used rolling horizon with heuristics in a scheduling problem and
the gap between lower bound and the solution never exceeded 3% in their problem
setup.

Even with separated models for bonding and coating, especially the bonding phase
can still be computationally very challenging if the average size of the operations is
very small. This leads to situation with over hundred operations to be scheduled
which cannot be done with good enough solution due to strict time requirement. To
address the problem we can apply rolling horizon method to bonding scheduling and
also to coating if necessary.

The key idea of rolling horizon approach we used is described below:

1. Determine number of operation slots to schedule in a way that the model can
be efficiently solved and approximated end time at each machine is at maximum
one week from the beginning of optimization. Set values for first operation slot
to schedule SLb if starting times at different machines deviate.

2. Calculate approximated end time based on number of operations to schedule
and based on that select operations that have to be included to schedule due
to time limit, which is the set JT L.

3. Solve the resulting MILP problem. If the whole week is scheduled after this,
we can stop and save the results.

4. If the whole week is not yet scheduled, save the operations that are started
before some percentage, e.g. 80%, of the time horizon of the model calculated
in part 2. The operations that are started after that will be given as initial
solution for the first operations in the next part.

5. Repeat from step 1.
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This procedure results to more models to be solved but each of those is considerably
smaller and computationally a lot easier to solve than the original one. Therefore
the computation time required to solve the whole scheduling problem is smaller. At
step 2 usually some small time buffer have to be used when selecting the jobs that
have to be included to ensure the feasibility of next subsequent model.

4.3 Feasible solution finding

While testing the performance of initial model, we noticed that finding the first
feasible solution can take a very long time and after that the optimization solver
quickly finds improvements to the first solution. To reduce this computation time
to find the first feasible solution a new model is created that has very simple or no
objective function and terminates right after the first solution is found.

For example, in bonding optimization this means that variables and constraints for
deviation in average thickness to positive and negative direction can be left out from
the formulation as they do not affect to the feasibility of the solution but are only
calculated for the objective function. Also when the objective function does not
include multiple sums of different variables, the computation required at each step
of the iteration is smaller and e.g. root relaxation calculation and other steps the
solver performs are done faster.

After the feasible solution is found, it will be passed as an initial solution for the
actual model. Now the solver can start right away from a feasible solution which has
been found a lot faster than would with the actual model and start improving the
solution.

4.4 Early stopping

Another thing that was found to take a lot of time for the optimization solver during
the scheduling is proving optimality. For example, in hindsight a coating model with
over 900 binary variables took less than 10 seconds to find good enough solution, less
than 70 seconds to find a solution that is very close to optimum and the optimum
in precision of ten thousandth was found after 470 seconds. However, the solver
was able to prove that the solution is actually the optimum after 106000 seconds of
finding it which is more than 29 hours. The log from Gurobi solver of this case can
be seen in Appendix A.

Also others have noticed this same phenomenon. As described in the literature
survey Moghaddas and Houshmand (2008) developed a MILP model for job shop
scheduling problem and they were able to find feasible solutions in a reasonable
time but especially with larger problems finding the optimum was very difficult.
They limited the computation time to 3600 seconds but did not specify how close to
optimum they got compared to heuristic algorithm.
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Because we are not interested in proving the global optimum but we want a feasible
and good enough solution fast for production planners to work with, we chose to
also apply early stopping in the scheduling. This can be done, for example, in three
ways given below:

1. Stop when some pre-determined amount of time has passed.

2. Stop when solver has not been able to improve the solution in some pre-
determined amount of time.

3. Stop when the current solution is close enough to the lower bound found by
the solver.

4. Stop when predetermined objective value has been reached that can be based
on previous optimizations or some heuristic solution

When combining feasible solution finding in separate model and early stopping, we
are able to increase the number of operation slots to schedule at each step in rolling
horizon without increasing the solving time. This leads to less rolling horizon steps
to be performed which in the end could mean a solution that is closer to global
optimum with less computation time.
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5 Results

