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In this Master’s thesis, we will develop an algorithm for packing an elevator with
various objects. For simplicity, our model is two-dimensional and we model the objects
as capsules and rectangles and their combinations. The objects will arrive from an
elevator door one by one until no more can be fitted. The aim here is to maximize the
number of objects in the elevator, with no overlapping.

The optimization model is based on the concept of object overlapping. This means
that initially, we let the objects first overlap each other. Then, we adjust their places to
minimize their overlapping area. So, the objective function is the total overlapping
area of all the objects. A feasible configuration in the elevator is one with the total
overlapping area being equal to zero.

For overlapping, we use two concepts. One is the geometrical overlapping area
which is found in the literature. The other is overlapping distance, a concept developed
here. Even though the objective function is not differentiable, we use gradient-based op-
timization methods. We show a way of simplifying the gradient evaluation by canceling
a significant amount of counterterms, which speeds up the algorithm drastically.

We first solve the basic capsule packing problem. We use the gradient method,
the Broyden–Fletcher–Goldfarb–Shanno method (BFGS), and the cyclic placement
method (CPM) which is a special case of a block coordinate method. From the practical
point of view, the CPM is the best method. In fact, the CPM decomposes the problem
so that only one capsule is adjusted at a time in a sequential fashion. Especially
with a modified quadratic line search method, the CPM works very efficiently. These
observations are a result of extensive numerical testing.

We finally use our basic capsule packing algorithm for certain application cases.
In the first application, we construct a model for capsule and rectangle combinations,
which model passengers with suitcases. In the second case, we fit shopping carts and
passengers into the elevator.

In this thesis, we form a mathematical optimization model for packing various
capsule-rectangle combinations, and study various optimization methods to solve them
effectively. Our focus is on the models and algorithms, rather than solving particular
cases. We also develop a considerable amount of theory to study the concepts and
methods used.
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Tässä diplomityössä kehitetään algoritmi hissin täyttämiseen erilaisilla kappaleilla.
Mallimme on kaksiulotteinen ja mallinnamme kappaleet kapseleina, suorakulmioina
ja niiden yhdistelminä. Kappaleet saapuvat hissin ovesta yksi kerrallaan, kunnes hissi
on täynnä. Tarkoitus on maksimoida kappaleiden määrä hississä siten, etteivät ne ole
päällekkäin.

Optimointimallimme perustuu kappaleiden päällekkäisyyteen. Annamme kap-
paleiden olla ensin päällekkäin, ja sitten minimoimme tätä päällekkäisyyttä. Kohde-
funktiomme on siis summa kaikista päällekkäisistä pinta-aloista. Käypä konfiguraatio
hississä on silloin, kun kohdefunktion arvo on nolla.

Käytämme päällekkäisyyden mittaamiseen kahta käsitettä. Ensimmäinen on geo-
metrinen leikkauspinta-ala, mikä löytyy kirjallisuudesta. Toinen on päällekkäisyys-
pituus, joka on kirjoittajan kehittämä konsepti. Vaikka kohdefunktio ei ole differen-
tioituva, käytämme gradienttipohjaisia menetelmiä. Näytämme, miten gradientin
numeerista laskentaa voidaan sieventää kumoamalla vastatermejä, mikä nopeuttaa
algoritmia merkittävästi.

Ensin ratkaisemme kapselin pakkaustehtävän. Ratkaisuun käytämme gradientti-
menetelmää, Broyden–Fletcher–Goldfarb–Shanno -menetelmää (BFGS), sekä syklistä
sijoittelumenetelmää (CPM). CPM on paras menetelmä kaikkiin tässä työssä esitet-
tyihin tehtäviin. CPM hajauttaa tehtävän siten, että vain yhtä kappaletta liikutetaan
kerrallaan. Etenkin räätälöidyllä kvadraattisella viivahaulla CPM toimii erittäin tehok-
kaasti. Väitteet perustellaan kattavan simulaatiodatan avulla.

Lopuksi käytämme algoritmia kahdessa sovelluksessa. Ensimmäisessä sovelluk-
sessa tutkimme kapselin ja suorakulmion yhdistelmää, jolla mallinamme ihmisiä
matkalaukun kanssa. Toisessa sovelluksessa täytämme hissejä ostoskärryillä sekä
ihmisillä.

Tässä diplomityössä muodostamme matemaattisen optimointimallin kapseli-
suorakulmio kombinaatioiden pakkaamiseen, ja tutkimme minkälaiset optimoin-
timenetelmät ratkaisevat sen tehokkaasti. Keskitymme mallien ja algoritmien yleisiin
ominaisuuksiin, emmekä niinkään esimerkkitapausten ratkaisuun. Työssä on myös
huomattava määrä teoriaa käytettyihin konsepteihin ja menetelmiin liittyen.
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Symbols and abbreviations

Symbols𝑛 Number of capsules in the elevator.𝑛′ Number of capsule-rectange conbinations in the elevator.𝑁 A set defined as {1, … , 𝑛}.𝑁′ A set defined as {𝑛 + 1, … , 𝑛 + 𝑛′}.𝑚 Index for an object in an elevator, 1 ≤ 𝑚 ≤ 𝑛 + 𝑛′.𝑘 Iteration index.

b Displacement parameters for the elevator box.

x or x′ Displacement parameters for an object.

x𝑚 Displacement parameters for an object indexed with 𝑚.

x𝑚𝑘 Displacement parameters for an object indexed with 𝑚, and iteration
index 𝑘.

x𝑘 Optimization parameters in a column vector (containing the
placement parameters for all the objects in the elevator)𝑋 Set containing the placement parameters for all the objects in the
elevator.𝐸(x, x′) Overlapping distance of the capsules x and x′.𝐴(x, x′) Geometrical intersection area of the objects x and x′.𝐴(x) Geometrical area of the object x.

Abbreviations

BFGS Broyden–Fletcher–Goldfarb–Shanno method.

CPM Cyclic placement method.

QLS Quadratic line search method.
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1 Introduction

1.1 Background

Optimal packing of passenger elevators, that usually also carry goods, e.g., shopping
carts, luggage, etc., is not studied very much in the literature. Mathematically, the
problem belongs to so-called packing problems which deal with, e.g., maximizing the
number of similar objects in a box.

A recent ISO standard (8100-32:2020) [1] describes naive methods for calculating
person capacities in elevators. In the standard, we divide the elevator’s rated load
by the average mass of a person or divide the lift floor area by the average area of a
person, projected to the floor. Recently, Mirko Ruokokoski studied elevator packing,
where passengers were modeled as ellipses [2, 3]. Generally, ellipse packing problem is
quite well understood [4], but most of these studies approach the problem heuristically.
Ruokokoski’s approach is analytical and uses analytical optimization methods, as we
shall do here as well.

Nevertheless, packing of passengers and goods is a different problem compared to
packing passengers only: instead of ellipses, we use certain type of capsules, rectangles,
and their combinations. This thesis has been done in professor Harri Ehtamo’s research
group in Aalto University, where also other optimization problems related to elevators
has been studied, e.g., optimal routing problem for elevator groups [5, 6].

1.2 Thesis summary

In the thesis, we describe a model of an elevator and try to find methods for packing
the elevator reliably and efficiently. We model the elevator floor as a two-dimensional
rectangle, onto which passengers enter one by one and adjust their places in a way
that avoids “overlapping”. The two-dimensional model is suitable, considering that
objects, let alone passengers, are rarely packed on top of each other in an elevator. Also,
reducing to two dimensions allows much faster problem-solving.

We model the packed passengers and objects as capsules and rectangles. We also
present a model for a passenger with a suitcase, as a combination of a capsule and a
rectangle. These shapes are convenient because their geometry allows us to evaluate
their overlapping area in a closed form, rather than numerically (e.g., in the case of
two ellipses [2, 7]). We further simplify the problem by using passengers of constant
size and having only one wide elevator door. The simplifications make the simulation
results easier to replicate, but the algorithm is applicable for more complex models.

The elevator packing algorithm adds passengers and objects one by one. In between,
we need to confirm that all the objects can fit into the elevator. This is solved by
minimizing the total overlapping area, or a measure for it. At a feasible configuration
in the elevator, the total overlapping area (or objective function value) is zero. There
may be infinitely many feasible arrangements, and also infinitely many local non-
feasible configurations.

For overlapping, we use geometrical overlapping area, as well as overlapping dis-
tance, for which the concept is developed by the author. Overlapping distance uses



special geometry of capsules to find if, and how much, two capsules are overlapping.
The method is quick to compute and is analytically quite simple. The contributions of
the author are discussed in more detail in Chapter 7.

The objective function is continuous and non-linear, but not necessarily differen-
tiable, so minimizing it will require a robust non-linear optimization method. Despite
this fact, we use gradient-based methods here: gradient method and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method. We show how the numerical gradient evaluation
can be simplified by canceling counterterms, making the computation much faster
[8]. The effect is significant, halving the evaluation time with just five objects, and
quartering it with eleven objects.

A block coordinate method is a well-studied optimization method and perhaps
one of the simplest ways of decomposing an optimization problem [9]. Because of the
structure of our objective function, we can formulate an effective block coordinate
method, which we call the cyclic placement method (CPM) [8]. In fact, the method
improves the placement of one object at a time and leaves the rest of the objects fixed in
their positions. We sequentially improve the placement of each object in a continuous
sequence.

A gradient method is as good as its line search method. Line search methods
balance between accuracy and speed, and choosing between these depends on the
application. In this thesis, we use a quadratic line search (QLS) [10, 11], which attempts
to combine the best of both. The method is implemented in such a way that only a
single objective function evaluation is needed [10], which makes it a powerful line
search method when used with the CPM.

We apply the methods to two elevator packing application cases. First, we fill the
elevator with passengers some of which have suitcases. The other application case is
filling the elevator with shopping carts and passengers. We implement the algorithms
in Matlab and use its Optimization Toolbox and Polygons -packages in the simulations.

1.3 Thesis contents

In the next Chapter, we describe the capsule packing problem and show how the
overlapping area of two objects can be evaluated. We also define the overlapping
distance. A function for total overlapping is presented in Chapter 2.3, where we
analyze the function as an objective function for non-linear optimization algorithms.
Chapter 3 presents a method for comparing different optimization methods, using
expected global solving time. We show how the numerical evaluation of the objective
function’s gradient can be simplified. In the Chapter, we also present the optimization
methods: the gradient method, the BFGS, and the CPM. We show how the methods
perform with the capsule packing problem. In Chapter 4, we define the QLS and show
how the method, combined with CPM, performs with the capsule packing problem.
We also apply the QLS to a few simple example problems. Chapters 5 and 6 present
two different elevator packing applications. In Chapter 5, we pack elevators with
passengers, some of which are coupled with a suitcase, and in Chapter 6, we pack the
elevator car with shopping carts and passengers.



1.4 Literature review

There is a lot of documentation about packing problems, because of the number of
variations: packing problems may have distinctively different objective functions and
different restrictions depending on the application. E.g., when cutting pieces from
striped fabric, the orientation of the pieces matter. Most papers on packing problems
handle one or a few different kinds of shapes. A circle packing problem is a well-studied
topic [12], as well as an ellipse packing problem [2, 4, 13] and rectangle packing [14].
However, literature on the capsule packing problem is rather limited [8]. Some methods
for solving packing problems include tabu-search [14], and genetic algorithm [15]. A
common approach to a packing problem is to gradually expand the objects [4, 13],
or shrink the box until maximum packing density is reached. This approach is not
applicable to elevator packing, since we cannot scale the packed objects nor the elevator.

In his paper, Ruokokoski [2] showed an approach to an elevator packing problem,
with ellipses, but otherwise similar to ours with capsules and rectangles. However,
sometimes the objects tend to stay on top of each other, and the simulation durations
are rather long. Our algorithm manages to avoid these flaws.

An algorithm for a capsule packing was presented in [8], for which this thesis is
essentially a refinement and an extension. Here, we use many of the methods used in
[8]: the algorithm for the overlapping area of two capsules or rectangles; the objective
function; the CPM; the simplification of the objective function’s gradient. We use the
same objective function as in [8], except ignoring penalty terms, which were used to
block the capsules being on top of each other. We here find that the problem can be
solved without the penalty terms when global solving techniques are used.

The CPM is a special case of a block coordinate method [8, 9]. Variations to the
block coordinate method include acceleration step [16], Hooke and Jeeves method [11,
16], random indexing [17], and Gauss-Southwell [18] methods. We will compare these
variations in more detail in Chapter 3.3. A stochastic gradient method is also a popular
method for decomposing a large optimization problem. However, the block coordinate
method is a stochastic gradient method, if we use random indexing [19].

A question of global search (e.g. random search) and local search (e.g. gradient
method) is always relevant when we have non-convex optimization problems. This
is often referred to as the balance of exploration and exploitation [20]. The objective
function in this thesis has many local minima, so it is necessary to use some kind of
random search as well. In this thesis, we use simple trial and error with different initial
conditions. More sophisticated random search methods and heuristics are out of the
scope of this thesis.

