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In this thesis, a vehicle routing problem (VRP) variant tailored for plug-in bat-
tery electric vehicles (BEVs) is studied. The studied problem involves a fleet of
identical BEVs located at a central depot, a set of customers that must be ser-
viced within given time windows, and a set of charging stations where the vehicles
can recharge their batteries. The objective is to design a set of vehicle routes,
each starting and ending at the depot, so that each customer is serviced exactly
once and the total energy cost of the vehicle routes is minimized. Since BEVs
have limited battery capacity and low recharging rate, charging station visits and
recharging times must be explicitly considered in the route planning, wherefore
most VRP variants are not sufficient in modeling the studied problem.
Optimal routing of electric vehicles is not much studied in the optimization lit-
erature. The two most relevant models are the Green Vehicle Routing Problem
(G-VRP) by Erdoğan & Miller-Hooks (2012) and the Electric VRP with Time
Windows (E-VRPTW) by Schneider et al. (2013). The model considered in this
thesis generalizes the E-VRPTW by also allowing the possibility of recharging
a variable amount of energy at charging stations (variable recharging scheme)
rather than performing a full recharge at every visit (fixed recharging scheme).
This thesis introduces energy paths (e-paths) and proposes a new formulation of
the studied problem based on non-dominated e-paths between every customer
pair. The new formulation reduces the number of decision variables in the model
and eliminates the need of imposing an artificial upper bound on the number
of stops to a charging station, as is commonly done in previous models to keep
their size acceptable. Some new preprocessing steps and valid inequalities are
also presented to strengthen the LP-relaxation of the proposed formulation.
Computational tests indicate that the new formulation provides considerable im-
provements over the standard formulation. Moreover, it is shown that significant
reductions in the routing cost can be obtained in real-world routing problems by
adopting the variable recharging scheme over the fixed one.
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Tässä työssä tutkitaan ajoneuvon reititysongelman (Vehicle Routing Problem,
VRP) variaatiota, joka on räätälöity ladattavia sähköautoja varten. Tutkittu on-
gelma käsittää laivueen identtisiä sähköautoja, jotka sijaitsevat keskusvarikolla;
joukon asiakkaita, joiden luona tulee vierailla annettujen aikaikkunoiden
määräämissä rajoissa; sekä joukon latausasemia, joissa autot voivat käydä lataa-
massa akkunsa. Ongelman tavoitteena on suunnitella joukko ajoreittejä, alkaen
varikolta ja päättyen varikolle, siten, että jokainen asiakas on palveltu tasan
kerran ja ajoreittien yhteenlaskettu energiakustannus on pienin mahdollinen.
Koska sähköautojen toimintasäde on lyhyt ja akun lataaminen kestää suhteel-
lisen kauan, tulee sekä latausasemakäynnit että lataukseen kuluva aika ottaa
erityisesti huomioon reitin suunnittelussa, minkä vuoksi useimmat ajoneuvon rei-
titysongelman variaatiot eivät ole riittäviä mallintamaan tutkittua ongelmaa.
Sähköautojen optimaalista reititystä ei ole tutkittu paljon alan kirjallisuudessa.
Kaksi keskeisintä mallia ovat Green VRP (G-VRP) (Erdoğan & Miller-Hooks,
2012) ja Electric VRP with Time Windows (E-VRPTW) (Schneider et al., 2013).
Tässä työssä tutkittu malli on yleistys E-VRPTW -mallista, joka mahdollistaa
lisäksi mielivaltaisen energiamäärän lataamisen latausasemilla toisin kuin alku-
peräisessä mallissa, jossa sähköautojen akut ladataan täyteen jokaisella käynnillä.
Tässä työssä esitetään energiapolku (e-path) ja kehitetään uusi formulaatio
tutkitulle ongelmalle perustuen ei-dominoituihin energiapolkuihin asiakasparien
välillä. Uusi formulaatio vähentää päätösmuuttujien lukumäärää mallissa ja pois-
taa tarpeen asettaa mielivaltaisen ylärajan latausasemakäyntien lukumäärälle,
kuten on tavallisesti tehty aikaisemmissa malleissa pitääkseen niiden koot koh-
tuullisina. Työssä esitetään myös uusia esikäsittelyjä sekä valideja epäyhtälöitä.
Laskennalliset testit osoittavat, että työssä kehitetty uusi formulaatio on huo-
mattavasti tehokkaampi kuin alkuperäinen vastaava. Lisäksi mallintamalla la-
dattu energiamäärä muuttujana, toisin kuin suorittamalla täysi lataus jokaisella
latausasemakäynnillä, voidaan kuljetuskustannuksia vähentää merkittävästi.
Asiasanat: ajoneuvon reititysongelma, kauppamatkustajan ongelma,
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Chapter 1

Introduction

1.1 Background and motivation
Global warming has become a prevalent issue in recent years, evoking ongo-
ing political and public debate across the world. One of the main causes of
this phenomenon is believed to be the increased amount of greenhouse gas
emissions resulting from human-induced activities such as cement produc-
tion, deforestation and the burning of fossil fuels (National Research Council,
2010). Specifically, the vast amount of carbon dioxide (CO2) emissions from
fossil fuel combustion has been identified as a potential major contributor in
the rise of the Earth’s average surface temperature (Intergovernmental Panel
on Climate Change, 2013). Consequently, in order to mitigate the global
warming, various laws and regulations aimed at reducing the amount of CO2
emissions have been progressively implemented and adopted across different
economic sectors.

Transportation sector, in particular, is estimated to account for over 30%
of global CO2 emissions, road transport being the largest contributing sub-
sector (Ehsani et al., 2009); this is mainly because over 95% of consumed
vehicle fuels are based on petroleum, a fossil fuel derivative (Ehsani et al.,
2009; Fulton et al., 2009). Moreover, the transportation sector is estimated
to expend more than 25% of the available fossil fuels, an amount that is
expected to increase with the growing transportation demand (Polski Insty-
tut Spraw Miedzynarodowych, 2009). However, as fossil fuels are becoming
scarce and further reductions in CO2 emissions are being required, satisfying
this demand in the future poses significant challenges. In fact, it will likely
become necessary for both organizations and individuals to eventually start
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CHAPTER 1. INTRODUCTION 2

deploying alternative fuel vehicles that are (i) not dependent on fossil fuels,
(ii) emit only small amounts of greenhouse gases and (iii) utilize low-emission
energy sources.

Among the viable candidates for replacing the conventional internal combus-
tion engine (ICE) powered vehicles, plug-in battery electric vehicles (BEVs)
appear promising with their zero tailpipe CO2 emissions (European Parlia-
ment & European Council, 2011) and the possibility of exploiting their bat-
teries to provide ancillary services in the future, such as frequency regulation
on electric distribution systems (Kempton et al., 2008). Moreover, BEVs are
inherently more efficient than ICE vehicles due to their regenerative break-
ing capabilities, i.e., their ability to recuperate energy during deceleration
phases. On the other hand, it is important to note that the environmental
impact of BEVs cannot be estimated based solely on their tailpipe emissions,
but rather on how the electricity they consume is generated. For example,
given the current energy mix in the U.S., some estimates state that the re-
ductions in CO2 emissions could be as large as 40% in regions with a high
percentage of renewable energy sources such as wind power, or, conversely,
close to zero or even negative in regions with a high concentration of coal
based electricity generation (see, e.g., Kintner-Meyer et al., 2007). Conse-
quently, in order to achieve the true potential of BEVs, it is crucial to ensure
that emission free energy sources are utilized to produce the extra electricity
required by the entire fleet.

Wider adoption of BEVs has not succeeded in earlier years for various rea-
sons, including short driving range, slow battery charging, limited charging
infrastructure and high associated costs. However, motivated by the envi-
ronmental concerns and the potential scarcity of fossil fuels, BEVs have been
actively studied and technological advances have since been made that miti-
gate many of these previous issues. Nevertheless, some challenges still remain
that undermine the promotion of BEVs as viable alternatives to conventional
ICE powered vehicles.

Most importantly, the driving range of a commercial BEV is still relatively
short, ranging approximately from 100 km to 350 km depending on various
factors such as weather, battery type, vehicle speed and traffic congestion
(Chan, 2002, 2007; Jha, 2012). Moreover, the charging infrastructure is still
very limited; i.e., the number of charging stations is significantly smaller
than, for example, the number of gasoline stations. Furthermore, in Finland,
for instance, most charging stations are currently aggregated around major
cities, thus making it difficult to recharge the battery in between trips from
one major city to another.
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The short driving range along with limited charging infrastructure may con-
sequently cause issues related to range anxiety, i.e., the fear of not having
enough battery charge to reach the desired destination (or the nearest charg-
ing station) (Franke et al., 2012), unless the vehicle is used exclusively in an
area with a high concentration of charging stations, for example, within a
major city. However, limiting the use of BEVs to such restricted areas is not
a viable option for either most individuals, or organizations that are planning
to convert their fleets to alternative fuel vehicles and are considering BEVs
as potential candidates.

Fortunately, range anxiety can be effectively mitigated by careful route plan-
ning; for example, by planning in advance when and where to recharge the
battery so that the total energy consumption and the risk of battery deple-
tion are minimized. However, optimal routing of electric vehicles is not much
studied in the optimization literature. The motivation behind this thesis is
to facilitate this shortcoming by developing an optimization model for route
planning problems involving BEVs.

1.2 Related studies
Route planning problems are generally modeled as Vehicle Routing Prob-
lems (VRPs). The first VRP variant was introduced by Dantzig & Ramser
(1959) in the context of a truck dispatching problem, more generally known
as the Capacitated VRP (CVRP), in which a set of customers have positive
demands, a fleet of vehicles have limited capacities for supplying the cus-
tomers and the task is to find a set of minimum cost vehicle routes so that
all customers are serviced and the sum of the customer demands in one route
does not exceed the vehicle capacity. Many VRP variants have since been
developed, such as the VRP with distance constraints, in which the driving
range of the vehicles is limited (Laporte, Desrochers, & Nobert, 1984), and
the VRP with Time Windows (VRPTW), in which a set of customers must
be visited within specified time intervals (see, e.g., Laporte, 2009; Golden et
al., 2008 for recent surveys). However, most VRP variants are not directly
applicable to routing problems involving BEVs, because they do not incorpo-
rate visits to charging stations. Moreover, the distance constraint imposed
by the battery capacity is subject to change as a consequence of recharging
en route.

Relatively few studies have been published that focus specifically on the op-
timal routing of electric vehicles; instead, most related studies concentrate
on the following aspects: (i) minimizing vehicle fuel consumption and emis-
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sions in general, (ii) optimizing the placement of charging stations and (iii)
finding the shortest energy paths (i.e., paths with smallest energy-related
routing costs) between two locations (see, e.g., Demir et al., 2013 for a recent
review). In fact, this thesis is aware of only two routing models that incor-
porate both the charging station visits and the distance constraints that are
subject to change: the green VRP (G-VRP) model proposed by Erdoğan &
Miller-Hooks (2012) and the electric VRP with time windows (E-VRPTW)
presented in (Schneider et al., 2013). Moreover, the main focus of these
studies is to develop approximate (heuristic) solution methods that provide
suboptimal solutions with no guarantees on their quality. Such methods can
be useful in practice, because they are typically significantly faster than ex-
act optimization techniques; however, care must generally be taken before
making important decisions based on a heuristic solution, because it could
be far from the optimal one (see, e.g., Cordeau et al., 2002).

1.3 Objectives and contributions
This thesis focuses on the optimal routing of BEVs from an operational view-
point. The aim is to contribute towards the development of a framework that
supports the user in designing optimal routing plans in scenarios, where a set
of locations (e.g., customers) is to be visited within given time windows us-
ing one or more BEVs, and where the tour length exceeds the initial driving
range, thus making it necessary to recharge at charging stations en route.
Towards this end, an optimization model is developed that finds the min-
imum cost vehicle routes with regard to energy consumption for a fleet of
vehicles starting their tour from a depot, visiting a set of locations (e.g., cus-
tomers) within specified time windows, stopping to recharge when necessary,
and finally returning back to the depot. This problem is known as the Elec-
tric Vehicle Routing Problem with Time Windows (E-VRPTW) introduced
by Schneider et al. (2013), which in turn builds on the ideas presented in
(Erdoğan & Miller-Hooks, 2012) and (Bard et al., 1998). The problem con-
sidered in this thesis is a generalization of the E-VRPTW, which also allows
the possibility of recharging a variable amount of energy at the charging sta-
tions (variable recharging scheme) rather than performing a full recharge at
every visit (fixed recharging scheme).

This thesis proposes a new formulation of the problem which does not model
the charging stations explicitly, but replaces them with a set of non-dominated
energy paths between every customer pair. The new formulation reduces the
number of decision variables in the model and is shown to provide signifi-
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cant computational improvements with respect to the standard formulation.
Moreover, it removes the need of imposing an artificial upper bound on the
number of stops to a charging station, as is commonly done in previous mod-
els to keep their size acceptable. Some new preprocessing steps and valid
inequalities are also presented to strengthen the LP-relaxation of the devel-
oped model.

Both the standard and the new formulation are implemented in C program-
ming language and solved with CPLEX (ILOG, 2013) using the CPLEX
12.5 callable library interface functions. The models are compared on a set
of small benchmark instances proposed by Schneider et al. (2013), which are
based on the benchmark instances for the VRPTW proposed by Solomon
(1987). Furthermore, the solutions obtained with the variable recharging
scheme are compared to those obtained with the fixed recharging scheme
used in the previous models, showing that the variable recharging scheme
can provide significant improvements to the solution quality.

Finally, an illustrative test instance based on the road network of south-
western Finland is constructed by using the network data obtained from
openstreetpmap.org, and a set of test cases are generated to simulate po-
tential real-world BEV routing problems by taking into account the existing
charging infrastructure. The results of these test cases are finally reported
and evaluated.

1.4 Structure
The rest of this thesis is structured as follows. Chapter 2 reviews the rele-
vant literature regarding BEVs, vehicle routing problems and green logistics
in general. Chapter 3 presents the standard mathematical formulation for the
E-VRPTW and describes how to reduce the number of variables by means
of different preprocessing techniques. Chapter 4 presents the new formula-
tion and introduces some new preprocessing steps and valid inequalities to
strengthen the formulation. Chapter 5 presents computational results for a
set of small benchmark instances and evaluates the two models in more detail.
Chapter 6 presents a case study based on the road network of southwestern
Finland; a set of test cases are generated to simulate potential real-world
BEV routing problems. Finally, Chapter 7 provides concluding remarks.

http://openstreetmap.org
openstreetpmap.org


Chapter 2

Literature review

This Chapter reviews the essential literature related to this thesis. The aim
is to provide a brief overview of green logistics and demonstrate the central
role of plug-in battery electric vehicles (BEVs) in achieving sustainable green
logistics solutions. This is followed by a more comprehensive review of studies
related to vehicle routing problems and specifically to the optimal routing of
BEVs and other alternative fuel vehicles.

2.1 Green logistics and battery electric vehi-
cles (BEVs)

Green logistics originates from the mid-1980s, when it was first referred to
as a ”concept to characterize logistics systems and approaches that use ad-
vanced technology and equipment to minimize environmental damage during
operations” (Thiell et al., 2011). In general, green logistics can be thought of
comprising a whole range of measures that provide sustainable logistics so-
lutions while minimizing their environmental impacts (e.g., CO2 emissions).
Some examples of green logistics approaches include: more efficient packing,
route optimization, load optimization and the use of alternative fuel vehicles
for both manufacturing and shipping (Tambovceva & Tambovcevs, 2012).