In this chapter, the performance of the scheduling formulation and different solving
approaches introduced in Chapter 4 are studied through two example cases in sections
5.1 and 5.2. After that Section 5.3 discusses the performance of implemented real
world application with comments from end users of the application. The examples
presented in this chapter are small compared to real world problem as computation
time required to solve a large problems with the initial model is too big. Also
visualization of the results is easier with smaller problems. The first example case
is used to investigate the effect of model splitting to both computation time and
solution optimality. We also discuss the effect of early stopping in the original and
separate models. In the second example case scheduling only bonding phase is
investigated. This is done by studying the effect of rolling horizon approach and
the computation time saved when using separate feasible solution finding model
proposed in Section 4.3. As a reference, Earliest due date first dispatching rule,
which is basically scheduling operation by their latest end times, is used in both
example cases. The rule of course results to worse schedules than production planners
would make but it gives us some value to benchmark the results of the MILP models.
Redeeming quality of this dispatching rule is that the resulting schedule is usually
feasible in terms of latest end times.

5.1 Example case: Effect of model splitting and early stop-
ping

The first example problem we consider is to schedule 15 bonding and 15 coating
operations with only one bonding and coating machine. There are a total of 27 jobs
of which 21 include a bonding operation and 21 include a coating operation. The first
operation is used as the starting operation in bonding machine i.e. it is the latest
operation that is already scheduled with end time of 0. Operation 27 is the first
operation at coating machine with end time of 40. All operations in this case have
same length of 10 hours. Table 3 presents detailed information about the jobs.

Table 3: Details of the jobs in the first example case

The operations row in the table tells which operations the job includes. B represents
bonding operation, C coating operation and BC both operations. End time row
describes the latest end time of the last operation in hours from the beginning. As
seen from the end times, jobs 2, 7, 12, 17 and 22 have to be done during the next
150 hours of bonding and coating. Therefore those operations are included in set of
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jobs with strict time limit JT L. Urgent jobs JU that should but does not have to be
included in the schedule are jobs 3, 4, 8, 9, 13, 14, 18, 19, 23 and 24. In case that the
job does not have bonding operation, start time row tells when the coating operation
can be started. Thickness row describes value of thickness related parameter Avj

and premium row describes the number of premium veneers used in the bonding
operation. In the example case thickness related value and premium veneer usage
is checked 3 times, after fifth, tenth and last scheduled bonding operation. The
maximum average hourly usage of premium veneers is 3 and the sum of thickness
values has to be between -3 and 6. The setup times between bonding and coating
operations used in this example case can be seen from Appendix B in tables B1 and
B2.

In this problem setup weight multipliers of objective function were chosen in a way
that bonding setups are weighted more than coating setups due to time lost in
bonding phase may result to lower overall production of the mill. Values of the
multipliers in objective function are: δ1 = 10, δ2 = 1, δ3 = 0.4, δ4 = 0.4 and
δ5 = 0.01.

The problem was solved using three different methods. First method was using the
original model described in Chapter 3. Next we solved the problem using separated
models where the bonding phase is solved first in own model and coating phase after
that based on the result of the first model. The last method used is widely known
dispatching rule "Earliest due date first". The rule is used to solve the bonding model
and after that the coating operations are scheduled based on earliest possible start
times given in Table 3 and obtained by adding 24 hours to end times of already
scheduled bonding operations which is required in Constraint C10 of the model.

Using these three methods we get the results in Table 4. As expected, the original
model results to best objective value but it takes most computation time to find
the optimum. In this case we stopped the calculation after 100 000 seconds and the
latest improvement was found after 40 000 seconds of computation time. However
there was still a 36,7 % gap between best bound that solver had proved and current
solution, which means that there may exist a solution with better value for objective
function.

Table 4: Solution times and value of the objective function using different models

Solution time Objective value
Original model >100 000s ≤ 17.098
Separate models 44.16s 17.942
Dispatching rule <1s 59.799
Original model with time limit 100s 22.098

By doing the model separation, the solver was able to give optimal solutions in
separate models in 24.33 and 19.83 seconds which in total is under 45 seconds. This
is a clear improvement in solution time compared to the original model but the value
of the objective function is slightly worse. However, in practice the difference of less
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than 0.9 in objective value means less than 1 more easy ten minute setup in bonding
phase or less than 1 hour more setups in coating phase.