Line search is a very well-studied topic, as well as the quadratic interpolation line
search method [11, 10]. The method shown in [10] utilizes also cubic interpolation,
extending the method shown here.



2 Capsule packing problem

Our aim here is to pack an elevator floor with as many capsules as possible so that
the capsules do not overlap. So, we consider the elevator as a rectangle box, of which
the upper edge acts as an elevator door. We initially place the capsules in a random
position (placement and orientation) so that the capsules’ center points lie on the
door threshold. We present the method and the algorithm in Figure 1; in Figure 2 we
present a flow chart for the elevator packing algorithm. We define 𝑛 to be the number
of capsules in the elevator. We start by initializing 𝑛 ← 0 and define solution 𝑆0 as
an “empty solution” with no capsules. Next, we shall add a capsule at the door and
increment 𝑛 ← 𝑛 + 1. The capsules may overlap initially, and we aim to fit all the
capsules in the box with no overlapping. We minimize the overlapping with, e.g., a
gradient method. Let 𝑆𝑛 be a generated solution with the least overlap. If solution 𝑆𝑛
is feasible, i.e., no overlaps remain, we proceed with adding the next capsule, etc. If
the solution is not feasible, we return the solution 𝑆𝑛−1, which is the previous feasible
solution.

     is feasible    ⟹ add object

     is feasible    ⟹ add object

EXIT

0

EXIT EXIT

EXIT

EXIT

1
1

EXIT

8
8

EXIT

9
     is not feasible     ⟹ stop algorithm9

add object

optimize

optimize

optimize

Figure 1:Algorithm for the capsule packing problem. Feasibility in this context means
that the objects do not overlap.



Start
n ← 0
De�ne solution S₀ 
as “empty”

Add object
n ← n + 1

Optimize⟹ Sn

Is Sn a feasible 
solution?

Yes

No

Stop
Return latest feasible 
solution, Sn−1

Figure 2: Flow chart of the capsule packing algorithm.

ISO standard 8100-30:2019 [1] specifies elevator dimensions along with their rated
capacities, see Table 1. We choose three of these sizes to be used in the simulations,
indicated in bold in the Table. American body sizes are shown in Table 2 [21]. To
simplify the problem, we’ll use constant-sized passengers based on these dimensions,455 × 275 mm.

Table 1: Elevator floor sizes from ISO 8100-30:2019 standard [1]. The first column is
from CEN 81-1:1998 standard [22]. Chosen sizes for the simulations are in bold.

Rated Rated load Width Depth Area
capacity (kg) (mm) (mm) (m2)

8 630 1100 1400 1.54
10 800 1350 1400 1.89
13 1000 1600 1400 2.24
17 1275 2000 1400 2.8
18 1350 2000 1500 3.0
21 1600 2100 1600 3.36
24 1800 2350 1600 3.76
26 2000 2350 1700 3.995

Table 2: Human dimensions, U.S. adults aged 19 to 65 years [21]. The rightmost
column is used for the dimensions of passengers.

Measure Men, Women, Average,
median median with clothes

Shoulder breadth 470 mm 400 mm 455 mm
Chest depth 255 mm 255 mm 275 mm



2.1 Defining capsules and rectangles

We define capsules and rectangles (objects) in the same way as in [8]. Mathematically,
both are defined analogously. A capsule is defined by a rectangle and two similar
semicircles, see Figure 3. A rectangle is defined as a capsule but without circles. Define

a

r

a

r

p
�

p
�

Figure 3: Definition of capsule and rectangle, in terms of their dimensions and dis-
placement parameters.𝑎 ∈ ℝ+ and 𝑟 ∈ ℝ+, to be the dimensions of the capsule. Position vector p ∈ ℝ2 and
angle 𝜃 ∈ ℝ define its location and orientation. We first define a capsule centered at
the origin, and then displace it, as in Figure 3. We define a capsule rectangle by its four
corner points,

R1 = [𝑎𝑟] , R2 = [−𝑎𝑟 ] , R3 = [−𝑎−𝑟] , R4 = [ 𝑎−𝑟] .
Then, define capsule circles, both with radius 𝑟, and center points,

C1 = [𝑎0] , C2 = [−𝑎0 ] .
The above construction defines a capsule centered at the origin. Define a rotation
matrix, 𝑅(𝜃) = [cos 𝜃 − sin 𝜃sin 𝜃 cos 𝜃] .
We define rotated and displaced capsule rectangle corner points and capsule circle
center points as,

r𝑖 = 𝑅(𝜃)R𝑖 + p; for 𝑖 = 1, 2, 3, 4,
c𝑖 = 𝑅(𝜃)C𝑖 + p; for 𝑖 = 1, 2.



A point q belongs to the capsule when it belongs to the rectangle or either of the circles.
I.e., the point q belongs to the capsule iff,[(−𝑎 ≤ 𝑄1 ≤ 𝑎) ∧ (−𝑟 ≤ 𝑄2 ≤ 𝑟)]∨[(𝑄1 + 𝑎)2 + (𝑄2)2 ≤ 𝑟]

(1)∨[(𝑄1 − 𝑎)2 + (𝑄2)2 ≤ 𝑟],
where Q = [ 𝑄1 𝑄2 ]⊤ = 𝑅(−𝜃)(q − p). We show an equivalent and more practical
definition in Chapter 2.2.

2.2 Overlapping

The idea of the elevator packing algorithm is to initially allow the capsules to intersect
and then minimize their overlap. For this, we need a measure of how much two cap-
sules are overlapping. We develop two approaches: overlapping area and overlapping
distance. The latter approach takes advantage of the capsules’ special geometry but is
not applicable to pure rectangles. The overlapping distance is faster to evaluate than
the overlapping area and is also applicable to three-dimensional capsules. We define a
vector of a capsule’s displacement parameters, x = [p⊤ 𝜃 ]⊤, which we’ll use in the
definition of the overlapping functions.

Overlapping area

In this thesis, we’ll use the same method as presented in [8]. The contours of capsules
and rectangles are formed of line segments and semicircles; hence, they are convex sets
and their intersections are convex. Thus, we can divide the intersection area into convex
polygon and convex circle segments. We shall consider two intersecting capsules; the
case for rectangles is analogous. For the sake of simplicity, we consider capsules of
the same size, however, a generalization to different sizes is possible. Define a set 𝐶,
containing the points of a capsule defined in terms of x = [p⊤ 𝜃 ]⊤ ∈ ℝ3, and 𝑎, 𝑟 ∈ ℝ+.
Define another set, 𝐶′, in terms of a capsule defined by x′ = [ (p′)⊤ 𝜃′ ]⊤ ∈ ℝ3, 𝑎 and𝑟.

We define the set of fixed capsule point(s) (fcp(s)) for each capsule (see Figure 4a),

FCP = { 𝑅(𝜃) [±𝑎±𝑟] + p, with every combination of ± -signs } ,
FCP′ = { 𝑅(𝜃′) [±𝑎′±𝑟′ ] + p′, with every combination of ± -signs } .

We also define capsule intersection point(s), (cip(s)), of two capsules in terms of
intersection points of the capsules’ line segments and semicircles, see Figure 4b. An-
alytical formulas for cips are provided in Appendix A. The capsules may also share
joint contours, thus producing infinitely many intersection points. These cases are
also handled in Appendix A, and examples are seen in Figure 5. Define the cips of 𝐶
and 𝐶′ as a set, CIP.



fcp

non-feasible segment
feasible segment

convex polygon

non-feasible fcpfeasible fcp

(a) (b)

(c) (d)

cip

feasible segment

Figure 4: An example of area evaluation. We present fcps in (a), and cips in (b). In
(c) we have cips and such fcps, which lie at the intersection; the points that define the
convex polygon. In (d), we have the convex polygon with feasible and non-feasible
circle segments.

Figure 5: Examples where capsules share joint contours.

The convex polygon is defined as a convex hull that covers the following finite set
of points (see Figure 4c),

CIP ∪ (FCP ∩ 𝐼) ∪ (FCP′ ∩ 𝐼), 𝐼 = 𝐶 ∩ 𝐶′;
the polygon is seen in Figure 4d. The convex polygon and its area can be numerically
evaluated using Matlab commands convhull and polyarea. The command convhull



returns the hull’s corner points, arranged counterclockwise.
Next, we shall find all feasible segments, evaluate their areas and add them to the

intersection area. A feasible segment is defined to be any segment that is a subset of
the intersection 𝐼, and whose intersection area with the convex polygon is zero. All
feasible segments are on the boundary of the convex polygon and in its exterior. Thus,
we shall look for a feasible segment at each edge of the convex polygon, and limit our
search to the exterior of the convex polygon.

Next, we define the segment arc’s center point and show how it can be used to
determine a segment’s feasibility. Consider a corner point h1, on the convex polygon
(shown in Figure 6), and a subsequent corner point counterclockwise, h2. We shall

h

ℎ n‖n‖

h1 + h22 h1h2 convex polygon

v

Figure 6: Arc center point. Because the convex polygon’s corner points are in counter-
clockwise order, the vector n is oriented as pointing towards the exterior of the convex
polygon.

define the arc’s center point with the following formula (see Figure 6),

v = h1 + h22 + ℎ n‖n‖,
where ℎ is the height of the segment and n is a normal vector for the convex polygon’s
edge, oriented towards the exterior of the polygon. The formula for the segment’s
height is [23],

ℎ = 𝑟 − 12√4𝑟2 − ‖h2 − h1‖2.
We shall constructn by turning vectorh2 −h1 clockwise by 𝜋∕2, thus makingn normal
to h2 − h1, and directed towards the exterior of the polygon (see Figure 6),

n = 𝑅(−𝜋∕2)(h2 − h1)
= [cos (−𝜋∕2) − sin (−𝜋∕2)sin (−𝜋∕2) cos (−𝜋∕2)] (h2 − h1)
= [ 0 1−1 0] (h2 − h1).



Here, 𝑅 is the rotation matrix defined in Chapter 2.1. The segment is either feasible,
thus v ∈ 𝐼, or the segment is not feasible, which implies v ∉ 𝐼. Hence, if v ∈ 𝐼 (which
can be found by using Equation (1)), we evaluate the area of the segment by [23],

𝐴seg = 12𝑟2(𝜙 − sin 𝜙), 𝜙 = 2 arcsin ‖h1 − h2‖2𝑟 ,
and add it to the total area. If v ∉ 𝐼, the segment is not feasible, and its area is not
taken into account.

We define the intersection area between two capsules, x, and x′, as 𝐴(x, x′), and
the area of a capsule as 𝐴(x), which is a constant. It can be shown that 𝐴 is continuous
as a function of (x, x′).

Overlapping distance

With any two circles, it is trivial to find out how much they are overlapping: one finds
the distance between their center points and notes if it’s smaller or larger than the
sum of their radii. We can use a similar approach with two capsules by realizing that a
capsule’s contour can be defined by the set of points at a constant distance from a line
segment, see Figure 7. In this Chapter, we define overlapping distance 𝐸, see Figure 8,
which measures how much two capsules overlap. Also, we shall refine 𝐸 in a special
case, where the line segments of the capsules intersect, see Figure 8c.

C

L( ) ∈ [0, 1]
rr

c1 c2
Figure 7: Illustration of the fact that a capsule’s contour is at a constant distance from
a line segment.

We use a new, equivalent definition, for the set containing the points of a capsule,𝐶 = {
c |||| c = L(𝑡) + 𝑟 d, with some 𝑡 ∈ [0, 1], and d ∈ 𝐷 }. (2)

where 𝑟 > 0 fixed, 𝐷 is a closed unit disc and,

L(𝑡) = 𝑡 c1 + (1 − 𝑡) c2, c1, c2 ∈ ℝ2.
For all c ∈ 𝐶, following inequality holds,𝑟 ≥ min𝑡∈[0,1]‖c − L(𝑡)‖. (3)
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Figure 8: Value of function 𝐸 in different cases. (a) When 𝑑1 is large enough (𝑑1 ≥𝑟 + 𝑟′), the capsules are not overlapping, hence we define 𝐸 = 0. In this case, the
overlapping distance is equal to the overlapping area. In (b), 𝑑1 is smaller, but non-zero
(0 < 𝑑1 < 𝑟 + 𝑟′), implying that the capsules are overlapping. In this case, we define𝐸 = 𝑟 + 𝑟′ − 𝑑1 > 0. In cases (a) and (b), a value for 𝑑2 is not defined. In (c) the line
segments intersect, i.e., 𝑑1 = 0, in which case we define 𝑑2 (𝑑2 is defined in Equation
(6), and in sentence below it), and 𝐸 = 𝑟 + 𝑟′ + 𝑑2.



