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Technical systems consist of many components, which need maintenance for the
system to operate reliably. The maintenance of components usually involves dif-
ferent costs. In addition, economic and structural dependencies can affect the
total maintenance costs and the optimal maintenance decisions. Previously ef-
ficient maintenance scheduling policies for such systems have been solved with
simulation or with rolling horizon approaches that take the reliability of the sys-
tem poorly into account.

This thesis develops a solution method for optimal maintenance scheduling of
a multi-component system with economic and structural dependencies. These
dependencies are modeled with a directed graph. We assume pre-defined main-
tenance instances where we can only replace components. The failures of com-
ponents are modeled with probability distributions. Every component is critical.
These assumptions lead to a discrete time Markov decision process where the
state of the system depends on the ages of the components and the failure state
of the system. We emphasize system reliability by setting a reliability threshold.
The reliability threshold, structural dependencies and the need to replace failed
components define feasible maintenance action portfolios. We then apply policy-
iteration algorithm to find the cost optimal maintenance portfolio for every state
of the system.

When the model is applied to maintenance scheduling problems of different sizes,
we notice that solution times of the algorithm depend heavily on the size of the
state space. Also, other model parameters, like the set-up cost, can have an im-
pact on the computation time of the policy iteration algorithm. We also apply
the model to a case example with four components and show how consideration
of different maintenance intervals and reliability thresholds provides valuable de-
cision support for maintenance planning and how our model can lead to cost
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Tekniset järjestelmät koostuvat usein monista komponenteista, jotka tarvitse-
vat huoltoa, että järjestelmä voi toimia luotettavasti. Komponenttien huoltoon
liittyy usein erilaisia kustannuksia. Lisäksi taloudelliset ja rakenteelliset riip-
puvuudet voivat vaikuttaa huoltokustannuksiin. Aikaisemmin tämäntyylisten
järjestelmien huollonajoitusstrategiat on ratkaistu simuloimalla tai liikkuvan ho-
risontin lähestymistavoilla. Ne ottavat jäjestelmän luotettavuuden yleensä huo-
nosti huomioon.

Tässä opinnäytetyössä kehitetään malli huollon aikatauluttamiseksi monikom-
ponenttijärjestelmälle, jolla on taloudellisilla ja rakenteellisilla riippuvuuksia.
Näitä riippuvuuksia mallinnetaan suunnatulla graafilla. Malliin oletetaan ennalta
määritellyt huoltoajankohdat, joissa vain komponenttien uusiminen on mahdol-
lista. Komponenttien vikaantumisaikoja mallinnetaan todennäköisyysjakaumilla.
Jokainen komponentti on kriittinen. Oletusten pohjalta järjestelmää mallinnetaan
diskreetin ajan Markovin päätösprosessina, jossa järjestelmän tila riippuu kompo-
nenttien i’istä ja järjestelmän vikatilasta. Järjestelmän luotettavuuden merkitystä
korostetaan luotettavuuskynnyksellä. Luotettavuuskynnys, rakenteelliset riippu-
vuudet ja tarve uusia vikaantuneet komponentit rajaavat käypiä huoltotoimen-
pideportfolioita, joista kustannustehokkain vaihtoehto jokaiselle tilalle etsitään
käyttäen ohjauksen iterointialgoritmia (engl. policy iteration).

Mallia sovellettiin erikokoisiin huollonajoitusongelmiin. Huomattiin, että algo-
ritmin ratkaisuajat riippuvat suuresti tila-avaruuden koosta. Myös muut mal-
lin parametrit, kuten huollon aloituskustannukset, voivat vaikuttaa algoritmin
laskenta-aikaan. Mallia sovellettiin myös esimerkkijärjestelmään, jossa on neljä
komponenttia. Erilaisten huoltovälien ja luotettavuuskynnysten huomioon otta-
minen tarjoavat arvokasta tukea huoltotoimenpiteiden päätöksentekoon. Lisäksi
malli tarjoaa kustannussäästöjä verrattuna yksinkertaisiin opportunistisen huol-
lon käytäntöihin.

Asiasanat Ylläpidon ajoittaminen, monikomponenttijärjestelmä, huolto-
portfolio, Markov päätösprosessi, ohjauksen iterointi
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Chapter 1

Introduction

Technical systems consist typically of many components. For example, a
car with a combustion engine has pistons, cylinders, valves, tyres, breaks,
lights, windows and many more components. These multi-component sys-
tems should operate reliably. The car should not break down during high
speeds which can cause a serious accident. However, in the long run, compo-
nents wear out causing the reliability of the system to decrease. For example,
tyres wear off when driving which makes them more prone to burst suddenly.
In the end, the multi-component system needs maintenance to stay in an
operating condition.

Maintenance usually involves different kinds of costs, including fixed costs for
maintenance set-up, component specific costs, shutdown costs and downtime
costs. Components can also have economic dependencies which affect total
maintenance costs. In addition, components can have structural dependen-
cies, which either limit the number of feasible maintenance alternatives, or
affect the performance of the system for example via reliability. Lastly, com-
ponents can have stochastic dependencies which means that the condition of
one component can affect the condition of another one for example when it
fails. As a result, maintenance scheduling of a multi-component system is
not an easy task.

Maintenance scheduling should focus on the whole system as well as on the
individual components and their interactions. The key question is how to
schedule maintenance in the long run when the maintenance decisions influ-
ence the state of the system and its future wear-off. The schedule should
keep costs low and reliability high, in other words balance between under-
and over-service. Under-service makes the maintained system more prone to
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CHAPTER 1. INTRODUCTION 2

failures and over-service consumes unnecessary resources.

One approach to maintenance scheduling of a multi-component system is to
minimize maintenance costs subject to some chosen measures of system reli-
ability (Wang, 2002). In practice, maintenance scheduling is often based on
first solving the optimal maintenance activities of single components and then
grouping them in an efficient way by taking advantage of the system’s cost
structure (e.g. Wildeman et al., 1997; Van Horenbeek and Pintelon, 2013; Vu
et al., 2014). This grouping is based on economic dependencies. Structural
dependencies are mainly included from a performance perspective, meaning
that maintaining a group of components may require shutting down the sys-
tem which increases maintenance costs (e.g. Van Horenbeek and Pintelon,
2013; Nguyen et al., 2015). Also the reliability of the system is considered
poorly. The maintenance scheduling aims to minimize maintenance costs
caused by failures rather than minimize the number of failures itself. This is
good from the economical point of view but it may harm the reputation of
the company.

In reality, there can also exist structural dependencies, which limit the num-
ber of possible maintenance alternatives. These should be taken into account
when scheduling maintenance activities. Geng et al. (2015) include these
kind of structural dependencies in their model by making them cause extra
maintenance costs. Nguyen et al. (2015) consider the number of failures by
introducing a reliability threshold to ensure the operation of the system with
some probability until next possible maintenance instance. Both of these
models are solved with simulation which means other methods are needed to
expand the knowledge.

One interesting direction is a Markov decision process where analytical meth-
ods can be used to find optimal solutions. Policy-iteration has been part of
the maintenance literature for example with single components (e.g. Chan
and Asgarpoor, 2006) and special multi-component systems, like two compo-
nent series system (van der Duyn Schouten and Vanneste, 1990). However,
it is a potential approach to use also with more complex systems.

This thesis develops an optimal maintenance scheduling method for a multi-
component system with economic and structural dependencies. These de-
pendencies are modeled as a directed graph which allows to model economic
dependencies in more detail than many previous models. The components
wear out in time and fail more likely at an older age. The failures of compo-
nents are modeled with probability distributions. Every component is critical
meaning if one component fails the whole system fails. The risk of system
failure is controlled with a reliability threshold chosen by the decision maker.
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The only possible maintenance action is to replace a component into a new
one which takes a negligible amount of time. Broken components are always
replaced but it is also possible to replace older, working components. The
replacements of components are only possible at pre-defined maintenance
instances.

The system and the maintenance decisions are presented as a Markov deci-
sion process. At every maintenance instance we know how old the current
components are and which component has failed. Based on this state of the
system, we choose a maintenance action portfolio, which tells which com-
ponents are replaced, among the feasible maintenance portfolios which take
structural dependencies into account, replace broken components and keep
the reliability of the system above the threshold. The objective is, for every
state, to find a maintenance portfolio which minimizes the total maintenance
costs in the long run. This optimal maintenance policy is found with dynamic
programming, more precisely with policy-iteration.

The rest of the thesis is organized as follows. Chapter 2 introduces the key
concepts used in the maintenance scheduling literature and presents different
maintenance models related to these concepts. Chapter 3 presents the main-
tenance scheduling model, assumptions and methods for solving the model.
Chapter 4 demonstrates the convergence of the solution method in different
situations. In Chapter 5 we solve a maintenance scheduling problem for a
case example and compare the model’s results to a simpler maintenance pol-
icy. Chapter 6 discusses the model’s strengths and weaknesses. In Chapter
7 we draw conclusions and suggest further development ideas.



Chapter 2

Background

Maintenance scheduling research uses mostly model based, computational
approaches. The models are typically case-specific, but they often have com-
mon structures. These structures are presented in this chapter. The focus
here is on a system which consists of many components. The condition of the
component can be modeled as a binary or a multi-state variable, meaning
that the component can either work or not (e.g. Vu et al., 2014), or it can
have multiple working states (e.g. Chan and Asgarpoor, 2006).

2.1 Multi-component systems

The maintenance scheduling of a multi-component system is more complex
problem than of a single component system due to two primary reasons:
system structure and dependencies between components. First, the system
structure means that the configuration of components can be any mixture of
basic connections (e.g. series, parallel). These connections affect for example
the reliability of the system (Nguyen et al., 2015). Second, Thomas (1986)
presents three general categories for dependencies between components: eco-
nomic, structural and stochastic dependence.

Economic dependence can be positive or negative (Nicolai and Dekker, 2008).
Positive economic dependence implies that maintaining a group of compo-
nents simultaneously is cheaper than maintaining them separately. This
can happen if the maintenance set-up costs are relatively high compared to
component specific maintenance costs. In contrast, negative economic de-
pendence exists if joint maintenance of components is more expensive than
maintaining them separately. This can happen for example if maintaining a
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CHAPTER 2. BACKGROUND 5

single component is possible without shutting down the system. Economic
dependence is common in most continuously operating systems like aircrafts,
ships, power plants, telecommunication systems, chemical processing facili-
ties and mass production lines (Wang, 2002).

Structural dependence means that some components cannot be maintained
independently, but always at the same time (Nicolai and Dekker, 2008). In
practice this means that some operating components have to be dismantled
or even repaired before other components can be maintained.

Stochastic dependence implies that the state of one component can influ-
ence the state of some other component. According to Nicolai and Dekker
(2008) this is usually modeled as a failure dependence. In practice, failure
dependence between two components can be presented so that the failure of
one component can cause the failure of the other component with a certain
probability, or it can cause a shock which alters the failure rate of the other
component.

These categories have been developed further to meet the modern develop-
ments in the maintenance literature. Keizer et al. (2017) present the fourth
category, resource dependence, where components have e.g. shared spares,
tools or maintenance workers. They also distinguish structural dependence
between technical and performance structural dependencies. The technical
part refers to the previous definition of structural dependency and the perfor-
mance part refers to different component configurations like series, parallel
and k-out-of-N which have an effect on the reliability of the system.

2.2 Deteriorating systems

Rausand and Høyland (1994) present the concepts needed to describe the the
deterioration of the system. The reliability of a system is defined as its ability
to perform the required function under prevailing operational conditions and
for a stated period of time. The improvement of system reliability is one of the
primary objectives of maintenance. Many ‘high-risk’ industries (e.g. aviation,
defence, nuclear power) have implemented a reliability-centered maintenance
methodology. Failure is defined as the termination of the system’s ability to
perform the required function. The failure of the system can be represented
with a binary number which tells does the system operate (1) or not (0).

Time to failure is the time elapsing from starting the component as new until
it fails for the first time. Because time to failure is subject to randomness,
it is natural to model it as a random variable. For modeling purposes it
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is customary to assume a suitable probability distribution (e.g. exponential,
gamma, Weibull) to model the time to failure. These distributions define
failure probabilities of components for different times. If the system structure
is known it is possible to define the failure probability of the system from
these distributions. Then the mathematical definition for reliability is the
probability of system not failing until certain age. Failure rate represents
the probability of how likely a component of certain age will fail per unit of
time. This can be seen as a conditional time to failure. Many maintenance
scheduling models assume an increasing failure rate with respect to time.
This corresponds to the fact that wear out of components makes components
and system more subtle to failures. Residual life tells the expected remaining
life of the component of certain age.

2.3 Maintenance costs

One of the key objectives for maintenance scheduling is to minimize mainte-
nance cost of the system. The cost structure of a multi-component system
can be quite complex. Common costs to be modeled include (e.g. Nguyen
et al., 2015):

• Set-up cost is a fixed cost which is paid every time the system is main-
tained (Wildeman et al., 1997). The set-up cost is a system-dependent
cost and covers all the maintenance preparations.

• Component specific cost is the cost of maintaining a specific component
of the system. A component can have both a corrective maintenance
cost, which is paid if the component has failed before maintenance, and
a preventive maintenance cost, which is paid if the component works
when maintained. These can be different for a component, as repairing
an already broken component can be more expensive than preventive
maintenance.

• Shutdown cost models the cost of shutting down the system for main-
tenance. Shutdown can be planned or unplanned because of a sudden
failure. Usually an unplanned shutdown cost is more expensive than a
planned one.