Traditionally, the main focus in most logistics operations has been cost mini-
mization. However, environmental concerns and the potential scarcity of fos-
sil fuels have driven governments to enact laws and regulations that require
organizations to emphasize green logistics approaches in their operations,
starting with the deployment of alternative fuel vehicles where possible (see,
e.g., Becker et al., 2009). This has achieved some success; for example, in the
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package shipping industry, several big companies have started using BEVs
for last-mile deliveries in areas with a sufficient charging infrastructure (for
surveys of this subject, see Edwards et al., 2010; Finnegan et al., 2005).

Several governments have also started establishing tax incentives for BEVs
to promote them to individuals, and thus facilitate their market penetration
(see, e.g., Becker et al., 2009). Moreover, projects around the world have been
initiated that aim at building wide charging infrastructures to support the
growing number of BEV fleets (see, e.g., Wiederer & Philip, 2010). Notably,
as of December 2013, Estonia became the first country in the world with a
nationwide fast charging infrastructure to support a full scale adoption of
BEVs. The ultimate goal, for instance in Denmark and probably eventually
across the world, is the extensive adoption of BEVs fueled by electricity from
sustainable energy sources to replace the conventional internal combustion
engine (ICE) powered vehicles (see, e.g., Bigliani & Gallotti, 2009; Binding
et al., 2010).

Some challenges still remain, however, that undermine the promotion of
BEVs as viable alternatives to ICE powered vehicles. Most importantly,
the driving range of commercial BEVs is still relatively short (ranging from
100 km to 350 km), which causes range anxiety, that is, the fear of not
having enough battery charge to reach the desired destination (or the near-
est charging station) (Franke et al., 2012). Several studies have shown that
range anxiety is a relevant issue, which acts as a potential barrier to a wider
adoption of electric vehicles, especially in places with a limited charging in-
frastructure (see, e.g., Franke et al., 2012; Daziano, 2013).

Fortunately, range anxiety can be effectively mitigated by careful route plan-
ning; for example, by planning in advance when and where to recharge the
battery in a given vehicle route so that the total energy consumption and
the risk of a battery depletion are minimized. Since the time to recharge
is rather long and affects the route planning, it is also important to deter-
mine how much should be recharged. Such decision support could provide
significant benefits to both individuals and organizations, and further facili-
tate the adoption of BEVs. However, optimal routing of electric vehicles is
not much studied, despite the increasing importance of green logistics in the
optimization literature (see, e.g., Demir et al., 2013 for a recent review).
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2.2 Related studies
Route planning problems are generally modeled as Vehicle Routing Problems
(VRPs). The VRP seeks to service a set of customers using a fleet of vehicles
such that the total routing cost (e.g., traveled distance) is minimized. The
VRP can be considered as a generalization of the Traveling Salesman Problem
(TSP), in which for a given set of cities the objective is to find the shortest
possible route that visits each city exactly once, eventually returning to the
city of departure (see, e.g., Flood, 1956). As the TSP is known to be an
NP-hard problem, the VRP is also NP-hard.

The first VRP variant was originally introduced by Dantzig & Ramser (1959)
in the context of a truck dispatching problem, in which a fleet of delivery
trucks with limited capacities are based at a depot, and a set of service sta-
tions (or customers) is to be visited by the fleet so that the station demands
are satisfied and the total distance traversed by the entire fleet is minimized.
This problem is more commonly known as the Capacitated Vehicle Routing
Problem (CVRP).

Several variants of the VRP have since been developed, including the VRP
with distance constraints, in which the driving range of each vehicle is limited
(see, e.g., Laporte, Desrochers, & Nobert, 1984), and the VRP with Time
Windows (VRPTW), in which customers must be visited within specified
time intervals (see, e.g., Laporte, 2009; Golden et al., 2008 for recent surveys
and advances). The high computational complexity of VRP and its variants
renders most exact solution methods inadequate for many real-world appli-
cations (for a review of recent exact algorithms, see Baldacci et al., 2012),
wherefore most studies focus on heuristic solution methods instead (see, e.g.,
Toth & Vigo, 2001; Golden et al., 2008).

Unfortunately, most VRP variants are not directly applicable to routing prob-
lems involving BEVs, because they do not incorporate visits to charging
stations. Moreover, the driving range of a BEV is subject to change when-
ever the battery is recharged, whereas in the traditional distance constrained
VRP, for instance, the driving range of a vehicle remains constant. Modeling
the increase in the vehicle driving range upon recharging/refueling plays a
key role in BEV routing; however, it has received only limited interest in ear-
lier years due to the widespread availability of petrol stations and the long
driving range of gasoline powered vehicles.

Some related studies focus on military applications, where the objective is
to maximize the total traveled distance of a selected vehicle or a group of
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vehicles within a larger fleet using a sequential recharging scheme, in which
available fuel is allocated and transferred between the vehicles based on their
priority and type (e.g., from fuel carrying tankers to other vehicles) (see,
e.g., Mehrez et al., 1983; Mehrez & Stern, 1985; Melkman et al., 1986). In
the studied applications, however, refueling can be performed regardless of
the vehicle location, whereas in BEV routing recharging can occur only at
charging stations.

In a more recent study, Gonçalves et al. (2011) extend the VRP with Pickup
and Delivery (VRPPD), in which a fleet of vehicles is based at a depot,
and the objective is to transport customers from specific origin locations
to specific destination locations so that the traversed distance of the entire
fleet is minimized (see, e.g., Toth & Vigo, 2001). The proposed extension
incorporates a mixed fleet of BEVs and conventional ICE vehicles with the
possibility of recharging or refueling en route. The objective of the model is to
minimize a combination of fixed and variable routing costs (e.g., fixed costs of
deploying a BEV and varying fuel consumption costs based on the traveled
distance). The total time to recharge a BEV is estimated based on the
traveled distance by taking into account the maximum driving range imposed
by the battery capacity. However, no specific locations for the charging
stations are presented in this model.

In another related study, Ichimori et al. (1983) present a simple model that
incorporates refueling stations at specific locations. In this model, a single
vehicle, based at a depot, visits a single customer after receiving a service
call, and finally returns to the depot, possibly refueling en route if necessary.
The model allows extending the vehicle driving range via refueling to serve
customers that are initially unreachable with regard to the length of the
round trip between the customer and the depot. However, the presented
model is a variant of the shortest path problem, which cannot be generalized
in a straightforward way to include multiple customers or vehicles.

Bard et al. (1998) present a CVRP variant that incorporates intermediate
stations denoted as satellite facilities, where the vehicles can replenish (i.e.,
restock their supply) and thus increase their operational range by allowing
them to serve additional customers before returning to the depot. This vari-
ant is referred to as the VRP with Satellite Facilities (VRPSF), and it is
the first VRP variant this thesis is aware of that models such intermediate
stations at specific locations. The VRPSF is originally intended for goods
distribution problems, where vehicles can stop at the satellite facilities to
replenish or unload; however, the satellite facilities could also be regarded as
charging stations, where BEVs could recharge their battery and thus increase
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their driving range. Bard et al. (1998) also discuss the issue that arises when
incorporating such replenishment stations: multiple visits to a same station
must be explicitly modeled. This issue is specifically addressed later in this
thesis. In terms of solving the VRPSF, Bard et al. (1998) develop a branch-
and-cut algorithm and report optimal solutions to instances with up to 18-20
customers and 0-2 satellite facilities.

Another VRP variant that is capable of modeling charging station visits is
presented in (Crevier et al., 2007) as an extension of the Multi-Depot Vehi-
cle Routing Problem (MDVRP), in which vehicle fleets are based at several
depots, every customer is to be visited exactly once, and each vehicle route
starts and ends at the same depot (see, e.g., Laporte, Nobert, & Arpin, 1984).
In the proposed extension, the depots can act as intermediate replenishment
facilities along the vehicle route; the extension is accordingly referred to as
MDVRP with Inter-Depot Routes (MDVRPI). The MDVRPI is originally
motivated by a real-life grocery distribution problem, in which a fleet of de-
livery trucks, based at one of several depots, can stop at the intermediate
depots to replenish their food supply. Even though Crevier et al. (2007)
present the MDVRPI as a multi-depot problem, they propose benchmark
instances where all the vehicles are based at a single central depot.

Tarantilis et al. (2008) rename the problem as Vehicle Routing Problem with
Intermediate Replenishment Facilities (VRPIRF) to ”emphasize both the re-
plenishment role of the intermediate facilities and the use of a single central
station for the fleet of vehicles”. On the other hand, the VRPIRF appears
similar to the VRPSF presented by Bard et al. (1998), with the exception
that the replenishment facilities are referred to as satellite facilities. Problems
similar to the MDVRPI (or VRPIRF) arise, for example, in waste collection
(Kim et al., 2006), but with a slightly different objective: instead of mini-
mizing the traveled distance, the objective is extended to include workload
balancing between the vehicles. In terms of solving the MDVRPI and VR-
PIRF, some heuristic procedures are developed in (Crevier et al., 2007) and
(Tarantilis et al., 2008), respectively.

2.3 Routing models for electric vehicles
Conrad & Figliozzi (2011) present the first VRP variant this thesis is aware
of that is specifically tailored for BEV routing. The proposed variant is
referred to as the Recharging Vehicle Routing Problem (RVRP), and it ex-
tends the VRPTW by implementing the possibility of recharging the BEVs
at the customer locations en route, and thus increasing their driving range.
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The primary objective of the RVRP is to minimize the number of vehicles
used, and the secondary objective is to minimize a cost function comprising
costs related to the traveled distance, service time delays and the number of
recharging occurrences. However, since recharging is allowed only at the cus-
tomer locations upon service, the model is rather limited and not applicable
to more general situations, where charging stations are located separately
from the customers and a single charging station can be visited more than
once. Moreover, the model assumes constant recharging times, a shortcom-
ing which is later addressed in this thesis. In terms of solving the RVRP,
Conrad & Figliozzi (2011) describe a heuristic algorithm based on ”an iter-
ative construction and improvement algorithm” for the VRPTW (Figliozzi,
2010). In addition, the impact of the vehicle battery capacity, time windows
and recharging time are studied by solving a set of test instances derived
from the benchmark instances proposed by Solomon (1987).

Erdoğan & Miller-Hooks (2012) present the Green Vehicle Routing Problem
(G-VRP), a VRP variant which builds on the VRPSF formulation presented
in (Bard et al., 1998). The G-VRP is the first VRP variant this thesis is
aware of that allows vehicles to refuel (or recharge) at specific locations de-
noted as refueling stations. The G-VRP models the refueling (or recharging)
stations similarly to the satellite facilities in the VRPSF formulation (Bard
et al., 1998), thus ensuring that several visits to a single station can be per-
formed. According to Erdoğan & Miller-Hooks (2012), the key difference
between the VRPSF and the G-VRP is that the VRPSF does not incorpo-
rate distance constraints on the vehicles based on their fuel tank capacity,
wherefore running out of fuel en route to a customer (or a satellite facility or
a depot) is not considered. Moreover, in the G-VRP, fuel is consumed along
the network edges, whereas in the VRPSF goods are consumed at the net-
work vertices, wherefore the capacity limitations associated with the VRPSF
are not sufficient to model fuel consumption limitations. The primary ob-
jective of the G-VRP is to minimize the total traveled distance of the entire
fleet. The G-VRP provides a basis for the Electric Vehicle Routing Problem
with Time Windows (E-VRPTW) studied in this thesis; however, unlike the
E-VRPTW, the G-VRP assumes a constant refueling time and incorporates
no customer time windows. Erdoğan & Miller-Hooks (2012) propose two
heuristic methods for solving the G-VRP: the Modified Clarke and Wright
Savings (MCWS; Clarke & Wright, 1964) and the Density-Based Clustering
Algorithm (DBCA; Ester et al., 1996).
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Finally, Schneider et al. (2013) present the Electric Vehicle Routing Problem
with Time Windows (E-VRPTW), which extends the G-VRP by introduc-
ing customer time windows, customer demands and vehicle capacities (i.e.,
the E-VRPTW generalizes both the CVRP and the VRPTW). Additionally,
the E-VRPTW introduces a new recharging scheme, in which the time to
recharge depends on the battery state-of-charge upon arriving at a charging
station. However, a full recharge is enforced at every station visit. In terms
of solving the E-VRPTW, Schneider et al. (2013) propose a heuristic solu-
tion method which combines the Variable Neighborhood Search (VNS) and
the Tabu Search (TS) heuristics (see Mladenović & Hansen, 1997; Glover &
Laguna, 1999). The performance of the proposed heuristic is assessed by solv-
ing a set of instances with up to ∼100 customers derived from the VRPTW
dataset of Solomon (1987). Moreover, the heuristic solutions are compared
with the best solutions obtained by the integer programming solver CPLEX
on a set of small instances with up to 15 customers.

The formulation introduced in Chapter 3 is based on the G-VRP and the
E-VRPTW formulations presented in (Erdoğan & Miller-Hooks, 2012) and
(Schneider et al., 2013), respectively, but allows the possibility of recharging
a variable amount of energy at the charging stations.



Chapter 3

Electric Vehicle Routing Prob-
lem with Time Windows

This Chapter describes the Electric Vehicle Routing Problem with Time
Windows (E-VRPTW) and presents a mathematical model for solving the
problem. The proposed model corresponds to the formulation presented
in (Schneider et al., 2013), but allows the possibility of recharging a vari-
able amount of energy at charging stations, in contrast to performing a full
recharge at every visit. Additionally, a theoretical upper bound on the num-
ber of possible visits to a single charging station is provided, instead of as-
signing an arbitrary bound as in the previous studies. Furthermore, a new
preprocessing step is introduced that eliminates redundant decision variables.

3.1 Problem description
The description of the E-VRPTW is as follows. A fleet of identical electric
vehicles is to visit a set of customers at different locations. Each customer is
associated with a service time and a time window within which the service
must begin. The vehicles start their tour from a predefined origin depot and
end their tour end at a predefined destination depot; additionally, the total
duration of each vehicle route is limited. The vehicles’ batteries must not
run out of energy; to prevent this, the vehicles can stop to recharge at any
of the available charging stations between the customer visits. The objective
is to determine an optimal routing plan for the entire fleet so that (i) all
customers are visited exactly once within the specified time windows and (ii)
the total energy cost of the vehicle routes is minimized.

13
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3.2 Modeling assumptions
It is assumed that the problem can be defined on a road network describing
the area of interest. Moreover, it is assumed that this network can be modeled
as a directed graph G′ = (V ′, A′) with vertices V ′ corresponding to network
locations (e.g., customers, charging stations and road intersections) and arcs
A′ corresponding to road segments between the vertices. Each road segment
(i, j) ∈ A′ between two vertices i, j ∈ V ′ is assumed to be associated with a
distance value dij, a constant travel speed v, and a travel time tij = dij/v.

The proposed model for the E-VRPTW is based on the following assump-
tions:

1. Energy consumption of the vehicles is proportional to the traveled dis-
tance: the energy cost of traversing an arc (i, j) ∈ A′ is defined as

cij = Kdij, (3.1)

where K denotes the constant energy consumption rate. Consequently,
the shortest path is also the most energy-efficient.

2. Vehicle speed v is constant over the arcs.

3. Vehicle battery is charged with a constant rate; i.e., the charging func-
tion is linear over time. Additionally, the charged amount is not fixed
in advance, and is limited only by the battery capacity Q.

4. Time is discretized into time steps (e.g., into one minute steps).

Furthermore, it is assumed that there are no vertices in the network graph
representing both a customer and a charging station. Instead, such vertices
are modeled by duplicating them into two distinct vertices, one representing
the customer and the other one the charging station.