Define another capsule 𝐶′, analogously to the above definition,𝐶′ = {
c′ |||| c′ = L′(𝑡′) + 𝑟′ d′, with some 𝑡′ ∈ [0, 1], and d′ ∈ 𝐷 },

L′(𝑡′) = 𝑡′ c′1 + (1 − 𝑡′) c′2,
c′1, c′2 ∈ ℝ2,𝑟′ > 0, fixed.

Note that we let the capsules be of different sizes. Next, we shall write the minimum
distance between the line segments L and L′,𝑑1 = min𝑡,𝑡′∈[0,1]‖L(𝑡) − L′(𝑡′)‖, (4)

see Figures 8a, 8b. Analytical formula for 𝑑1 is provided in Appendix B. The mathe-
matical definition of 𝑑2 in Figure 8c is given at the end of this section, in Equation (6),
and the sentence below it. With Lemma 1 and Theorem 1 we show how we can use
the formula in Equation (4) to find out if two capsules overlap.

Lemma 1. Let 𝐷 be a closed unit disc, a ∈ ℝ2 and 𝑏 ≥ 0. Then,min
x∈𝐷 ‖a + 𝑏x‖ = max {‖a‖ − 𝑏, 0}, (5)

holds.

Proof. Note, that the lemma holds for 𝑏 = 0. Suppose now that 𝑏 > 0. We shall
consider the left-hand side of Equation (5) and divide the problem into two cases: (i)‖a‖ ≤ 𝑏, (ii) ‖a‖ > 𝑏. Figure 9 illustrates the cases and solutions visually. Consider (i).
By choosing x = −a∕𝑏, the left hand side of Equation (5) is zero. A value of a norm is
non-negative, thus our choice x = −a∕𝑏 is a solution to the minimization problem.

Case (ii) can be proven with two inequalities. First, we obtain a lower bound for
the left hand side of Equation (5), using triangle inequality [24],min

x∈𝐷 ‖a + 𝑏x‖ ≥ min
x∈𝐷 ||||‖a‖ − ‖𝑏x‖|||| = ‖a‖ − 𝑏, for ‖a‖ > 𝑏.

An upper bound is found by a substitution of x = −a∕‖a‖,

min
x∈𝐷 ‖a + 𝑏x‖ ≤ ‖‖‖‖‖‖‖‖ a − 𝑏 a‖a‖‖‖‖‖‖‖‖‖ = ‖a‖ (1 − 𝑏‖a‖) = ‖a‖ − 𝑏.

Combining the above results, we get a solution to the minimization problem,

min
x∈𝐷 ‖a + 𝑏x‖ = { 0, for ‖a‖ − 𝑏 ≤ 0‖a‖ − 𝑏, for ‖a‖ − 𝑏 > 0= max {‖a‖ − 𝑏, 0}.
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Figure 9: Illustration of Lemma 1.

Theorem 1. 𝐶 ∩ 𝐶′ ≠ ∅ iff 𝑑1 ≤ 𝑟 + 𝑟′.
Proof. For the equivalence, we show that: (i) 𝐶 ∩ 𝐶′ ≠ ∅ implies 𝑑1 ≤ 𝑟 + 𝑟′, (ii)𝐶 ∩ 𝐶′ = ∅ implies 𝑑1 > 𝑟 + 𝑟′. Consider (i). Let’s take a point a ∈ 𝐶 ∩ 𝐶′. By Equation
(3), and the triangle inequality,𝑟 + 𝑟′ ≥ min𝑡∈[0,1]‖a − L(𝑡)‖ + min𝑡′∈[0,1]‖a − L′(𝑡′)‖≥ min𝑡,𝑡′∈[0,1]‖a − L(𝑡) − a + L′(𝑡′)‖= min𝑡,𝑡′∈[0,1]‖L(𝑡) − L′(𝑡′)‖ = 𝑑1.
This proves (i). Equation 𝐶 ∩ 𝐶′ = ∅ holds if we have 0 < minc∈𝐶, c′∈𝐶′ ‖c − c′‖. Let 𝐷
be a closed unit disc. By using Equation (2) and Lemma 1,0 < min

c∈𝐶, c′∈𝐶′ ‖c − c′‖= min𝑡,𝑡′∈[0,1], d,d′∈𝐷‖(L(𝑡) + 𝑟d) − (L′(𝑡′) + 𝑟′d′)‖
= max { min𝑡,𝑡′∈[0,1], d∈𝐷‖L(𝑡) + 𝑟d − L′(𝑡′)‖ − 𝑟′, 0 }.



Zero on the right-hand side is ruled out because it leads to a contradiction. Hence,0 < min𝑡,𝑡′∈[0,1], d∈𝐷‖L(𝑡) − L′(𝑡′) + 𝑟d‖ − 𝑟′
= max { min𝑡,𝑡′∈[0,1]‖L(𝑡) − L′(𝑡′)‖ − 𝑟, 0 } − 𝑟′= min𝑡,𝑡′∈[0,1]‖L(𝑡) − L′(𝑡′)‖ − 𝑟 − 𝑟′= 𝑑1 − 𝑟 − 𝑟′,

which proves (ii).

Theorem 1 implies that overlapping of 𝐶 and 𝐶′ occurs iff 𝑟 + 𝑟′ − 𝑑1 ≥ 0. Thus, we
aim to move capsules so that 𝑟 + 𝑟′ − 𝑑1 < 0 holds. Let x and x′ be the displacement
vectors of 𝐶 and 𝐶′, respectively. We shall now define the overlapping distance,𝐸(x, x′) = { 0, for 𝑟 + 𝑟′ ≤ 𝑑1𝑟 + 𝑟′ − 𝑑1, for 0 < 𝑑1 < 𝑟 + 𝑟′,
which is zero when the capsules do not overlap and is greater than zero when they
overlap, see Figure 8. However, an issue arises in a case when 𝑑1 = 0, i.e., when the
line segments L andL′ intersect, see Figure 8c. In these cases, the overlapping distance
is constant, 𝐸 = 𝑟 + 𝑟′, and the value is probably constant also at the neighborhood of
these points, with respect to the placement parameters, (x, x′). A constant function
value at a neighborhood implies a zero gradient vector. The purpose of function 𝐸 is to
be minimized with a numerical optimizer which often requires a non-zero gradient
vector. For our purpose, we shall redefine 𝐸, when 𝑑1 = 0, such that the gradient vector
will not be zero. We define a measure for the overlapping of the two line segments L
and L′ (see Figure 8c),

𝑑2 = ⎧⎨⎩
min
w∈𝑊‖q − w‖2, for L(𝑡) ∦ L′(𝑡)0, for L(𝑡) ∥ L′(𝑡), (6)

q = {
L(𝑡) | L(𝑡) = L′(𝑡′); 𝑡, 𝑡′ ∈ [0, 1] },𝑊 = {
c1, c2, c′1, c′2 }.

The above formula for 𝑑2 measures the distance from the line segments’ intersection
point q, to the nearest line segment endpoint. Note, that q is defined uniquely only
when 𝑑1 = 0, and L(𝑡) ∦ L′(𝑡). A special case when 𝑑1 = 0, and L(𝑡) ∥ L′(𝑡) (i.e., the
line segments L and L′ overlap, thus having infinitely many intersection points), is
not a problem with numerical optimization algorithms, so in this case, we can simply
define 𝑑2 = 0. We can now include this case in the definition of 𝐸(x, x′),

𝐸(x, x′) = ⎧⎨⎩
0, for 𝑟 + 𝑟′ ≤ 𝑑1𝑟 + 𝑟′ − 𝑑1, for 0 < 𝑑1 < 𝑟 + 𝑟′𝑟 + 𝑟′ + 𝑑2, for 𝑑1 = 0.

In the last case the radii 𝑟, 𝑟′ are added to ensure the continuity of the function 𝐸.



2.3 Objective function

In this section, we shall define a function, that corresponds to the total overlapping
of objects in an elevator. Minimizing this function leads to configurations with the
least overlapping. Define a set of objects x = {x1, … , x𝑛}, where x𝑖 = [ (p𝑖)⊤ 𝜃𝑖 ]⊤ are
capsules of the same size. Define 𝑁 = {1, … , 𝑛}, and a rectangular box with chosen
dimensions and whose center point is fixed to the origin. We shall refer to this box
by b = [ 0 0 0 ]⊤. Our overall objective function consists of two parts. Overlapping
between all the objects is defined by summing the overlapping of every pair of objects,𝐹𝐴(𝑋) = ∑

𝑖,𝑗∈𝑁, 𝑖<𝑗𝐸(x𝑖, x𝑗),
and the formula, 𝐹𝐵(𝑋) = ∑

𝑖∈𝑁[𝐴(x𝑖) − 𝐴(x𝑖,b)],
gives the sum of the object areas that are outside of box b. Our overall objective function𝐹(𝑋), is defined as,𝐹(𝑋) = 𝐹𝐴(𝑋) + 𝐹𝐵(𝑋) = ∑

𝑖,𝑗∈𝑁, 𝑖<𝑗𝐸(x𝑖, x𝑗) + ∑
𝑖∈𝑁[𝐴(x𝑖) − 𝐴(x𝑖,b)].

All terms of the sum in 𝐹 are non-negative, so 𝐹 must also be non-negative. Feasible
capsule configurations in the elevator are defined as points, where 𝐹(𝑋) = 0. Some
overlapping regions may be counted more than once with the formula for 𝐹, e.g., in
the case of three capsules all overlapping each other at some point. However, the
overlapping will be minimized by minimizing 𝐹, even if some overlapping areas are
counted more than once.

Since functions 𝐴 and 𝐸 are continuous functions, 𝐹(𝑋) is also continuous. How-
ever, it’s not necessarily differentiable everywhere, since it is easy to produce corners
both in its graph and contours, see Figures 10 and 11. Convergence of non-linear
optimization algorithms is usually obtained by assuming a continuous gradient of the
objective function [11], thus the objective function here may be challenging.

The total number of terms in 𝐹𝐴(𝑋) is(𝑛2 ) = 𝑛(𝑛 − 1)2 = 𝒪(𝑛2),
and in 𝐹𝐵(𝑋) there are 𝑛 terms. Assuming strictly positive evaluation times for func-
tions 𝐴 and 𝐸, the computation time of 𝐹(𝑋) grows at a speed of 𝒪(𝑛2).
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Figure 10: Examples of corners in the objective function graph. The objective function
is shown with respect to 𝑥 parameter of capsule x1 = [ 𝑥 𝑦 𝜃 ]⊤, i.e., the capsule x1
is moved horizontally, capsule x2 is fixed in its position. In (a) the corners are due to
function 𝐴(x1,b), as the capsule crosses an edge of the box. In (b) the corners are due
to function 𝐸(x1, x2), as the capsule x1 crosses the capsule x2.
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Figure 11: Objective function landscape, i.e., constant contours, with respect to the
displacement of capsule x𝑚 = [𝑥 𝑦 𝜃]⊤. E.g., in the top-left graph, parameter 𝜃 is kept
fixed, as in the top right graph. Corners can be seen in all three graphs. The length
unit here is 0.1 m.



3 Optimization methods

Before analyzing various optimization methods for the minimization of 𝐹(𝑋), we need
to define a stopping criterion for the algorithms. A local optimum is indicated with
respect to the max-norm of the objective function’s gradient, ‖∇𝐹(𝑋)‖∞ < 10−4. The
max-norm is chosen because it works consistently with different numbers of objects
and different elevator sizes.

Sometimes gradient-based algorithms converge slowly towards the optimum. Also,
because of the challenging landscape of the objective function, an exact solution𝐹(𝑋) = 0, may be difficult to find. Thus, we relax the problem by allowing a tiny
overlap at a solution. This relaxation can be tolerated because human bodies, here
called passengers, are not ideal rigid objects. We define the criterion for a solution as,max { 𝐸(x𝑖, s𝑗), 𝐴(x𝑖, b) − 𝐴(x𝑖) | 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 } < 10−3.

Note, that the choice of the length scale also matters, because displacement param-
eters in vector p𝑖, are of distance unit whereas the angle parameter 𝜃𝑖 is unitless. This
means that if we scale the problem larger (e.g., change the unit from m to cm), the
system becomes more sensitive with respect to the angle parameter 𝜃𝑖 when compared
to the parameters p𝑖. Scaling the optimization parameters is called diagonal scaling
[11]. Diagonal scaling is optimal when the contours of the objective function near an
optimum are circles with center points at the optimum. A counterexample would be a
narrow valley, in which an optimum is obtained (an extreme case is shown in Chapter
4.2). Diagonal scaling often affects gradient descent’s convergence [11], whereas New-
ton and Quasi-Newton methods do diagonal scaling by using second-order information
of the objective function. Also, the conjugate gradient method corrects the diagonal
scaling of the problem. Diagonal scaling would affect the contours shown in Figure 11,
by scaling the graphs horizontally or vertically. In this thesis, we use 0.1 m as our unit
of length, and from the Figure, we see that this choice for the scale is suitable, because
there are not many narrow valleys.