• Downtime cost differs from shutdown cots in that it also takes into
account the duration of maintenance when modeling production losses.
Do Van et al. (2013) use the term unavailability cost.

Less common maintenance costs are for example disassembly cost (Dao and
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Zuo, 2017) when the disassembly work is separated from other maintenance
activities and its duration is taken into account. Another one is component
specific inspection cost (e.g. Castanier et al., 2005), when the condition of
the component is inspected. This allows knowing the state of wear for the
component and to help decide whether or not to maintain it.

2.4 Maintenance scheduling policies

Maintenance policies are rules for scheduling maintenance of different com-
ponents in different scenarios. These policies tell which maintenance actions
should we do for the components. Usually actions are decided upon a con-
tinuous time line (e.g. Wildeman et al., 1997) or during discrete maintenance
instances (e.g. Nguyen et al., 2015).

Possible maintenance actions can be component or system-specific. Moghad-
dam and Usher (2011) assume three types of actions. The first possibility is
to do nothing. In that case the components continue to age normally from
their current state. Second, components can be partially maintained. This
places the state of the component to somewhere between the states ‘good-as-
new’ and ‘bad-as-old’. The third possibility is to do renewal which replaces
the component by a new one and also restores the state of the component
to ‘good as new’. If all components of the system are replaced, it restores
the state of the system also to ‘good as new’. Actions two and three are also
known as imperfect and perfect maintenance actions, respectively (Do et al.,
2015a).

Maintenance scheduling policies can be divided into different categories.
Bevilacqua and Braglia (2000) present five alternatives:

1. Corrective maintenance is applied to a system only after it has failed.
Corrective maintenance can be based on either imperfect or perfect
maintenance actions (e.g. Van Horenbeek and Pintelon, 2013).

2. Preventive maintenance is based on information about the system’s
reliability. This makes it possible to analyze the behaviour of system
and determine a series of actions to maintain the system in best possible
ways.

3. Opportunistic maintenance is based on using upcoming maintenance
operations as opportunities to maintain also something else. For ex-
ample, if a system fails due to one component, and another component
is close to its preventive maintenance threshold, it can be cheaper in
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the long run to maintain both components at the same time.

4. Condition-based maintenance is based on monitoring the system and
making decisions for preventive maintenance based on the observed
data.

5. Predictive maintenance takes the idea of condition-based maintenance
further and predicts failures based on the observed data. Maintenance
scheduling decisions are based on that prediction.

The relationship between maintenance policies and actions can be clarified
with examples such as age replacement policy and block replacement policy.
Ab-Samat and Kamaruddin (2014) define the age replacement policy as fol-
lows: a component is replaced if it has reached a certain age without failures
or when it fails, whichever happens first. Thus, this policy can be categorized
to be preventive maintenance. In block replacement policy some components
form a block and when one of those components needs replacement, other
members of the block are replaced as well. Therefore, block replacement pol-
icy can be categorized to be a combination of preventive and opportunistic
maintenance.

According to Ab-Samat and Kamaruddin (2014), the origins of opportunistic
maintenance policy can be attributed to age and block replacement policies.
They also present some benefits and drawbacks of the opportunistic main-
tenance policy. The benefits are that the policy reduces failures, lowers
maintenance costs and increases lifetime of the system. The drawbacks are
the difficulties of determining when to maintain the system, how to avoid
under and over maintenance, and how to make sure there are enough spare
parts and work force available if a sudden opportunity arises.

Other examples are minimal repair policies and cannibalization (Cho and
Parlar, 1991). Minimal repair policies usually follow a periodic replacement
policy where, instead of replacing a component upon failure, it is minimally
repaired to gain cost advantage. The periodic replacement is interpreted as
preventive maintenance. Cannibalization is a rule of interchanging working
and failed components among systems to maximize the number of operating
systems. It is the only replacement policy which is possible when new spare
parts are unavailable.
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2.5 Maintenance scheduling criteria

The optimal maintenance scheduling policy of the multi-component system
is based on different criteria. Wang (2002) presents four possibilities:

1. Minimize system long-term average maintenance costs.

2. Maximize the system reliability measures.

3. Minimize system long-term average maintenance costs subject to the
system reliability measures.

4. Maximize the system reliability measures subject to maintenance cost
requirements.

Wang (2002) also points out two relevant remarks. First, many models find
the optimal maintenance scheduling by minimizing system maintenance cost
rate and not taking reliability performance into account. As a result, the
policy causes the system reliability to be unacceptable in practise. Second,
maintenance models should not assume negligible maintenance durations be-
cause it gives unrealistic reliability measures.

Opportunistic maintenance policies can answer to the scheduling criteria pre-
sented by Wang (2002). The opportunistic maintenance policies of the multi-
component systems are usually based on different age thresholds values. The
basic idea is that, in the case of failure, other than broken components are also
maintained, if their ages exceed the threshold. Wang (2002) presents differ-
ent practical approaches how to create these thresholds. According to Geng
et al. (2015) these policies were long based only on economic dependence.
Geng et al. (2015) present a model considering both economic and structural
dependence where structural dependence affects both the maintenance costs
and maintenance durations and where the goal is to find opportunistic main-
tenance age thresholds which minimize total maintenance costs. They use
Monte Carlo simulation to find these thresholds.

In later studies, the expected maintenance costs have been minimized as such
or under different constraints (see Geng et al., 2015). For example, Nguyen
et al. (2015) apply a reliability constraint and Do et al. (2015b) an availability
constraint. Reliability is usually based on a failure rates of the components.
These can be for example a Weibull distribution (e.g. Do et al., 2015b) or
a homogeneous gamma stochastic process (e.g. Nguyen et al., 2015). The
use of availability constraints, on the other hand, requires that maintenance
durations of system and its components are included in the model. It is also
possible to swap the objectives and constraints of the model, and for example
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maximize system availability subject to a maintenance budget constraint.
Dao and Zuo (2017) maximize the reliability of the system under budget and
time constraints. They also model structural dependencies with a directed
graph which tells how the system must be dismantled if something needs
to be maintained. However, their approach considers only one maintenance
instance at a time.

In addition to cost minimization related objectives, some multi-objective ap-
proaches have been presented. Jiang and Ji (2002) provide a multi-attribute
value model to evaluate the performance of an age replacement policy. They
consider four attributes, cost, availability, reliability and lifetime and de-
velop performance measures to obtain the overall performance. Moghaddam
and Usher (2011) use multi-objective optimization to minimize maintenance
costs and maximize system reliability. Bevilacqua and Braglia (2000) use the
Analytic Hierarchy Process to select the best possible maintenance strategy.

Cho and Parlar (1991) point out that it is possible to consider models with
incomplete information. Either the lifetime distribution, current state or the
cost structure of the system can be unknown.

2.6 Solutions for scheduling models

This section explains how some the scheduling models of multi-component
systems are solved in practice. The focus is on grouping and dynamic pro-
gramming. When it comes to grouping maintenance activities, the rolling
horizon approach has received much attention in the area of maintenance re-
search. Markov decision processes are widely used for maintenance schedul-
ing from the area of dynamic programming,.

2.6.1 Maintenance action grouping

Doing more than one maintenance action at the same time is called grouping.
Grouping takes advantage of opportunistic maintenance policy and positive
economic dependencies between components to obtain cost efficient mainte-
nance plans. In practise this means that the cost savings define whether a
maintenance of one components serves a good enough opportunity to main-
tain other components as well.

According to Chalabi et al. (2016) three different types of maintenance group-
ings are studied in the literature: long-term (static), medium-term (dynamic)
and short-term (opportunistic) grouping. Pargar et al. (2017) explain these



CHAPTER 2. BACKGROUND 11

as follows. Static grouping is based on a stable situation with static grouping
rules over the planning horizon. The rules are based on predefined preven-
tive maintenance policies of components. In dynamic grouping, medium-term
information about the components’ residual life can be used to adapt main-
tenance scheduling. It is possible to dynamically group planned preventive
maintenance activities with each other and with planned corrective mainte-
nance activities. In opportunistic grouping, short term information (e.g. fail-
ures) are taken into account which makes it possible to group preventive
maintenance activities with unplanned corrective maintenance activities.

Rolling horizon is the main approach used in the dynamic maintenance group-
ing models (Pargar et al., 2017). Rolling horizon means that we look at the
maintenance of the system a finite horizon into the future. During that hori-
zon we plan future maintenance decisions in the most effective way. Then the
system is maintained according to these plans until the situation is changed
so that new planning horizon is needed. The system rolls on according to
these horizons.

Wildeman et al. (1997) present the first rolling horizon approach to find op-
timal maintenance planning in terms of maintenance costs. This approach
has five phases. First the decomposition phase creates an individual mainte-
nance rule for each component. This rule tells the age at which a component
should be maintained if minimizing long term average maintenance costs
with an infinite planning horizon. In phase two, a penalty function is defined
for each component. It tells the expected additional cost if a component is
not maintained according to rule defined in phase one. This additional cost
can be associated with wasting residual life if the component is maintained
early, or adding risk of failure if the component is maintained late (Bouvard
et al., 2011). In the tentative planning phase, a finite planning horizon is
assumed and the necessary maintenance actions (based on the current ages
of components and results of phase one) are located within the horizon. In
the maintenance activities grouping phase, the previously defined mainte-
nance actions are grouped by moving maintenance actions in time within the
planning horizon. The optimal grouping structure maximizes maintenance
cost savings which result from reduced number of set-up costs minus penalty
costs (phase two). Phase five is the rolling horizon step where the created
maintenance plan is executed. If the state of the system evolves unexpectedly
or a new planning period is needed, the process continues again from phase
three.

The rolling horizon approach of Wildeman et al. (1997) has been developed
further by minimizing maintenance costs under different extensions of the
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model. Bouvard et al. (2011) use inspection dates to take component wear
out into account when deciding whether to advance or delay maintenance
activities when also guaranteeing a minimal operation time between consec-
utive maintenance instances. Do Van et al. (2013) expand the rolling horizon
model by considering the duration of maintenance activities and possibility
of maintaining same component multiple times during the planning horizon.
They also take into account available short-term information by modeling
upcoming inactivity periods as maintenance opportunities. They notice that
grouping increases cost savings the more the bigger is the set-up cost.

Van Horenbeek and Pintelon (2013) incorporate predictive information in the
form of remaining useful life, imperfect maintenance and maintenance down-
times as extensions into the rolling horizon model. They also model partial
dependencies by including a dependence parameter which scales the set-up
cost savings when grouping maintenance activities. Do et al. (2015b) model
rolling horizon maintenance with availability constraint by bounding the du-
ration of maintenance actions. They also constrain the number of allowed
maintenance teams, which affect the duration of maintenance operations.
Vu et al. (2014) expand the system structure from series to series-parallel.
The maintenance optimization of this more complex system leads to an NP-
hard problem which is too complicated for the dynamic grouping algorithm,
wherefore they use a genetic algorithm to solve the model.

When using finite horizon and rolling horizon maintenance models, Wilde-
man et al. (1997) say that short-term horizons should include some kind of
residual value of the system. In other words, the state of the system at the
end of the planning horizon should be taken into account when deciding be-
tween different maintenance schedules. Dekker et al. (1996) give examples of
how different definitions of residual values affect the maintenance scheduling
policies. Wildeman et al. (1997) have taken the residual values into account
because the penalty functions give indicators how short-term decisions influ-
ence future cost.

2.6.2 Dynamic programming

Dynamic programming (Bellman et al., 1957) is a mathematical optimization
method which simplifies a complicated problem by breaking it down to into
simpler sub-problems in a recursive manner. Dynamic programming prob-
lems are sequential decision problems where decisions change the state of the
system, hence affecting future decision (Powell, 2007). The goal is to find
a sequence of decisions which optimize some chosen quantity, for example
minimize costs.
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Dynamic programming problems are usually easy to formulate but hard to
solve. The system has states and state transition probabilities which depend
on the current state and the decision made in that state. But if the number
of states or decisions is large, the number of different scenarios of the system
grows very quickly. This is known as the curse of dimensionality, which makes
the finding of an exact solution computationally heavy or even impossible.
To get rid of this problem it is possible to use approximative methods, a
field known as approximated dynamic programming (Powell, 2007). These
methods include for example value-iteration and policy-iteration.

Approximated dynamic programming has been used to solve maintenance
scheduling problems. Love et al. (1982) use Howard’s (1960) policy-iteration
algorithm to determine repair limits of vehicles according to their condition.
The repair limit problem is modeled as a Markov decision process. They show
that the condition based policy works much better than a simple age or milage
based policy. Similarly, van der Duyn Schouten and Vanneste (1990) consider
a cost optimal maintenance policy of a two component series system. They
say it is possible to solve the maintenance policy of the system by assuming
a Markov decision process which is solved with value or policy-iteration.
However these approaches have two drawbacks. Either these methods are
time consuming for bigger problems or the obtained results, state specific
policies, are hard to interpret. Thus, they present a (n,N)-policy with is an
approximated version and gives a close to optimal average maintenance cost.
In (n,N)-policy a component is replaced if it has failed or reached the age
N and, if something is replaced, other components, whose age is at least n,
are opportunistically replaced as well.