As seen from the objective values in the result table, both of the models clearly
outperform dispatching rule which results to very high objective function value of
almost 58. This is even more than the first feasible solution found after 8 seconds
using original model which had an objective function value of 53. Therefore, the
dispatching rule should not be used in this case even though the computation time
of it is very small compared to optimization models.

Because solving original model to optimum is clearly not wise as it takes more than
a day to solve the problem, we compared the original model with early stopping to
separate models. We chose to give 100 seconds of computation time for the solver so
that it would be in same magnitude as computation time of separate models. As
seen from the result table, in 100 seconds the original model performed worse than
separate models. Actually, when the different factors in the objective function are
separated, separate models lead to better schedule in all of the factors. Still, the
solution was very good compared to dispatching rule. The original model required
1762 seconds of computation time to reach better solution than separate models,
which is almost 40 times the required computation time. If we used early stopping
rule for separate models, e.g. stop when the solution is not improved in 5 seconds, we
would have reached objective value of 18.109 in less than 15 seconds. This solution
is very close to one solved to optimum and we would have been able to save more
than 60% in computation time.

The schedules given by Original model with 100 seconds time limit, separate models
and dispatching rule are given in Appendix C where in tables C1 and C2 we can see the
operations selected to the schedule and the setup times between the operations.

5.2 Example case: Effect of rolling horizon, feasible solution
finding and early stopping at bonding optimization

The second example case is a problem of creating a bonding schedule with two
parallel bonding machines. The schedule should include 30 bonding operations on
each machine. There is total of 80 operations available with processing time of 5
hours. All of the operations cannot be performed on both of the machines as 20
of them can only be done on the first machine and 20 on the second. As in first
example case also in this there are average thickness related values and premium
veneer usage related values given for each operation. The detailed values and setup
times used are not highlighted here due to large problem size.

This problem differs from the bonding optimization of the first example case by
having the objective function that includes also deviation from optimal average
thickness which is seen in Equation (4.1) in Chapter 4.1. Here we want to penalize
more for deviating down from optimal average thickness as it may lead to bottleneck
in veneer production. Therefore the multipliers for those were chosen to be δ6 = 0.2
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and δ7 = 0.4. Other bonding related multipliers in objective function were same as
in the first example case.

Here we compared again three different methods to solve the scheduling problem.
First we started with bonding model that is separated from original optimization
model described in Chapter 4.1. Here based on results of the first example case
and knowing that the real world application has to produce schedules quickly, we
chose to use early stopping. For simplicity we used early stopping with strict time
limits of 50, 100 and 200 seconds. Also the effect of finding feasible solution first in
separate model was investigated as the problem size is now a lot larger than in the
first example case. Next the same model was solved in two rolling horizon periods
where in the first one 20 next operations for each machine are solved and 15 first
of those are saved. In the next period remaining 15 operations are scheduled for
each of the machines. The time limited and urgent order sets are modified in the
first sub-problem to match the approximated end time, which in this case is easy to
estimate as the operation lengths are constant. The computation time is limited to
half of the single model computation time for each of the rolling horizon periods for
solution to be comparable with the first method. Lastly we used modified Earliest
due date first dispatching rule to get a benchmark schedule. The rule with two
machines is very simple and is now working in following way:

1. Choose operation with earliest due date that can be bonded on first machine
and is not yet used. Save the selected operation and do the same on the second
machine.

2. If there is less than 60 operations scheduled go back to step 1

The objective function values with total computation times of 50, 100 and 200 seconds
are seen in Figure 7 for single model and rolling horizon approach. As seen from
the figure, using rolling horizon the solver is able to find very good solution quickly
compared to single model approach. By increasing the available computation time,
the objective value of rolling horizon approach only decreses by 0.4 from 20.4 to 20.0.
Solving the whole period in a single model should result to better objective function
value at the optimum, but 200 seconds was not enough to bypass the solution of
rolling horizon approach. Value of the objective function for single model was 68.4
at 50 seconds, 27.6 at 100 seconds and 20 at 200 seconds. The objective function
value with solution of Earliest due date first dispatching rule is 142.0. Compared to
that both of the optimization models result to very good schedules even with less
computation time available.