Implementation quality can affect the computation times, even if the underlying
mathematics remains the same. In this thesis, we use Matlab’s professionally imple-
mented algorithms and our own implementations. If professionally implemented, our
methods could potentially be significantly faster. Thus, we use the number of 𝐴 and 𝐸
function evaluations as our metric for time, which is independent of implementation
qualities. Also, the results are more accurately replicable, because, with a high-level
language such as Matlab, the computing times may even vary from run to run.

To evaluate the gradient numerically, we use finite differences. The gradient of the
problem could be evaluated with a central difference or auto-derivative method for
greater precision [25], but the computing times would be higher.

3.1 Simplifying the gradient evaluation

Here we simplify the objective function gradient evaluation, which is presented in
[8]. The method is based on a decomposition, where gradients are calculated for each



capsule separately. The decomposition allows us to remove canceling counter terms,
which are present when ∇𝐹 is evaluated directly with finite differences. The method is
very effective even with a small number of objects, as we will see later in this Chapter.

We shall define a function that sums overlapping with respect to capsule x𝑚. Over-
lapping between all objects and the capsule x𝑚 is,𝑓𝑚𝐴 (x𝑚) = ∑

𝑖∈𝑁⧵{𝑚}𝐸(x𝑖, x𝑚),
and its area outside the elevator is,𝑓𝑚𝐵 (x𝑚) = 𝐴(x𝑚) − 𝐴(x𝑚,b).
Function 𝑓𝑚 is defined as a sum of the above two formulas,𝑓𝑚(x𝑚) = 𝑓𝑚𝐴 (x𝑚) + 𝑓𝑚𝐵 (x𝑚).
With Lemma 2 and Theorem 2, we will show how ∇𝐹 can be evaluated by using 𝑓𝑚.
Later we shall compare the computation time between ∇𝐹 and the formula presented
in Theorem 2.
Lemma 2. The identity 𝐹(𝑋) = 𝐹(𝑋 ⧵ {x𝑚}) + 𝑓𝑚(x𝑚) holds, for all 𝑚 ∈ 𝑁.
Proof. We prove the claim by separating terms from 𝐹(𝑋). For simplicity we’ll separate
the terms regarding x𝑛, thus proving 𝐹(𝑋) = 𝐹(𝑋 ⧵{x𝑛})+𝑓𝑛(x𝑛). The proof then holds
for any index by reordering the set 𝑋. Define 𝑋0 = 𝑋 ⧵ {x𝑛}, and 𝑁0 = {1, … , 𝑛 − 1}.
The formula for 𝐹𝐴(𝑋) can be rewritten as,𝐹𝐴(𝑋) = ∑

𝑖,𝑗∈𝑁, 𝑖<𝑗𝐸(x𝑖, x𝑗) = 𝑛∑
𝑗=2

𝑗−1∑
𝑖=1 𝐸(x𝑖, x𝑗)

= 𝑛−1∑
𝑗=2

𝑗−1∑
𝑖=1 𝐸(x𝑖, x𝑗) + 𝑛−1∑

𝑖=1 𝐸(x𝑖, x𝑛)
= ∑

𝑖,𝑗∈𝑁0, 𝑖<𝑗𝐸(x𝑖, x𝑗) + ∑
𝑖∈𝑁⧵{𝑛}𝐸(x𝑖, x𝑛)= 𝐹𝐴(𝑋0) + 𝑓𝑛𝐴(x𝑛). (7)𝐹𝐵(𝑋) can be written similarly,𝐹𝐵(𝑋) = ∑

𝑖∈𝑁[𝐴(x𝑖,b) − 𝐴(x𝑖)]= ∑
𝑖∈𝑁0[𝐴(x𝑖) − 𝐴(x𝑖,b)] + [𝐴(x𝑛) − 𝐴(x𝑛,b)]= 𝐹𝐵(𝑋0) + 𝑓𝑛𝐵(x𝑛). (8)

Using Equations (7) and (8), we get,𝐹(𝑋) = 𝐹𝐴(𝑋) + 𝐹𝐵(𝑋)= 𝐹𝐴(𝑋0) + 𝑓𝑛𝐴(x𝑛) + 𝐹𝐵(𝑋0) + 𝑓𝑛𝐵(x𝑛)= 𝐹(𝑋0) + 𝑓𝑛(x𝑛),
which proves the claim.



Theorem 2. The identity∇𝐹(𝑋) = [∇𝑓1(x1)⊤ … ∇𝑓𝑛(x𝑛)⊤]⊤ (9)

holds.

Proof. Write x𝑚 = [ 𝑥𝑚1 𝑥𝑚2 𝑥𝑚3 ]⊤, and consider a partial derivative of 𝐹, with respect
to the component 𝑥𝑚𝑖 . We define a displaced object, y𝑚, whose elements are defined as,

𝑦𝑚𝑗 = ⎧⎨⎩
𝑥𝑚𝑗 , for 𝑗 ≠ 𝑖,𝑥𝑚𝑗 + ℎ, for 𝑗 = 𝑖,

where ℎ > 0. Also, define 𝑋0 = 𝑋 ⧵ {x𝑚} and 𝑌 = 𝑋0 ∪ {y𝑚}. Then we prove the claim
by writing the partial derivatives and using Lemma 2 as follows,𝜕𝐹(𝑋)𝜕𝑥𝑚𝑖 = limℎ→0 𝐹(𝑌) − 𝐹(𝑋)ℎ = limℎ→0 𝐹(𝑋0) + 𝑓𝑚(y𝑚) − 𝐹(𝑋0) − 𝑓𝑚(x𝑚)ℎ= limℎ→0 𝑓𝑚(y𝑚) − 𝑓𝑚(x𝑚)ℎ (10)

= 𝜕𝑓𝑚(x𝑚)𝜕𝑥𝑚𝑖 .
In Equation (10), terms 𝐹(𝑋0) cancel in the computation of partial derivatives,

when 𝐹(𝑋) is used. The unnecessary computations add up to a significant proportion
when the number of objects is large, thus making the right-hand side of Equation
(9) faster to evaluate. Next, we shall compare the evaluation speed of both sides of
Equation (9).

On the left-hand side of (9), we’re evaluating the gradient of 𝐹(𝑋) directly. We have𝑛 objects, and each object has three degrees of freedom. Thus, the gradient of 𝐹(𝑋)
for all the parameters with forward differences requires 3𝑛 + 1 function evaluations.
Since 𝐹(𝑋) is computed in 𝒪(𝑛2) time (see Chapter 2.3), the gradient is evaluated in𝒪(𝑛2)(3𝑛 + 1) = 𝒪(𝑛3) time.

Consider now the expression on the right-hand side of (9). The computation time
of function 𝑓𝑚 grows at a linear rate, 𝒪 (𝑛). Computation of ∇𝑓𝑚(x𝑚) requires four
function evaluations, thus ∇𝑓𝑚 is evaluated in 𝒪 (𝑛) ⋅ 4 = 𝒪 (𝑛) time. For ∇𝐹, we need∇𝑓𝑚, for all 𝑚 ∈ 𝑁. Thus, the evaluation time grows at a rate of 𝒪(𝑛) ⋅ 𝑛 = 𝒪(𝑛2).

The reduction in evaluation time, from 𝒪(𝑛3) to 𝒪(𝑛2), is significant. A more
detailed study on the evaluation times is provided in [8], where we noted that at least
50 % reduction in computation time is reached with just five capsules, and at least 75
% reduction is reached with 11 capsules. We shall use the right-hand side of (9) with
all algorithms presented below.
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Figure 12: Obtained distribution (normalized frequency) of the result of a simulation,
with a box size of 2350 × 1700 mm. The gradient method finds solutions with 32
passengers (global optimum) more often than BFGS.

EXIT

Figure 13: 32 passengers in a 2350 × 1700 mm elevator. The arrangement is computed
by the BFGS.

3.2 Capsule packing problem with gradient method and BFGS

Familiar non-linear optimization methods include the gradient method and BFGS. De-
fine all the optimization parameters as a single column vector, x𝑘 = [ (x1𝑘)⊤ … (x𝑛𝑘)⊤ ]⊤,
where 𝑘 ∈ ℕ is an iteration index. In Algorithms 1 and 2 we have a gradient method
and a lightly modified BFGS, where gradient method iteration is used when the Hessian
inverse update becomes near singular. In both methods, we use Matlab’s optimization
algorithm for the line search, which is an exact line search method.

We now apply these methods for the capsule packing problem described in Chapter
2: we add capsules to the box one by one until the optimizer cannot solve the packing
problem implying that the box is full. Simulation results are presented in Figure



Algorithm 1 Gradient method
1: inputs: initial conditions x1
2: 𝑘 ← 0.
3: while neither stopping criteria is satisfied do
4: 𝑘 ← 𝑘 + 1
5: 𝛼𝑘 ← arg min𝛼 {𝐹(x𝑘 − 𝛼∇𝐹(x𝑘))}
6: x𝑘+1 ← x𝑘 − 𝛼𝑘∇𝐹(x𝑘)
7: end while
8: outputs: x𝑘+1
Algorithm 2 BFGS

1: inputs: initial conditions x1
2: 𝑘 ← 0
3: 𝐵−10 ← 𝐼
4: x0 ← x1
5: while neither stopping criteria is satisfied do
6: 𝑘 ← 𝑘 + 1
7: s𝑘 ← x𝑘 − x𝑘−1
8: y𝑘 ← ∇𝐹(x𝑘) − ∇𝐹(x𝑘−1)⊳ If-statement in case the update formula for 𝐵−1 is near singular
9: if (s⊤𝑘y𝑘)2 < 10−4 then⊳ A gradient method step

10: 𝐵−1𝑘 ← 𝐵−1𝑘−1
11: 𝛼𝑘 ← arg min𝛼 {𝐹(x𝑘 − 𝛼∇𝐹(x𝑘))}
12: x𝑘+1 ← x𝑘 − 𝛼𝑘∇𝐹(x𝑘)
13: else⊳ Hessian inverse update and a Quasi-Newton step

14: 𝐵−1𝑘 ← 𝐵−1𝑘−1 + (
s⊤𝑘y𝑘 + y⊤𝑘 𝐵−1𝑘−1y𝑘) (

s𝑘s⊤𝑘 )(
s⊤𝑘y𝑘)2 − 𝐵−1𝑘−1y𝑘s⊤𝑘 + s𝑘y⊤𝑘 𝐵−1𝑘−1

s⊤𝑘y𝑘
15: 𝛼𝑘 ← arg min𝛼 {𝐹(x𝑘 − 𝛼𝐵−1𝑘 ∇𝐹(x𝑘))}
16: x𝑘+1 ← x𝑘 − 𝛼𝑘𝐵−1𝑘 ∇𝐹(x𝑘)
17: end if
18: end while
19: outputs: x𝑘+1



12, where we have simulated elevator packing with capsules with different initial
conditions, as described in Chapter 2.1. From the Figure, we can see that the obtained
capacity differs from run to run, thus, the optimization methods are not always able
to find a global optimum. An optimized setting is shown in Figure 13. Numerical
simulations are handled in more detail in Chapter 3.5.

3.3 Cyclic placement method

The cyclic placement method, CPM, was presented in [8], where preliminary results for
the capsule packing problem were obtained. In the method, the problem is decomposed
into subproblems, in which we optimize the placement of a single capsule at a time,
and keep other capsules fixed. Once the placement of a capsule is optimized, we move
on to the next object. We usually need to optimize the objects’ placements many times
to reach an optimum. Since we’re optimizing the placement of a single capsule, we
can use 𝑓𝑚 as the objective function. The CPM is presented in Algorithm 3.

In [8], the individual optimization tasks (line 7 in Algorithm 3) were solved by
using Matlab’s active-set algorithm. We use the same algorithm here, with a limit
of three iterations, as was also done in [8].

Algorithm 3 CPM
1: inputs: x𝑖1, ∀𝑖 ∈ 𝑁
2: 𝑘 ← 0
3: while both stopping criteria are not satisfied do
4: 𝑘 ← 𝑘 + 1⊳ Modulo operator: 𝑎 % 𝑛 ∶= 𝑎 − 𝑛 ⌊𝑎∕𝑛⌋
5: 𝑚 ← (𝑘 − 1) % 𝑛 + 1
6: x𝑖𝑘+1 = x𝑖𝑘, ∀𝑖 ∈ 𝑁 ⧵ {𝑚}
7: x𝑚𝑘+1 = arg minx 𝑓𝑚(x)
8: end while
9: outputs: x𝑖𝑘+1, ∀𝑖 ∈ 𝑁

The CPM is a special case of the block coordinate method [9]. The block coordinate
method has various modifications. These include random indexing [26], acceleration
step [16], Hooke and Jeeves method [16], and Gauss-Southwell rule [27]. The perfor-
mance of the first three methods are more or less based on a heuristic than on theory
[11], and testing these in practice with the packing problem shows a negligible change
in the convergence speed, compared to Algorithm 3.