Chan and Asgarpoor (2006) use policy-iteration to find a cost optimal main-
tenance policy for a component that can fail randomly or due to deterioration.
The component is modeled with a Markov decision process in continuous time
and the objective is to maximize earnings which are dependent on the state
of the component. Kyriakidis and Dimitrakos (2006) introduce a Markov de-
cision model for the optimal preventive maintenance of an installation that
supplies a raw material to a production unit. The installation deteriorates
and there is a buffer between the installation and the production unit to cope
with unexpected failures of the installation, which may cause interruptions
of the production process. They use techniques from Markov decision theory,
based on policy-iteration, and show that, for fixed age of the installation and
fixed buffer level, the policy that minimizes the expected long run average
cost per unit time is of control limit type.
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2.7 Conclusions of the chapter

The maintenance scheduling of a multi-component system is not easy. As we
have noticed different scheduling models introduce many aspects to consider.
Do we have a continuous time line or discrete maintenance instances? How
do we model components and which dependencies are included? What is the
cost structure of the system? What are the objectives and constraints when
optimizing maintenance scheduling? The chosen approach should answer
these questions.

It also seems that it is important to minimize maintenance costs subject to
the system reliability measures. The rolling horizon approach (Wildeman
et al., 1997) is based on first minimizing the expected maintenance costs of
a single component. However, this approach does not limit the reliability of
the system and thus the operation of the system can become uncertain. This
is sometimes unacceptable in practise. However, the ideas of grouping and
using opportunities wisely seem important for good maintenance scheduling
practises. It also seems that dynamic programming can be used to find good
ways to group maintenance operations. As a result, it seems that there are
good approaches for maintenance scheduling but what is missing is a model
that combines them effectively.

Next we develop a new maintenance scheduling model. We move the focus
from component level to system level by applying the Markov decision process
and dynamic programming instead of the rolling horizon approach. We also
define a reliability threshold similar to Nguyen et al. (2015). As a result,
our model will consist of states where the reliability of the system is always
high enough. From this model, we will get maintenance recommendations
for every state of the system and we can prove that these recommendations
are cost optimal. This is a big advantage when we compare this method to
simulation.

In addition, we make planning of maintenance activities easier in practise
by using discrete maintenance instances where we can only replace compo-
nents. Also, it should be reasonable to assume that time between consecutive
maintenance instances is much longer than replacement durations, so it not
necessary to model shutdown costs. Therefore, we only include the set-up
cost and component specific costs in the model.



Chapter 3

Optimization model for mainte-
nance scheduling

This chapter explains the model developed in the thesis in detail. First,
we present the system as a directed graph and form the maintenance cost
structure of the system. Then, we explain how the system evolves over time
and how the reliability of the system is defined. We then define maintenance
action portfolios and their feasibility. After that, we combine these concepts
into a Markov decision process and show how to find optimal maintenance
policies using policy-iteration algorithm and discounted policy-iteration al-
gorithm.

3.1 System structure and cost assumptions

The system consists of n components, denoted by N = {1, ..., n}. For the sys-
tem to operate, every component must operate. Components fail according
to some known probability distributions. We assume that only one compo-
nent can fail at a time. Additionally, components can only be replaced into
new ones. The replacements are carried out during predefined maintenance
instances at times tk+1 = tk + ∆t, k ∈ N, with a constant ∆t > 0 known
as maintenance interval. The maintenance interval can be measured, for
example, in time, working hours or distances. If a component fails during
(tk, tk+1) it is replaced into a new one at the next maintenance instance tk+1.
It is also possible to replace working components preventively. The time du-
rations of maintenance instances are assumed to be negligible meaning the
replacements do not take much time in practice.

15
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The last replacement time of each component is known. Specifically, let
τ ∈ Rn represent a maintenance history where τi is the last replacement
time of component i. In addition, the ages of the components at maintenance
instance tk are collected in ak = tk − τ ∈ Rn.

There are no stochastic dependencies between components, which means
components wear off and fail independently of each other. However, eco-
nomic and structural dependencies between components exist. Economic
dependencies mean that the replacement costs depend on the combination
of replaced components. Structural dependencies mean that maintaining a
component can require simultaneous maintenance of some other component.

These dependencies between components are modeled with a directed graph,
denoted by G = (V,A), where V = {0} ∪ N is the set of nodes and A
is the set of directed arcs (i, j) with the start node i and the end node
j. The node 0 is the root node of the graph. It represents the start of
the maintenance session and includes a fixed set-up cost c0, which is paid
every time maintenance actions are carried out. It is noteworthy that a
maintenance instance does not incur costs, if no components are replaced.
Other nodes represent replacements of the components. The weight cij of arc
(i, j) is the cost of replacing component j on the condition that component i
is also replaced. In practise this means that, for example, if a component is
connected to root node, it can be replaced independently of other components
but otherwise a component with an arc to the target component has to be
replaced also.

Consider the 5-component-system presented in Figure 3.1. We will use this
example throughout this chapter. In this case component 2 is not replaceable
without also replacing component 1. Furthermore, it is cheaper to replace
component 5 if component 4 is also replaced because c45 = 120 < 190 = c05.
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Figure 3.1: Example of a system of five components and corresponding costs
of cij

If component i is replaced due to its failure, then a component-specific cor-
rective replacement surplus cost ri is paid. These surpluses include both a
corrective maintenance surplus for the set-up cost cCM

0 ≥ 0 and a component
specific surplus costs cCM

i ≥ 0:

ri = cCM
0 + cCM

i ∀i = 1, ..., n. (3.1)

The corrective maintenance set-up cost cCM
0 can be interpreted for example

as an extra cost of using a backup system to cover the demand of the system
until the next maintenance instance. The component specific surplus costs
cCM
i are extra work resulting from failure. In practise, it can mean that the
system must be properly tested after replacing a failed component or that
replacing a failed component requires more work than replacing a functional
one.

For the system presented in Figure 3.1, we assume set-up cost c0 = 60 and
corrective replacement surpluses r = (120, 90, 85, 70, 90)T .

3.2 Modeling the evolution of system

During each maintenance interval ∆t the states of the components evolve
by either ageing or failing. The age of the component i at maintenance
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instance tk is (ak)i = tk − τi. The failure time of each component tfi follows
its own probability distribution, modeled with probability density function
(PDF) fi((ak)i). The cumulative distribution function (CDF) Fi((ak)i) =∫︁ (ak)i
−∞ fi(t) dt tells the probability that the component will fail before the age
(ak)i.

If component i operates at maintenance instance tk, having age (ak)i = tk−τi,
then it operates until tk+1 with the conditional probability

P i
k

(︂
tfi > tk+1|tfi > tk

)︂
=

P i
k

(︂
tfi > tk+1

)︂
P i
k

(︂
tfi > tk

)︂ =
1− Fi(tk+1 − τi)

1− Fi(tk − τi)

=
1− Fi((ak)i +∆t)

1− Fi((ak)i)

:= Ri(tk). (3.2)

This is the reliability of component i at time tk. Because every component
is critical and the failures are independent, we have a series system and the
reliability of the system at tk is

Rsys(tk) =
n∏︂

i=1

Ri(tk). (3.3)

Consider the 5-component-system in Figure 3.1. For the sake of simplicity
we assume that the PDF of failure time is a linearly increasing function for
every component and that each component has a maximal age α it cannot
surpass which means Fi(x) = 1 for x ≥ α. Figure 3.2 illustrates the CDFs
described in Table 3.1.

Table 3.1: Component statistics

Component max. age PDF CDF
i αi fi(x) Fi(x)

1 17 2x
172

x2

172

2 33 2x
332

x2

332

3 12 2x
122

x2

122

4 11 2x
112

x2

112

5 16 2x
162

x2

162
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Figure 3.2: CDFs of the five components

The reliability of a component i at age (ak)i at tk can be computed using
(3.2). For example, if tk = 7, ∆t = 1 and τ3 = 0, the age of component 3 is
(ak)3 = 7 and it will work until tk+1 = 8 with probability

P 3
7 (t

f
3 > 8|tf3 > 7) =

1− 82

122

1− 72

122

≈ 0.842.

We express the failure state of the system at maintenance instance tk as a
binary vector fk ∈ {0, 1}n. If (fk)i = 1, component i has failed, otherwise
not. It is assumed that at most one component fails during each maintenance
interval (tk, tk+1). Thus, either one of the n components fails or none of the
components fail. This leads to the constraints

n∑︂
i=1

(fk)i ≤ 1 ∀k ∈ N.

If all elements of fk are zero, then none of the components has failed.

A single component operates during (tk, tk+1) with probability Ri(tk) calcu-
lated with (3.2) so the failure probability is 1−Ri(tk). Thus, only component
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i will fail during (tk, tk+1) with probability

Fi(tk) := (1−Ri(tk))
∏︂

j=1,...,n, j ̸=i

Rj(tk). (3.4)

The probability of no component failures can be calculated with (3.3). If
A = ‘at most one component fails during (tk, tk+1)’, P (A) can be calculated
with help of (3.3) and (3.4)

P (A) = Rsys(tk) +
n∑︂

i=1

Fi(tk). (3.5)

With (3.5) we can formulate the conditional probabilities that describe the
evolution of failure state of system under our assumption A:

P (i fails|A) = Fi(tk)

P (A)
(3.6)

P (no failures|A) = Rsys(tk)

P (A)
(3.7)

System failure is unwanted. For this reason we set a reliability threshold
ρ ∈ [0, 1) on the system. At every maintenance instance, the system must be
maintained so that the reliability of the system remains above the threshold
until the next maintenance instance. Mathematically,

Rsys(tk)

P (A)
≥ ρ ∀k ∈ N. (3.8)

The reliability threshold is typically set so high that the component failure
probabilities have to be kept small. Therefore, simultaneous failure of more
than one component is unlikely. As a result, the rare event approximation
can be used to justify the assumption that only at most one component can
fail during each time step (tk, tk+1). The probability P (A) tells how likely at
most one component fails. This means that the probability 1 − P (A) tells
the accuracy of the approximation.

3.3 Maintenance action portfolios

At every maintenance instance tk, a portfolio xk ⊆ N of components to
be replaced is chosen. The binary vector z(xk) ∈ {0, 1}n tells whether a
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component is replaced (1) or not (0). Thus, z is a bijection z : P(N) →
{0, 1}n such that zi(xk) = 1 if i ∈ xk and zi(xk) = 0 if i /∈ xk, where P
denotes the power set. For example, if we replace components 1 and 4 from
the 5-component-system, then z({1, 4}) = (1, 0, 0, 1, 0)T .

In general there are |P(N)| = 2n possible portfolios that can be chosen at
every maintenance instance. However, the system structure, possible com-
ponent failures and the system reliability threshold constrain the feasibility
of the portfolios at a particular maintenance instance. Because a failed com-
ponent is always replaced we have the requirement

zi(xk) ≥ (fk)i ∀i = 1, ..., n. (3.9)

The chosen portfolio has to take structural dependencies into account. We
define a set

Ñ = {j ∈ N | (0, j) /∈ A}

to describe the components not adjacent to root node. If these components
are maintained there must be a path from root node to these components:∑︂

{i|(i,j)∈A}

zi(xk) ≥ zj(xk), ∀j ∈ Ñ (3.10)

For example in Figure 3.1, component 2 cannot be replaced without replacing
component 1 also.

The replacement costs of any xk are determined from the graph G. This
means finding a tree which connects all components in xk to the root node
with minimum cost. Such tree is called a minimum-cost arborescence and it
can be determined using Edmond’s algorithm (Kleinberg and Tardos, 2006).
Every portfolio xk is a connected subgraph of the graph G and the corre-
sponding cost cxk

is obtained from the minimum-cost arborescence. If xk ̸= ∅,
the set-up cost c0 is added to the replacement costs:

c(xk) =

{︄
0, if xk = ∅
c0 + cxk

, else.
(3.11)

Figure 3.3 shows the minimum cost arborescences of two maintenance action
portfolios. The cost of replacing components 1 and 5 is c({1, 5}) = 60 +
150 + 190 = 400. Adding component 4 to the portfolio increases the cost
by 120 to c({1, 4, 5}) = 60 + 150 + 190 + 120 = 520 which is smaller than
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c04 = 190 because replacing component 5 becomes cheaper, due to addition
of component 4.

(a) xk = {1, 5} (b) xk = {1, 4, 5}

Figure 3.3: Minimum-cost arborescences of the two portfolios are highlighted
with thicker, black edges

Finally, the maintenance history τ is updated according to chosen portfolio,

τi = max {τi, zi(xk)tk} ∀i = 1, ..., n. (3.12)

This also updates the ages of components ak. Thus, both the maintenance
history and the ages of components are discretized.

3.4 Markov decision processes

Under the assumptions of the previous sections it is possible to model the
maintenance scheduling of the system as a discrete-time Markov decision
process (MDP; Howard, 1960).

MDPs are extensions of Markov chains. Both have states and state transition
probabilities which depend only on the current state of the system, i.e. they
obey the Markov property. However, they differ in that in MDPs, it is
possible to model actions which affect the state transition probabilities. The
current state can restrict the number of allowed actions, which can be taken
in it. Furthermore, actions lead to costs. In MDP context, the objective is
to find a decision rule which minimizes the long run average cost per time
unit.
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The state of the system is fully defined by the ages of components ak and
the failure state fk. The state vector sk at instance tk can then be written

sk(ak, fk) :=

[︃
aTk
fT
k

]︃
= (aTk ; f

T
k ) ∈ R2×n.

The reliability threshold (3.8) constraints the age combinations of the com-
ponents h in the system. Any age combination can lead to n + 1 failure
states, only the transition probabilities change. Therefore the state space S
is finite and of size

|S| = h(n+ 1). (3.13)

It is important to remember that it can be possible that sk1 = sk2 even if
k1 ̸= k2 because the age combination of components and realization of failure
state can be same at different maintenance instances. Therefore we present
an alternative notation σi ∈ S, where 1 ≤ i ≤ h(n+1), to describe the state
of the system. In this notation every σi is unique.