Following the assumptions presented in (Erdoğan & Miller-Hooks, 2012),
the proposed model differentiates between visits to charging stations from
those to customers and depots. This assumption is necessary, because each
charging station can be visited more than once (or not at all), whereas each
customer must be visited exactly once. In order to allow multiple visits to
the same charging station, each such potential visit is modeled as a separate
instance (i.e., vertex) representing the same station in the network graph
(Bard et al., 1998). Erdoğan & Miller-Hooks (2012) suggest that the number
of such dummy vertices for each charging station should remain small in order
to prevent the network graph from expanding too much, but large enough
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not to restrict beneficial visits to the station. However, no theoretical upper
bound on the number of these dummy vertices was given. The following
Lemma provides such a bound.

Lemma 1. Suppose that the number of customers in an E-VRPTW instance
is nC. Then, in an optimal solution, the number of visits to a single charging
station is at most nC + m∗, where m∗ denotes the number of vehicles used in
the solution.

Proof. Let nl denote the number of customers visited by vehicle vl for all
l ∈ {1, . . . , m∗}. In an optimal solution, each charging station is visited at
most once between two consecutive customer visits, amounting to a maximum
of nl −1 visits for each vehicle vl. Moreover, each vehicle may visit a charging
station after leaving the origin depot and before arriving at the destination
depot. Thus, the number of visits to a single charging station is at most∑︁m∗

l=1(nl − 1 + 2) = ∑︁m∗

l=1 nl +∑︁m∗

l=1 1 = nC + m∗.

E-VRPTW instances where the optimal solution contains nC + m∗ visits
to a single charging station can be easily constructed, wherefore setting an
arbitrary limit on the number of charging station visits might not produce
an optimal solution. Therefore, in the following, it is assumed that every
charging station is modeled as a set of nC + m dummy vertices, where m
corresponds to the upper limit set on the number of vehicles.

3.3 Formal description of the model
The E-VRPTW is modeled on a directed graph G = (V ∪ {0} ∪ {n + 1}, A),
where the vertex set V = N ∪ F is composed of the subsets N = {1, . . . , n}
and F that comprise the vertices representing the customers and charging
station visits, respectively, whereas the vertices {0} and {n+1} correspond to
the origin and destination depots, respectively. The arc set A = {(i, j) | i, j ∈
V ∪ {0} ∪ {n + 1}, i ̸= j} contains one arc (i, j) for each pair of vertices
i, j ∈ V ∪ {0} ∪ {n + 1} representing the shortest path from i to j in G′

with respect to distances dij. These paths can be obtained, for instance,
with Dijkstra’s shortest path algorithm (Dijkstra, 1959). The energy cost
and travel time of an arc (i, j) ∈ A are denoted by cij and tij, respectively.
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For notational convenience, the following sets are also defined:

V0 = V ∪ {0}, Vn+1 = V ∪ {n + 1}, V0,n+1 = V ∪ {n + 1} ∪ {0},

F0 = F ∪ {0}, Fn+1 = F ∪ {n + 1}, F0,n+1 = F ∪ {n + 1} ∪ {0},

N0 = N ∪ {0}, Nn+1 = N ∪ {n + 1}, N0,n+1 = N ∪ {n + 1} ∪ {0}.

Each customer i ∈ N is associated with a service time si and a time win-
dow [ai, bi], where ai and bi denote the earliest and the latest times at which
the customer can be visited, respectively. Additionally, the origin and des-
tination depots are associated with time windows [a0, b0] and [an+1, bn+1],
respectively, representing the feasible time intervals within which the origin
depot must be departed from and the destination depot arrived at. The
scalar bn+1, specifically, corresponds to the maximum route duration, which
is also denoted by T .

The vehicles have identical batteries with a maximum capacity Q, and each
vehicle departs from the origin depot with a full battery; however, it is possi-
ble to adjust the battery’s initial state-of-charge if necessary. Upon entering
a charging station, the vehicle battery is recharged with a constant rate g.
Any amount can be recharged, as long as the battery charge remains below
the maximum capacity Q.

To represent a mathematical formulation for the E-VRPTW, the following
decision variables are defined:

• xij ∈ {0, 1}: xij = 1 if an arc (i, j) is traversed, xij = 0 otherwise; defined
for all i ∈ V0, j ∈ Vn+1, i ̸= j.

• τi ∈ R+: the arrival time at a vertex i ∈ V0,n+1.

• yi ∈ R+: the vehicle battery charge upon arriving at a vertex i ∈ V0,n+1.

• ri ∈ R+: the recharged amount at a charging station i ∈ F .

Using these variables, the E-VRPTW is modeled as the following mixed-
integer linear programming (MILP) problem:
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min
∑︂

(i,j)∈A

cijxij (3.2)

subject to∑︂
j∈V

x0j =
∑︂
j∈V

xj n+1 ≤ m, (3.3)
∑︂
j∈V0

xji = 1, ∀i ∈ N, (3.4)
∑︂
j∈V0

xji ≤ 1, ∀i ∈ F, (3.5)
∑︂
j∈V0

xji −
∑︂

j∈Vn+1

xij = 0, ∀i ∈ V, (3.6)

τj ≥ τi + (si + tij)xij − max{0, bi − aj}(1 − xij), ∀i ∈ N0, j ∈ Nn+1, (3.7)
τj ≥ τi + tijxij + gri − (T + gQ)(1 − xij), ∀i ∈ F, j ∈ Vn+1, (3.8)
τj ≥ τi + (si + tij)xij − T (1 − xij), ∀i ∈ N0, j ∈ F, (3.9)
ai ≤ τi ≤ bi, ∀i ∈ N0,n+1, (3.10)
τn+1 ≤ T, (3.11)
0 ≤ yj ≤ yi − cijxij + Q(1 − xij), ∀i ∈ N0, j ∈ Vn+1, (3.12)
0 ≤ yj ≤ yi − cijxij + ri + Q(1 − xij), ∀i ∈ F, j ∈ Vn+1, (3.13)
yi + ri ≤ Q, ∀i ∈ F, (3.14)
ri ≥ 0, ∀i ∈ F, (3.15)
xij ∈ {0, 1}, ∀(i, j) ∈ A. (3.16)

The objective (3.2) minimizes the total energy cost of the vehicle routes,
including visits to charging stations. Constraints (3.3) ensure that at most
m vehicles depart from the origin depot and arrive at the destination depot.
Constraints (3.4) impose that each customer is visited exactly once, whereas
constraints (3.5) guarantee that each vertex representing a charging station
is visited at most once. Constraints (3.6) establish route connectivity by im-
posing that the number of incoming arcs must equal the number of outgoing
arcs for each vertex.

Constraints (3.7) - (3.9) ensure the consistency of arrival times and prevent
the formation of subtours. Constraints (3.10) guarantee that customers are
visited within the specified time windows, and constraint (3.11) imposes an
upper limit T on the duration of each vehicle route. Constraints (3.12) and
(3.13) establish the consistency of the battery state-of-charge at each vertex,
while constraints (3.14) impose that the battery charge remains below the



CHAPTER 3. ELECTRIC VRP WITH TIME WINDOWS 18

maximum capacity Q. Finally, constraints (3.15) ensure that the recharged
amount remains positive and (3.16) enforce integrality on the arc variables.

Note that by removing the constraints (3.3) completely, the routing plan
with the minimum energy cost is always obtained. The constraints (3.4),
(3.6) and (3.7) - (3.9) ensure that every customer is visited exactly once and
the number of vehicles arriving at the destination depot equals the number
of vehicles departing from the origin depot. Consequently, a set of distinct
vehicle routes is formed upon solving the problem. These routes can be
identified by following each path in the solution that begins with an arc
between the origin depot and a customer or a charging station vertex j ∈
N ∪ F with x0j = 1.

3.3.1 Hierarchical objective
An option with multiple vehicles is to use a hierarchical objective, in which
the primary objective is to minimize the number of vehicles required to ser-
vice all the customers and the secondary objective is to minimize the total
energy cost of the vehicle routes. A potential strategy for solving E-VRPTW
instances with the hierarchical objective is to first solve the problem without
the constraints (3.3) to obtain the optimal solution with minimum energy
cost; subsequently imposing an upper bound m∗ − 1 on the number of vehi-
cles, where m∗ denotes the number of vehicles used in the optimal solution;
and finally attempting to solve the problem with this upper bound. If a fea-
sible solution is found, the number of vehicles can be decreased and the new
optimal solution is computed. On the other hand, if the problem becomes in-
feasible, the primary objective cannot be improved and the previous solution
is optimal. However, since determining the feasibility of a VRP instance is in
itself a difficult problem, this strategy cannot be used efficiently in general.

Another option is to add an integer variable µ representing the number of
vehicles to the objective function with a large enough cost coefficient M , that
is, replacing (3.2) with the following objective function

min
(︂ ∑︂

(i,j)∈A

cijxij + Mµ
)︂
, (3.17)

and replacing (3.3) with

∑︂
j∈N

x0j = µ. (3.18)
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Setting the value of M large enough (i.e., larger than the energy cost of
any feasible vehicle route), the objective (3.17) minimizes first the number
of vehicles µ, and then the energy cost of the vehicle routes. However, this
option is likely to be computationally demanding in larger problems.

Implementing the hierarchical objective efficiently is itself a difficult problem,
wherefore it is more commonly associated with heuristic solution methods,
whereas most exact algorithms focus solely on routing cost minimization.
Incorporating the hierarchical objective is not examined further in this thesis;
however, this provides an interesting opportunity for future study.

3.3.2 Customer demands
The formulation (3.2) - (3.16) can be extended to include customer demands
(e.g., demands for certain types of goods) and vehicle supply capacities (i.e.,
the amount of goods that can be carried by a vehicle is limited). Towards
this end, the following decision variable is defined:

• ui ∈ R+: the free vehicle capacity upon arriving at a vertex i ∈ V0,n+1.

Additionally, let qi denote the demand of a of vertex i ∈ V0 n+1 (for others
than customers, qi = 0), and let C denote the maximum vehicle capacity.
It is assumed that each vehicle has the same maximum capacity. Using this
notation, the customer demands can be implemented by adding the following
constraints to the model:

0 ≤ uj ≤ ui − qixij + C(1 − xij), ∀i ∈ V0, j ∈ Vn+1, (3.19)
0 ≤ u0 ≤ C. (3.20)

Accordingly, (3.19) imposes that when traveling directly from i ∈ V0 to
j ∈ Vn+1 (i.e., xij = 1), the vehicle capacity uj at j is obtained by subtracting
the demand qi at i from the vehicle load ui at i. Furthermore, (3.20) ensures
that each vehicle departs from the origin depot with at most the maximum
capacity C. The maximum initial capacity can be imposed by setting u0 = C.
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3.3.3 Fixed recharging scheme
It is possible to enforce a full recharge at every charging station visit by
replacing (3.14) with

yi + ri = Q, ∀i ∈ F. (3.21)

However, this may affect the optimal solution or even the feasibility of the
problem instance: some customers may not be serviced in time, or the end
depot may not be reached within the maximum route duration if recharging
takes too long. Consequently, solutions obtained using the fixed recharging
scheme cannot be better than those obtained with the variable recharging
scheme.

3.4 Preprocessing
A common practice in most vehicle routing problems is to apply a set of
preprocessing steps before solving the problem (see, e.g., Psaraftis, 1983;
Savelsbergh, 1985). Preprocessing is an essential part of the solution process,
especially with exact solution methods. Preprocessing methods include, for
example, the elimination of infeasible arcs from the network graph, and the
tightening of certain inequality constraints (e.g., time window constraints)
to improve the linear programming relaxation of the problem formulation.
Applying different preprocessing steps can potentially eliminate a significant
number of decision variables and provide a stronger formulation, thus reduc-
ing the problem size and decreasing the computation time required to solve
the problem. In the following, two preprocessing techniques are presented:
arc elimination and time window tightening.

3.4.1 Arc elimination
Arc elimination aims at removing infeasible arcs from the network graph
G before solving the problem (see, e.g., Psaraftis, 1983; Savelsbergh, 1985).
Such arcs may be identified by (i) constructing a set of inequalities that must
hold for every feasible arc and (ii) systematically evaluating each arc with
regard to the constructed inequalities: if an arc violates these inequalities, it
is declared infeasible and removed from the graph.

The following inequalities are based on time window and battery capacity
constraints. Any arc (i, j) ∈ A satisfying either of the inequalities (3.22) -
(3.23) is infeasible and can be removed from G.
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i ∈ N0, j ∈ N ∧ ai + si + tij > bj, (3.22)
i ∈ N0, j ∈ N ∧ ai + si + tij + sj + tj n+1 > T. (3.23)

Furthermore, any arc (i, j) ∈ A satisfying either of the following sets of
inequalities (3.24) and (3.25) is infeasible and can be removed from G.

i ∈ N, j ∈ N ∧ csi + cij + cjt > Q, ∀s ∈ F0, t ∈ Fn+1, (3.24)
j ∈ N ∧ cij + cjk > Q, ∀i ∈ V0, k ∈ Vn+1. (3.25)

The inequalities (3.22) - (3.23) are ”well-known preprocessing steps” (Schnei-
der et al., 2013) exploiting customer time windows and maximum route du-
ration T , whereas the inequalities (3.24) and (3.25) are problem specific and
exploit the maximum battery capacity Q. The set of inequalities (3.24) is
similar to the one presented in (Schneider et al., 2013), which states that an
arc (i, j) ∈ A, i, j ∈ N is infeasible if the energy cost of the path P = (s, i, j, t)
is greater than the maximum battery capacity Q for all s ∈ F0 and t ∈ Fn+1.
As far as this thesis is aware of, the inequalities (3.25), instead, constitute a
new preprocessing step, which states that an arc (i, j) ∈ A, i ∈ V0, j ∈ N
is infeasible if the energy cost of the path P = (i, j, k) is greater than Q for
every k ∈ Vn+1.

Note that in order to obtain a full benefit from these preprocessing steps,
they should be applied several times until no changes occur in the problem
variables. Computational tests indicate that a combination of (3.24) and
(3.25), in particular, eliminates a significant number of feasible arcs in many
of the problem instances studied in this thesis. A more detailed analysis is
presented in Chapter 5.

3.4.2 Time window tightening
Customer time windows can be tightened based on the following procedures.
First of all, in accordance with Kontoravdis & Bard (1995), the earliest time
for a vehicle to arrive at a customer corresponds to the travel time of the
shortest route from the origin depot to the customer. In addition, the latest
time a vehicle can leave a customer cannot be more than the maximum
route duration T minus the travel time from that customer to the end depot,
because otherwise the maximum route duration would be exceeded. Thus,
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for every customer i ∈ N , the time windows can be tightened by replacing
[ai, bi] with

[︂
max{a0 + t0i, ai}, min{T − ti n+1 − si, bi}

]︂
. (3.26)

Additionally, Desrochers et al. (1992) introduce four conditions to further
tighten the customer time windows. In the following, these conditions are
altered slightly to account for customer service times. In order to apply these
conditions efficiently, potential predecessors and successors of every customer
are first identified. Towards this end, let N−

i = {j ∈ N0 | (j, i) ∈ A} and
N+

i = {j ∈ Nn+1 | (i, j) ∈ A} denote the potential predecessor and successor
customers, respectively, of a customer i ∈ N . The following conditions are
applied sequentially to every customer i ∈ N and repeated iteratively until
no changes occur in the time windows.

1. Minimal arrival time from predecessors:

ai = max{ai, min
k∈N−

i

{ak + sk + tki}}. (3.27)

2. Minimal arrival time to successors:

ai = max{ai, min{bi, min
k∈N+

k

{ak − tik − si}}}. (3.28)

3. Maximal departure time from predecessors:

bi = min{bi, max{ai, max
k∈N−

k

{bk + sk + tki}}}. (3.29)

4. Maximal departure time to successors:

bi = min{bi, max
k∈N+

k

{bk − tik − si}}. (3.30)

The first step attempts to adjust the start time of a time window so that
it corresponds to the earliest arrival time when arriving from any potential
predecessor vertex. The second step, on the other hand, aims to reduce excess
waiting time in situations where the potential successor vertices cannot be
serviced immediately upon arrival. The third and the fourth step apply
the same principles as the first and the second step, respectively, with the
attempt to adjust the end time of the time window.