With the Gauss-Southwell rule, we would choose and optimize the capsule with
the largest gradient (e.g., compared by Euclidian norm). Thus, we would need to
evaluate the gradient of all capsules at each iteration. The modification can accelerate
the convergence if the structure of the problem allows the gradients to be quickly
computable [27]. However, our objective function does not have the structure required,



hence the Gauss-Southwell rule should perform worse than a regular block coordinate
method. This claim is verified by simulations.

3.4 Global optimization and comparison of methods

Comparing optimization methods is not a trivial task, especially when the objective
function contains many local optima and multiple solutions. Some algorithms may
find feasible solutions more often than others, but on the other hand, it might consume
more time. In this thesis, we try to find the global optimum (most capsules with𝐹(𝑋) = 0) by trial and error starting from different initial conditions. As a measure
of the speed of global optimization, we use the expected time for finding a global
optimum.

Assume simulations with some algorithm and a problem (e.g., fit most capsules
into a given box). Assume also, that we record the outcome of each simulation (global
optimum obtained or not), and the time the algorithm takes to finish for each simulation.
In this thesis the individual simulations are statistically independent, thus we can
study the simulation data with simple probability.

We shall index the simulation trials, 𝑆 = {1, … , 𝑠}, and define computation time for
each simulation, 𝑡𝑠, ∀𝑠 ∈ 𝑆. We split the set 𝑆 to subsets 𝑃 and 𝑄: in 𝑃 we have such
simulation indices, whose outcome is a global optimum, and 𝑄 is the complement of𝑃; 𝑄 = 𝑆 ⧵ 𝑃. We shall define a sample probability, 𝑝 = |𝑃|∕|𝑆|, and its complement,𝑞 = 1 − 𝑝. We shall define separate sets of computing times: 𝑇𝑃 = {𝑡𝑠 | 𝑠 ∈ 𝑃}, and𝑇𝑄 = {𝑡𝑠 | 𝑠 ∈ 𝑄}. We denote 𝑇𝑃 and 𝑇𝑄 to be sample means for the above two sets,
respectively.

Table 3: Scenarios where we find a global optimum.

Number of simulations until Probability Expected time Probability ×
a global optimum is obtained Expected time

1 𝑝 𝑇𝑃 𝑝 𝑇𝑃
2 𝑞𝑝 𝑇𝑄 + 𝑇𝑃 𝑞𝑝 (𝑇𝑄 + 𝑇𝑃)
3 𝑞2𝑝 2 ⋅ 𝑇𝑄 + 𝑇𝑃 𝑞2𝑝 (2 ⋅ 𝑇𝑄 + 𝑇𝑃)⋮ ⋮ ⋮ ⋮𝑖 + 1 𝑞𝑖𝑝 𝑖 ⋅ 𝑇𝑄 + 𝑇𝑃 𝑞𝑖𝑝 (𝑖 ⋅ 𝑇𝑄 + 𝑇𝑃)⋮ ⋮ ⋮ ⋮

Sum 1 𝑇𝑄(1∕𝑝 − 1) + 𝑇𝑃
When measuring the time for finding a global optimum, we stop the search once

we find a global optimum. I.e., at the final trial, we find a global optimum, and in the
preceding trials we do not find one. In Table 3 we have listed all possibilities for the
number of simulation trials until a global optimum is found. The expected time for



finding a global optimum is thus,
∞∑

𝑖=0 𝑞𝑖𝑝 (𝑖 𝑇𝑄 + 𝑇𝑃) = 𝑇𝑄 ( 1𝑝 − 1) + 𝑇𝑃.
The sum is simplified with the following formula,

∞∑
𝑖=0 𝑖 𝑞𝑖 = 𝑞(1 − 𝑞)2 , for |𝑞| < 1,

which can be obtained by differentiating the formula for geometric series [28].

3.5 Numerical simulations, convergence analysis

We ran simulations with the three optimization methods, with the capsule packing
problem described in Chapter 2.1, which models an elevator car being filled with
passengers. The results can be seen in Table 4, where we have expected global solving
times (see Chapter 3.4) for each method. We see that the gradient method and BFGS
produce similar expected global solving times with all three elevator sizes. The CPM is
significantly worse compared to the other two: with the medium-sized elevator, the
problem is solved in a significantly longer time, and we could not find even a single
global solution with the largest elevator size.

The distributions of solutions are presented in Figure 14. With the two bigger
elevator sizes, the CPM with Matlab’s solver finds solutions far more rarely compared
to the other two. Simulation data can be seen in Appendix C.

Table 4: Expected global optimization time of a capsule packing problem. Computing
times are shown in a unit of million area calculations. The fastest algorithm for each
problem is shown in bold.

Elevator size Capacity Gradient BFGS CPM
(mm) ISO-std. Simulations method (Matlab’s solver)

1350 × 1400 10 15 57.6 89.8 65.5
2000 × 1400 17 22 28.9 19.5 84.6
2350 × 1700 26 32 411 474 –

The CPM with Matlab’s optimizer does not perform well. Nevertheless, in the next
Chapter, we will show that this state of affairs is not the final truth of the things. We
will there define a CPM with a different optimizer that outperforms all the methods
described in this Chapter. Capacity in our simulations is systematically greater than
in the ISO standard. This is because any personal space is ignored in the simulations,
and also our chosen dimensions for passengers may be smaller than in reality.
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Figure 14: Distribution of the number of fitted objects, for each optimization method.



4 Gradient method with quadratic line search

4.1 Definition of the quadratic line search

In the following analysis, let 𝑓 ∶ ℝ𝑛 ↦ ℝ be any function such that 𝑓 ∈ 𝐶1. The
quadratic line search (QLS) implementation exploits the already evaluated gradient
and function value of 𝑓 at a point x𝑘 [10]. With this information, only one function
evaluation is needed for fitting a quadratic model, from which we obtain an approxi-
mation for the optimal step length. The method is computationally light and gives the
exact optimal step with quadratic functions, which we shall also show. Later we also
make use of the method associated with CPM to solve packing problems and see how
it compares to the methods shown in Chapter 3.

( )
(0)

( )(0)
(ℎ )

ℎ
Figure 15: Example of a quadratic approximation of a function.

Define the line search function,𝑔𝑘(𝛼) = 𝑓(x𝑘 − 𝛼∇𝑓(x𝑘)). (11)

We shall construct a parabola 𝑝𝑘(𝛼), as in Figure 15, with some chosen ℎ𝑘 > 0. The
parabola is defined by the following properties: 𝑝𝑘(0) = 𝑔𝑘(0), 𝑝′𝑘(0) = 𝑔′𝑘(0) and𝑝𝑘(ℎ𝑘) = 𝑔𝑘(ℎ𝑘). The parabola satisfying the first two conditions is,𝑝𝑘(𝛼) = 𝑔𝑘(0) + 𝛼 𝑔′𝑘(0) + 𝛼22 𝑝′′𝑘 (0); (12)

and since 𝑝𝑘(ℎ𝑘) = 𝑔𝑘(ℎ𝑘), we have,

𝑔𝑘(ℎ𝑘) = 𝑔𝑘(0) + ℎ𝑘 𝑔′𝑘(0) + ℎ2𝑘2 𝑝′′𝑘 (0), (13)

if and only if 12𝑝′′𝑘 (0) = 1ℎ2𝑘
(𝑔𝑘(ℎ𝑘) − 𝑔𝑘(0) − ℎ𝑘 𝑔′𝑘(0)). (14)



We next optimize 𝑝𝑘(𝛼) in Equation (12), by solving the zero value of the derivative.
The optimum 𝛼𝑘 is defined by,

𝛼𝑘 = − 𝑔′𝑘(0)𝑝′′𝑘 (0) .
Point 𝛼𝑘 is the minimum point of the parabola when 𝑝′′𝑘 (0) > 0. Using (14),

𝛼𝑘 = ℎ2𝑘2 ⋅ −𝑔′𝑘(0)𝑔𝑘(ℎ𝑘) − 𝑔𝑘(0) − ℎ𝑘 𝑔′𝑘(0) . (15)

The formula above is presented in [11, 10], and the method is known as the quadratic
interpolation line search method. Next, using Equation (11), we obtain 𝑔𝑘(0) = 𝑓(x𝑘)
and, 𝑔′𝑘(𝛼) = −∇𝑓(

x𝑘 − 𝛼∇𝑓(x𝑘))⊤∇𝑓(x𝑘) ⟹ 𝑔′𝑘(0) = −‖∇𝑓(x𝑘)‖2. (16)

Substituting these to Equation (15) gives [10],

𝛼𝑘 = ℎ2𝑘2 ⋅ ‖∇𝑓(x𝑘)‖2𝑔𝑘(ℎ𝑘) − 𝑓(x𝑘) + ℎ𝑘‖∇𝑓(x𝑘)‖2 . (17)

With the gradient method, numerical values for ∇𝑓(x𝑘) and 𝑓(x𝑘) are evaluated before
the line search. Thus, only 𝑔𝑘(ℎ𝑘), is needed to obtain the step size 𝛼𝑘. In the simula-
tions, a normalized parameter ℎ𝑘 = 𝑢𝑘∕‖∇𝑓(x𝑘)‖, is used, because it is numerically
more stable. With this parametrization, Equation (17) becomes,

𝛼𝑘 = 𝑢2𝑘2 ⋅ [𝑓(x𝑘 − 𝑢𝑘 ∇𝑓(x𝑘)‖∇𝑓(x𝑘)‖) − 𝑓(x𝑘) + 𝑢𝑘‖∇𝑓(x𝑘)‖]−1 .
Quadratic objective function

The quadratic line search method (QLS) has an interesting property: if 𝑓(x) is quadratic
and strictly convex, the method solves the line search problem exactly with any ℎ𝑘 > 0
(not necessarily with the above definition given by 𝑢𝑘∕‖∇𝑓(x𝑘)‖). In this case, all line
search problems are also quadratic, so we shall define 𝑔𝑘(𝛼) as,

𝑔𝑘(𝛼) = 𝑔𝑘(0) + 𝛼 𝑔′𝑘(0) + 𝛼22 𝑔′′𝑘 (0),
with 𝑔𝑘(0), 𝑔′𝑘(0), 𝑔′′𝑘 (0) ∈ ℝ. Since 𝑓 is strictly convex, we have 𝑔′′𝑘 (0) > 0. The
minimum of 𝑔𝑘 is at,

arg min𝛼∈ℝ 𝑔𝑘(𝛼) = − 𝑔′𝑘(0)𝑔′′𝑘 (0) . (18)



Using Equation (15), we have the following,

𝛼𝑘 = ℎ2𝑘2 ⋅ −𝑔′𝑘(0)𝑔𝑘(ℎ𝑘) − 𝑔𝑘(0) − ℎ𝑘 𝑔′𝑘(0)
= ℎ2𝑘2 ⋅ −𝑔′𝑘(0)[𝑔𝑘(0) + ℎ𝑘 𝑔′𝑘(0) + ℎ2𝑘2 𝑔′′𝑘 (0)] − 𝑔𝑘(0) − ℎ𝑘 𝑔′𝑘(0)
= − 𝑔′𝑘(0)𝑔′′𝑘 (0) . (19)

Comparing Equations (18) and (19), we see that the QLS produces the minimum point
exactly, with any ℎ𝑘 > 0. An example quadratic function is presented later in Chapter
4.2.

Convergence analysis

Assume that ∇𝑓 is Lipschitz-continuous, i.e., there is 𝐿 ≥ 0, for which,∀ v,w ∶ ‖∇𝑓(v) − ∇𝑓(w)‖ ≤ 𝐿‖v − w‖.
In [29] it reads that the gradient method converges, if 0 < 𝛼𝑘 < 2∕𝐿, ∀𝑘 ≥ 0. Here, the
left-hand side inequality holds (see Lemma 3, in Appendix D),

𝛼𝑘 = ‖∇𝑓(x𝑘)‖2𝑝′′𝑘 (0) ≥ 1𝐿 > 0.
The inequality 𝛼𝑘 < 2∕𝐿 holds at least in a neighborhood of a local optimum point,
but not necessarily globally. More detailed convergence analysis is out of the scope of
this thesis.

4.2 Numerical simulations

Simple example problems

In this Chapter, we shall implement a gradient method and compare three line search
methods: exact line search, and the QLS with two choices for ℎ𝑘. The used parameters
are ℎ𝑘,1 = 5 ⋅ 10−2∕‖∇𝑓(x𝑘)‖, and, ℎ𝑘,2 = 5 ⋅ 10−3∕‖∇𝑓(x𝑘)‖. The exact line search
method is implemented by using Matlab’s optimization algorithm. In this Chapter, we
use autodifferentiation for gradient evaluation.