Even though based on Figure 7 rolling horizon seems to perform better than single
model, when increasing the available computation time enough, single model should
result to better solution. However, the time required for that depends on the problem
size. In practice we have noticed that finding even one feasible solution with very
difficult models may take several minutes but in very small models we should not
use rolling horizon approach as single model can take more operations in account
at the same time. Also if there are lot of time limited orders and there is not much



44

Figure 7: Values of objective function using rolling horizon and single model with
total computation time of 50, 100 and 200 seconds

flexibility in the schedule, finding the first feasible solution can take a long time.
Because of this we also investigated how much can we save time when using separate
model to find feasible solution. In this case the amount of time saved is not much as
the first solution is found in 4.36 seconds with single model. Using separate model
with simpler objective function and without constraints related to objective function,
the solver is able to find feasible schedule in 3.81 seconds which is only 13% less.
However, in practice we have noticed that it is useful to always use separate model
for finding feasible solutions as again with very temporally tight order backlog we can
save a lot of time and with easier problems it does not increase the total computation
time required.

5.3 Real world implementation and feedback from end users

The optimization model was implemented as a plugin to existing planning software
of UPM Plywood. The objective of the plugin is to give an initial schedule for
production planners to work with in a way that the schedule proposal is given quickly
enough for the plugin to be useful in daily planning work. At the same time the
proposed schedule should be good enough so that production planners can accept it
as a schedule to follow in production without any or with very few modifications to
implement.
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Because of the time requirement we knew that finding the global optimum is not
possible and the real world implementation had to use different solving approaches
described in Chapter 4 to reach good enough a schedule quickly. Different methods
used were selected by pre analyzing the orders e.g. the number of rolling horizon
periods depends on the estimated number of operations to schedule and the number
of operations that need strict time limit in the model. The actual optimization
models are solved on separate computing server that has more computational power
than the computer on which the examples in this paper are calculated. In this way
we usually need less computation time to reach a good solution and at the same
time the production server is not loaded by optimization solver. Current production
version of scheduling plugin is able to produce the schedule proposal in less than 15
minutes.

Based on discussions1 with end users, the scheduling tool was well received at the
case mill. The most important benefit of the tool is that it frees up work time of
the planners as it basically performs one of the important tasks in fine planning.
The end users mentioned that when they are making the weekly schedule, they take
into account the same factors that are used by the optimization model in objective
function and constraints e.g. average thickness and changes in product dimensions
that affect the setups times. Also the weekly schedule may be done faster with help
of the tool than only by hand.

Other important benefit of the model is the minimization of mistakes in the schedule.
When the scheduling tool makes a proposal and production planner reviews it, there
are basically two agents who have reviewed the order backlog. This is more than
currently as now the production planner is alone responsible that the current plan is
good and all the orders will be produced in time.

The end users were also pleased with the simple user interface and to the use logic of
the tool. They liked that the result of the model is not directly set as production
plan but can be reviewed before accepting or rejecting and the accepted plan can
be further developed by the user in an interface that they are already familiar with.
The interface was kept very simple e.g. starting optimization required only to select
the machines to include in optimization model.

This far the end users have been happy with the schedules proposed by the tool.
However, the tool has been in use at Joensuu mill only for a short period of time
and therefore the end users could not say for sure that current version of the tool is
producing good enough schedules reliably.

In the discussions, the end users also found a few weaknesses of the tool and areas of
development. Firstly if the schedule proposal is modified by the planner at multiple
parts of the schedule, it might be very difficult say that the average thickness and the
setups are still optimal during the whole week. Also in case of modifying the order
of bonding operations, the coating part should be simultaneously taken in account.

1Most of discussions happened with Petri Jormanainen who is a production planner at Joensuu
mill
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Therefore, expert knowledge is still needed even with help of the scheduling tool.
The end users also stated that current model might not work in temporally very tight
situations such as after strikes. In those situations they may not be able to produce
all orders in time and optimization model could not find any feasible solutions. Then
the scheduling problem should be formulated in a way that the lateness of orders
is minimized and at the same time the material usage is as close to the optimal as
possible to keep the production efficient.
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6 Conclusions

The primary objective of this thesis was to develop a optimization that creates a base
of the schedule for plywood production i.e. schedules bonding and coating phase
operations for the following week. A MILP formulation for the problem was very
computationally heavy and thus did not satisfy secondary objective that was to make
the optimization model fast enough to be useful for the planners. To address this we
introduced four different approaches that were used to reduce the computation time
required. Using all of these four approaches we were able to make a formulation that
produces a good initial schedule for planners in less than 15 minutes even with larger
and more difficult order backlogs.