Chapter 4

Improved formulation

This Chapter develops a new formulation for the E-VRPTW presented in
Chapter 3. The key difference is that the new formulation eliminates the
need of modeling every possible charging station visit as a separate vertex in
the network graph. Moreover, it removes the need of imposing an artificial
upper bound on the number of visits to a charging station, as is commonly
done in previous models to keep their size acceptable. This results in a sig-
nificantly smaller number of decision variables, especially in larger problem
instances, thus allowing solving problems with more customers and charg-
ing stations optimally. The new formulation removes the charging station
vertices completely from the network graph and replaces them with a set
of elementary paths between the remaining vertices (i.e., the customers and
the depots). These paths are constructed so that they account for all the
charging station visits that may be included in an optimal vehicle route.

In the following, the same notation as in Section 3.3 is used, with the excep-
tion that the vertex set F now contains only one vertex per each charging
station. Additionally, let T denote an E-VRPTW tour corresponding to
a vehicle route that starts from the origin depot, visits a set of customers
within their time windows, stops to recharge when necessary, and finally ar-
rives at the destination depot within the maximum route duration. Further-
more, let m∗ denote the number of E-VRPTW tours in an optimal solution
and nl the number of customers serviced by vehicle vl in a tour Tl for all
l ∈ {1, . . . , m∗}. Finally, let nC denote the number of customers in an E-
VRPTW instance. Note that since the optimal solution constitutes all m∗

tours Tl, l ∈ {1, . . . , m∗}, it must be that n1 + · · · + nm∗ = nC .

23
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4.1 Decomposition of optimal vehicle tours
In the following, it is shown that any E-VRPTW tour Tl associated with a
vehicle vl visiting nl customers can be decomposed as a sequence of nl + 1
simple paths, denoted as e-paths, each starting from a vertex i ∈ N0, ending
at another vertex j ∈ Nn+1, and possibly visiting a set of charging stations
in between. Subsequently, a dominance relation based on travel time and
energy consumption is established for e-paths, and a smaller subset of non-
dominated e-paths is identified that provides a sufficient characterization for
a set of optimal E-VRPTW tours that constitute an optimal solution.

Definition 1. An e-path Ψij is a simple path P (Ψij) = (i ≡ i0, . . . , ip ≡ j)
in G starting from i ∈ N0 with a starting energy e0(Ψij) ≤ Q, visiting a
(possibly empty) set F (Ψij) = {i1, . . . , ip−1} ∈ F of charging stations and
ending at j ∈ Nn+1. Moreover, Ψij is associated with recharge amounts
0 ≤ rik

(Ψij) ≤ Q for each vertex ik ∈ F (Ψij) with ri(Ψij) = rj(Ψij) = 0.

Definition 2 introduces energy cost, total recharge amount, travel time, en-
ergy levels and energy consumption of an e-path. Note that the travel time
between two vertices i ∈ V0 and j ∈ Vn+1 is tij = dij/v, where dij denotes the
distance and v the vehicle speed. In addition, the energy cost cij of arc (i, j)
can be expressed as cij = Kdij, where K is the vehicle energy consumption
rate. Consequently, the travel time from i to j can be written as

tij = dij

v
= 1

Kv
cij. (4.1)

Definition 2. Let Ψij be an e-path between two vertices i ∈ N0 and j ∈ Nn+1
traversing a path P (Ψij) = (i ≡ i0, . . . , ip ≡ j).

1. The energy cost of Ψij is defined as c(Ψij) := ∑︁p−1
k=0 cikik+1

2. The total recharge amount of Ψij is defined as R(Ψij) := ∑︁p−1
k=1 rik

(Ψij)

3. The travel time of Ψij is defined as t(Ψij) := ∑︁p−1
k=0( 1

Kv
cikik+1+grik

(Ψij)) =
1

Kv
c(Ψij) + gR(Ψij).

4. The energy level of Ψij at a vertex ik, k = 0, . . . , p is defined as
yi(Ψij) = e0(Ψij), and yik

(Ψij) := min{Q, yik−1(Ψij)−cik−1ik
+rik−1(Ψij)}

for k = 1, . . . , p.

5. The energy consumption of Ψij is defined as e(Ψij) := yi(Ψij)−yj(Ψij).
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Definition 3. An e-path Ψij from i ∈ N0 to j ∈ Nn+1 traversing a path
P (Ψij) = (i ≡ i0, . . . , ip ≡ j) is feasible, if 0 ≤ yik

(Ψij) ≤ Q, ∀k = 0, . . . , p.

Accordingly, Definition 3 states that an e-path is feasible if the energy level
at each vertex along the path remains positive and does not exceed the
maximum battery capacity Q.

Let GF denote the subgraph of G induced by the set of charging station
vertices F :

GF = {(i, j) ∈ A | i, j ∈ F}. (4.2)

An e-path Ψij between two vertices i ∈ N0 and j ∈ Nn+1 is now completely
characterized by the following:

• A path P (Ψij) = (i ≡ i0, . . . , ip ≡ j) which is composed of either

(i) an arc (i, s), s ∈ F ; a subpath PF (Ψij) = (s ≡ i1, . . . , ip−1 ≡ t) in GF

from s to t ∈ F (possibly with s = t); and an arc (t, j), or

(ii) the arc (i, j) if no charging stations are visited.

• A sequence of recharge amounts 0 ≤ rik
(Ψij) ≤ Q, k = 0, . . . , p.

• A starting energy yi(Ψij) = e0(Ψij) ≤ Q.

The following Definition 4 introduces a dominance relation based on energy
consumption and travel time for e-paths having the same starting energy.
This provides a basis for reducing the number of feasible e-paths by removing
those paths that are dominated.

Definition 4. Given two feasible e-paths Ψij and Ψ′
ij from i ∈ N0 to j ∈ Nn+1

with e0(Ψij) = e0(Ψ′
ij), Ψij dominates Ψ′

ij, denoted by Ψij ≻ Ψ′
ij, if

e(Ψij) ≤ e(Ψ′
ij),

t(Ψij) ≤ t(Ψ′
ij),

and one of the inequalities is strict.

The following proposition asserts that for any feasible E-VRPTW instance
(i.e., for any instance with at least one optimal solution), each of the tours
T ∗

l , l ∈ {1, . . . , m∗}, constituting an optimal solution to the problem can
be decomposed as a sequence of non-dominated e-paths. For simplicity, the
origin depot and the destination depot are also referred to as customers with
zero service time.
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Proposition 1. For any feasible E-VRPTW instance, there exists at least
one optimal solution constituting m∗ E-VRPTW tours T ∗

l , l ∈ {1, . . . m∗},
each associated with a vehicle vl visiting nl customers, so that each such tour
can be decomposed as a sequence of nl + 1 non-dominated e-paths.

Proof. Let Tλ, λ ∈ {1, . . . , m∗} be a feasible E-VRPTW tour associated
with vehicle vλ visiting nλ customers. Consider a tour segment between two
customers i ∈ N0 and j ∈ Nn+1 contained in the tour that are serviced
sequentially, possibly visiting some charging stations in between. According
to Definitions 1 - 3, this segment corresponds to a feasible e-path Ψij with
a starting energy yi(Ψij) = e0(Ψij). Now, suppose that Ψij is dominated in
accordance with Definition 4. Thus, there exists another e-path Ψ′

ij ≻ Ψij

from i to j such that yi(Ψ′
ij) = yi(Ψij) = e0(Ψij), e(Ψ′

ij) ≤ e(Ψij) and
t(Ψ′

ij) ≤ t(Ψij) with at least one of the inequalities being strict. In what
follows, it is shown that the energy cost c(Ψ′

ij) is less than c(Ψij), which
indicates that by substituting Ψij with Ψ′

ij in Tλ, a new feasible E-VRPTW
tour T ′

λ is obtained with a lower energy cost.

Towards this end, let R(Ψij) and R(Ψ′
ij) be the total recharge amounts of the

e-paths Ψij and Ψ′
ij, respectively. It can be easily verified that the following

inequalities are valid:

yj(Ψij) ≤ yi(Ψij) − c(Ψij) + R(Ψij), (4.3)
yj(Ψ′

ij) ≤ yi(Ψ′
ij) − c(Ψ′

ij) + R(Ψ′
ij). (4.4)

Furthermore, it can be assumed that yj(Ψij) = yi(Ψij) − c(Ψij) + R(Ψij) and
yj(Ψ′

ij) = yi(Ψ′
ij) − c(Ψ′

ij) + R(Ψ′
ij), because otherwise it would be possible

to simply reduce the recharge amounts R(Ψij) and R(Ψ′
ij) in (4.3) and (4.4)

until the equalities are satisfied without affecting either the feasibility or the
energy cost of the tours Tλ and T ′

λ. Furthermore, since yi(Ψij) = yi(Ψ′
ij) =

e0(Ψij) and e(Ψ′
ij) ≤ e(Ψij) in accordance with definition 4, it must be that

yj(Ψij) ≤ yj(Ψ′
ij) and the following must hold:

yj(Ψij) = e0(Ψij) − c(Ψij) + R(Ψij) ≤ e0(Ψij) − c(Ψ′
ij) + R(Ψ′

ij) = yj(Ψ′
ij),

which results in

c(Ψij) − c(Ψ′
ij) ≥ R(Ψij) − R(Ψ′

ij). (4.5)
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Finally, according to Definition 4, t(Ψij) ≥ t(Ψ′
ij), which can be written as

1
Kv

c(Ψij) + gR(Ψij) ≥ 1
Kv

c(Ψ′
ij) + gR(Ψ′

ij) (see Definition 2). This can be
further expressed as

c(Ψij) − c(Ψ′
ij) ≥ Kvg(R(Ψ′

ij) − R(Ψij)). (4.6)

It can be deduced from (4.5) and (4.6) that c(Ψij) − c(Ψ′
ij) ≥ 0. Moreover,

since these inequalities are derived from the conditions of Definition 4, at
least one of them must be strict. Consequently, it can be concluded that
c(Ψ′

ij) < c(Ψij), thus verifying that by substituting Ψij with Ψ′
ij in the initial

tour Tλ, a new tour T ′
λ is obtained with a strictly lower energy cost. Therefore,

as long as the tour contains at least one dominated e-path, it can be replaced
by a non-dominated one to obtain a new feasible tour with a lower energy
cost. Since the tour consists of nλ + 1 e-paths by definition, an optimal tour
Tλ

∗ is eventually composed of nλ+1 such non-dominated paths. By repeating
this procedure for all the tours Tl, l ∈ {1, . . . , m∗}, each such tour is finally
composed of nl + 1 non-dominated e-paths.

The dominance relation of Definition 4 can be impractical, because it depends
on both the starting energy and the energy consumption of Ψij. Indeed,
establishing dominance relations in accordance with Definition 4 requires
knowledge of all feasible e-paths between two customers i ∈ N0 and j ∈ Nn+1.
To overcome this drawback, the following establishes a necessary condition
for an e-path Ψij visiting at least one charging station to be dominated that
depends only on the energy cost of the path P (Ψij) traversed by Ψij. This
makes it significantly easier to establish dominance relations between such
e-paths and provides a basis for reducing their number efficiently. Note that
the following applies to all paths except those consisting of only the single
arc (i, j) ∈ A, i ∈ N0, j ∈ Nn+1.

Definition 5. Let P = (i, s, . . . , t, j) be a path from i ∈ N0 to j ∈ Nn+1 with
subpath PF = (s, . . . , t) in GF from s ∈ F to t ∈ F (possibly with s = t) of
energy cost c(PF ). P is said to be dominated with respect to (i, j) if there
exists another path P ′ = (i, s′, . . . , t′, j) with subpath P ′

F = (s′, . . . , t′) in GF

from s′ ∈ F to t′ ∈ F (possibly with s′ = t′) of energy cost c(P ′
F ) such that

cis′ ≤ cis,

ct′j ≤ ctj,

c(P ′
F ) ≤ c(PF ),
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and at least one of the inequalities is strict. Moreover, P ′ is then said to
dominate P with regard to (i, j), denoted by P ′ ≻(i,j) P .

Proposition 2. Let Ψij be an e-path from i ∈ N0 to j ∈ Nn+1 traversing a
path P (Ψij) = (i, s, . . . , t, j), and let PF (Ψij) = (s, . . . , t) be the subpath of
P (Ψij) in GF from s ∈ F to t ∈ F . If P (Ψij) is dominated with respect to
(i, j), there exists a feasible e-path Ψ′

ij such that Ψ′
ij ≻ Ψij.

Proof. The proof is constructive: a feasible e-path Ψ′
ij from i to j is con-

structed that satisfies yi(Ψ′
ij) = yi(Ψij) = e0(Ψij), e(Ψ′

ij) ≤ e(Ψij) and
t(Ψ′

ij) ≤ t(Ψij) with at least one strict inequality, thus verifying that Ψ′
ij ≻

Ψij in accordance with Definition 4.

Since P (Ψij) is dominated with respect to (i, j), there exists another path
P ′ = (i, s′, . . . , t′, j) ≻(i,j) P (Ψij) with a subpath P ′

F = (s′, . . . , t′) in GF from
s′ ∈ F to t′ ∈ F such that

cis′ ≤ cis,

ct′j ≤ ctj,

c(P ′
F ) ≤ c(PF (Ψij)),

with at least one strict inequality.

Let Ψ′
ij be constructed as follows: Ψ′

ij starts from i with energy yi(Ψ′
ij) =

yi(Ψij) = e0(Ψij), traverses a path P (Ψ′
ij) = (i ≡ i0, s′ ≡ i1, . . . , ip−1 ≡

t′, ip ≡ j), which is composed of the arc (i, s′), the path PF (Ψ′
ij) = P ′

F =
(s′ ≡ i1, . . . , ip−1 ≡ t′) and the arc (t′, j). In addition, let the recharge
amounts rik

, k = 1, . . . , p − 1, be set recursively as follows:

• rs′(Ψ′
ij) = max{0, cs′i2 − ys′(Ψ′

ij)};

• rik
(Ψ′

ij) = max{0, cikik+1 − yik
(Ψ′

ij)}, k = 2, . . . , p − 2;

• rt′(Ψ′
ij) = rt(Ψij) + yt(Ψij) − yt′(Ψ′

ij).

It is now shown that (i) Ψ′
ij is feasible, (ii) e(Ψ′

ij) ≤ e(Ψij) and (iii) t(Ψ′
ij) ≤

t(Ψij) with at least one inequality being strict, thus verifying that Ψ′
ij ≻ Ψij.

(i) According to Definition 2, the energy level of Ψ′
ij at vertex i1 ≡ s′ is

ys′(Ψ′
ij) = e0(Ψij)−cis′ ≥ e0(Ψij)−cis = ys(Ψij), since cis′ ≤ cis. Hence,

since Ψij is feasible, 0 ≤ ys(Ψij) ≤ ys′(Ψ′
ij) ≤ Q. Furthermore, it can be

verified that the above recursive equations for rik
(Ψ′

ij), k = 2, . . . , p−2,
imply 0 ≤ yik

(Ψ′
ij) ≤ Q, k = 1, . . . , p − 2. Finally, the recharge amount

set for rt′(Ψ′
ij) ensures that 0 ≤ yj(Ψij) ≤ yj(Ψ′

ij) ≤ Q since ct′j ≤ ctj.
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Thus, 0 ≤ yik
(Ψ′

ij) ≤ Q, ∀k = 0, . . . , p and Ψ′
ij is feasible in accordance

with Definition 3.