As a time unit, we use step count, because it is independent of the implementation
performance between the methods. However, the QLS only requires one objective
function evaluation, whereas we let multiple evaluations with the exact line search
method. Thus, the exact line search method is expected to consume more time per
step compared to the QLS.



In the examples, we use three test functions (see Table 5), all of which have a
single minimum point, and no maxima. Functions 𝑓𝐴 and 𝑓𝐵 are convex and 𝑓𝐶 is not
convex.

The function 𝑓𝐴 is a quadratic function, and we see that the QLS does not differ
from the exact line search method. From Figure 16 it can be seen that the methods
“zigg-zagg” their way closer to the optimum, and also, the linear convergence rate of
all the methods is seen.

With functions 𝑓𝐵 and 𝑓𝐶, the QLS performs similarly or better than the exact line
search, see Figures 17 and 18. In both cases, the QLS takes shorter steps at the beginning
and later converges faster. The function 𝑓𝐶 is Rosenbrock’s “banana function” [30],
where both methods show tight “zigg-zagging”. This behavior is typical for gradient
methods at this problem.

With functions 𝑓𝐵 and 𝑓𝐶, we can see that the choice of ℎ𝑘 matters with non-
quadratic functions. With the function 𝑓𝐵, the smaller ℎ𝑘,2 was faster, whereas with
the function 𝑓𝐶, the larger ℎ𝑘,1 was the fastest. The first few steps are similar with bothℎ𝑘, and differences become more prominent at later steps.

Table 5: Test functions.

Function Initial point, x0 Optimum, x∗ 𝑓𝑖(x∗)𝑓𝐴(𝑥1, 𝑥2) = 𝑥21 + 8𝑥22 − 0.5𝑥1𝑥2 (10, −10) (0, 0) 0𝑓𝐵(𝑥1, 𝑥2) = exp (𝑥1 + 2𝑥2 − 0.1) +exp (−𝑥1 − 0.2) + (−2, −4) (−0.3966, 0) 2.434exp (𝑥1 − 2𝑥2 − 0.1)𝑓𝐶(𝑥1, 𝑥2) = (1 − 𝑥1)2 + 100(𝑥2 − 𝑥21)2 (−2, 0) (0, 0) 0



Figure 16: Function 𝑓𝐴. The line search methods work in the same way with any
quadratic function.



Figure 17: Function 𝑓𝐵. The QLS is coping well against the exact line search method.



Figure 18: The function 𝑓𝐶, i.e., the Rosenbrock function.



Capsule packing problem

Now we shall construct a method for the capsule packing problem. The method is a
gradient method with QLS method, with added random search and acceleration step.
We use the cyclic placement method, CPM (see Chapter 3.3), in which we optimize
placement of a single capsule at a time, with 𝑓𝑚 as the objective function. We compare
this method with the previously shown results, in Chapter 3.5.

With the CPM, the objective function is different at every iteration, so methods
which use data from previous iterations are not applicable. Fortunately, the gradient
method with QLS does not require data from previous iterations, so it can be very
effective at this problem. Our objective function is rather heavy to evaluate, so the
computationally light QLS should have an advantage.

See Algorithm 4 for the complete algorithm that is used with the CPM. The CPM
is presented in Algorithm 3, in Chapter 3.3.

We redefine the parameter ℎ𝑘 to beℎ𝑘 = 𝑀√𝑘∕𝑛 ‖∇𝑓𝑚(x𝑚𝑘 )‖.
We shall define a random search [31], and acceleration step [16], which in this case
accelerates the convergence and also help to find global optima. We use a limit for the
line search, to prevent 𝛼𝑘 > 𝐿∕2, and also to prevent objects from, e.g., crossing each
other in the elevator. We choose to limit the step to 5 cm, i.e., ‖x𝑘+1 − x𝑘‖ < 0.5 = 𝑀.
The parameter ℎ𝑘 is decreasing but maintains numerical stability.

With random search, we form a hypersphere around the current point x𝑘, sample
random points from inside the hypersphere, and choose the point where the objective
function value is the smallest. Studying other random search methods and heuristics
is out of the scope of this thesis.

The acceleration step is as follows. After a step of gradient method, we sample
a number, 𝜌𝑘 ∈ {1, 2}, which gets value 1 with 70 % probability, and 2 with 30 %
probability. We modify the gradient method step to x𝑚𝑘+1 = x𝑚𝑘 − 𝜌𝑘𝛼𝑘∇𝑓𝑚(x𝑚𝑘 ).

Table 6: Expected global optimization time of a capsule packing problem. Computing
times are shown in a unit of million area calculations. The fastest algorithm for each
problem is shown in bold.

Elevator size Capacity Gradient BFGS CPM
(mm) ISO-std. Simulations method (QLS)

1350 × 1400 10 15 136 72.8 73.2
2000 × 1400 17 22 31.9 17.3 5.8
2350 × 1700 26 32 410 648 158

The results are seen in Table 6. With the two larger elevators, the expected time for
finding a global optimum is significantly faster with the CPM using the QLS compared
to the other methods. Distributions of simulation results are shown in Figure 19, where
we see that the CPM with QLS finds better optima noticeably more often compared



Algorithm 4 Gradient method with QLS, to be used with the CPM.
1: inputs: iteration index 𝑘, capsule index 𝑚, initial placement x𝑚𝑘 .⊳ Limit for step length
2: 𝑀 ← 0.5⊳ Random search
3: Pick a random x𝑟𝑘 uniformly from 𝐵(x𝑚𝑘 , 𝑀)
4: if 𝑓𝑚(x𝑟𝑘) ≤ 𝑓𝑚(x𝑚𝑘 ) then
5: x𝑚𝑘+1 ← x𝑟𝑘
6: outputs: x𝑚𝑘+1
7: end algorithm
8: end if⊳ Gradient method and QLS
9: if ∇𝑓𝑚(x𝑚𝑘 ) = 0 then

10: x𝑚𝑘+1 ← x𝑚𝑘
11: outputs: x𝑚𝑘+1
12: end algorithm
13: end if

14: ℎ𝑘 ← 𝑀√𝑘∕𝑛 ‖∇𝑓𝑚(x𝑚𝑘 )‖
15: 𝑔𝑘(ℎ𝑘) ← 𝑓𝑚(x𝑚𝑘 − ℎ𝑘∇𝑓𝑚(x𝑚𝑘 ))
16: 𝑝′′𝑘 (0) ← 2ℎ2𝑘

(𝑔𝑘(ℎ𝑘) − 𝑓𝑚(x𝑚𝑘 ) + ℎ𝑘‖∇𝑓(x𝑚𝑘 )‖2)
17: if 𝑝′′𝑘 (0) > 0 then
18: 𝛼𝑘 ← ‖∇𝑓𝑚(x𝑚𝑘 )‖2∕𝑝′′𝑘 (0)
19: else
20: 𝛼𝑘 ← ℎ𝑘
21: end if⊳ Acceleration step
22: Pick a random 𝜌𝑘 ∈ {1, 2}, so that, ℙ(𝜌𝑘 = 1) = 70%.⊳ Evaluate the new point
23: x𝑚𝑘+1 ← x𝑚𝑘 − 𝜌𝑘𝛼𝑘∇𝑓𝑚(x𝑚𝑘 )⊳ Step limit
24: if ‖x𝑚𝑘+1 − x𝑚𝑘 ‖ > 𝑀 then
25: d ← (x𝑚𝑘+1 − x𝑚𝑘 )∕‖x𝑚𝑘+1 − x𝑚𝑘 ‖
26: x𝑚𝑘+1 ← x𝑚𝑘 + 𝑀d
27: end if
28: outputs: x𝑚𝑘+1



to Matlab’s exact line search method. The CPM with the QLS finds global optima
less frequently than BFGS and gradient method at every elevator size. However, the
expected global solving time for the CPM with the QLS is faster because the method
is faster in solving local and global optima. With the smallest elevator size, we can
see that all methods find the global solution rarely, which implies that the problem is
challenging: global optima are sparse compared to local optima.
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Figure 19: Distribution of the number of fitted objects.



5 Passengers with suitcases

In some scenarios, e.g., in hotel elevators, it may be necessary to simulate passengers
carrying suitcases. In this Chapter, we present such a model, with a natural assumption:
the suitcase and its owner are kept close to each other. The suitcase, modeled by a
rectangle, is modeled to tangent the passenger, see Figure 20. Only the long edge of
the rectangle is considered to tangent the capsule. When we proceed to minimize the
overlapping, the idea is to let the optimizer also move the suitcases. We use the term
object to refer to any capsules and capsule-rectangle combinations in the elevator.

W(0)

Q(0)Q(−1) Q(1)
Q(0.5)

W(π)

W(2π) W(3π)

W(3.8π)

�
p

(a) (b)

(c)

x

y

y y

y

x x

x

(d)

Figure 20: The suitcase model. (a)–(b): We first choose pointsW andQ on the capsule
and rectangle, e.g., W(3.8𝜋) and Q(0.5). We join the objects, by aligning these two
points, and set the suitcase to such an angle that the two objects do not overlap. (d):
Finally we displace the combination with displacement parameters p and 𝜃.

We define minor modifications to the course of simulation described in Chapter
2. Every other arriving passenger carries a suitcase and every other does not carry a
suitcase, see Figure 21. The first passenger carries a suitcase. Initially, the center point
of the capsule is placed at the doorstep, as is seen in Figure 21. Similarly, as in Chapter
2, we keep adding objects to the elevator one by one, and overlapping is minimized
in between. The procedure is continued until the optimizer cannot find a feasible
configuration, i.e., overlapping remains.

We apply four optimization methods to this problem: gradient method, BFGS,
CPM with Matlab’s solver, and CPM with gradient method and QLS. We use the same
elevator sizes and capsule dimensions, as with the capsule packing problem. The
dimensions of a suitcase are defined to be 364 × 220 mm. At the end of this Chapter,
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Figure 21: Flow chart of the algorithm.

we shall look at how the problem differs from a capsule packing problem, and how
effective the methods are in this context.

5.1 The model

We define a capsule centered in the origin as in Chapter 2.1; in terms of 𝑎, 𝑟 > 0,
yielding the capsule rectangle corner points, R𝑖, 𝑖 = 1, 2, 3, 4, and capsule circle center
points C𝑖, 𝑖 = 1, 2. The suitcase’s corner points, in the origin, are defined analogously
in terms of its dimensions 𝑎′, 𝑟′ > 0, as follows,

R′1 = [𝑎′𝑟′ ] , R′2 = [−𝑎′𝑟′ ] , R′3 = [−𝑎′−𝑟′ ] , R′4 = [ 𝑎′−𝑟′] .
We define two parameters, 𝑞 ∈ [−1, 1] and 𝜔 ∈ ℝ, which we shall use to define the

point of contact for the two objects. Varying the parameter values allows us to move
the suitcase around the host capsule. The parameter 𝑞 defines the contact point on
the rectangle, and 𝜔 defines the contact point on the capsule. We define the rectangle



contact point Q(𝑞), to lie on the rectangle’s bottom edge (see Figure 20b),

Q(𝑞) = [𝑞𝑎′−𝑟′] .
The point on the capsule,W(𝑤), 0 ≤ 𝑤 < 4𝜋, is defined in a periodical manner from

the up right corner point back to it in a period of 4𝜋. With this curious parametrization
we obtain tidy equations below. In addition, we use parameter 𝜔 defined as,𝑤 = 𝜔 − 4𝜋 ⌊ 𝜔4𝜋 ⌋

We now want the long edge of the rectangle to be aligned with the tangent atW(𝑤),
hence, the rectangle will not overlap with the capsule. We define the angle 𝜗(𝑤), to be
the angle between this tangent and the 𝑥-axis. Table 7 contains the defining formulas.

Table 7: Definition of W(𝑤) and 𝜗(𝑤).𝑤 W(𝑤) 𝜗(𝑤)
0 ≤ 𝑤 < 𝜋 [𝑎 − 2𝑎𝑤∕𝜋𝑟 ] 0

𝜋 ≤ 𝑤 < 2𝜋 [−𝑎0 ] + 𝑟 [cos (𝑤 + 𝜋∕2)sin (𝑤 + 𝜋∕2)] = [−𝑟 sin 𝑤 − 𝑎𝑟 cos 𝑤 ] 𝑤 − 𝜋
2𝜋 ≤ 𝑤 < 3𝜋 [−𝑎 + 2𝑎(𝑤 − 2𝜋)∕𝜋−𝑟 ] 𝜋
3𝜋 ≤ 𝑤 < 4𝜋 [𝑎0] + 𝑟 [cos (𝑤 + 3𝜋∕2)sin (𝑤 + 3𝜋∕2)] = [𝑟 sin 𝑤 + 𝑎−𝑟 cos 𝑤 ] 𝑤 − 2𝜋

We now displace the rectangle’s corner points by,𝑅(𝜗(𝑤))(R′𝑖 − Q(𝑞)) + W(𝑤),
which defines a rectangle seen in Figure 20c. 𝑅(⋅) is a rotation matrix, defined in
Chapter 2.1. The rectangle tangents the capsule which is placed in the origin. Then,
we displace both, the capsule and the rectangle, with p ∈ ℝ2 and 𝜃 ∈ ℝ, yielding the
final placement seen in Figure 20d,

r′𝑖 = 𝑅(𝜃) [𝑅(𝜗(𝑤))(R′𝑖 − Q(𝑞)) + W(𝑤)] + p, 𝑖 = 1, 2, 3, 4,
r𝑖 = 𝑅(𝜃)R𝑖 + p, 𝑖 = 1, 2, 3, 4,
c𝑖 = 𝑅(𝜃)C𝑖 + p, 𝑖 = 1, 2.