In the 5-component-system, parameters of components are chosen so that the
components wear off quite fast. If we set the reliability threshold to ρ = 0.9,
the number of possible age combinations is h = 2597. This number can be
calculated by forming all possible age combinations that fulfil the reliability
threshold (3.8). In these age combinations it is also taken into account that
component 2 cannot be newer than component 1 because the structure of
the system does not allow replacing component 2 without component 1. The
size of the state space is then |S| = 2597(5 + 1) = 15582.

The actions of the model are to choose a maintenance action portfolio. In
this case, the current state reduces the number of allowed actions.

Definition 1. A portfolio xk is called a feasible portfolio, if it

1. fulfils reliability threshold (3.8)

2. replaces broken components (3.9)

3. satisfies structural dependencies (3.10)

For state σi the set of feasible portfolios is Xσi
.

From now on it is assumed that only feasible portfolios are considered, i.e.
xk ∈ Xσi

for all σi. For example the 5-component-system does not have
states which have 25 = 32 feasible portfolios because structural dependencies
(3.10) reduce the number to 24.



CHAPTER 3. OPTIMIZATION MODEL FOR MAINTENANCE
SCHEDULING 24

After the portfolio is chosen the maintenance history is updated with (3.12).
This new state sk can lead to n+ 1 different states sk+1 after ∆t depending
on the failed component, if any, i.e. fk+1. The transition probabilities for the
k+1 alternatives can be calculated with (3.6) and (3.7). These probabilities
can be presented as a row vector

Psk(xk) = Pσi
(xk) =

[︃
F1(tk)

P (A)
, ... ,

Fn(tk)

P (A)
,
Rsys(tk)

P (A)

]︃
∈ R1×(n+1). (3.14)

We use the notation pσiσj
(xk) for the transition probability from state σi

to state σj when portfolio xk is chosen. It is notable that these transition
probabilities are time-homogeneous which means they are independent of the
maintenance instance parameter k.

The cost of action in state σi is defined by the cost of the maintenance
action portfolio xk ∈ Xσi

added with the corrective replacement surplus if a
component was failed in the state. Using equations (3.1) and (3.11), the cost
of action can be written as

cσi
(xk) = c(xk) + rTfk. (3.15)

This takes into account the fact that no corrective replacement surplus has
to be paid if none of the components fail.

We illustrate these concepts with the 5-component-system. Let the reliability
threshold be ρ = 0.9, maintenance instance k = 5, current time t5 = 5 ∈ R,
maintenance interval ∆t = 1 and maintenance history τ = (4, 2, 3, 2, 4)T ∈
R5. Then, the ages of components are a5 = t5 − τ = (1, 3, 2, 3, 1)T ∈ R5.
This means that components 1 and 5 were replaced at the last maintenance
instance and other components are older. Let us also assume that none of the
components has failed, which means f5 = (0, 0, 0, 0, 0)T . Then the current

state is s5 =

[︃
1 3 2 3 1
0 0 0 0 0

]︃
. If we do not replace any components, x5 = ∅,

the maintenance history stays the same, the age of every component increases
with ∆t = 1 and the system ends up in one of the six possible states with
probabilities given by (3.14). These states and transition probabilities are
given in Table 3.2 and also illustrated in Figure 3.4. From the last row of
the table, it is clear that the reliability threshold is not fulfilled, because
0.8829 < ρ. Thus, x5 = ∅ is not a feasible portfolio.
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Figure 3.4: Illustration of the MDP
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Table 3.2: State transitions from s5 with x5 = ∅

what happens during state at k = 6 Trans. prob.
(t5, t6) s6 = (aT6 ; f

T
6 ) ps5s6(x5)

comp. 1 fails (2, 4, 3, 4, 2; 1, 0, 0, 0, 0) 0.0093
comp. 2 fails (2, 4, 3, 4, 2; 0, 1, 0, 0, 0) 0.0058
comp. 3 fails (2, 4, 3, 4, 2; 0, 0, 1, 0, 0) 0.0327
comp. 4 fails (2, 4, 3, 4, 2; 0, 0, 0, 1, 0) 0.0589
comp. 5 fails (2, 4, 3, 4, 2; 0, 0, 0, 0, 1) 0.0105
No comp. fails (2, 4, 3, 4, 2; 0, 0, 0, 0, 0) 0.8829

Table 3.2 shows that component 4 is more likely to fail than any other com-
ponent. Thus, one possibility could be to replace it resulting in x5 = {4}.
In this case, the maintenance history becomes τ = (4, 2, 3, 5, 4)T . Now,
state s6 = (2, 4, 3, 1, 2; 0, 0, 0, 0, 0) is reached with probability ps5s6(x5) =
0.9308 > ρ which means that x5 is a feasible portfolio. This decision costs
cs5(x5) = c(xk) = 60 + 190 = 250. An interesting question is if this is the
right decision to make if we want to maintain the system cost-efficiently in
the long run.

3.5 Policy-iteration

To help maintenance decision making, we want to find a stationary policy
for the system. A stationary policy U is a rule which prescribes an action
xk whenever the system is in state σi regardless of the current maintenance
instance tk: Uσi

= xk. This rule should tell the most cost-efficient way to
maintain the system whenever it is in a specific state. A stationary policy
for maintenance can be found using a policy-iteration algorithm. This policy
is optimal in terms of average cost over a very long period of time.

3.5.1 Policy-iteration algorithm

The policy-iteration algorithm is based on the following (Tijms, 1986). First,
let Vn(σi, U) denote the total expected maintenance costs over the n main-
tenance instances when the initial state is σi and policy U is used. Then the
long-run average cost g(U) of the policy U is

g(U) = lim
n→∞

Vn(σi, U)

n
. (3.16)
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Then, the interest lies in the so-called relative values vσi
of the states σi ∈ S.

Relative values indicate how the starting state affects on the total expected
costs of a given policy. With the help of (3.16) we can write

Vn(σi, U) ≈ ng(U) + vσi
(U) for largen. (3.17)

In state σi we choose a maintenance portfolio xk = Uσi
according to the

current stationary policy U . This portfolio incurs a cost cσi
(Uσi

) and transfers
the system into state σj with probability pσiσj

(Uσi
). From this state the total

expected costs over the remaining n−1 maintenance instances is Vn−1(σj, U).
Together these observations form a recursion equation

Vn(σi, U) = cσi
(Uσi

) +
∑︂
σj∈S

pσiσj
(Uσi

)Vn−1(σj, U) (3.18)

for all n ≥ 1 and σi ∈ S. When we substitute (3.17) into (3.18), cancel
common terms and use the fact that

∑︁
σj∈S pσiσj

(U) = 1 we have

g(U) + vσi
≈ cσi

(Uσi
) +

∑︂
σj∈S

pσiσj
(Uσi

)vσj
∀σi ∈ S. (3.19)

These linear value-determination equations (3.19) have a unique solution
for average cost g(U) and relative value v(U) when we use a normalization
equation: vσs = 0 for an arbitrarily chosen state σs. Tijms (1986) proves this
in Theorem 3.1 on p. 167.

With the relative values of the policy U it is possible to construct a new
policy U ′ whose average cost is at most as high as of the current pol-
icy. Assume that at the first maintenance instance we can choose any fea-
sible maintenance portfolio xk and thereafter follow the policy U . Then
the expected maintenance costs over the first n maintenance instances are
cσi

(xn)+
∑︁

σj∈S pσiσj
(xk)Vn−1(σj, U). Of course, we want to choose the port-

folio which minimizes this expression. When n is large, we can use the
approximation (3.17) and write

cσi
(xn) +

∑︂
σj∈S

pσiσj
(xk)Vn−1(σj, U)

≈cσi
(xn) +

∑︂
σj∈S

pσiσj
(xk)vσj

(U) + (n− 1)g(U).

In the end it is sufficient to choose a portfolio which minimizes the quan-
tity cσi

(xn) +
∑︁

σj∈S pσiσj
(xk)vσj

(U). Finding a portfolio this way for every
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starting state σi ∈ S yields an improved policy U ′ with a lower average cost.
Tijms (1986) proves the decrease in the average cost in Theorem 3.2 on p.
170.

To conclude this section, the policy-iteration algorithm has 4 steps (Tijms,
1986, p. 171), which are described below.

1. Step: Initialization Choose a stationary policy U .

2. Step: Value-determination step For the current policy U , compute the
unique solution {g(U), v(U)} to the following system of linear equa-
tions:

vσi
= cσi

(Uσi
)− g +

∑︂
σj∈S

pσiσj
(Uσi

)vσj
, σi ∈ S (3.20)

vσs = 0,

where σs is an arbitrarily chosen state.

3. Step: Policy-improvement step For each state σi ∈ S, determine a
portfolio xk yielding the minimum in

min
xk∈Xσi

⎧⎨⎩cσi
(xk)− g(U) +

∑︂
σj∈S

pσiσj
(xk)vσj

(U)

⎫⎬⎭ (3.21)

The new stationary policy U ′ is obtained by setting U ′
σi

= xk for all
σi ∈ S.

4. Step: Convergence test If the new policy U ′ equals U the algorithm is
stopped with policy U . Otherwise, set U = U ′ and go to step 2.

Policy-iteration algorithm converges to the optimum after a finite number
of iterations and is empirically found to be a robust algorithm. However,
the finite convergence of the algorithm is only warranted when the following
assumption holds: For each stationary policy U , there exists a state r, that
can be reached from any other state. This state r may depend on U (Tijms,
1986). The validity of this assumption is not easy to show for the model.
However, we need to consider the assumption only if the policy-iteration
algorithm does not converge.

3.5.2 Policy-iteration algorithm applied to the model

We will next explain how the policy-iteration algorithm can be applied to
the 5-component-system. First we form a stationary policy by simply choos-
ing the cheapest maintenance portfolio (according to (3.15)) from feasible
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portfolios Xσi
for every state σi ∈ S. These costs are collected to the vector

c ∈ Rh(n+1).

In the value-determination step, the average cost g(U) ∈ R and the values of
the states v(U) ∈ Rh(n+1) are computed from the system of linear equations
presented in (3.20). This system can be presented in matrix form:

v = c− ge+ Pv.

Here, we define e ∈ Rh(n+1) with ei = 1 for all 1 ≤ i ≤ h(n + 1) and
P ∈ Rh(n+1)×h(n+1) as the state transition matrix for policy U where, on every
row, only six entries are non-zero. These entries are calculated with (3.14).
Following Howard (1960), we choose the last state σh(n+1) to represent the
arbitrary state σs in the normalization equation. When setting vσh(n+1)

= 0,
the last row reduces to

0 = cσh(n+1)
− g(U) +

∑︂
σj∈S

pσh(n+1)σj
(Uσh(n+1)

)vσj
. (3.22)

When this row is reduced from other rows, we get a system of linear equations
of the form

vσi
= cσi

(Uσi
)− ch(n+1) +

∑︂
σj∈S

vσj

(︂
pσiσj

(Uσi
)− pσh(n+1)σj

(Uσh(n+1)
)
)︂

for all 1 ≤ i ≤ h(n + 1) − 1. Thus, g(U) is eliminated and we have a linear

system of the form x⃗ = b⃗ + Ax⃗ where A ∈ R(h(n+1)−1)×(h(n+1)−1) because
vh(n+1) = 0. From this reduced linear system the remaining h(n + 1) − 1

unknowns can be solved. The system has a unique solution x⃗ = (I − A)−1b⃗.
After the calculation of v(U), the average cost g(U) can be obtained with
(3.22).

In the policy-improvement step for every state σi ∈ S, the value of (3.21)
is calculated for every feasible portfolio xk ∈ Xσi

using solutions from the
previous step. The portfolio producing the lowest value is chosen for state σi

in the policy U ′. In the fourth step, policy U ′ is compared with the policy set
in the initialization test. If there are any differences among states, the first
policy is upgraded to U ′ and the policy-iteration continues from the second
step.

In the 5-component-system the policy-iteration algorithm converged during
11th iteration to the optimal policy U ′. For the optimal policy, the long-
run average maintenance cost is g(U ′) = 223.84. For the initial policy the
long-run average maintenance cost is g(U) = 238.42. Table 3.3 shows initial
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and optimal maintenance portfolios of some randomly chosen states. In some
states the initial policy is the optimal one.

Table 3.3: Examples of differences between initial and optimal policies

state initial policy optimal policy
σi xk = Uσi

xk = U ′
σi

(8, 12, 1, 1, 1; 0, 0, 0, 1, 0) (1, 0, 0, 1, 0)T (1, 1, 0, 1, 0)T

(1, 4, 1, 4, 2; 0, 0, 0, 0, 0) (0, 0, 0, 1, 0)T (0, 0, 1, 1, 0)T

(3, 16, 2, 1, 3; 0, 1, 0, 0, 0) (1, 1, 0, 0, 0)T (1, 1, 0, 0, 0)T

(2, 2, 3, 3, 1; 0, 0, 1, 0, 0) (0, 0, 1, 0, 0)T (0, 0, 1, 0, 0)T

(1, 6, 1, 3, 4; 0, 0, 0, 1, 0) (0, 0, 0, 1, 0)T (0, 0, 0, 1, 1)T

(5, 15, 1, 2, 1; 0, 0, 1, 0, 0) (1, 0, 1, 0, 0)T (1, 1, 1, 0, 0)T

(3, 9, 1, 1, 3; 1, 0, 0, 0, 0) (1, 0, 0, 0, 0)T (1, 1, 0, 0, 0)T

(4, 6, 1, 1, 6; 0, 0, 0, 0, 1) (0, 0, 0, 0, 1)T (1, 1, 0, 0, 1)T

3.5.3 Policy-iteration with discounting

It is customary to discount future cash flows (e.g. Luenberger, 1998). In
practise this means that the recursion equation (3.18) is rewritten as

Vn(σi, U) = cσi
(Uσi

) + β
∑︂
σj∈S

pσiσj
(Uσi

)Vn−1(σj, U) ∀σi ∈ S, (3.23)

where 0 ≤ β < 1 is the discount factor. Now, the future maintenance costs
over n− 1 maintenance instances are discounted. If β = 1, equations (3.23)
and (3.18) are the same.