(ii) According to Definition 2, the energy consumption of Ψ′
ij is e(Ψ′

ij) =
yi(Ψ′

ij)−yj(Ψ′
ij) = e0(Ψij)−yj(Ψ′

ij) ≤ e0(Ψij)−yj(Ψij) = e(Ψij), since
yj(Ψ′

ij) ≥ yj(Ψij) as established in part (i). Thus, e(Ψ′
ij) ≤ e(Ψij).

(iii) Let R(Ψij) and R(Ψ′
ij) be the total recharge amounts of Ψij and Ψ′

ij,
respectively. From the definition of energy levels in Definition 2, it can
be deduced that

yt(Ψij) ≤ ys(Ψij) − c(PF (Ψij)) + R(Ψij) − rt(Ψij),

which can be written as

R(Ψij) ≥ yt(Ψij) − ys(Ψij) + c(PF (Ψij)) + rt(Ψij). (4.7)

Moreover, the above defined recharge amounts rik
(Ψ′

ij), k = 1, . . . , p−1
for Ψ′

ij imply

R(Ψ′
ij) =

p−1∑︂
k=1

rik
(Ψ′

ij) ≤
p−2∑︂
k=1

cikik+1 − ys′(Ψ′
ij) + yt(Ψij) + rt(Ψij)

⇒ R(Ψ′
ij) ≤ yt(Ψij) − ys′(Ψ′

ij) + c(PF (Ψ′
ij)) + rt(Ψij). (4.8)

Consequently, since c(PF (Ψ′
ij)) ≤ c(PF (Ψij)) and ys′(Ψ′

ij) ≥ ys(Ψij),
(4.8) can be written as

R(Ψ′
ij) ≤ yt(Ψij) − ys(Ψij) + c(PF (Ψij)) + rt(Ψij). (4.9)

Finally, combining (4.7) with (4.9) results in

R(Ψ′
ij) ≤ R(Ψij). (4.10)

The energy costs of the two e-paths can be written as follows:

c(Ψij) = cis + c(PF (Ψij)) + ctj, (4.11)
c(Ψ′

ij) = cis′ + c(PF (Ψ′
ij)) + ct′j, (4.12)
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and the corresponding travel times as

t(Ψij) = 1
Kv

c(Ψij) + gR(Ψij), (4.13)

t(Ψ′
ij) = 1

Kv
c(Ψ′

ij) + gR(Ψ′
ij). (4.14)

By the construction of Ψ′
ij, it must be that: cis′ ≤ cis, ct′j ≤ ctj and

c(PF (Ψ′
ij)) ≤ c(PF (Ψij)) with at least one strict inequality. Thus, it can

be concluded from (4.11) and (4.12) that c(Ψ′
ij) < c(Ψij). Moreover, in

(4.10) it was verified that R(Ψ′
ij) ≤ R(Ψij). Combining these results

and substituting them into (4.13) and (4.14) implies t(Ψ′
ij) < t(Ψij),

indicating that Ψ′
ij ≻ Ψij.

Proposition 1 provides a basis for constructing an alternative formulation for
the E-VRPTW by replacing the charging station vertices with a set of feasi-
ble e-paths between every customer pair. Moreover, Proposition 2 provides
means for effectively discarding a significant number of e-paths by perform-
ing pairwise dominance comparisons for all possible paths between two cus-
tomers i ∈ N0 and j ∈ Nn+1 and removing those paths that are dominated
with regard to (i, j) in accordance with Definition 5. Note, however, that
this procedure does not in general produce the true non-dominated set of e-
paths, but rather significantly reduces the number of possible paths that can
be traversed by the e-paths. The non-dominated e-paths can subsequently
be constructed from the remaining paths, since only those paths that are
dominated with regard to (i, j) are removed, and Proposition 2 ensures that
e-paths traversing such paths are dominated by some other e-path. Finally,
it is assumed that the (feasible) paths consisting of only the arc (i, j) ∈ A
for each i ∈ N0 and j ∈ Nn+1 are always included; the dominance status of
such paths cannot be established in view of Definition 5 since they have no
subpath in GF .

The formulation presented in Chapter 3 models each charging station as a set
of nC + m dummy vertices, one for each potential visit. In order to estimate
the impact of this modeling technique with regard to problem size, let nS

denote the number of charging stations. Accordingly, the number of arcs in
the network graph is of the order of O(nC +nS(nC +m))(nC +nS(nC +m)−
1) = O(n2

Cn2
S), resulting in a significant number of decision variables, each

corresponding to a single (feasible) arc.
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Now, suppose that the new formulation removes all charging station ver-
tices from the graph and replaces them with a set of non-dominated paths
between every customer pair i ∈ N0 and j ∈ Nn+1, with each such path
being represented by a decision variable. In addition, let nP denote the av-
erage number of non-dominated paths between each vertex pair i ∈ N0 and
j ∈ Nn+1. Thus, the number of path decision variables in the new formula-
tion is of the order of O(nC(nC − 1)nP ) = O(n2

CnP ). This indicates that if
the number of paths that remain non-dominated in view of Definition 5 re-
mains reasonable, specifically, if nP << n2

C , the number of decision variables
is significantly smaller than in the previous formulation. Obviously, the set
of non-dominated paths must be calculated in advance for every customer
pair. However, it turns out that this set can be computed quickly for all the
instances studied in this thesis.

4.1.1 Computation of non-dominated paths
Let Iij denote the index set of all unique paths between i ∈ N0 and j ∈ Nn+1
that can be traversed by any feasible e-path Ψij so that p ∈ Iij if the path
P p = (i, s, . . . , t, j) is composed of the following:

1. An arc (i, s) from i to s ∈ F .

2. A subpath P p
F = (s, . . . , t) in GF corresponding to the shortest path

between s ∈ F and t ∈ F (possibly with s = t).

3. An arc (t, j) from t ∈ F to j.

Furthermore, let

P(Ψij) = {P p | p ∈ Iij} (4.15)

denote the set of all such paths between i and j.

The set of paths that are non-dominated with regard to Definition 5 can
be sequentially constructed for each customer pair i ∈ N0 and j ∈ Nn+1 by
first generating the path set P(Ψij) between the two customers, subsequently
applying a suitable procedure for establishing dominance relations between
the generated paths and finally eliminating those paths that are dominated
by some other path. Note that the subpaths in GF for all the paths in P(Ψij)
correspond to the shortest paths between each charging station pair; this will
significantly reduce the number of possible path combinations.
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The first step is to compute the shortest paths between each charging station
pair s ∈ F and t ∈ F in GF . This can be achieved, for instance, by applying
Dijkstra’s shortest path algorithm (Dijkstra, 1959) starting from each vertex
s ∈ GF . Next, all the customer pairs are sequentially examined, and for each
such pair i ∈ N0 and j ∈ Nn+1, the path set P(Ψij) between the two cus-
tomers is computed by constructing all the possible paths P p = (i, s, . . . , t, j)
starting from i, traversing a subpath P p

F = (s, . . . , t) in GF corresponding to
the shortest path from s ∈ F to t ∈ F , and finally ending at j. These
paths are constructed by considering all the different charging station pair
combinations s ∈ F and t ∈ F (including those with s ≡ t). The paths that
remain feasible then constitute the set P(Ψij).

After the set P(Ψij) is obtained, the procedure presented in (Deb, 2001) is
applied to find those paths that are non-dominated with regard to Definition
5. Towards this end, suppose that the number of different paths in P(Ψij) is
NP , that is, Iij = {1, . . . , NP } and

P(Ψij) = {P p | p ∈ {1, . . . , NP }}.

Furthermore, let P ′(Ψij) be an initially empty set, which is sequentially up-
dated during the procedure until it comprises all the non-dominated paths.
The procedure is described in Alg. 1.

Algorithm 1 Identifying the non-dominated set (Deb, 2001)
Input: The set P(Ψij) = {P p | p ∈ {1, . . . , NP }} consisting of NP feasible

paths between i ∈ N0 and j ∈ Nn+1.
Returns: The set P ′(Ψij) comprising all the non-dominated paths of P(Ψij)

with regard to Definition 5.
Init: Initialize P ′(Ψij) = {P 1} and set solution counter k = 2.
Iteration:

1: Set m = 1.
2: Establish dominance between P k ∈ P(Ψij) and P m ∈ P ′(Ψij).
3: If P k ≻(i,j) P m, set P ′(Ψij) = P ′(Ψij)\{P m}. If m < |P ′(Ψij)|, increment

m by one and go to step 2; otherwise, go to step 4. Alternatively, if
P m ≻(i,j) P k, increment k by one and go to step 1. Otherwise, go to step
4.

4: Set P ′(Ψij) = P ′(Ψij) ∪ {P k}. If k < NP , increment k by one and go to
step 1. Otherwise, stop and declare P ′(Ψij) as the non-dominated set.
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In the procedure presented in Alg 1, the dominance status of every path in the
initial set P(Ψij) is established by comparing it with a set of potentially non-
dominated paths that are included in the set P ′(Ψij) during the execution.
In the beginning, the first feasible path P 1 is added to the set P ′(Ψij) that is
initially empty. After that, every feasible path in P(Ψij) (starting with the
second path P 2) is sequentially compared with all the paths in P ′(Ψij). If a
path P k ∈ P(Ψij) dominates any member of P ′(Ψij), the corresponding path
is removed from P ′(Ψij). This ensures that those paths that are dominated
are eventually removed from P ′(Ψij). Alternatively, if the path P k is dom-
inated by any member of P ′(Ψij), the counter k is incremented by one and
P k is thus ignored in further iterations. Otherwise, if P k is not dominated
by any path in P ′(Ψij), it is added to the set P ′(Ψij). This ensures that the
set P ′(Ψij) grows with non-dominated paths. Finally, after all the feasible
paths in P(Ψij) are examined, the remaining paths in P ′(Ψij) constitute the
non-dominated set.

Note that the procedure finds the non-dominated paths for a single customer
pair only. Thus, in order to find all the non-dominated paths, it must be
applied to each pair of customers separately. Fortunately, as demonstrated
by Deb (2001), computing the non-dominated set from a given set of objects is
not computationally too demanding. For instance, with the procedure of Alg.
1, the second path is compared with only the first path, the third path with
at most two paths and so on, thus requiring at most 1 + 2 + · · · + (NP − 1) =
NP (NP − 1)/2 dominance comparisons. Since each dominance comparison
requires three energy cost comparisons, the non-dominated paths can be
computed in O(3NP (NP −1)/2) = O(N2

P ). Moreover, since the total number
of customer pairs is nC(nC −1), all the non-dominated paths can be computed
in O(n2

CN2
Pmax

) where NPmax denotes the maximum number of paths between
any two customers. However, since these estimates are for the worst case
scenarios and without estimating the impact of preprocessing, the actual
computational complexity is likely smaller.

In the following, let Pij denote the index set of all the non-dominated paths
between i ∈ N0 and j ∈ Nn+1 with regard to Definition 5, including the path
corresponding to the single arc (i, j) ∈ A. Additionally, let cp

ij denote the
energy cost and tp

ij the travel time of the path P p(Ψij), p ∈ Pij, and let
hp

ij and fp
ij denote the energy cost of the first and the last arc, respectively.

Furthermore, let the paths corresponding to the single arcs (i, j) ∈ A for
every i ∈ N0 and j ∈ Nn+1 be indexed as P 0(Ψij) = (i, j); for such paths, it
is assumed that h0

ij = 0 and f 0
ij = 0.
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4.2 Improved model
This Section develops an alternative formulation for the E-VRPTW that
exploits the results of Section 4.1. The formulation is similar to the one
presented in Chapter 3; however, it is defined on a multigraph G = (V , A),
where the vertex set V = N ∪ {0} ∪ {n + 1} comprises the customer vertices,
the origin depot and the destination depot, respectively; and the arc set
A = {(i, j)p | i ∈ N0, j ∈ Nn+1, p ∈ Pij} contains one arc (i, j)p for every
non-dominated path p ∈ Pij between each customer pair i ∈ N0, j ∈ Nn+1,
in addition to the arc (i, j)0 which corresponds to the path composed of the
single arc (i, j) ∈ A.

To represent the improved formulation for the E-VRPTW, the following de-
cision variables are defined:

• xp
ij ∈ {0, 1}: xp

ij = 1 if an arc (i, j)p ∈ A is traversed, xp
ij = 0 otherwise;

defined for all i ∈ N0, j ∈ Nn+1 and p ∈ Pij, i ̸= j.

• τi ∈ R+: arrival time at a vertex i ∈ N0,n+1.

• yi ∈ R+: the vehicle battery charge upon arriving at a vertex i ∈ N0,n+1.

• rij ∈ R+: the total recharge amount at charging stations when traversing
directly from i ∈ N0 to j ∈ Nn+1.

Using these variables, the improved formulation for the E-VRPTW is mod-
eled as the following MILP problem:
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min
∑︂

i∈N0

∑︂
j∈Nn+1

∑︂
p∈Pij

cp
ijxp

ij (4.16)

subject to∑︂
j∈N

∑︂
p∈P0j

xp
0j =

∑︂
j∈N

∑︂
p∈Pj n+1

xp
j n+1 ≤ m, (4.17)

∑︂
j∈N0

∑︂
p∈Pji

xp
ji = 1, ∀i ∈ N, (4.18)

∑︂
j∈N0

∑︂
p∈Pji

xp
ji −

∑︂
j∈Nn+1

∑︂
p∈Pij

xp
ij = 0, ∀i ∈ N, (4.19)

∑︂
p∈Pij

xp
ij ≤ 1, ∀i ∈ N0, j ∈ Nn+1, (4.20)

τj ≥ τi + (si + tp
ij)xp

ij + grij − Tij(1 − xp
ij), ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij , (4.21)

τj ≥ τi + (si + t0
ij)x0

ij − Tij(1 − x0
ij), ∀i ∈ N0, j ∈ Nn+1, (4.22)

ai ≤ τi ≤ bi, ∀i ∈ N0,n+1, (4.23)
0 ≤ yj ≤ yi − cp

ijxp
ij + rij + Q(1 − xp

ij), ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij , (4.24)
0 ≤ yj ≤ yi − c0

ijx0
ij + Q(1 − x0

ij), ∀i ∈ N0, j ∈ Nn+1, (4.25)
yi − hp

ijxp
ij ≥ 0, ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij , (4.26)

yj + fp
ijxp

ij ≤ Q, ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij , (4.27)
rij ≥ 0, ∀i ∈ N0, j ∈ Nn+1, (4.28)
xp

ij ∈ {0, 1}, ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij , (4.29)

where Tij = max{0, bi − aj}. Furthermore, to simplify the notation, it is
assumed that a0 = an+1 = 0 and b0 = bn+1 = T , where T denotes the
maximum route duration. Note that the variable xp

ij with index p = 0
represents the path corresponding to the single arc (i, j) ∈ A for every i ∈ N0
and j ∈ Nn+1 with h0

ij = 0 and f 0
ij = 0.

The objective (4.16) minimizes the total energy cost of the vehicle tours.
Constraints (4.17) ensure that at most m vehicles depart from the origin
depot and arrive at the destination depot, whereas constraints (4.18) impose
that each customer is visited exactly once. Constraints (4.19) state that
the number of incoming arcs must equal the number of outgoing arcs for
each vertex. Constraints (4.20) impose that at most one path is traversed
between two vertices. Constraints (4.21) - (4.22) ensure the consistency of
arrival times and prevent the formation of subtours.
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Constraints (4.23) enforce that the customers are visited within the speci-
fied time windows. Constraints (4.24) - (4.25) ensure the feasibility of the
vehicle battery charge. Constraints (4.26) state that the vehicle must have
enough energy to travel the first arc of a path, while constraints (4.27) impose
an upper bound on the energy level upon traversing the last arc. Finally,
constraints (4.28) ensure that the recharge amounts remain positive and con-
straints (4.29) enforce integrality on the path variables xp

ij.