As seen from results of example cases in Chapter 5, compared to well known dis-
patching rule, optimization models performed very well and thus optimization should
produce better schedules for selected machines than very rough heuristics that are
currently available in existing planning software. The benefit can most easily be seen
from Appendix C as the total time required to produce the operations was few hour
less on both bonding and coating machine using a schedule given by the optimization
models. Also, we noticed that in difficult problems the solver is able to find better
solutions more quickly with separated models and rolling horizon approach. However,
using, for example, too many rolling horizon periods might lead to models that will
not result to global optimum as they cannot take the whole scheduling period in
account. Therefore, the script that creates the models should carefully select the
amount of orders to schedule in each rolling horizon period. This problem could
also be addressed by introducing a term that assesses the goodness of remaining
operations into objective function but it was not implemented as it would have made
the model even more complex than it is now.

Based on feedback from the end users, we can clearly see that the scheduling tool is
very useful and creates a value for UPM Plywood by reducing the amount of work
time required to create a schedule and by decreasing the probability of mistakes when
production planner is creating the schedule. Therefore, we can be confident that
the end users will be using the tool in the future when they are creating production
schedules and so we also get more data on performance of the model. However, if
the results are excellent for long period of time, we must beware of planners trusting
the results too much and not reviewing them well enough. This is because the
model is always a simplification of a reality and it cannot take every variable into
account.

There is still a lot to improve and monitor in the current model that is implemented
in a production environment. Firstly, selection of suitable early stopping strategy
turned out to be very difficult task. As seen for example in Appendix A, the gap
between best bound found and current value of the objective function is still very
high when the optimum is found. Therefore, using gap based stopping criteria
was not suitable for the problem especially when there was high number of orders
that required strict time limit as in worst case this could cause a lot of unwanted
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computation time. In the end we chose to use the time based approaches mentioned
in Section 4.4.

The second problem that could be addressed was already mentioned in Section 3.2.4
about the possible problems of choosing too many operations of jobs with no coating
operation due to objective function in original model. This does not affect the current
solution in production environment as there the model is separated into two parts but
this might reduce the value of the conclusions we can make from the first example
case.

In case of very unequally sized orders we may have problems with the average thickness
and premium veneer usage related constraints. This is because the constraints are
placed after certain pre determined operation slots instead of exact times e.g. after
every two days of production. Thus, we cannot, for example, check the premium
veneer usage every two days of production but it is checked e.g. every 10 operations
on each of the bonding machines. Now in case that only large operations are set
to other machine and small ones for another, in a worst case the resulting schedule
may be unoptimal in terms of material usage. However, for simplicity we chose this
formulation as otherwise we would have had to model how much of each operation is
done before certain time limits. This would have led to a much more complex model
that does not meet the computation time requirements.

Lastly, there is still very little data available about the goodness of the schedules
proposed by optimization model because the plugin has been in production only
for a while. For example, weights of the objective function and suitability of some
constraints could be further studied. When we get more data from the production
use of the model, we could for example investigate which schedules are accepted
and which are rejected by the production planners and also study what kind of
modifications are made to accepted schedule proposals of the model.

This kind of optimization model could also be implemented on other mills of UPM
Plywood. Actually we implemented very similar models on two other mills simulta-
neously with Joensuu mill model. All the mills have special capabilities which leads
to different objectives and constraints for the schedules. Therefore, the optimization
model presented here might not be suitable in all mills and at least some investigation
must be made before applying it to other mills. However, for the two other mills
where the optimization model was also implemented, the model had many of the same
elements than the model presented in this paper and the modeling took considerably
less time. Also in the future the scheduling model could be expanded to contain other
production phases that have sequence dependent setup times and are not scheduled
in order that is solely dependent on bonding and coating phase. An example of these
phases are production phases of Maxi-sized veneers in Savonlinna mill which are
somewhat different compared to production phases of ordinary veneer products.
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A Gurobi log of coating model with real-world
data

The computation is made on laptop with Intel Core i5-4300U 1.9GHZ CPU and 4GB
of RAM.