Policy-iteration algorithm with discounting (Howard, 1960) solves the opti-
mal stationary policy for the Markov decision process with discounting. First
we write the equation (3.23) in a simple vector form:

v(n+ 1) = c+ βPv(n)

If we write different v(i):s in explicit form, we get

v(1) = c+ βPv(0)

v(2) = c+ βPv(1) = c+ βPc+ β2P 2v(0)

v(3) = c+ βPc+ β2P 2c+ β3P 3v(0)

etc.
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The general form is thus

v(n) =

[︄
n−1∑︂
j=0

(βP )j

]︄
c+ βnP nv(0).

Since 0 ≤ β < 1,

lim
n→∞

v(n) =
∞∑︂
j=0

(βP )jc.

Matrix P describes a Markov decision process so it is a state transition
probability matrix with eigenvalues less or equal to 1 in magnitude. Thus,
matrix βP has eigenvalues strictly less than 1 in magnitude, so we can write∑︁∞

j=0(βP )j = (I − βP )−1 (Howard, 1960) and finally obtain

lim
n→∞

v(n) = v = (I − βP )−1c. (3.24)

This equation is almost the same as the value determination equation (3.20).
Equation (3.24) does not include the long-run average cost g(U) but it is not
a meaningful measure in the case of discounting where future costs are less
and less meaningful. The component vi of vector v tells the total expected
maintenance cost of the system when it is in state i ∈ S in the beginning.
When vector v is obtained, the policy-improvement step is analogous to the
case without discounting.

As a result, we have an algorithm for discounted policy-iteration (Howard,
1960):

1. Step: Initialization Choose a stationary policy U .

2. Step: Value-determination step For the current policy U , compute the
unique solution v(U) to the following system of linear equations:

vσi
= cσi

(Uσi
) + β

∑︂
σj∈S

pσiσj
(Uσi

)vσj
, σi ∈ S. (3.25)

3. Step: Policy-improvement step For each state σi ∈ S, determine a
portfolio xk yielding the minimum in

min
xk∈Xσi

⎧⎨⎩cσi
(xk) + β

∑︂
σj∈S

pσiσj
(xk)vσj

(U)

⎫⎬⎭ (3.26)

The new stationary policy U ′ is obtained by setting U ′
σi

= xk for all
σi ∈ S.
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4. Step: Convergence test If the new policy U ′ equals U the algorithm is
stopped with policy U . Otherwise, set U = U ′ and go to step 2.

3.5.4 Discounted policy-iteration algorithm applied to
the model

We illustrate the use of the discounted policy-iteration algorithm with the
5-component-system. Again we initialize the stationary policy by choosing
the cheapest maintenance portfolio from feasible portfolios Xσi

for every
state σi ∈ S. We then determine the values of (3.25) by calculating v from
v = (I − βP )−1c. In the policy-improvement step we calculate the value
of (3.26) for every feasible portfolio and choose the one with lowest value.
This is the new portfolio for state σi and it updates the policy. Last, we
compare the new policy with the old one and determine if the algorithm has
converged.

Table 3.4 shows some results of the algorithm with three different discount
factors. Here the discount factor tells how much we discount costs between
two consecutive maintenance instances. The algorithm converged with β =
0.9 during seven iterations, with β = 0.8 during six iterations and with β =
0.7 during five iterations. The states are the same than in Table 3.3. When we
compare the cases of maintenance without and with discounting, the optimal
policies do not differ much (at least when these states are considered). Also
the size of the discount factor does not affect the decisions much but a smaller
discount factor favors postponing maintenance decisions.

Table 3.4: Effect of discount factor

state optimal policies
σi β = 0.9 β = 0.8 β = 0.7
(8, 12, 1, 1, 1; 0, 0, 0, 1, 0) (1, 1, 0, 1, 0)T (1, 1, 0, 1, 0)T (1, 1, 0, 1, 0)T

(1, 4, 1, 4, 2; 0, 0, 0, 0, 0) (0, 0, 0, 1, 1)T (0, 0, 0, 1, 1)T (0, 0, 0, 1, 1)T

(3, 16, 2, 1, 3; 0, 1, 0, 0, 0) (1, 1, 0, 0, 0)T (1, 1, 0, 0, 0)T (1, 1, 0, 0, 0)T

(2, 2, 3, 3, 1; 0, 0, 1, 0, 0) (0, 0, 1, 0, 0)T (0, 0, 1, 0, 0)T (0, 0, 1, 0, 0)T

(1, 6, 1, 3, 4; 0, 0, 0, 1, 0) (0, 0, 0, 1, 1)T (0, 0, 0, 1, 0)T (0, 0, 0, 1, 0)T

(5, 15, 1, 2, 1; 0, 0, 1, 0, 0) (1, 1, 1, 0, 0)T (1, 1, 1, 0, 0)T (1, 1, 1, 0, 0)T

(3, 9, 1, 1, 3; 1, 0, 0, 0, 0) (1, 1, 0, 0, 0)T (1, 1, 0, 0, 0)T (1, 1, 0, 0, 0)T

(4, 6, 1, 1, 6; 0, 0, 0, 0, 1) (0, 0, 0, 0, 1)T (0, 0, 0, 0, 1)T (0, 0, 0, 0, 1)T



Chapter 4

Convergence of the algorithm

When using the policy-iteration algorithm to solve the maintenance schedul-
ing problem, in practise, it is useful to know how effective the method is. One
measure for that is the computation time of the algorithm and how changing
different parameters affect the convergence of the algorithm. The parameters
can be divided into those that affect the size of the state space, and others.
This chapter focuses on the solution times when different parameters of the
model are changed.

4.1 Size of the state space

The size of the state space is a key factor in time complexity because it defines
the size of the probability matrix P which must be inverted during every
value determination step. The size depends on the number of components
and possible age combinations. The number of possible age combinations h
depends on three things:

1. Reliability threshold ρ.

2. Maintenance interval ∆t.

3. Failure distributions of components fi:s.

We look at these parameters separately to see how much they affect the size
of the state space and the solution times.

The hardware used is a laptop with 2.40GHz AMD A6-9210 RADEON R4
processor with 5 compute cores, 8Gb of RAM and operating system of Win-
dows 10. The computations are implemented with MATLAB R2019b. The

33
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linear systems (3.20) are solved with conjugate gradients squared method
which is built in MATLAB. The tolerance of the method is set to 1 × 10−6

and the maximum number of iterations is set to 500.

Effect of reliability threshold

First we vary the size of the state space by using different reliability thresh-
olds. Other parameters are kept constant. We use the 5-component system
from Chapter 3 with the same cost structure, failure time distributions and
maintenance interval ∆t = 1. We use both the policy iteration and the
discounted policy iteration with discount factor β = 0.95. The reliability
threshold is varied between 0.88 − 0.93. With a lower threshold the system
can withstand older components so the allowed age combinations of com-
ponents h increases. Then also the size of the state space |S| = h(n + 1)
(equation (3.13)) increases.

The computation times of the policy iteration algorithm in seconds are given
in Table 4.1. Ti is the initialization time. During it the directed graph of
the system is formed and the costs of different maintenance portfolios are
calculated using Edmond’s algorithm. In addition, the allowed age combina-
tions of components are determined and the state space and different actions
(maintenance portfolios) are stored in a data matrix. Also the first station-
ary policy is formed which is the initialization step of the policy iteration
algorithm (Section 3.5.1). Next, Ttotal tells the total computation time of all
the policy iteration algorithm steps (2)-(4) performed until the convergence
is obtained. The row ic is the iteration counter telling how many times the
stationary policy must be updated until convergence. Last, the Tavg =

Ttotal

ic
tells the average time of one iteration.

Table 4.1 shows that the size of the state space grows rapidly when the
reliability threshold decreases. The number of iterations remains approxi-
mately constant but the solution time of one iteration increases when the
state space grows. This is reasonable because systems of linear equations
become bigger and more time consuming to compute. It is also interesting
that with ρ = 0.88 and |S| = 35088 MATLAB cannot run the code because
the transition matrix of that size is too big compared to available RAM.
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Table 4.1: Effects of the size of the state space on computation time without
discounting and with discounting (β = 0.95)

reliability ρ 0.93 0.92 0.91 0.90 0.89 0.88
threshold
age h 481 910 1591 2597 3980 5848
combinations
size of |S| 2886 5460 9546 15582 23880 35088
state space

n
o
d
is
c. initialization Ti 4.3 6.9 9.1 10.8 14.5

total time Ttotal 8.7 29.7 93.7 310.9 1344.1
iterations ic 9 10 10 11 10
average time Tavg 1.0 3.0 9.4 28.3 134.4

w
it
h
d
is
c. initialization Ti 4.3 6.9 9.1 10.8 14.5

total time Ttotal 5.4 19.3 60.3 184.1 854.8
iterations ic 6 7 7 7 8
average time Tavg 0.9 2.8 8.6 26.3 105.7

The results of the policy iteration algorithm with discounting are in lower
part of Table 4.1. The main difference is that the discounted version needs
less iterations to converge. Thus it is the faster version of the policy iteration
algorithms.

Effect of number of components

Next we increase the number of components (n) from five to six and seven.
The new components do not have structural dependencies between other
components. They are only connected to root node with component specific
replacement costs c06 = 105 and c07 = 100. The corrective replacement
cost is 95 for both components. The PDFs of failure time of components
are linear and increasing (like in the 5-component-system) with maximal age
parameters α6 = 15 and α7 = 14.

The results of the bigger systems are in Table 4.2. We use three different
reliability thresholds. One can notice that the number of possible age combi-
nations increases when the number of components increases. The size of the
state space grows even faster because the number of possible failures (n+1)
increases. The initialization time Ti increases because the computational
complexity of finding all the possible age combinations depends exponen-
tially on n. Also, the average time of one iteration Tavg increases.
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The solution times increase for example, because the policy improvement
step (3.21) takes more time because we have more maintenance portfolios to
consider. In the 5-component case the total number of possible portfolios is
24. When the sixth component, independent of other components, is added
to the system, it doubles the number of possible maintenance portfolios to
48. The same happens when the seventh component is added to the system,
resulting in 96 different portfolios. Of course, not all of the portfolios are
feasible for every state.

Table 4.2: Effects of the number of components

number of n 6 7
components
reliability ρ 0.93 0.92 0.915 0.93 0.92 0.915
threshold
age h 663 1501 2154 666 1780 2774
combinations
size of |S| 4641 10507 15078 5328 14240 22192
state space
initialization Ti 29.5 36.9 39.1 324.7 379.5 386.1
total time Ttotal 18.8 89.1 236.6 35.2 141.3 2656.7
iterations ic 8 7 9 10 7 10
average time Tavg 2.4 12.7 26.3 3.5 20.2 265.7

Effect of maintenance interval and failure distributions

The maintenance interval (∆t) has a big effect on the size of the state space.
For example, shortening the maintenance interval by 50% in the 5-component
system with ρ = 0.92 leads to h2 = 472518, making the problem too big to
solve. Conversely, doubling the maintenance interval leads to h3 = 0. This
means that a brand new system does not operate the first maintenance inter-
val with probability greater or equal to ρ = 0.92. The effect of maintenance
interval is covered more in Section 5.1.

The failure distributions of components have an impact on the size of the
state space. If a failure of a component becomes less likely, the number of
allowed age combinations increases. Thus, the state space becomes bigger.
The number of different possibilities is limitless so we do not handle it more
specifically here.
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4.2 Other parameters

Other parameters of the model are for example

• number of arcs in the graph |A|,

• set-up cost c0,

• weights of the arcs i.e. component specific replacement costs cij:s,

• corrective replacement surpluses r and

• discount factor β.

We can make observations of the convergence of the policy-iteration algo-
rithm by changing these values, for example set-up cost and corrective re-
placement surpluses.

The effects of the other parameters are more difficult to see because they do
not impact the size of the state space and solution times directly. For ex-
ample, the 5-component-system has a set-up cost c0 = 60 and corrective re-
placement surpluses r = (120, 90, 85, 70, 90)T . The policy-iteration algorithm
is implemented so that changing these does not affect the time duration of
one iteration, because the size of the state space stays the same. However,
these costs may affect the convergence of the algorithm by changing the num-
ber of iterations needed to find the optimal stationary policy. We use the
5-component-system like in the previous section. Now, we fix the reliability
threshold to ρ = 0.92 and maintenance interval to ∆t = 1, so |S| = 5460.