5.2 Objective function

We need to modify the objective function presented in Chapter 2.3. The objective
function is the same as with capsule packing problem, but with added optimization
parameters, and exceptions in overlapping area and overlapping distance functions.

Define the number of capsules 𝑛, and the number of capsule-rectangle combi-
nations 𝑛′. Define 𝑁 = {1, … , 𝑛}, 𝑁′ = {𝑛 + 1, … , 𝑛 + 𝑛′}, and the set of objects,𝑋 = { x1, … , x𝑛+𝑛′ }, where,

x𝑚 = [p𝑚𝜃𝑚] , ∀𝑚 ∈ 𝑁,
x𝑚 = ⎡⎢⎢⎢⎣

p𝑚𝜃𝑚𝑞𝑚𝜔𝑚
⎤⎥⎥⎥⎦ , ∀𝑚 ∈ 𝑁′.

We redefine the functions 𝐸 and 𝐴 to handle overlapping of different types of
objects. Define k𝑖 to be the capsule of the capsule-rectangle combination, and s𝑖 to be
the rectangle of the object x𝑖, 𝑖 ∈ 𝑁′. Consider two any type of objects, x𝑖, and x𝑗. If x𝑖
is a rectangle-capsule combination, and x𝑗 is a capsule, we define,𝐸(x𝑖, x𝑗) = 𝐸(k𝑖, x𝑗) + 𝐴(s𝑖, x𝑗), for 𝑖 ∈ 𝑁′, 𝑗 ∈ 𝑁,𝐴(x𝑖, x𝑗) = 𝐴(k𝑖, x𝑗) + 𝐴(s𝑖, x𝑗), for 𝑖 ∈ 𝑁′, 𝑗 ∈ 𝑁.
If both x𝑖 and x𝑗 are capsule-rectangle combinations, we define,𝐸(x𝑖, x𝑗) = 𝐸(k𝑖,k𝑗) + 𝐴(k𝑖, s𝑗) + 𝐴(s𝑖,k𝑗) + 𝐴(s𝑖, s𝑗), for 𝑖, 𝑗 ∈ 𝑁′,𝐴(x𝑖, x𝑗) = 𝐴(k𝑖,k𝑗) + 𝐴(k𝑖, s𝑗) + 𝐴(s𝑖,k𝑗) + 𝐴(s𝑖, s𝑗), for 𝑖, 𝑗 ∈ 𝑁′.

We define a barrier function to constrain 𝑞𝑖 ∈ [−1, 1], ∀𝑖 ∈ 𝑁′. The barrier function
is

∑𝑖∈𝑁′ 𝛾𝑘 |𝑞𝑖|𝛾𝑘 , where parameter 𝛾𝑘 ≥ 1 is increased as the iteration index 𝑘 increases.
We add the barrier function to the objective function. For the CPM methods, we define𝛾𝑘 = (𝑘∕(𝑛 + 𝑛′) + 1)2, and for the gradient method and BFGS, we define 𝛾𝑘 = (𝑘 + 1)2.

5.3 Results

Simulation results are shown in Table 8. The gradient method is left out of the table
because it was unable to find any global optima to any problem. In addition, BFGS
found global solutions only to the problem with the smallest elevator size. A non-global
solution of BFGS is shown in Figure 22. We see that almost every object is surrounded
from at least three different directions, locking the objects in their places and creating
a local optimum. Rectangles seem to be far more exposed to form these local optima,
compared to capsules. The varying of initial conditions will eventually lead to a global
optimum, but it can consume much time, thus, different global solving techniques are
useful here.
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Figure 22: A local optimum found by the BFGS.

For the CPM with QLS, we implemented the random search which, according to
the results, works very well. From Table 8 we see that the CPM with the QLS is very
fast compared to other methods. With the largest problem, the CPM with the QLS is
38 times faster than the method with Matlab’s optimizer. From Figure 23 we see that
with gradient method and BFGS there is a little probability of finding even near-global
optima. The global optima are robustly only found by the CPM.

Table 8:Expected global optimization time of an elevator packing problem with passen-
gers and suitcases. Computing times are shown in a unit of million area calculations.
The fastest algorithm for each problem is shown in bold. A suitcase and the host
capsule are counted as a single object.

Elevator size Max capacity BFGS CPM CPM
(mm) in simulations, 𝑛 + 𝑛′ (Matlab’s optimizer) (QLS)

1350 × 1400 10 2.44 1.99 0.878
2000 × 1400 15 – 26.3 6.42
2350 × 1700 22 – 906 23.6
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Figure 23: Distribution of the number of fitted objects.



6 Shopping cart problem

E.g., in shopping centers, elevators can be used to carry shopping carts. In this Chapter,
we pack elevators with shopping carts and passengers. We first place the shopping
cart(s) into the elevator and then add capsules using the same algorithm as in Chapter
2. As the optimization method, we use the CPM with QLS, described in Chapter 4.2.
We use the same passenger dimensions, and three different elevator sizes, as in Chapter
2. A shopping cart is modeled by a 630 × 1180 mm rectangle.

First, we try few intuitive solutions with a single shopping cart fixed to a corner of
the elevator, and then fill the available space with passengers. We try different shopping
cart orientations. Our aim is to see how many passengers we can fit, and see if there is
an optimal orientation. This method could work as a heuristic for finding sufficient
solutions fast. In Chapter 6.2, we look for solutions thoroughly by placing shopping
cart(s) randomly in the elevator, and optimizing its/their placement along with the
passengers. With random placing, we handle 1–3 shopping carts. The aim here is to
see if there are clever non-intuitive solutions.

6.1 One fixed shopping cart

We fix the shopping cart to a corner of an elevator (any of the four corners), with either
horizontal or vertical orientation. By symmetry, we can reduce the problem to two cases,
see Figure 24. With the shopping cart fixed, we shall fill the elevator with passengers,
with the algorithm described in Chapter 2. The results are shown in Table 9 and Figure
25. We see that the shopping cart should be placed horizontally, with which we obtain
more optimal packing. However, the results do not differ dramatically between the
different orientations. Note that this result only applies to the three elevator sizes
tested, and with constant capsule and shopping cart dimensions. The result is likely to
change with different simulation setups.

Figure 24: A shopping cart can be placed in a corner of an elevator in eight ways.
Because of symmetry, we can reduce our study to two cases, which are highlighted
with a circle.
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Figure 25:Results for the intuitive shopping cart arrangements. Number of passengers
in each graph is listed in Table 9.



Table 9: Maximum number of passengers in an elevator, with a shopping cart fixed to
a corner. The cart is placed to the corner either horizontally or vertically. Solutions
with most passengers are in bold.

Shopping cart orientation
Box size (mm) Horizontal Vertical

1350 × 1400 8 7
2000 × 1400 16 15
2350 × 1700 25 25

6.2 One to three moving shopping carts

Now, we try and find optimal solutions randomly. We first place the shopping cart(s)
randomly into the elevator, and we allow the optimizer to move its location, as if it
was one of the capsules. Note, that the smallest elevator has capacity for two shopping
carts, but then there is no room for any capsules. Similarly, the medium sized elevator
has capacity for three shopping carts, but in that case no capsules can be fitted into the
elevator. Excluding the infeasible cases, we only have 6 scenarios to handle.

Results are shown in Table 10 and Figures 26–28. With this rigorous testing, we
could not find any better scenarios (e.g., with skewed shopping carts) than with the
intuitive, horizontal placement. This means that a shopping cart at a corner works
as a good heuristic, at least in these few cases. With the two smaller elevator sizes,
we actually could not find as good solutions as with the horizontal intuitive case. For
the large size, we found solutions with equal amount of capsules compared to the
intuitive horizontal case. From the Figures 26–28, we see that it is commonplace for
the shopping carts to lie against the box’s edge. Also, horizontal and vertical shopping
carts are common; skewed shopping carts are more rare. The algorithm may have
a tendency to find non-skewed settings more often than skewed ones. On the other
hand the non-skewed settings may very well be more optimal compared to skewed
ones regardless of the algorithm.

Table 10: Maximum number of passengers using random placing for the shopping
carts.

Number of shopping carts
Box size (mm) 1 2 3

1350 × 1400 7 0 –
2000 × 1400 15 8 0
2350 × 1700 25 19 12
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Figure 26: A sample of results for randomly searched arrangements.
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Figure 27: A sample of results for randomly searched arrangements.
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Figure 28: A sample of results for randomly searched arrangements.



7 Discussion and conclusions

In this Master’s thesis we constructed a model for elevator packing algorithm, which
relies on an optimization model; the minimization of overlapping between objects.
We formulated the optimization model and solved it by using different non-linear
optimization methods: gradient method, BFGS, and CPM. We also constructed a CPM
with gradient method and QLS line search method. The latter method proved to be the
best, based on a capsule packing problem and a problem where some of the passengers
carry suitcases. Lastly, we applied the latter optimization method to an application
involving also shopping carts.

This thesis is a continuum to the author’s Bachelor’s thesis [8]. The Bachelor’s
thesis handles pure capsule packing problem. The capsule shape was chosen because it
somewhat resembles a person from above. The packing algorithm minimizes capsule
overlapping area from a random initial configuration, where overlapping occurs. In
the thesis, the algorithm for the overlapping area of two capsules or rectangles was
developed, along with the CPM algorithm. Both methods were developed by the author.
The gradient evaluation simplification emerges when CPM is formulated. In the B.Sc.
thesis, the CPM was found to be much faster compared to a gradient method with no
gradient simplification applied. In this Master’s thesis, we used the simplified gradient
evaluation method with the gradient method and BFGS, which made the methods
much faster than in the B.Sc. thesis. The simplification of the gradient evaluation [8]
is very effective and should be used always.

In this Master’s thesis, we continue to refine the packing algorithm and making
it more suitable for elevator packing applications. This application yields a different
kind of packing approach: in the Bachelor’s thesis, we looked for local optima, and we
did not pay much attention to the feasibility of the resulting configurations. Here, the
configurations must be feasible, which leads us to the model where we add objects one
by one, and in between, to make sure that we can find a feasible configuration. This
might seem like a minor change, but it affects the results: CPM with Matlab’s solver,
which was used in the Bachelor’s thesis, does not perform well here: the method solves
local minima fast but does not find global minima too frequently.

In this thesis, we introduced a new concept, overlapping distance. It is useful when
finding if, and how much, two capsules overlap. It is fast to compute, and the algorithm
is fairly simple. It can be used with higher dimensions, by substituting the unit disk 𝐷
with a unit sphere. Another new concept is the expected global solving time and the
formula for it. This concept is on focus when we compare different optimizers. The
implementation for QLS, where only one function evaluation is needed, was found
by the author independently and was later found in the literature [10]. The method
is rarely discussed along with other common line search methods, which is a pity,
because it is a powerful method.

The visual appearance and clear information appearance were at a high priority
level when making this thesis. The nature of the problem itself is visual, and so are the
results.



7.1 Results and their reliability

We compared the methods by comparing their expected global solving times. The
gradient method performs the worst of the methods: it is slow to find solutions to the
capsule packing problem, and cannot find any global solution to any problem involving
suitcases. BFGS is good at solving capsule packing problems but struggles with the
problems with suitcases. The poor performance is explained by the non-differentiability
of the objective function, and corners in the objective function. An addition of some
kind of random search could potentially improve these methods.

The CPM was used with Matlab’s solver, and later we combined CPM with the
QLS method. Both of these methods find solutions to problems with passengers and
suitcases, but the CPM with QLS is much faster. The CPM with Matlab’s solver per-
formed poorly with the capsule packing problem, whereas the BFGS, and CPM with
QLS, performed rather well.

In the simulation results, we used a certain time unit (number of 𝐸 and 𝐴 function
evaluations), which is not affected by computer hardware. The expected global solving
time is a good measure for method performance in this context, however, the confidence
interval of this measured estimate may be large due to small data sample sizes. This
fact decreases the reliability of the results.