To see that the constraints (4.21) and (4.22) produce valid inequalities with
Tij = max{0, bi − aj}, first consider the case where xp

ij = 1 (or x0
ij = 1 for

p = 0). Accordingly, the term Tij(1−xp
ij) then disappears and the inequalities

(4.21) and (4.22) become

τj ≥ τi + si + tp
ij + grij, (4.30)

τj ≥ τi + si + t0
ij, (4.31)

which remain valid, since the vehicle travels directly from i to j either via
charging station(s) (4.30) or without recharging (4.31). On the other hand,
when xp

ij = 0 (or x0
ij = 0 for p = 0), these inequalities reduce to

τj ≥ τi + grij − Tij, (4.32)
τj ≥ τi − Tij. (4.33)

Since Tij = max{0, bi − aj}, the inequality (4.33) must hold regardless of the
order in which i and j are visited. For (4.32), on the other hand, there are
two different scenarios.

1. There exists some other p̂ ∈ Pij for which xp̂
ij = 1 and hence grij > 0.

In this case, since the vehicle actually travels directly from i to j, the
value of rij is set by constraints (4.24), and thus grij corresponds to
the actual recharge time spent en route from i to j and the inequality
(4.32) must remain valid.

2. There exists no other p̂ ∈ Pij for which xp̂
ij = 1. Hence, the vehicle

does not travel directly from i to j, wherefore rij can be set to zero,
and (4.33) reduces to (4.32).

As in the standard formulation, by removing the constraints (4.17) com-
pletely, the routing plan with the minimum energy cost is always obtained.
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The constraints (4.18), (4.19) and (4.21) - (4.23) ensure that every customer
is visited exactly once and the number of vehicles arriving at the destination
depot equals the number of vehicles departing from the origin depot. Conse-
quently, a set of distinct vehicle routes is formed upon solving the problem.
These vehicle routes can be identified by following each route that begins
with an e-path between the origin depot and a customer j ∈ N with xp

0j = 1.

4.2.1 Customer demands
Similarly to the previous model, the formulation (4.16) - (4.29) can be ex-
tended to include customer demands and vehicle supply capacities. Using
similar notation as in Section 3.3.2, the customer demands can be incorpo-
rated by adding the following constraints:

0 ≤ uj ≤ ui − qix
p
ij + C(1 − xp

ij), ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij, (4.34)
0 ≤ u0 ≤ C. (4.35)

Accordingly, (4.34) imposes that when traveling directly from i ∈ N0 to
j ∈ Nn+1 (i.e., xp

ij = 1 for some p ∈ Pij), the vehicle capacity uj at j is
obtained by subtracting the customer demand qi at i from the vehicle load ui

at i. Furthermore, (4.35) ensures that every vehicle departs from the origin
depot with at most the maximum capacity C. The maximum initial capacity
can be imposed by setting u0 = C.

4.2.2 Fixed recharging scheme
Enforcing a full recharge at every charging station visit with the formulation
(4.16) - (4.29) is not as straightforward as with the initial model in Section
3.3.3 due to the absence of charging station vertices. Further complications
arise from the fact that more than one charging station visit may be in-
cluded in an e-path. One way to implement this recharging scheme without
introducing additional variables is to impose the following constraints:

yi + rij ≥ (Q + cp
ij − fp

ij)x
p
ij, ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij \ {0}. (4.36)

To see this, suppose that an e-path from i ∈ N0 to j ∈ Nn+1 is traversed,
that is xp

ij = 1 for some p ∈ Pij. By reformulating (4.36), the following
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inequality is obtained:

rij ≥ (Q − yi) + cp
ij − fp

ij. (4.37)

Accordingly, (4.37) states that the total recharge amount rij over the e-path
from i to j must be greater than or equal to the amount that would be needed
to refill the battery at i (i.e., Q − yi) plus the energy cost of the whole path
cp

ij minus the energy cost fp
ij of the last arc. This guarantees that the battery

state-of-charge when departing from the last charging station of the path is
greater than or equal to Q. Thus, since Q is the maximum battery capacity,
the inequality (4.36) must hold with equality for any solution with xp

ij = 1,
thus imposing that the maximum amount is recharged over the path.

4.3 Preprocessing
The preprocessing steps introduced in Section 3.4 can be applied to reduce
the initial graph G before computing the set of non-dominated paths for every
customer pair. In the following, the path structure of the new formulation is
exploited to devise updated versions of some of these preprocessing steps. If
a customer pair i ∈ N0 and j ∈ N satisfies any of the following inequalities,
all non-dominated paths between those customers can be removed from the
multigraph G.

i ∈ N0, j ∈ N ∧ qi + qj > C, (4.38)
i ∈ N0, j ∈ N ∧ ai + si + tmin

ij > bj, (4.39)
i ∈ N0, j ∈ N ∧ ai + si + tmin

ij + sj + tmin
j n+1 > T. (4.40)

The inequality (4.38) is another ”well-known preprocessing step” (Schneider
et al., 2013) exploiting customer demands and vehicle capacities. This par-
ticular step is applicable only with the customer demands. The inequalities
(4.39) and (4.40) are similar to the preprocessing steps (3.22) and (3.23) with
the exception that instead of removing a single arc, all the non-dominated
paths between the two customers are removed.

The parameter tmin
ij in (4.39) and (4.40) corresponds to the travel time of the

shortest feasible path (either non-dominated or the path corresponding to
the single arc (i, j) ∈ A) from i to j. This is because the shortest route via
the direct arc (i, j) may be infeasible, whereas there may exist one or several
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feasible non-dominated paths between the two customers that visit some
charging stations en route. In that case, tmin

ij corresponds to the shortest of
these paths, taking into account the time needed to recharge the minimum
amount of energy required to reach the destination.

4.4 Valid inequalities
Inequalities that are satisfied by any integer solution of the model (4.16) -
(4.29) are called valid. Valid inequalities are redundant for the MIP formula-
tion of the problem; however, they may strengthen its LP-relaxation, which
may significantly speed up computing the optimal solution to the problem
by branch-and-bound. The benefit of adding valid inequalities depends on
the trade-off between the resulting improvement in the lower bound given
by the LP-relaxation and the additional computational burden for solving
it. On the one hand, it becomes slower to compute the LP-relaxation with
more inequalities; on the other hand, the improved lower bound may help
close the optimality gap faster.

In the following, a set of inequalities is presented that remains valid for the
model (4.16) - (4.29) and may help strengthen its LP-relaxation.

Proposition 3. The constraints

xp
ij + xp

ji ≤ 1, ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij (4.41)

are valid inequalities for the model (4.16) - (4.29).

Proof. Suppose that there exists a solution that violates the constraints
(4.41). This can happen only if both xp

ij = 1 and xp
ji = 1 for some p ∈ Pij,

i ∈ N0 and j ∈ Nn+1. However, this would then mean that at some point
the vehicle travels directly from i to j and also directly from j to i in the
solution, resulting in customer i being visited twice. Since the constraints
(4.17) - (4.18) impose that each customer is visited exactly once, this is a
contradiction, and the inequalities (4.41) thus remain valid.

4.4.1 Liftings
A further way to strengthen the LP-relaxation of the formulation (4.16) -
(4.29) is to improve or lift some of the constraints (see, e.g., Desrochers &
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Laporte, 1991). The lifted constraints are of course equivalent to the orig-
inal ones for the MIP formulation; however, they may improve the optimal
solution of its LP-relaxation. The following describes how to lift the con-
straints (4.24). Similar lifting can be applied to the constraints (4.25) as
well, because, apart from the recharge variable rij, these two constraints are
identical.

Proposition 4. The constraints

yj ≤ yi − cp
ijx

p
ij + rij + Q(1 − xp

ij) + (cp
ji − Q)xp

ji,

∀i ∈ N0, j ∈ Nn+1, p ∈ Pij

(4.42)

are valid inequalities for the model (4.16) - (4.29).

Proof. Since a solution cannot have both xp
ij = 1 and xp

ji = 1 for any p ∈ Pij,
i ∈ N0 and j ∈ Nn+1 (see the proof of Proposition 3), there are three cases
to consider:

1. xp
ij = 0 and xp

ji = 0. The constraint (4.42) reduces to

yj ≤ yi + Q + rij, (4.43)

which is always valid, since Q is the maximum battery capacity and
rij ≥ 0.

2. xp
ij = 1. The constraint (4.42) becomes

yj ≤ yi − cp
ij + rij, (4.44)

which remains valid, since the vehicle travels directly from i to j via
charging stations.

3. xp
ji = 1. Now (4.42) becomes

yj ≤ yi + cp
ji + rij. (4.45)

Since the vehicle travels directly from j to i, it cannot also travel di-
rectly from i to j, wherefore rij can be set to zero. Thus, (4.45) can be
written as

yi ≥ yj − cp
ji, (4.46)
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providing a valid lower bound on the energy level upon arriving at i.

Since all feasible combinations of the path variables xp
ij produce inequalities

that satisfy all the constraints of the model (4.16) - (4.29), the inequalities
(4.42) are valid.

The following describes a lifting for the arrival time constraints (4.21), which
can be applied to the constraints (4.22) as well, since the only difference is
again the term with the recharge variable rij. Let Np

ij denote the number
of charging station visits along the path corresponding to the variable xp

ij.
These can be computed in advance for all the paths while constructing the
non-dominated set. With this notation, the lifting can be written as follows.

Proposition 5. The constraints

τj ≥ τi + (si + tp
ij)x

p
ij + grij + (Tij − sj − tp

ji − gQNp
ji)x

p
ji−

Tij(1 − xp
ij), ∀i ∈ N0, j ∈ Nn+1, p ∈ Pij

(4.47)

are valid inequalities for the model (4.16) - (4.29).

Proof. Since a solution cannot have both xp
ij = 1 and xp

ji = 1 for any p ∈ Pij,
i ∈ N0 and j ∈ Nn+1 (see the proof of Proposition 3), there are three cases
to consider:

1. xp
ij = 0 and xp

ji = 0. The constraint (4.47) reduces to

τj ≥ τi − Tij + grij. (4.48)

For (4.48), there are two different scenarios to consider:

(i) There exists no other p̂ ∈ Pij for which xp̂
ij = 1. Hence, the

vehicle does not traverse directly from i to j and rij can be set to
zero. The inequality (4.48) then becomes

τj ≥ τi − Tij. (4.49)

In this case, since Tij = max{0, bi−aj}, the inequality (4.49) holds
regardless of the order in which i and j are visited. Thus, (4.48)
remains valid.



CHAPTER 4. IMPROVED FORMULATION 42

(ii) There exists some other p̂ ∈ Pij for which xp̂
ij = 1 and hence

grij > 0. However, since the vehicle travels directly from i to j
in this case, grij corresponds to the recharge time along the path
and (4.48) provides a valid bound.

2. xp
ij = 1. The constraint (4.47) becomes

τj ≥ τi + si + tp
ij + grij, (4.50)

which remains valid, since the vehicle travels directly from i to j via
charging stations.

3. xp
ji = 1. Now (4.47) becomes

τj ≥ τi − sj − tp
ji − gQNp

ji + grij. (4.51)

Since the vehicle travels directly from j to i, it cannot also travel di-
rectly from i to j, wherefore rij can be set to zero. Thus, (4.51) can be
written as

τj + sj + tp
ji + gQNp

ji ≥ τi. (4.52)

Since Np
ji corresponds to the number of charging station visits along

the path xp
ji and Q is the maximum amount that can be recharged, it

must be that gQNp
ji ≥ grji and thus (4.52) remains valid.

All feasible combinations of the path variables xp
ij for (4.47) produce inequal-

ities that satisfy all the constraints of the model (4.16) - (4.29). Thus, these
inequalities are valid.

Finally, the following Proposition presents a lifting for the constraints (4.34)
incorporating customer demands.

Proposition 6. The constraints

uj ≤ ui − qix
p
ij + C(1 − xp

ij) + (qj − C)xp
ji,

∀i ∈ N0, j ∈ Nn+1, p ∈ Pij

(4.53)

are valid inequalities for the model (4.16) - (4.29).

Proof. There are again there cases to consider:
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1. xp
ij = 0 and xp

ji = 0. The constraint (4.53) reduces to

uj ≤ ui + C, (4.54)

which is always valid, since C is the maximum vehicle capacity.

2. xp
ij = 1. The constraint (4.53) becomes

uj ≤ ui − qi, (4.55)

which remains valid, since the vehicle travels directly from i to j.

3. xp
ji = 1. Now (4.53) becomes

uj ≤ ui + qj, (4.56)

which can be written as

ui ≥ uj − qj. (4.57)

Since the vehicle travels directly from j to i, (4.57) remains valid.

Since all feasible combinations of the path variables xp
ij produce inequalities

that satisfy all the constraints of the model (4.16) - (4.29), the inequalities
(4.53) are valid.



Chapter 5

Numerical experiments

In this Chapter, the models developed in Chapters 3 and 4 are evaluated
by solving a set of previously generated test instances. These instances are
presented in (Schneider et al., 2013), and they are based on the benchmark
instances for the VRPTW proposed by Solomon (1987). First, the general
structure of the these instances is examined and their generation procedure is
presented. Subsequently, the impact of preprocessing on the number of arcs
and non-dominated paths in the test instances is examined. Furthermore,
the effect of incorporating the valid inequalities of Section 4.4 in the LP-
relaxation of the model (4.16) - (4.29) is evaluated by comparing the optimal
solutions of the relaxation with and without these inequalities. Finally, the
computational results of solving the test instances are reported, and the
developed models are evaluated in more detail.

5.1 Test instances
The following presents a set of 36 small instances with 5, 10 and 15 customers
introduced in (Schneider et al., 2013). The number of charging stations in
these instances ranges from 3 to 7. The instances are based on the benchmark
instances for the VRPTW proposed by Solomon (1987), and they are divided
into 3 classes depending on their customer location distribution:

• Random customer location distribution (R)

• Clustered customer location distribution (C)

• Combination of random and clustered distributions (RC)

Furthermore, the instance classes are divided into two groups. Instance

44
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groups R1, C1 and RC1 have a short planning horizon, whereas the groups
R2, C2 and RC2 have a long planning horizon. This means that more ve-
hicles are likely required to serve all customer in the instances belonging to
the first group than those in the second group. Moreover, for every instance
group, up to 12 different time window densities (TWD) (i.e., the fraction
of customers with a time window) and average time window width (TWW)
values are possible. These values are presented in Table 5.1, which is in-
cluded in the appendix of (Schneider et al., 2013) and can be obtained from
http://evrptw.wiwi.uni-frankfurt.de.

The names of the different test instances are formed according to the class
and group labels. For example, in an instance referred to as ’RC108-15’,
the customers are distributed both randomly (R) and in clusters (C), the
planning horizon is short (RC1), and both the time window density and time
window width are obtained from Table 5.1, row 8 (corresponding to the ’08’
part in RC108) and column RC1. Finally, the ’15’ part indicates that the
instance contains 15 customers.