First, we change the set-up cost. Other parameters are kept constant. The
results with six different set-up costs are in Table 4.3. From the table we can
see that the initialization times and average times do not change. Conversely,
the total time decreases when the set-up cost increases. This happens, be-
cause the number of iterations decreases. A possible reason for this is that
the policy iteration algorithm finds the optimal policy more quickly, when
the high set-up cost encourages replacing more components at the same time.
Thus, the system is more often in the situation where no components needs
replacing to satisfy the reliability threshold. The fact that the average cost
grows more moderately than the set-up cost supports this statement. For
example, when the set-up cost increases from 200 to 400, the average cost
increases only from 371.64 to 490.84 indicating that we want to maintain
the system only at every other maintenance instance. The difference is more
close to 100 with bigger set-up costs.
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Table 4.3: Effects of the set-up cost

set-up cost c0 0 60 200 400 600 800
average cost g(U) 202.92 262.84 371.64 490.84 592.30 693.75
initialization Ti 6.2 5.4 6.7 6.5 5.4 6.2
total time Ttotal 24.1 27.6 15.0 10.9 8.4 9.0
iterations ic 9 10 6 4 3 3
average time Tavg 2.7 2.8 2.5 2.7 2.8 3.0

From Table 4.4 we can see how the recommendations of the optimal policy
focus on fewer portfolios, which replace many components, when the set-up
cost increases. It is noteworthy that we have chosen the failure distributions
and reliability threshold so that it is not feasible to try to maintain the
system every third instance. If we have σi = (2, 2, 2, 2, 2; 0, 0, 0, 0, 0) and
we do not replace any component, the state σj = (3, 3, 3, 3, 3; 0, 0, 0, 0, 0) is
reached with probability pσiσj

(∅) = 0.8894 < ρ.
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Table 4.4: The number of states maintained with different portfolios under
different set-up costs when looking the 5-component system with ρ = 0.92
and ∆t = 1

maintenance set-up cost
portfolio 0 60 200 400 600 800
10000 50 50 25 8 0 0
00100 357 357 216 0 0 0
00010 346 313 78 0 0 0
00001 233 207 148 82 0 0
11000 909 921 970 384 0 0
10100 64 61 37 0 0 0
10010 115 48 0 0 0 0
10001 72 72 0 0 0 0
00110 299 171 8 0 0 0
00101 660 610 198 0 0 0
00011 702 623 0 0 0 0
11100 1033 1180 1159 0 0 0
11010 337 125 0 0 0 0
11001 215 215 0 0 0 0
10110 0 23 109 124 124 124
10101 4 0 0 0 0 0
10011 0 0 0 0 0 0
00111 45 242 420 426 426 426
11110 4 219 782 1493 1493 1493
11101 0 0 0 0 0 0
11011 0 0 0 0 0 0
10111 0 4 458 1413 1553 1553
11111 0 4 837 1515 1849 1849
00000 15 15 15 15 15 15

Next, we change the corrective replacement cost. Other parameters are kept
constant and the set-up cost is again c0 = 60. We use different multi-
ples of vector r = (120, 90, 85, 70, 90)T from 0r = (0, 0, 0, 0, 0)T to 6r =
(720, 540, 510, 420, 540)T . The results are in Table 4.5, which shows that the
effect of the surpluses is not as significant as the set-up cost. The number of
iterations stays somewhat the same so the total running times do not change
much. Also, the average costs grow very slowly. This tells that the role
of the corrective replacement surpluses is not significant, especially in this
case where failures of the components are unlikely due to the high reliability
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threshold.

Table 4.5: Effects of the corrective replacement surplus

corrective r 0r 2r 3r 4r 5r 6r
surplus
average cost g(U) 256.50 269.18 275.53 281.86 288.20 294.53
initialization Ti 5.2 5.9 5.7 5.9 5.5 5.3
total time Ttotal 24.0 27.5 27.7 24.5 21.9 22.3
iterations ic 9 10 10 9 8 8
average time Tavg 2.7 2.8 2.8 2.7 2.7 2.8

In addition to the set-up cost and corrective replacement surpluses we exam-
ine the effect of discount factor. The results are in Table 4.6. There is some
decrease in the number of iterations with smaller discount factors but sig-
nificant reductions happen only with factors which are too small in practise.
The significant difference is between β = 1 and β = 0.99 but as explained in
Sections 3.5.1 and 3.5.3 these algorithms have some differences which affect
the solution times.

Table 4.6: Effects of the discount factor

discount β 1 0.99 0.98 0.95 0.90 0.85 0.80
factor
initialization Ti 6.9 5.4 5.4 6.1 5.5 5.6 5.9
total time Ttotal 29.7 25.2 19.8 18.9 17.3 14.0 11.4
iterations ic 10 9 7 7 7 6 5
average time Tavg 3.0 2.8 2.8 2.7 2.5 2.3 2.3

4.3 Conclusions

Perhaps the most important observation from this chapter is how the size
of the state space affects the iteration times. This means that reliability
threshold, maintenance interval and number of components are all significant
parameters defining the solution time of the algorithm. However, the decision
maker should focus on the combined effect of these parameters. If the size
of the state space grows too large, the calculations become impossible with
standard computers.

Other parameters are less significant because they affect the number of policy
iterations, not on the solution times of one iteration. The effect of discount
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factor is small, slightly decreasing solution times, when it is kept at realistic
values. The set-up cost is more important than the corrective replacement
surpluses. We should also remember that it may be possible that these effects
do not happen with every system. In general it seems that when a system is
modeled as a Markov decision process and solved with policy-iteration, the
effects of the size of the state space are similar regardless of a system. In the
end, the system defines how fast these changes are.



Chapter 5

Case example

This chapter introduces a real life example of a ground transportation equip-
ment system to be maintained. The system has four different components:
engine 1 (E1), engine 2 (E2), chassis (C) and wheels (W). These components
deteriorate over time and have structural dependencies. An engine must be
dismantled before it can be replaced. In order to replace the chassis, the chas-
sis and both engines must be dismantled first. Finally, in order to replace
the wheels, the chassis and the engines must be dismantled.

Economic dependencies of the system are positive. For every maintenance
operation there is a fixed set-up cost c0 = 388. Also some dismantling costs
can be avoided if multiple components are maintained at the same time.
Table 5.1 shows the component specific costs.

Table 5.1: Maintenance costs of different components

component specific costs
component symbols dismantle replacement corrective surplus
engine 1 1, E1 23 393 300
engine 2 2, E2 28 403 300
chassis 3, C 167 413 160
wheels 4, W 0 1000 613

When the structural dependencies are taken into account, the system is pre-
sented with a directed graph of Figure 5.1. In addition to the root node and
the component nodes, the figure also presents a node named ‘DE12’. This
is a decision to dismantle both engines which is a prerequisite for replacing
either the chassis or the wheels. The weights of the arcs are directly obtained
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from Table 5.1. For example, when both engines are dismantled the replace-
ment of wheels costs the wheels replacement cost and the dismantle cost of
the chassis. Thus, cDE12,W = 1000 + 167 = 1167.

Figure 5.1: Cost structure of the system where the root node is on the left

The components deteriorate when being used. We use ∆t to represent dis-
tance, because it describes the use of the moving system more reliably in
practice. So the maintenance instances, ages of the components and the
failure distributions of components are measured with distances.

We choose Weibull distributions to describe the failures of components. The
probability density function of a Weibull random variable is

f(x, λ, k) =

{︄
k
λ

(︁
x
λ

)︁k−1
e−( x

λ
)k x ≥ 0,

0 x < 0,

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the
distribution. For the components we use parameters presented in Table 5.2.
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Table 5.2: Weibull distribution parameters of components

shape scale
component k λ
engine 1 5.1 10.8
engine 2 5.1 10.8
chassis 5.5 9.9
wheels 4.0 9.0

Engines 1 and 2 have equal failure distributions. The parameters are scaled so
that the unit distance is 100 000km. All the components have shape param-
eters greater than one so they obey increasing failure rate. The probability
density functions are plotted for comparison in Figure 5.2.

Figure 5.2: Failure probability density as a function of distance driven from
last replacement

To understand the problem better we first calculate the size of the state
space with different reliability thresholds and maintenance intervals. We
use reliability thresholds 0.90–0.95 with a step size 0.01 and distances 50
000km–150 000km with a step size 5000km. These results are in Table 5.3.
The table shows that when the maintenance interval is 75tkm or higher we
can keep the size or the problem possible to calculate with all the reliability
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thresholds. Thus, we choose to examine maintenance intervals of 75tkm,
100tkm, 125tkm and 150tkm with all the six reliability thresholds giving us
24 different scheduling problems to solve. These are bolded in the Table 5.3.
We refer to these policies with U(∆t(tkm), ρ).

Table 5.3: Size of the state space with different parameters

maintenance reliability threshold
interval 0.95 0.94 0.93 0.92 0.91 0.90
150 000 375 540 665 685 760 855
145 000 490 655 685 795 935 1030
140 000 635 705 850 985 1090 1195
135 000 700 850 1025 1125 1350 1575
130 000 810 1045 1165 1500 1665 1910
125 000 1055 1240 1555 1820 1965 2310
120 000 1265 1620 1900 2195 2485 2765
115 000 1600 1940 2315 2710 3040 3415
110 000 2020 2460 2935 3295 3875 4400
105 000 2575 3125 3680 4305 5040 5470
100 000 3250 4005 4870 5430 6175 6905
95 000 4290 5310 6150 6915 8365 9280
90 000 5590 6690 8245 9475 10610 11820
85 000 7400 9290 10785 12560 14595 16270
80 000 10240 12555 14860 16995 19525 22025
75 000 14190 17270 20505 23800 26545 30680
70 000 20210 24030 29275 33735 38155 42980
65 000 29735 35575 42140 49360 55045 63120
60 000 44130 53030 63695 73335 83365 94485
55 000 68410 82935 98200 113345 130325 146380
50 000 110865 134785 159065 185315 209725 237555

We discount future costs by assuming an annual interest rate of 1%. We
assume that the system travels approximately 200tkm during one year. This
means that if the maintenance interval is 100tkm, we will maintain the system
every six months. Because every maintenance interval maintains the system
more than once a year, the corresponding discount factor is calculated with

βx =

(︃
1

1 + 0.01

)︃ x
200

.

The results are β75 = 0.9963, β100 = 0.9950, β125 = 0.9938 and β150 = 0.9925
for the chosen maintenance intervals.
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The 24 maintenance scheduling problems were solved using discounted policy-
iteration algorithm presented in Section 3.5.3. The algorithm is implemented
in MATLAB R2019b, but now we use a desktop with 3.40GHz Intel Xeon
CPU E3-1250 v5, 16Gb RAM and Windows 10 as operating system to make
the computations faster and bigger problems possible to calculate. The total
solving time for the biggest problem U(75, 0.90) is approximately 742 seconds
and approximately 0.49 seconds for the smallest problem U(150, 0.95).

5.1 Results

To present the results in a simpler form we introduce a short notation to the
binary decision vector z(xk) ∈ Rn. The decision vector can be presented as a
string of zeros and ones. For example if we replace components 2 and 3 from
a 4-component system we have decision vector (0, 1, 1, 0)T which corresponds
to the string 0110. In addition, if we do not replace anything, the decision is
0000 which we will also present as a 0.

5.1.1 Different details

First we examine the effects of different reliability thresholds on the mainte-
nance scheduling policy. Table 5.4 presents maintenance portfolios under two
different policies as a function of (ak)E2 (rows) and (ak)W (columns), when
the age of other components are fixed to (ak)E1 = (ak)C = 75, the failure
state is fk = (0, 0, 0, 0)T and the maintenance interval is ∆t = 75tkm for
both policies. The table shows how much sooner the components should be
replaced with the bigger reliability threshold. Also, both policies recommend
not to replace components E1 or C because their age is only 75tkm meaning
they have been used only during one maintenance interval.
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Table 5.4: Comparing replacement portfolios when changing reliability
threshold as a function of (ak)E2 and (ak)W , when (ak)E1 = (ak)C = 75
and fk = 0

(ak)2, (ak)4, wheels
engine 2 75 150 225 300 375 450 525 600

ρ = 0.90
75 0 0 0 0 0 0 0001 0001
150 0 0 0 0 0 0 0001 0001
225 0 0 0 0 0 0 0001 0001
300 0 0 0 0 0 0 0 0101
375 0 0 0 0 0 0 0 0101
450 0 0 0 0 0 0 0 0101
525 0 0 0 0 0 0 0 0101
600 0100 0 0 0 0 0 0101 0101
675 0100 0100 0100 0 0 0101 0101
750 0100 0100 0100 0100 0101 0101
825 0100 0100 0100 0100

ρ = 0.95
75 0 0 0 0 0 0001
150 0 0 0 0 0 0001
225 0 0 0 0 0 0001
300 0 0 0 0 0 0001
375 0 0 0 0 0 0101
450 0 0 0 0 0 0101
525 0 0 0 0 0101 0101
600 0 0 0 0100 0101
675 0100 0100 0100 0100

We can also notice the following: when ρ = 0.90 and the system is in state
(75, 600, 75, 75; 0, 0, 0, 0) the policy suggests replacing component E2 but in
state (75, 675, 75, 300; 0, 0, 0, 0) the policy does not recommend replacing any-
thing although the components are older and therefore the reliability of the
system lower. This difference may result from the idea to keep the age of
the components at the same level to make grouping of replacements more
appealing. As introduced in Chapter 2, these recommendations are based
on an opportunistic maintenance policy where some opportunities are seen
better than others. So in this case these heuristics would provide optimal
maintenance scheduling decisions.

Next, we review this observation in a different context. We consider the



CHAPTER 5. CASE EXAMPLE 48

maintenance scheduling policy U(100, 0.90). Table 5.5 presents maintenance
portfolios under different failure states as a function of (ak)E2 (rows) and
(ak)W (columns), when the age of other components are (ak)E1 = 200 and
(ak)C = 300.