Optimize a model with 15745 rows, 1848 columns and 49056 nonzeros
Variable types: 696 continuous, 1152 integer (1152 binary)
Coefficient statistics:

Matrix range [1e+00, 3e+02]
Objective range [3e-02, 7e-01]
Bounds range [1e+00, 1e+00]
RHS range [2e-01, 3e+02]

Presolve removed 4651 rows and 316 columns
Presolve time: 0.35s
Presolved: 11094 rows, 1532 columns, 70648 nonzeros
Variable types: 549 continuous, 983 integer (962 binary)
Presolved: 1532 rows, 12626 columns, 72180 nonzeros

Root relaxation: objective 1.419049e+00, 1348 iterations, 0.14 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 1.41905 0 85 - 1.41905 - - 0s
H 0 0 8.1514363 1.41905 82.6% - 0s

0 0 1.60992 0 84 8.15144 1.60992 80.2% - 0s
...

0 2 2.04562 0 139 8.13144 2.04562 74.8% - 4s
9 10 2.25480 5 115 8.13144 2.08482 74.4% 84.0 5s

H 29 30 7.8914363 2.08482 73.6% 80.9 5s
H 115 101 7.7114363 2.09798 72.8% 75.3 7s
H 145 119 7.2914363 2.09798 71.2% 79.6 8s

321 234 3.08615 13 102 7.29144 2.17184 70.2% 75.6 10s
...

963 613 3.35690 24 120 7.29144 2.47936 66.0% 82.2 60s
H 979 588 7.2414363 2.47936 65.8% 83.9 61s
H 1010 578 7.0414363 2.47936 64.8% 83.6 63s

1047 593 6.27187 25 108 7.04144 2.56729 63.5% 86.1 65s
H 1111 595 6.9414363 2.57428 62.9% 87.5 68s

1146 601 3.01968 21 118 6.94144 2.57593 62.9% 88.7 70s
...
13531 9179 4.39913 41 129 6.92144 3.13386 54.7% 122 465s
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13739 9306 5.90516 27 120 6.92144 3.13844 54.7% 122 472s
H13754 9280 6.8214363 3.13844 54.0% 122 472s
13813 9306 4.34729 37 109 6.82144 3.13907 54.0% 122 478s
14004 9446 5.75852 24 106 6.82144 3.14736 53.9% 123 484s

...
132801 70914 cutoff 85 6.82144 4.37227 35.9% 292 10004s
133001 71029 5.86582 81 145 6.82144 4.37340 35.9% 292 10019s

H133131 71127 6.8214346 4.37340 35.9% 292 10019s
133257 71202 4.98629 41 158 6.82143 4.37431 35.9% 292 10036s
133446 71324 5.48322 67 178 6.82143 4.37498 35.9% 292 10052s
133598 71385 5.82554 63 167 6.82143 4.37541 35.9% 293 10067s

...
1327852 730 cutoff 84 6.82143 6.78248 0.57% 352 115515s
1328026 574 cutoff 45 6.82143 6.78943 0.47% 351 115533s
1328173 446 cutoff 40 6.82143 6.79453 0.39% 351 115535s

Cutting planes:
Gomory: 16
Cover: 795
Implied bound: 144
Projected implied bound: 23
MIR: 630
Flow cover: 1227
Inf proof: 2
Zero half: 192

Explored 1328677 nodes (466793385 simplex iterations) in 115539.69 seconds
Thread count was 4 (of 4 available processors)

Solution count 10: 6.82143 6.82144 6.82144 ... 7.04144

Optimal solution found (tolerance 1.00e-04)
Best objective 6.821436285168e+00, best bound 6.821434558264e+00, gap 0.0000%
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B Setup times between bonding and coating op-
erations in first example case

Table B1: Setup times between bonding operations of the jobs in the first example
case

Table B2: Setup times between coating operations of the jobs in the first example
case



55

C Results from the first example case using dif-
ferent models

Table C1: Bonding schedule using original model with 100 seconds time limit up,
separate models in the middle and dispatching rule at the bottom. Red colour
represents setup time

Table C2: Coating schedule using original model with 100 seconds time limit up,
separate models in the middle and dispatching rule at the bottom. Red colour
represents setup time
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