Table 5.1: Time window densities (TWD) and average time window widths
(TWW) for the Solomon benchmark instances (Solomon, 1987)

C1 C2 R1 R2 RC1 RC2

# TWD TWW TWD TWW TWD TWW TWD TWW TWD TWW TWD TWW

1 100% 60.76 100% 160.00 100% 10.00 100% 115.96 100% 30.00 100% 120.00
2 75% 61.27 75% 160.00 75% 10.00 75% 115.23 75% 30.00 75% 120.00
3 50% 59.90 50% 160.00 50% 10.00 50% 117.34 50% 30.00 50% 120.00
4 25% 60.63 25% 160.00 25% 10.00 25% 111.80 25% 30.00 25% 120.00
5 100% 121.61 100% 320.00 100% 30.00 100% 240.00 100% 54.33 100% 223.06
6 100% 156.08 100% 486.64 75% 30.00 75% 240.00 100% 60.00 100% 240.00
7 100% 180.00 100% 612.32 50% 30.00 50% 240.00 100% 88.21 100% 349.50
8 100% 243.28 100% 640.00 25% 30.00 25% 240.00 100% 112.33 100% 471.93
9 100% 360.00 100% 58.89 100% 349.50
10 100% 86.50 100% 383.27
11 100% 93.10 100% 471.94
12 100% 117.64

Since the original Solomon instances are for the VRPTW, Schneider et al.
(2013) introduce charging stations, vehicle battery capacities, recharging
rates and energy consumption rates to generate meaningful test instances
for BEV routing problems. The generated instances are referred to as E-
VRPTW instances in (Schneider et al., 2013).

For each test instance, the charging stations are located in a random manner;
however, the possible locations are limited such that every customer can be
reached from the depot (the origin and the destination depots are assumed to
be the same) with at most two charging station visits. This is achieved by first

http://evrptw.wiwi.uni-frankfurt.de
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constructing three circles with different radii around the depot, the largest
radius corresponding to the distance to the farthest customer. Subsequently,
the circles are divided into equally sized sectors whose size depends on the
number of charging stations to be added. Two charging stations are randomly
positioned into each sector, one between the innermost circle and the middle
circle, and the other one between the middle circle and the outer circle. In
addition, one charging station is placed at the same location as the depot.

The vehicle battery capacity Q is set to the maximum value of the following:

(i) 60% of the energy cost of the average vehicle route length in the best
known solution to the corresponding original Solomon instance

(ii) Twice the energy cost of the longest arc between a customer and a
charging station.

The energy consumption rate is set to 1.0 (i.e., K = 1.0 in (3.1)). The vehicle
speed v is also set to 1.0 in all of the instances. The recharging rate g is set
so that a full recharge requires three times the average customer service time
in the corresponding instance.

Since the BEVs must recharge their batteries en route between customer
visits, detours to charging stations and the time required for recharging ren-
der some of the original Solomon instances infeasible with regard to the
initial customer time windows, especially with the fixed recharging scheme
used in (Schneider et al., 2013). Therefore, to ensure the feasibility of the
constructed instances, Schneider et al. (2013) generate new time windows
for each customer. The applied procedure is closely related to the original
method proposed by Solomon (1987), and it is described in the following.

First, the feasible time window range of each customer is computed, that is,
the range between the earliest time at which the customer can be reached
from the depot and the latest time a vehicle can depart from the customer
and still reach the end depot in time. For the instance classes R and RC,
the time window centers are randomly drawn from the feasible time window
ranges. For the instance class C, on the other hand, the time window cen-
ters are determined from real arrival times that are obtained by solving the
corresponding instances without time windows. Subsequently, the time win-
dow widths for all the instance classes are chosen according to the original
Solomon instances (see Table 5.1). In case any of the generated customer
time windows is not included in the feasible range that was computed earlier,
the violated part is cut and the corresponding time window is extended to
the opposite direction.
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Some of the test instances presented in (Schneider et al., 2013) include cus-
tomer demands. Thus, in order to use the test instances in evaluating the
developed models, this extension must first be adopted. Sections 3.3.2 and
4.2.1 describe how to implement customer demands for the standard formula-
tion (3.2) - (3.16) and the improved formulation (4.16) - (4.29), respectively.

5.2 Impact of preprocessing
In the following, the effectiveness of the preprocessing steps and the valid
inequalities presented in Sections 3.4, 4.3 and 4.4 are evaluated computa-
tionally on the test instances described in Section 5.1.

5.2.1 Effect of arc elimination
Before solving the test instances, the preprocessing steps presented in Sec-
tions 3.4 and 4.3 are applied to eliminate redundant arcs and non-dominated
paths that cannot be part of a feasible solution. In the following, the effect
of the preprocessing steps (3.22) - (3.25) on the number of arcs in the ini-
tial network graph G is examined. Moreover, the combined effect of (3.22)
- (3.25) and (4.38) - (4.40) on the number of non-dominated paths in the
multigraph G is evaluated. Since the non-dominated paths are defined for
every customer-customer pair (counting the origin and the destination de-
pots as customers as well), the average number of non-dominated paths per
each such pair is also evaluated.

Table 5.2 presents the number of arcs (Arcs), non-dominated paths (NDP)
and the average number of non-dominated paths per customer-customer pair
(NDP/C) before and after applying the preprocessing steps on each test in-
stance. Additionally, the relative reductions in the number of arcs (∆Arcs(%))
and non-dominated paths (∆NDP (%)), and the absolute reductions in the
number of non-dominated paths per customer-customer pair (∆NDP/C) on
each test instance are presented. Specifically, these are computed as

∆Arcs(%) =
(︄

1 − Arcs after preprocessing
Arcs before preprocessing

)︄
× 100,

∆NDP(%) =
(︄

1 − NDP after preprocessing
NDP before preprocessing

)︄
× 100,

and ∆NDP/C = (NDP/C after preprocessing) − (NDP/C before preprocessing).
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Table 5.2: Effect of preprocessing on the number of arcs and non-dominated paths
(NDP) in the E-VRPTW test instances of (Schneider et al., 2013).

Before preprocessing After preprocessing Reductions

Instance Arcs NDP NDP/C Arcs NDP NDP/C ∆Arcs(%) ∆NDP (%) ∆NDP/C

C101-5 73 122 2.90 56 62 1.48 23.29 49.18 1.43
C103-5 57 82 1.95 47 67 1.60 17.54 18.29 0.36
C206-5 91 133 3.17 76 89 2.12 16.48 33.08 1.05
C208-5 73 106 2.52 63 86 2.05 13.70 18.87 0.48
R104-5 73 134 3.19 62 116 2.76 15.07 13.43 0.43
R105-5 73 116 2.76 57 68 1.62 21.92 41.38 1.14
R202-5 73 108 2.57 63 93 2.21 13.70 13.89 0.36
R203-5 91 122 2.90 72 100 2.38 20.88 18.03 0.52
RC105-5 91 120 2.86 78 77 1.83 14.29 35.83 1.02
RC108-5 91 131 3.12 74 96 2.29 18.68 26.72 0.83
RC204-5 91 124 2.95 82 113 2.69 9.89 8.87 0.26
RC208-5 73 110 2.62 73 110 2.62 0.00 0.00 0.00

C101-10 241 508 3.85 174 243 1.84 27.80 52.17 2.01
C104-10 211 478 3.62 180 445 3.37 14.69 6.90 0.25
C202-10 241 465 3.52 194 301 2.28 19.50 35.27 1.24
C205-10 183 418 3.17 123 237 1.80 32.79 43.30 1.37
R102-10 211 466 3.53 146 277 2.10 30.81 40.56 1.43
R103-10 183 390 2.95 153 329 2.49 16.39 15.64 0.46
R201-10 211 430 3.26 160 278 2.11 24.17 35.35 1.15
R203-10 241 504 3.82 182 419 3.17 24.48 16.87 0.64
RC102-10 211 348 2.64 134 153 1.16 36.49 56.03 1.48
RC108-10 211 408 3.09 155 312 2.36 26.54 23.53 0.73
RC201-10 211 466 3.53 155 274 2.08 26.54 41.20 1.45
RC205-10 211 444 3.36 145 292 2.21 31.28 34.23 1.15

C103-15 421 1196 4.40 343 935 3.44 18.53 21.82 0.96
C106-15 343 902 3.32 231 516 1.90 32.65 42.79 1.42
C202-15 421 1168 4.29 303 873 3.21 28.03 25.26 1.08
C208-15 381 920 3.38 247 553 2.03 35.17 39.89 1.35
R102-15 553 1346 4.95 388 606 2.23 29.84 54.98 2.72
R105-15 463 1221 4.49 312 546 2.01 32.61 55.28 2.48
R202-15 463 1322 4.86 320 1010 3.71 30.89 23.60 1.15
R209-15 421 1290 4.74 308 1005 3.69 26.84 22.09 1.05
RC103-15 421 1082 3.98 323 788 2.90 23.28 27.17 1.08
RC108-15 421 1150 4.23 291 964 3.54 30.88 16.17 0.68
RC202-15 421 1103 4.06 286 700 2.57 32.07 36.54 1.48
RC204-15 507 1497 5.50 429 1355 4.98 15.38 9.49 0.52

Average 243 581 3.50 180 402 2.47 23.14 29.27 1.03
NDP: number of non-dominated paths; NDP/C: number of ND paths per customer-customer pair.

It can be seen that the number of arcs is reduced in all but one instance. On
average, the relative number of arcs eliminated over all of the test instances
is approximately 23.14%. The reductions appear to become more effective
as the number of customers increases: relatively more arcs are eliminated in
larger instances.
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It can be further observed that a significant number of non-dominated paths
are removed in most of the test instances. Specifically, over 50% of non-
dominated paths are removed in four instances, and the average reduction
over all of the test instances is approximately 29.27%. In addition, the aver-
age number of non-dominated paths per customer-customer pair over all of
the instances is reduced by approximately 1.03.

5.2.2 Impact of valid inequalities
The impact of incorporating the valid inequalities of Section 4.4 in the im-
proved formulation (4.16) - (4.29) is evaluated by computing the optimal
solution to its LP-relaxation at the root node of the branch-and-bound tree
with and without these inequalities for all the test instances. No CPLEX
cuts or preprocessing steps other than those presented in this thesis are used
in the computations. The optimal solution of the LP-relaxation corresponds
to the initial lower bound in the branch-and-bound algorithm. Note that no
limit is set on the number of vehicles when computing these bounds (i.e., the
constraint (4.17) is removed completely).

Table 5.3 presents the initial lower bounds (LB) in the branch-and-bound
tree and the corresponding computation times (tLB) for each test instance
with and without incorporating the valid inequalities (liftings) of Section
4.4 in the improved formulation (4.16) - (4.29). In addition, the relative
improvements in the lower bounds (%LB) and the absolute increments in
computation times (∆tLB) are presented for each test instance. The relative
lower bound improvements are computed as

%LB =
(︄

LB with liftings
LB without liftings − 1

)︄
× 100.

According to Table 5.3, incorporating the valid inequalities improves the ini-
tial lower bound in almost all of the test instances. The most significant
improvement corresponds to an increase of 15.14%, whereas the average im-
provement over all of the test instances is approximately 4.26%. Additionally,
the time to solve the LP-relaxation increases by 0.01 seconds on average.
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Table 5.3: Optimal solutions to the LP-relaxation of the formulation (4.16) -
(4.29) with and without valid inequalities and liftings. The optimal solutions
correspond to the initial lower bounds (LB) in the branch-and-bound algorithm.

No liftings Liftings Difference

Instance LB tLB LB tLB %LB ∆tLB

C101-5 234.72 0.00 234.72 0.00 0.00 0.00
C103-5 146.57 0.00 152.64 0.00 4.14 0.00
C206-5 233.96 0.00 233.96 0.00 0.00 0.00
C208-5 110.18 0.00 110.18 0.00 0.00 0.00
R104-5 85.23 0.00 85.33 0.00 0.12 0.00
R105-5 153.01 0.00 153.01 0.00 0.00 0.00
R202-5 117.22 0.00 125.89 0.00 7.40 0.00
R203-5 165.06 0.00 169.92 0.00 2.94 0.00
RC105-5 203.27 0.00 203.33 0.00 0.03 0.00
RC108-5 173.90 0.00 178.18 0.01 2.46 0.01
RC204-5 96.73 0.00 100.96 0.00 4.37 0.00
RC208-5 128.73 0.00 133.52 0.00 3.72 0.00

C101-10 366.41 0.00 366.41 0.00 0.00 0.00
C104-10 221.06 0.00 225.73 0.02 2.11 0.02
C202-10 231.47 0.00 231.47 0.00 0.00 0.00
C205-10 194.72 0.00 224.20 0.00 15.14 0.00
R102-10 188.13 0.00 196.62 0.01 4.51 0.01
R103-10 142.01 0.00 146.95 0.01 3.48 0.01
R201-10 195.32 0.00 199.74 0.00 2.26 0.00
R203-10 156.16 0.00 173.41 0.02 11.05 0.02
RC102-10 377.26 0.00 390.69 0.00 3.56 0.00
RC108-10 253.70 0.00 272.11 0.01 7.26 0.01
RC201-10 304.00 0.00 304.00 0.00 0.00 0.00
RC205-10 305.16 0.00 306.79 0.01 0.53 0.01

C103-15 244.26 0.02 251.87 0.04 3.12 0.02
C106-15 239.37 0.01 262.53 0.01 9.68 0.00
C202-15 274.09 0.01 298.63 0.04 8.95 0.03
C208-15 234.12 0.01 255.59 0.02 9.17 0.01
R102-15 354.39 0.01 355.06 0.02 0.19 0.01
R105-15 312.54 0.00 312.54 0.01 0.00 0.01
R202-15 263.10 0.01 276.58 0.06 5.12 0.05
R209-15 206.51 0.01 225.74 0.04 9.31 0.03
RC103-15 240.47 0.02 265.32 0.03 10.33 0.01
RC108-15 179.89 0.01 204.28 0.04 13.56 0.03
RC202-15 323.32 0.01 342.97 0.04 6.08 0.03
RC204-15 211.64 0.02 217.55 0.09 2.79 0.07

Average 218.55 0.00 227.46 0.01 4.26 0.01
LB: optimal solution to the LP-relaxation at the root node without CPLEX cuts.
tLB : computation time is seconds.

5.3 Computational results
This section presents the computational results for the test instances. Com-
putations were performed on an Intel i5-3570K desktop clocked at 3.40 GHz
with 8 Gb RAM running Windows 7 Home Premium x64 Edition. In the
following, the standard formulation (3.2) - (3.16) presented in Chapter 3 is re-
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ferred to as ’Model 1’ and the improved formulation (4.16) - (4.29) developed
in Chapter 4 as ’Model 2’.

First, the two models are validated by comparing their results to those re-
ported in (Schneider et al., 2013). Note that Schneider et al. (2013) solve
the test instances using both CPLEX (with a 2 hour time limit) and the
developed VNS/TS heuristic, but they use a hierarchical objective, in which
the primary objective is to minimize the number of vehicles required to ser-
vice all the customers, and the secondary objective is to minimize the total
energy cost. Since the models developed in this thesis focus on strict energy
cost minimization, a direct comparison is not possible. However, by setting
the upper limit m for the number of vehicles equal to that used in the best
solutions reported in (Schneider et al., 2013), it is possible to examine the
potential improvements of using the variable recharging scheme over the fixed
recharging scheme when the vehicle fleet is limited. Therefore, the computa-
tional results are reported for both the case where m = ∞ (Table 5.6), and
the case where m = m, m being the number of vehicles in the best solution
found by Schneider et al. (2013) (Tables 5.4 and 5.5).

Table 5.4 presents the best known solutions reported by Schneider et al.
(2013) using both CPLEX and the VNS/TS heuristic, and the smallest num-
ber of vehicles m used in those solutions. Table 5.4 further presents the best
solutions obtained by Models 1 and 2 using both the fixed recharging scheme
(FIX) and the variable recharging scheme (VAR). The upper limit for the
number of vehicles was set to m when computing these results: this enables
estimating the improvements of using the variable recharging scheme over
the fixed one with a limited number of vehicles. For all the instances, the
solution obtained involves exactly m vehicles, wherefore this information is
not reported separately in Table 5.4. Note, however, that the optimal solu-
tion to the instance ’RC108-5’ requires two vehicles instead of one as initially
reported in (Schneider et al., 2013). A time limit of 7200 seconds is imposed
to the branch-and-cut algorithm; if this time limit is reached, optimality is
not guaranteed.