Table 5.5: Comparing replacement portfolios when changing failure state as
a function of (ak)E2 and (ak)W , when (ak)E1 = 200, (ak)C = 300 and ρ = 0.90

engine wheels wheels
2 100 200 300 400 500 600 100 200 300 400 500 600

fk = (1, 0, 0, 0)T fk = (0, 1, 0, 0)T

100 1000 1000 1000 1000 1111 1111 0100 1100 0100 1111 1111 1111
200 1000 1100 1000 1111 1111 1111 0100 1100 0100 1111 1111 1111
300 1000 1100 1000 1111 1111 1111 0100 1100 0100 1111 1111 1111
400 1100 1100 1000 1111 1111 0100 1100 0100 1111 1111
500 1100 1100 1100 1111 1111 0100 1100 0100 1111 1111
600 1100 1100 1100 1111 1111 0100 1100 0100 1111 1111
700 1100 1100 1100 1111 0100 1100 0100 1111

fk = (0, 0, 1, 0)T fk = (0, 0, 0, 1)T

100 0010 0010 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
200 1010 0010 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
300 0110 0010 0010 1111 1111 1111 0001 0001 0001 0001 0001 0001
400 0110 0110 0010 1111 1111 1111 1111 1111 1111 1111
500 0110 0110 1111 1111 1111 1111 1111 1111 1111 1111
600 0110 0110 1111 1111 1111 1111 1111 1111 1111 1111
700 0110 0110 1111 1111 1111 1111 1111 1111

fk = (0, 0, 0, 0)T

100 0 0 0 0 0011 0011
200 0 0 0 0 0011 0011
300 0 0 0 0 0001 0001
400 0 0 0 0 1111
500 0 0 0 0 1111
600 0100 0 0 1111 1111
700 0100 1100 0100 1111

When the system has not failed the policy suggests replacing components
more or less when (ak)E2 ≥ 600 or (ak)W ≥ 500. On the other hand, if
one component has failed, the policy tends to recommend replacing other
components as well at the same time. For example when wheels fail (fk =
(0, 0, 0, 1)T ) the policy almost always suggest replacing the chassis as well
which makes sense when considering the cost structure of the system.

The age of the system ak = (200, 300, 300, 300) is interesting because at that
state the opportunity is not used. The policy only recommends replacing
the failed component no matter which one it is. This does not happen with
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other age combination presented in Table 5.5.

5.1.2 Simulations

We next consider how these 24 scheduling policies work in practice: More
specifically, we examine how much we must actually pay to execute the main-
tenance policy over a finite time period and how likely are we facing com-
ponent failures. To answer these question we simulate the system using
Monte Carlo method over a time period of 25 years. This corresponds to
approximately five million kilometers of traveling time. Now the length of
the maintenance interval defines how many maintenance instances the sys-
tem has during those 25 years. When ∆t = 75tkm, we have 67 instances.
When ∆t = 100tkm, we have 50 instances. When ∆t = 125tkm, we have
40 instances. When ∆t = 150tkm, we have 33 instances. This means that
the last maintenance instance for policy, which has a maintenance interval
of ∆ = 75tkm, is t27 and so on.

The simulation of one policy goes as the chart in Figure 5.3 presents. First, we
define Monte Carlo sample size W which tells how many times we simulate
the maintenance period of 25 years. Next, we start from the simulation
w = 1. We initialize a0, the ages of the components at maintenance instance
t0. We also initialize the total cost ctot = 0 and the total amount of failures
during the maintenance period ftot = (0, 0, 0, 0)T . Then, we move to the
next maintenance instance and simulate if any component failed from failure
probabilities (3.14). Then we know the state of the system s1 at t1 and the
optimal policy U tells which maintenance portfolio x1 we choose to maintain
the system. The discounted cost of the portfolio is added to the total costs:
ctot = ctot + βkc(xk). Also the information about failures is added to the
total failures: ftot = ftot + fk. The ages of the component are updated and
we move to the next maintenance instance t2. The process is repeated until
the last maintenance instance tkend

is reached and handled. After that we
save the results ctot,w and ftot,w from simulation w and start a new simulation
until we have simulated the maintenance period W times.
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Figure 5.3: Chart on how the simulation proceeds

First, we compare total costs of the 24 policies during the maintenance period
with W = 20000. We express the cost as cost per thousand kilometers. For
one simulation this is calculated from

cw =
ctot,w
kend∆t

.

When we calculate the average of the W simulations and do this separately
for every policy we get results presented in the Table 5.6.
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Table 5.6: Cost of maintenance policy per thousand kilometers during 5
million kilometers (period of 25 years)

reliability maintenance interval ∆t
threshold ρ 75 100 125 150
0.90 4.67 5.06 5.72 5.57
0.91 5.14 5.46 5.70 5.57
0.92 5.27 5.61 5.81 5.57
0.93 5.47 5.79 6.11 6.36
0.94 5.52 5.97 6.49 6.44
0.95 6.03 6.03 6.49 6.77

Table 5.6 includes interesting results. Mainly the costs increase with a fixed
maintenance interval when the reliability threshold increases. This is rea-
sonable because more preventive replacements needs to be done to fulfil the
threshold.

The costs increase also when the reliability threshold is fixed and mainte-
nance interval is increased, but here there are also exceptions: With some
reliability thresholds, like ρ = 0.92, it is cheaper to maintain the system with
maintenance interval ∆t = 150tkm than with ∆t = 125tkm. This interval
seems to fit better with the failure distributions of components.

Second, we compare the average failures of different components during the
maintenance period under different maintenance scheduling policies. We can
calculate the average failures of components under a policy with

favg =
1

W

W∑︂
w=1

ftot,w.

When these calculations are done for every scheduling policy we have results
presented in the Table 5.7. These results mean that, for example, if we
maintain 100 similar ground transportation equipment systems with a policy
U(75, 0.90) we will encounter about 22 failures of engine 1 in total during
those five million kilometers.
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Table 5.7: Average failures of different components during 5 million kilome-
ters (period of 25 years)

reliability maintenance interval ∆t maintenance interval ∆t
threshold ρ 75 100 125 150 75 100 125 150

Engine 1 Engine 2
0.90 0.22 0.18 0.20 0.12 0.21 0.18 0.19 0.12
0.91 0.53 0.48 0.20 0.12 0.63 0.47 0.27 0.12
0.92 0.39 0.31 0.17 0.12 0.52 0.48 0.17 0.11
0.93 0.15 0.17 0.16 0.13 0.16 0.19 0.17 0.12
0.94 0.12 0.20 0.06 0.11 0.12 0.21 0.06 0.11
0.95 0.27 0.08 0.06 0.11 0.32 0.07 0.06 0.11

Chassis Wheels
0.90 0.25 0.22 0.21 0.13 0.99 0.88 0.88 0.65
0.91 0.21 0.17 0.21 0.13 0.85 0.76 0.83 0.64
0.92 0.22 0.18 0.21 0.13 0.87 0.76 0.89 0.64
0.93 0.16 0.21 0.19 0.13 0.73 0.88 0.91 0.66
0.94 0.14 0.20 0.06 0.13 0.66 0.83 0.39 0.66
0.95 0.11 0.08 0.06 0.13 0.53 0.47 0.38 0.66

First, we notice that the average failures tend to decrease when either the
maintenance interval or the reliability threshold increases. Both changes
increase the number of preventive replacements so this should indeed happen.

Second, we notice that the average failures of engine 1 and 2 seem quite
similar. This is reasonable because the engines follow the same probability
distributions. There are also differences between engines. Under some poli-
cies, for example U(75, 0.92), the engine 1 fails less than engine 2. This may
result from the fact that, because we must replace components preventively
to fulfil reliability threshold, we more often choose engine 1 because it is a
little cheaper to replace.

Third, the chassis fails more often than both engines in more than half of
the policies. This is reasonable because the early failures are more likely
for chassis than for the engines. Also the number of chassis failures do not
change so much than the number of engine failures under different policies.

Fourth, the wheels fail on average more than any other components. This
probably results from two reasons. First, wheels have a failure distribution
which makes them fail more likely at younger age than any other compo-
nent. Second, the replacement cost of wheels is quite big due to structural
dependencies so we do not want to maintain it often and are thus willing
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to take a risk within the reliability threshold. But in the end the wheels
need replacement often and therefore the policy utilizes often the positive
economic dependence and replaces the chassis at the same time. We can see
this for example from Table 5.5. This explains why the number of chassis
failures is low overall.

5.1.3 Comparing with opportunistic scheduling policy

Next we find out how the scheduling policy works when it is compared with
a simple and heuristic opportunistic policy. The policy is based on optimal
maintenance age derived by Wildeman et al. (1997) for Weibull distributed
failures. This age is component specific and takes into account only the costs
of replacing the component individually. The optimal replacement age for
component i is

xi =
ki

√︄
(cpi + c0)λ

ki
i

cci(ki − 1)
, (5.1)

where ki and λi are shape and scale parameters of the component, c0 is the
set-up cost, cpi is the preventive replacement cost and cci is the corrective
replacement cost of the component. From Table 5.1 we can calculate that,
for example for wheels cpW = 1218, because every other component must be
dismantled before replacement of wheels is possible, and ccW = cpW + rW =
1831. Similarly we define the costs for other components and after using
equation (5.1) we have the following optimal replacement ages: xE1 = 8.378,
xE2 = 8.374, xC = 7.908 and xW = 6.586.

We use the optimal replacement ages to define the opportunistic maintenance
policy. We set an opportunistic replacement threshold to

xop
i = (1− p)xi.

Here p is a percentage which tells how much earlier a component can be re-
placed from its replacement age. This percentage is same for all components.

We replace components at a maintenance instance if there is a reason to do
so. There are three possible reasons:

1. There are components in the system whose age exceeds xi.

2. One of the components has failed during the maintenance interval

3. The system does not satisfy the reliability threshold without replace-
ments.
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If scenario one above happens, we replace the components whose age exceed
xi and every other components whose age exceed the opportunistic replace-
ment threshold xop

i . If scenario two happens, we replace the failed component
and every other component whose age exceed xop

i . If scenario three happens,
we replace all the components whose age exceed xop

i .

However, if the replacements above do not fulfil the reliability threshold,
we choose to replace a minimal amount of other components. The selection
criteria is how close the age of the component is to xop

i (percentage difference).
For example, if replacing just engine 1 does not fulfil the reliability threshold
and age of the chassis is closest to its xop

i , meaning

a3
xop
3

≥ ai
xop
i

for all i not already chosen to be replaced, we check if the replacements of E1
and C are enough for the reliability threshold to be fulfilled. If so, we replace
those and simulate the system to the next maintenance instance. If not, we
add the next closest component to the maintenance portfolio and check the
reliability. This is repeated until the reliability threshold is fulfilled. Other
details of the simulation are executed according to the Figure 5.3.

We run the simulation with different values of p and present some results with
values p ∈ {0.2, 0.4, 0.6, 0.8}. Table 5.8 presents the costs of the opportunistic
policies by showing the percentage difference to the results of the Table 5.6.

We notice that the schedule from policy iteration is cheaper than that of
opportunistic scheduling policy with all the policies except for one. The
cost-based opportunistic replacement thresholds do not take into account
economic dependencies and cost savings which result from grouping compo-
nents to be maintained. These cost savings are bigger when the maintenance
interval and reliability threshold are both large, because we have less oppor-
tunities to maintain the system and we need to maintain more components
to fulfil the reliability threshold.
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Table 5.8: The percentage change in the cost of different maintenance
scheduling policies per thousand kilometers during 5 million kilometers (pe-
riod of 25 years) when using a opportunistic policy instead of the one obtained
from policy-iteration.

reliability maintenance interval ∆t
threshold ρ 75 100 125 150

p = 0.2
0.90 + 23.0 % + 23.7 % + 11.0 % + 13.9 %
0.91 + 17.4 % + 18.2 % + 14.3 % + 15.8 %
0.92 + 16.6 % + 19.1 % + 13.5 % + 17.6 %
0.93 + 16.3 % + 15.6 % + 10.6 % + 15.8 %
0.94 + 20.6 % + 17.0 % + 9.6 % + 15.2 %
0.95 + 15.9 % + 20.1 % + 13.2 % + 17.1 %

p = 0.4
0.90 + 3.1 % + 8.6 % + 8.2 % + 13.9 %
0.91 + 0.5 % + 9.8 % + 13.9 % + 15.8 %
0.92 + 6.0 % + 11.4 % + 13.4 % + 17.6 %
0.93 + 4.0 % + 14.6 % + 10.6 % + 15.8 %
0.94 + 6.7 % + 12.9 % + 9.6 % + 15.1 %
0.95 + 6.9 % + 18.5 % + 13.2 % + 17.1 %

p = 0.6
0.90 + 0.0 % + 1.3 % + 13.2 % + 1.6 %
0.91 + 7.1 % + 10.5 % + 13.7 % + 1.8 %
0.92 + 4.9 % + 7.7 % + 11.4 % + 1.8 %
0.93 + 1.0 % + 4.2 % + 6.1 % + 6.7 %
0.94 + 0.3 % + 1.3 % + 0.8 % + 6.0 %
0.95 + 7.3 % + 1.7 % + 0.8 % + 12.7 %

p = 0.8
0.90 + 0.5 % + 0.0 % + 13.5 % + 0.1 %
0.91 + 7.0 % + 10.5 % + 13.9 % + 0.1 %
0.92 + 4.5 % + 7.6 % + 11.7 % + 0.0 %
0.93 + 0.5 % + 4.2 % + 6.3 % + 26.7 %
0.94 − 0.3 % + 1.0 % + 0.1 % + 25.3 %
0.95 + 7.2 % + 0.2 % + 0.0 % + 19.1 %

From the Table 5.8 we can notice than when p = 0.8, ρ = 0.94 and ∆t = 75 it
is a little cheaper to use the opportunistic scheduling policy. This is the only
situation where opportunistic policy becomes cheaper. One explanation for
this is that the policy-iteration algorithm produces an optimal solution over
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a long time horizon and it happens in this case that this optimality is not
shown during the 67 maintenance instances. If we extend our time horizon
to, for example 200 maintenance instances, the opportunistic policy becomes
the more expensive one.