7.2 Future research

The elevator model is very simple and does not take into account, e.g., social factors. A
passenger elevator is rarely packed to its full extent, so in this sense, the model does not
reflect human behavior. At least some notion of social space should be considered. Also
here, the passengers are assumed to be of the same size, which is a strong assumption.
In this thesis, we aimed to analyze the methods, rather than build a realistic model. The
algorithms described in this thesis can certainly be applied to more complex models,
which take the above factors into account.

In Chapter 2.3, we found that the objective function is not differentiable every-
where, thus making the landscape challenging for the common non-linear optimization
methods. If the objective function could be modified to a differentiable form, the opti-
mization methods would probably perform better. Heuristics are not discussed much
in this thesis. Heuristics could improve the algorithms’ ability to find solutions, by e.g.,
providing more suitable initial conditions.

We aim to minimize the objective function, however, we know that at a feasible
solution (if it exists), the objective function value is zero. Thus, we may be able to solve
the problem with a multivariate root solving method, e.g., Broyden’s method. This
approach could potentially be faster than the minimization approach.

This thesis contains many parameters, whose values are not justified, and thus do
not guarantee optimal performance of the methods used. These parameters include
diagonal scaling factors and the stopping criteria, both discussed in Chapter 3. With
the QLS, we also have the parameter ℎ𝑘, and the step limit 𝑀, whose values may impact
the performance of the method.
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A Intersection points of circles and line segments

Intersection point of two line segments

Define two line segments,

p = 𝑡 p1 + (1 − 𝑡)p2, 𝑡 ∈ [0, 1], p1,p2 ∈ ℝ2,
(A1)

q = 𝑠 q1 + (1 − 𝑠)q2, 𝑠 ∈ [0, 1], q1,q2 ∈ ℝ2.
At the intersection point, it holds,

[𝑡𝑠] = [
p1 − p2 q2 − q1]1 (q2 − p2).

If the inverse matrix does not exist (i.e., det [
p1 − p2 q2 − q1] = 0), or the require-

ments 𝑡, 𝑠 ∈ [0, 1] are not satisfied, the intersection point does not exists. If values
of 𝑡 and 𝑠 are feasible, we shall substitute them to Equation (A1), which gives the
coordinates of the intersection point.

Intersection points of two circles

Define two circles in terms of their center points, c1, c2 ∈ ℝ2, and radii 𝑟1, 𝑟2 > 0.
Define, 𝑑 = ‖c1 − c2‖. If 𝑑 = 0 (even if the circles are identical), we don’t return
intersection points. Next define,

p± = 12𝑑 ⎡⎢⎢⎣
𝑑2 + 𝑟21 − 𝑟22±√2𝑑2(𝑟21 + 𝑟22) − 𝑑4 − (𝑟21 − 𝑟22)2

⎤⎥⎥⎦ .
If the above formula gives complex solutions, we reject them. Finally define,

w = c2 − c1𝑑 ,𝛼 = arctan (𝑤2∕𝑤1),𝑅(𝛼) = [cos 𝛼 − sin 𝛼sin 𝛼 cos 𝛼 ] ,
q± = 𝑅(𝛼)p± + c1,

where q denotes the final coordinates of the intersection point(s).

Intersection points of a circle and a line segment

Consider a line segment,

r = 𝑡 r1 + (1 − 𝑡) r2, 𝑡 ∈ [0, 1], r1, r2 ∈ ℝ2,



and a circle defined in terms of its center point, c ∈ ℝ2 and radius 𝑟 > 0. Define,

w = r2 − r1‖r2 − r1‖,𝛽 = arctan (𝑤2∕𝑤1),
r′1 = 𝑅(−𝛽)(r1 − c),
r′2 = 𝑅(−𝛽)(r2 − c),
p± = ⎡⎢⎣±√𝑟2 − (r′1,𝑦)2

r′1,𝑦
⎤⎥⎦ .

We accept the points p±, if p± is not complex, andmin {
r′1,𝑥, r′2,𝑥} ≤ p±,𝑥 ≤ max {

r′1,𝑥, r′2,𝑥}.
Finally define,

q± = 𝑅(𝛽)p± + c,
which are our intersection points.



B Algorithm for a minimum distance between two line
segments

Define two line segments,
p = 𝑡 p1 + (1 − 𝑡)p2, 𝑡 ∈ [0, 1], p1,p2 ∈ ℝ2, p1 ≠ p2,
q = 𝑠 q1 + (1 − 𝑠)q2, 𝑠 ∈ [0, 1], q1,q2 ∈ ℝ2, q1 ≠ q2.

Our aim is to solve min𝑡,𝑠∈[0,1]‖p(𝑡) − q(𝑠)‖, analytically. We define the set [0, 1]2 as
a feasible set of the points (𝑡, 𝑠). The solving is divided to interior point cases and
boundary cases, listed in Table B1. Examples are shown in Figure B1. We solve each
case, discard solutions which do not lie inside the feasible set, and choose the case
where the minimum value is obtained.
Table B1: The interior point cases, and the boundary cases. Cases (i)–(ii) handle the
interior points of the feasible set; cases (iii)–(vi) handle the boundary lines; cases
(vii)–(ix) handle the boundary corner points.

(i) min𝑡,𝑠∈ℝ‖p(𝑡) − q(𝑠)‖ and p(𝑡) ∦ q(𝑠)
(ii) min𝑡,𝑠∈ℝ‖p(𝑡) − q(𝑠)‖ and p(𝑡) ∥ q(𝑠)

(iii) min𝑡∈ℝ‖p(𝑡) − q(0)‖
(iv) min𝑡∈ℝ‖p(𝑡) − q(1)‖
(v) min𝑠∈ℝ‖p(0) − q(𝑠)‖

(vi) min𝑠∈ℝ‖p(1) − q(𝑠)‖
(vii) ‖p(0) − q(0)‖

(viii) ‖p(0) − q(1)‖
(ix) ‖p(1) − q(0)‖
(x) ‖p(1) − q(1)‖

The optimal value for case (i) is 0, because non-parallel lines always have an inter-
section point. The value of a norm is always non-negative, so zero is the minimum.
The intersection point of line segments is defined in Appendix A.

The case (ii). When case (ii) produces a feasible solution to the minimization
problem, it can be shown that an equivalent minimum can be obtained with the
boundary cases as well. Some examples are shown in Figure B1. Thus, there is no need
to handle the case (ii), since the same minimum value is obtained with cases (iii)–(x).

Cases (iii)-(vi) are analogous, so we shall solve (iii) as an example. The problem ismin𝑡∈ℝ {
p2 + 𝑡(p1 − p2) − q(0) }. (B1)

The minimum can be obtained with projecting the point q(0) onto the line segment.
The projected point can be found with the following value for parameter 𝑡,𝑡 = (p1 − p2)⊤(q(0) − p2)‖p1 − p2‖2 .
If 𝑡 ∉ [0, 1], we discard the solution. Otherwise, the minimum length can be obtained
with substituting the value of 𝑡 to Equation (B1).



Case (i) Case (ii)

Cases (iii)–(vi) Cases (vii)–(x)

Figure B1: Feasible solutions for different cases. The dashed line shows the minimum
distance between the two line segments. In the case (i), the minimum distance is zero.



C Simulation data

C.1 Global solving times

The following Figures contain the simulation time data, from which the expected global
solving times can be calculated. We have separated the simulation times to two sets, 𝑇𝑃
and 𝑇𝑄, depending if the simulation outcome was a global maximum, or not the global
maximum, respectively. Global maximum is defined as a configuration in which we
have the largest possible number of objects in the elevator, with no overlapping between
any of the objects. The horizontal coordinate in the Figures is varied at random, in
order to spread the points a bit. The global solving formulas are found in Chapter 3.4.
As a time unit, we use the number of 𝐴 and 𝐸 function evaluations, which is discussed
in Chapter 3.
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BFGS

Capsule packing problem
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CPM with Matlab’s solver

Capsule packing problem
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CPM with QLS

Capsule packing problem
1350 × 1400 mm elevator
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C.2 Example result for each scenario

Capsule packing problem, 1350 × 1400 mm elevator

pP Gradient method pP
EXIT

pP BFGS pP
EXIT

pP CPM with Matlab’s solver pP
EXIT

pP CPM with QLS pP
EXIT



Capsule packing problem, 2000 × 1400 mm elevator

pP Gradient method pP
EXIT

pP BFGS pP
EXIT

pP CPM with Matlab’s solver pP
EXIT

pP CPM with QLS pP
EXIT

Capsule packing problem, 2350 × 1700 mm elevator

pP Gradient method pP
EXIT

pP BFGS pP
EXIT

pP CPM with Matlab’s solver pP
EXIT

pP CPM with QLS pP
EXIT



Passengers and suitcases, 1350 × 1400 mm elevator

pP Gradient method pP
EXIT

pP BFGS pP
EXIT

pP CPM with Matlab’s solver pP
EXIT

pP CPM with QLS pP
EXIT



Passengers and suitcases, 2000 × 1400 mm elevator

pP Gradient method pP
EXIT

pP BFGS pP
EXIT

pP CPM with Matlab’s solver pP
EXIT

pP CPM with QLS pP
EXIT

Passengers and suitcases, 2350 × 1700 mm elevator

pP Gradient method pP
EXIT

pP BFGS pP
EXIT

pP CPM with Matlab’s solver pP
EXIT

pP CPM with QLS pP
EXIT



D Lemma 3

Lemma 3. Define, 𝑓 ∶ ℝ𝑛 ↦ ℝ, 𝑓 ∈ 𝐶1. We define ∇𝑓 to be Lipschitz continuous, i.e.,
there is 𝐿 ∈ ℝ, for which,∀v,w ∶ ‖∇𝑓(v) − ∇𝑓(w)‖ ≤ 𝐿‖v − w‖. (D1)

Define 𝑘 ∈ ℕ, x𝑘 ∈ ℝ𝑛, ℎ𝑘 ∈ ℝ, 𝑔𝑘(𝛼) = 𝑓(x𝑘 − 𝛼∇𝑓(x𝑘)), and,𝑝′′𝑘 (0) = 2ℎ𝑘 (𝑔𝑘(ℎ𝑘) − 𝑔𝑘(0) − ℎ𝑘 𝑔′𝑘(0)). (D2)

The inequality 𝑝′′𝑘 (0) ≤ 𝐿‖∇𝑓(x𝑘)‖2, holds.

Proof. With mean value theorem, there exists a 𝜉𝑘 ∈ [0, 1], for which,

𝑔𝑘(ℎ) = 𝑔𝑘(0) + ℎ𝑘 𝑔′𝑘(0) + ℎ2𝑘2 𝑔′′𝑘 (𝜉𝑘ℎ𝑘).
On the other hand, with Equation (D2),

𝑔𝑘(ℎ) = 𝑔𝑘(0) + ℎ𝑘 𝑔′𝑘(0) + ℎ2𝑘2 𝑝′′𝑘 (0),
hence, ∃𝜉𝑘 ∈ [0, 1] ∶ 𝑝′′𝑘 (0) = 𝑔′′𝑘 (𝜉𝑘ℎ𝑘). (D3)

The Lipschitz condition (Equation (D1)) with Cauchy-Swartz inequality yields,[∇𝑓(v) − ∇𝑓(w)]⊤ (v − w) ≤ 𝐿‖v − w‖2.
Substituting v = x𝑘 − (𝛼 + 𝑢)∇𝑓(x𝑘), and w = x𝑘 − 𝛼∇𝑓(x𝑘), where 𝛼 ∈ ℝ, and𝑢 ∈ ℝ ⧵ {0}, we get,[∇𝑓(x𝑘 − (𝛼 + 𝑢)∇𝑓(x𝑘)) − ∇𝑓(x𝑘 − 𝛼∇𝑓(x𝑘))]⊤(−𝑢∇𝑓(x𝑘)) ≤ 𝐿‖𝑢∇𝑓(x𝑘)‖2.
with Equation (16), we can rewrite the above inequality as,𝑔′𝑘(𝛼 + 𝑢) 𝑢 − 𝑔′𝑘(𝛼) 𝑢 ≤ 𝐿‖𝑢∇𝑓(x𝑘)‖2𝑔′𝑘(𝛼 + 𝑢) − 𝑔′𝑘(𝛼)𝑢 ≤ 𝐿‖∇𝑓(x𝑘)‖2.
Setting 𝑢 → 0, yields, 𝑔′′𝑘 (𝛼) ≤ 𝐿‖∇𝑓(x𝑘)‖2. (D4)

We prove the claim by setting 𝛼 = 𝜉𝑘ℎ𝑘, and combining Equations (D3) and (D4),𝑝′′𝑘 (0) = 𝑔′′𝑘 (𝜉𝑘ℎ𝑘) ≤ 𝐿‖∇𝑓(x𝑘)‖2.
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