It is also noteworthy that when we looked separately at the simulation rounds
with no failures during the maintenance period of 25 years, the optimal policy
and the opportunistic policy with p = 0.8, ρ = 0.94 and ∆t = 75 replace
components identically. This means that the average costs of the two policies
are then also equal. Thus, it is more difficult to see clear differences between
these policies.

In addition, we compare the average number of component failures between
the opportunistic policy and the optimal policy-iteration policy. Table 5.9
presents the percentage difference between the average number of wheels
failures when compared to the optimal policy, the results in lower right part
of the Table 5.7. We notice that when p increases, the average number of
wheel failures tend to decrease.

We can conclude that by paying more some improvements in the reliability
are possible but it also seems that resources are not used efficiently since in
some cases they do not lead to any benefits.
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Table 5.9: The percentage change in the number of average wheels failures
per thousand kilometers during 5 million kilometers (period of 25 years) when
using four different opportunistic policy with different maintenance interval
and reliability threshold combinations

reliability maintenance interval ∆t
threshold ρ 75 100 125 150

p = 0.2
0.90 30.0 % 5.8 % −4.5 % −2.0 %
0.91 44.3 % 11.7 % 0.7 % 2.5 %
0.92 12.8 % −2.2 % −6.1 % 2.8 %
0.93 15.2 % −19.1 % −13.0 % −4.8 %
0.94 18.1 % −14.3 % −3.4 % −6.0 %
0.95 19.0 % −1.1 % −1.5 % −69.6 %

p = 0.4
0.90 9.3 % −15.2 % −4.4 % −1.7 %
0.91 53.4 % −6.2 % 2.2 % 2.5 %
0.92 13.3 % −23.3 % −5.2 % 1.9 %
0.93 31.2 % −36.4 % −12.6 % −4.2 %
0.94 42.5 % −40.6 % −2.7 % −6.7 %
0.95 11.3 % −2.3 % −0.3 % −69.6 %

p = 0.6
0.90 −1.2 % −1.3 % −54.0 % −0.7 %
0.91 −23.3 % −37.8 % −52.6 % 0.8 %
0.92 −23.8 % −37.0 % −55.9 % 1.4 %
0.93 −8.3 % −45.3 % −55.6 % −7.1 %
0.94 2.3 % −42.9 % −1.8 % −8.9 %
0.95 −23.8 % −2.6 % 0.1 % −70.5 %

p = 0.8
0.90 0.1 % −0.3 % −56.9 % 0.8 %
0.91 −23.3 % −41.2 % −54.5 % 2.8 %
0.92 −25.7 % −39.8 % −57.0 % 0.5 %
0.93 −11.8 % −48.2 % −58.4 % −70.2 %
0.94 0.0 % −45.4 % 0.1 % −71.0 %
0.95 −28.8 % −2.4 % −0.7 % −70.2 %



Chapter 6

Discussion

This thesis developed an optimization model for maintenance scheduling,
investigated the convergence of the policy-iteration algorithm and applied
the model to a case example. The calculated cases illustrated the strengths
and weaknesses of the model in comparison to models presented in scientific
literature.

6.1 Strengths of the model

According to Vu et al. (2014), systems have dynamic contexts which are
situations where some new information may be available concerning mainte-
nance opportunities, changes in production planning etc. These are divided
into three parts: ones affecting the structure of the system, ones affecting
the components of the system and ones affecting the environmental context.
The developed model can react to changes in all of the three levels. We can
update the directed graph to take into account structural changes. We can
change the failure distributions to make changes on the component level. We
can adjust the maintenance interval to cope with the environmental changes.
This highlights flexibility and adaptability as strengths of the model.

The scheduling policies obtained in different examples highlight the sensitiv-
ity of the results to parameter changes. For example in Section 4.2, when
the set-up cost was high, the optimal scheduling policy was found fast and
it had some intuitive properties. Also in Chapter 5, when a component had
failed and it had to be replaced, the policy usually recommended replacing
other components as well. Because this model is not based on the fact that
we first solve optimal replacement times of individual components and then

58
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group these maintenance operations in a cost-optimal way, we can find clever
groupings of how to replace components. This grouping is not forced by using
artificial penalty functions like in rolling horizon approaches (e.g. Wildeman
et al., 1997).

In addition, simulations show that the model focuses on the whole system
rather than individual components. These system-level decisions treat com-
ponents differently. We notice this for example from the number of compo-
nent failures during simulations. The policy does not try to keep the average
number of failures low overall for all the components simultaneously. Instead
the decisions are based on economic and structural dependencies. This differs
for example from block replacement policies.

The reliability threshold helps to reduce the number of failures and empha-
sizes the operation of the system. If we have a reliability threshold of p = 0.90
for a single system, we can still achieve a very good total reliability for exam-
ple in situations, where there are parallel systems and only a certain portion
of those need to stay operative. Anyway, the threshold ensures that the relia-
bility of the system stays acceptable in practise. Similar reliability measures
are not typically applied in the rolling horizon approaches (e.g. Wildeman
et al., 1997).

6.2 Weaknesses of the model

The weaknesses of the model are its restrictions. First, components are only
allowed to be replaced, not repaired. In practice there can be failures that
do not require replacement but a small fix which results into situation that
components do not return to ‘good as new’ state. Instead the resulting state
is something between ‘good as new’ and broken.

Another restriction is the increasing failure rate of components which is
needed to make preventive replacements meaningful. We used Weibull dis-
tribution but the data from components might not always support the in-
creasing failure rate. If the failure rate is constant, which is true for the
exponential distribution, we cannot fulfil the reliability threshold by pre-
ventively replacing components. In this case, one way to make the failure
probability of a component smaller is to shorten the maintenance interval.

We are also assuming discrete maintenance instances where, in case of failure,
the replacements are postponed to the next maintenance interval. However,
in reality, many systems can have failures that need maintenance right after
the failure happens. Also the assumption that at most one component can



CHAPTER 6. DISCUSSION 60

fail at a time might not hold in practise, but the validity of this assumption
was discussed in Section 3.2.

Another weakness is the solution method. The convergence time of the
policy-iteration algorithm depends heavily on the size of the state space
which restricts the size of the system the model can address. Thus, the
combination of the parameters discussed in the Section 4.1 must be chosen
wisely and as a result, the model is impractical with very complex and large
systems. Thus, our approach has some disadvantages when comparing it
with rolling horizon approaches and genetic algorithm which have been used
to solve bigger problems, like a system with 16 components (Vu et al., 2014).

6.3 Overcoming the weaknesses

There are ways to overcome the weaknesses. If we for example have enough
data from the system and from different maintenance operations we could
try to model also other maintenance decisions than just replacements. For
example, some decisions do not replace the component into new one but
reduce its age by some amount. Then we can model new state transitions.
We could also form new intermediate states in addition to the current ones
but then again this increases the size of the state space which can cause
computational difficulties.

In addition, we could consider using modern technologies to monitor the
state of the components in real time. It could give realistic information
about the current state of the system and reduce the impact of the chosen
probability distributions. In advance, it is not certain that the probability
distributions would model the individual components of the system well. But
by monitoring the system we can update those.

In case of a sudden failure, which requires immediate maintenance, we could
move the maintenance instances. Then there are different ways to adapt the
maintenance scheduling. At the failure we could maintain the system like it
would have been maintained at the next instance. Then, those components,
that are not replaced, have an age ai ̸= k∆t. We could either round up their
age, which forgets some of the components residual life, and continue with
the policy or we could expand the state space to take into account these
intermediate states and recalculate the policy. Those intermediate states
vanish when every component is replaced one time after the sudden failure.

In further work it would be interesting to know if there were clever ways
to reduce the size of the state space to enable solving bigger problems. In
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Table 4.4 there are portfolios which are never chosen. This means that there
are states which the system never reaches because maintenance decisions
fix the number of possible age combinations. It would be valuable to know
if this is a common phenomenon or if this happens with every system and
not just with certain assumptions. The next logical question is, how can
we identify situations like this without first running the model with all the
possible states and after that looking at the results. At least with penalty
functions it is possible to create theorems that limit the number of possible
groupings (Wildeman et al., 1997).

6.4 Other remarks

One interesting question is how we identify the maintenance scheduling pol-
icy which the developed model produces. Clearly this policy does not focus
only on corrective replacements. Preventive replacements must be done to
fulfil the reliability threshold. In addition, it seems that opportunities are
used often. When something breaks, older operative components are replaced
as well, like Table 5.5 presents. Thus, we can identify this policy as a op-
portunistic maintenance policy with a short-term grouping because at every
maintenance instance we are prepared for possible failure of the system.

Optimal maintenance scheduling policy creates also other benefits than sav-
ing money. Discrete maintenance instances and only allowing replacements
should make planning maintenance much easier because we now when and
how we can maintain the system. We can also use the maintenance schedul-
ing as a support tool for decision making. For example, we look at the case
example from Chapter 5. If we increased the durability of the wheels we
could recalculate the optimal maintenance policy and then see how the av-
erage maintenance costs change. Then we can use the cost difference to help
decide how much we could be willing to pay for the increased durability.



Chapter 7

Conclusions

This thesis developed a maintenance scheduling model for a multi-component
system with economic and structural dependencies. The dependencies were
presented with a directed graph. We assumed pre-defined maintenance in-
stances where we can only replace components. The failure times of com-
ponents were modeled with probability distributions. Every component was
assumed critical meaning that the system fails if one of the components fails.
The system was modeled as a discrete time Markov decision process where
the state of the system depends on the ages of the components and the failure
state of the system. We emphasized the reliability of the system by setting a
reliability threshold which the system had to fulfil at all times. The reliability
threshold, structural dependencies and the need to replace failed components
defined feasible maintenance action portfolios, the set of components that are
replaced.

The key question for solving the maintenance scheduling model was which
feasible maintenance action portfolio we should choose when the current state
of the system is known. Different options were evaluated based on how well
they minimize long term average maintenance costs under a reliability con-
straint. We also included the possibility to discount future cash flows in the
model. In the end, it was possible to solve the optimal maintenance schedul-
ing policy using policy-iteration algorithm. The algorithm was implemented
with MATLAB R2019b.

Next, the performance of policy-iteration algorithm was examined in practise.
We solved maintenance scheduling models of different sizes and noticed that
solution times depend heavily on the size of the state space. We also found
out that there are limits to how big problems can be solved using regular
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hardware. Also other model parameters, like the set-up cost, can have an
impact on the computation time of the policy-iteration algorithm.

The model was applied to a case example with four components. The failure
times of components followed Weibull distributions with increased failure
rate. We used different reliability thresholds and maintenance intervals to
define 24 different maintenance scheduling policies. The efficiency of different
policies was compared with simulations. It seemed that maintenance usually
becomes cheaper if it is possible to shorten the maintenance interval or lower
the reliability threshold. When these policies were compared with simple
and heuristic opportunistic policies we noticed that our approach creates cost
savings or is equally good regardless of the chosen maintenance interval or
reliability threshold. In contrast, these opportunistic policies tend to decrease
the number of failures on average because they are more prone to maintain
extra components simultaneously with mandatory replacements.

The developed model worked well. It gave cost-optimal maintenance schedul-
ing policies without compromising the reliability of the system. It could solve
different kinds of scheduling problems in reasonable time when the parame-
ters affecting the size of the state space were chosen wisely. It is noteworthy
that the model seems to work better with systems that have more restrictions
because these tend to decrease the size of the state space.

Policy-iteration was a suitable solution method for the model. Previous
studies have approached the maintenance scheduling of a multi-component
system with different methods like rolling horizon. These usually include
just economic dependencies while taking poorly reliability measures into ac-
count. Now, for the first time to the authors knowledge, we are including
economic dependencies, structural dependencies (Geng et al., 2015) and re-
liability threshold (Nguyen et al., 2015) into a model which is solved ana-
lytically. Indeed, new approaches that are suitable in this field help develop
maintenance scheduling further.

The next step would be to expand the model by relaxing its assumptions
as discussed in Section 6.3. Including other maintenance operations than
just replacements and allowing replacements between maintenance intervals
could bring the model closer to satisfying the needs of a real-life operations.
We could also test the sensitivity of the model with new types of parameter
changes, like looking at the structural dependencies more closely.

In further studies it would also be interesting to find ways to reduce the size
of the state space and to make solving bigger models possible. We learned
than after knowing the failure distributions of the components we can change



CHAPTER 7. CONCLUSIONS 64

the size of the state space by choosing maintenance interval or reliability
threshold accordingly.

If reducing the size of the state space seems difficult, we could look for other
ways to speed up the calculations. For example, in applying value-iteration
algorithm we do not need to solve a system of linear equations so one iter-
ation of value-iteration is faster than one iteration of policy-iteration. How-
ever, value-iteration algorithm typically needs more iterations to converge.
One approach would be to solve the system of equations approximately by
executing a limited number of value iterations. This method is a modified
policy-iteration algorithm (Bertsekas and Tsitsiklis, 1996).
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