The best known solutions reported by Schneider et al. (2013) are presented in
the columns CPLEX and VNS/TS, respectively, and the number of vehicles
used in those solutions are reported in the column m. The best solutions
obtained by Models 1 and 2 using both the fixed recharging scheme and
the variable recharging scheme are presented in the columns FIX and VAR,
respectively, and the corresponding computation times are reported in the
columns tF IX and tV AR, respectively. If no integer solution is found, the
relative gap between the best obtained lower bound and the best known
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integer solution is reported instead. Finally, the potential improvements of
using the variable recharging scheme over the fixed one are reported in column
%∆ (%∆ = (VAR/FIX − 1) × 100). These improvements are reported only
for Model 2, because it solves more instances to optimality than Model 1.

Table 5.4: Results obtained with Model 1 and Model 2 on the E-VRPTW test
instances of Schneider et al. (2013).

Schneider et al.
(Hierarchical obj. function) MODEL 1 (m = m) MODEL 2 (m = m)

Instance m CPLEX VNS/TS FIX VAR tF IX tV AR FIX VAR %∆ tF IX tV AR

C101-5 2 257.75 257.75 257.75 257.75 0.29 0.36 257.75 257.75 0.00 0.05 0.06
C103-5 1 176.05 176.05 176.05 175.37 0.15 0.20 176.05 175.37 -0.39 0.06 0.06
C206-5 1 242.55 242.56 242.55 242.55 0.81 0.48 242.55 242.55 0.00 0.04 0.04
C208-5 1 158.48 158.48 158.48 158.48 0.28 0.28 158.48 158.48 0.00 0.09 0.10
R104-5 2 136.69 136.69 136.69 136.69 0.19 0.24 136.69 136.69 0.00 0.07 0.07
R105-5 2 156.08 156.08 156.08 156.08 0.16 0.14 156.08 156.08 0.00 0.03 0.02
R202-5 1 128.78 128.78 128.78 128.78 0.19 0.12 128.78 128.78 0.00 0.04 0.05
R203-5 1 179.06 179.06 179.06 179.06 0.39 0.49 179.06 179.06 0.00 0.04 0.05
RC105-5 2 241.30 241.30 241.30 233.77 0.96 0.48 241.30 233.77 -3.12 0.06 0.08
RC108-5 2 253.93 253.93 253.93 253.93 1.77 0.92 253.93 253.93 0.00 0.08 0.08
RC204-5 1 176.39 176.39 176.39 176.39 0.78 1.10 176.39 176.39 0.00 0.11 0.11
RC208-5 1 167.98 167.98 167.98 167.98 0.33 0.38 167.98 167.98 0.00 0.12 0.13

C101-10 3 393.76 393.76 393.77 388.25 34.38 27.32 393.77 388.25 -1.40 0.17 0.12
C104-10 2 273.93 273.93 273.93 273.93 46.36 21.90 273.93 273.93 0.00 1.62 1.35
C202-10 1 304.06 304.06 304.06 304.06 371.60 855.10 304.06 304.06 0.00 0.18 0.19
C205-10 2 228.28 228.28 228.28 228.28 0.64 0.66 228.28 228.28 0.00 0.06 0.05
R102-10 3 249.19 249.19 249.19 249.19 32.21 44.71 249.19 249.19 0.00 0.37 0.34
R103-10 2 207.05 207.05 207.05 206.12 74.96 119.12 207.05 206.12 -0.45 4.59 2.80
R201-10 1 241.51 241.51 241.51 241.51 78.21 95.11 241.51 241.51 0.00 0.21 0.15
R203-10 1 218.21 218.21 218.21 218.21 26.76 50.71 218.21 218.21 0.00 0.72 0.60
RC102-10 4 423.51 423.51 423.51 423.51 4.15 8.45 423.51 423.51 0.00 0.09 0.08
RC108-10 3 345.93 345.93 345.92 345.92 25.48 20.65 345.92 345.92 0.00 0.43 0.42
RC201-10 1 412.86 412.86 412.86 412.86 2749.25 3162.22 412.86 412.86 0.00 0.13 0.16
RC205-10 2 325.98 325.98 325.98 325.98 6.16 5.21 325.98 325.98 0.00 0.16 0.11

C103-15 3 384.29 384.29 399.35 348.46 7200.00 7200.00 384.28 348.46 -9.32 141.88 12.02
C106-15 3 275.13 275.13 275.13 275.13 13.58 12.35 275.13 275.13 0.00 0.22 0.22
C202-15 2 383.62 383.62 383.61 383.61 6712.48 7200.00 383.61 383.61 0.00 12.68 7.07
C208-15 2 300.55 300.55 300.55 300.55 51.34 78.33 300.55 300.55 0.00 0.23 0.19
R102-15 5 413.93 413.93 413.93 412.78 7200.00 7200.00 413.93 412.78 -0.28 1.28 1.14
R105-15 4 336.15 336.15 336.15 336.15 945.49 1283.45 336.15 336.15 0.00 0.42 0.31
R202-15 2 358.00 358.00 358.00 358.00 7200.00 7200.00 358.00 358.00 0.00 6.72 5.86
R209-15 1 313.24 313.24 313.24 313.24 7200.00 7200.00 313.24 313.24 0.00 101.12 37.16
RC103-15 4 397.67 397.67 397.67 397.67 7200.00 7200.00 397.67 397.67 0.00 25.54 39.69
RC108-15 3 370.25 370.25 (19.22%) (20.93%) 7200.00 7200.00 370.24 370.24 0.00 253.07 167.61
RC202-15 2 394.39 394.39 394.39 394.39 1352.77 891.91 394.39 394.39 0.00 0.47 0.43
RC204-15 1 407.45 384.86 (37.63%) (36.94%) 7200.00 7200.00 384.86 382.22 -0.69 7200.00 7200.00

Average 1748.11 1785.62 -0.43 215.37 207.75
m: number of vehicles used in the best solution of Schneider et al.
CPLEX / VNS/TS: best known solution (routing cost) reported in (Schneider et al., 2013).
FIX: best solution (routing cost) with the fixed recharging scheme. tF IX : solution time (s) for FIX
VAR: best solution (routing cost) with the variable recharging scheme. tV AR: solution time (s) for VAR.
%∆: improvement of using the variable recharging scheme over the fixed one.

Model 2 is significantly faster than Model 1 and solves more instances to
optimality. Model 1 appears to be faster with the fixed recharging scheme,
whereas Model 2 seems to benefit from the variable recharging scheme.
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It can be further observed that adopting the variable recharging scheme im-
proves the best known solutions in some of the instances. The most significant
improvement occurs with ’C103-15’: the route length is reduced as much as
9.32%. In addition, in the 5 customer instance ’RC105-5’, the optimal route
length is reduced by 3.12%. On average, the improvement over all of the
test instances is approximately 0.43%. Even though this may not seem like
much, the differences can be significant in individual instances. Moreover,
greater improvements are likely to occur in larger instances with more charg-
ing stations and customers, especially if the customer time windows are tight.
This is fairly common, for example, in the small package shipping (SPS) in-
dustry, where customers have narrow time windows, and service times are
typically very small compared to the time needed for a full recharge. Thus,
since recharging times obviously affect the route planning, considerable im-
provements can be obtained by adopting the variable recharging scheme in
real-world BEV routing problems.

Table 5.5 evaluates the performances of the two models in more detail. The
results of this table correspond to those presented in Table 5.4 for the vari-
able recharging scheme (i.e., at most m vehicles can be used and the variable
recharging scheme is adopted). Table 5.5 presents the initial lower bounds
(LB) corresponding to the optimal solution of the LP-relaxation at the root
node of the branch-and-bound tree, the percentage ratio (%LB) between
the initial lower bound and the best known integer solution (computed as
%LB = (LB/f ∗) × 100), and the computation times (tLB) for the lower
bounds. Furthermore, Table 5.5 presents the number of nodes (#nodes) in
the branch-and-bound tree, the cost of the best integer solution obtained
(f ∗) and the total computation time (tT OT ). In case no integer solution is
found, the relative gap between the best obtained lower bound and the best
known integer solution, computed as (LB∗/f ∗)×100, is presented, where LB∗

denotes the best obtained lower bound. These bounds are not presented ex-
plicitly in the table, because only two cases exist in which an integer solution
is not found. The time limit is set to 7200 seconds as before.

According to Table 5.5, the lower bounds obtained with Model 2 are signifi-
cantly stronger than those obtained with Model 1: on average, the percentage
ratio between the initial lower bound and the best known integer solution
increases by approximately 33.09%. This indicates that the improved formu-
lation (4.16) - (4.29) of Model 2 is much stronger than the standard formu-
lation (3.2) - (3.16). Moreover, computing the initial lower bounds is faster
with Model 2. The number of nodes in the branch-and-bound tree and the
total computation times further support these observations: solving the in-
stances with Model 2 requires much less nodes and the computation times
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are much lower than with Model 1. Interestingly, the number of nodes in the
last instance ’RC204-15’ is considerably larger with Model 2. The reason for
this is that since computing the lower bound is faster with Model 2, it can
also evaluate more nodes in the branch-and-bound tree than Model 1 within
the given time (both models reached the 7200 s limit).

Table 5.5: Comparison of Model 1 and Model 2.

MODEL 1 MODEL 2

Instance LB %LB tLB #nodes f∗ tT OT LB %LB tLB #nodes f∗ tT OT

C101-5 180.50 70.03 0.00 760 257.75 0.36 245.32 95.18 0.00 0 257.75 0.06
C103-5 121.64 69.36 0.00 453 175.37 0.20 152.38 86.89 0.00 5 175.37 0.06
C206-5 163.62 67.46 0.00 455 242.55 0.48 234.03 96.48 0.01 0 242.55 0.04
C208-5 83.28 52.55 0.01 361 158.48 0.28 110.18 69.53 0.00 0 158.48 0.10
R104-5 85.23 62.35 0.00 153 136.69 0.24 85.33 62.42 0.00 0 136.69 0.07
R105-5 118.51 75.93 0.00 94 156.08 0.14 153.01 98.03 0.01 0 156.08 0.02
R202-5 105.23 81.71 0.00 62 128.78 0.12 125.88 97.75 0.00 0 128.78 0.05
R203-5 121.40 67.80 0.01 437 179.06 0.49 169.92 94.90 0.01 0 179.06 0.05
RC105-5 117.05 50.07 0.01 464 233.77 0.48 202.82 86.76 0.00 0 233.77 0.08
RC108-5 134.04 52.79 0.00 1365 253.93 0.92 178.04 70.11 0.01 0 253.93 0.08
RC204-5 84.23 47.75 0.00 1968 176.39 1.10 100.96 57.24 0.00 219 176.39 0.11
RC208-5 87.59 52.14 0.00 987 167.98 0.38 133.52 79.49 0.00 0 167.98 0.13

C101-10 187.89 48.39 0.04 10813 388.25 27.32 366.36 94.36 0.01 0 388.25 0.12
C104-10 177.53 64.81 0.03 18098 273.93 21.90 225.73 82.40 0.01 2745 273.93 1.35
C202-10 158.69 52.19 0.04 428454 304.06 855.10 231.47 76.13 0.00 0 304.06 0.19
C205-10 161.42 70.71 0.01 131 228.28 0.66 224.20 98.21 0.00 0 228.28 0.05
R102-10 170.15 68.28 0.02 36769 249.19 44.71 195.57 78.48 0.00 60 249.19 0.34
R103-10 129.08 62.63 0.02 127888 206.12 119.12 146.58 71.12 0.00 11841 206.12 2.80
R201-10 169.00 69.98 0.03 74656 241.51 95.11 212.97 88.18 0.00 0 241.51 0.15
R203-10 134.14 61.47 0.04 13599 218.21 50.71 173.09 79.32 0.01 0 218.21 0.60
RC102-10 296.38 69.98 0.02 1652 423.51 8.45 390.27 92.15 0.00 1 423.51 0.08
RC108-10 210.45 60.84 0.02 23048 345.92 20.65 268.47 77.61 0.01 223 345.92 0.42
RC201-10 177.86 43.08 0.02 1714925 412.86 3162.22 333.26 80.72 0.00 11 412.86 0.16
RC205-10 239.89 73.59 0.02 3407 325.98 5.21 306.79 94.11 0.01 0 325.98 0.11

C103-15 205.06 58.85 0.10 771646 348.46 7200.00 251.29 72.11 0.02 8558 348.46 12.02
C106-15 217.18 78.94 0.03 3902 275.13 12.35 262.53 95.42 0.01 16 275.13 0.22
C202-15 249.28 64.98 0.06 1653723 383.61 7200.00 297.83 77.64 0.02 7623 383.61 7.07
C208-15 199.07 66.24 0.05 17936 300.55 78.33 255.59 85.04 0.02 2 300.55 0.19
R102-15 227.14 55.03 0.17 527130 412.78 7200.00 354.91 85.98 0.02 1490 412.78 1.14
R105-15 206.22 61.35 0.13 101241 336.15 1283.45 312.48 92.96 0.00 46 336.15 0.31
R202-15 214.43 59.90 0.09 934308 358.00 7200.00 276.51 77.24 0.02 3880 358.00 5.86
R209-15 192.95 61.50 0.06 1637948 313.24 7200.00 223.66 71.40 0.02 48279 313.24 37.16
RC103-15 173.36 43.70 0.06 1026486 397.67 7200.00 264.45 66.50 0.01 63513 397.67 39.68
RC108-15 170.09 45.94 0.09 1166358 (20.93%) 7200.00 204.28 55.18 0.03 179056 370.24 167.61
RC202-15 222.71 56.47 0.06 344598 394.39 891.91 342.18 86.76 0.01 70 394.39 0.43
RC204-15 202.22 52.91 0.13 1054389 (36.94%) 7200.00 216.56 56.66 0.03 5071665 382.22 7200.00

Average 61.16 0.04 325018 1785.62 81.40 0.01 149981 207.75
LB: initial lower bound; %LB: percentage ratio between the lower bound and the best known integer solution
#nodes: number of nodes in the branch-and-bound tree; f∗: best obtained integer solution.
tLB : time to compute the lower bound (s); tT OT : total computation time (s).

Finally, Table 5.6 presents the computational results for the test instances
with and without limiting the number of vehicles. The solutions where the
number of vehicles is limited correspond to those presented in Table 5.4 (i.e.,
the best solutions with the variable recharging scheme and at most m = m
vehicles). The solution requiring the least number of vehicles is also often
the one with least energy costs; however, as is shown in Table 5.6, this is not



CHAPTER 5. NUMERICAL EXPERIMENTS 55

generally true: lower energy costs may be obtained with more vehicles. This
can happen, for example, if some vehicles are forced to perform long detours
to service customers which are located far from each other.

Table 5.6: Results obtained with Model 2 with and without limiting the number
of vehicles. Setting no limit on the number of vehicles (case m = ∞) produces
solutions with the smallest energy costs.

Case m = m Case m = ∞ Difference

Instance m f∗ t(s) m f∗ t(s) ∆m ∆f∗(%) ∆t(s)

C101-5 2 257.75 0.06 3 247.15 0.03 1 -4.11 -0.03
C103-5 1 175.37 0.06 2 165.67 0.03 1 -5.53 -0.03
C206-5 1 242.55 0.04 2 236.58 0.02 1 -2.46 -0.02
C208-5 1 158.48 0.10 1 158.48 0.03 0 0.00 -0.07
R104-5 2 136.69 0.07 2 136.69 0.04 0 0.00 -0.03
R105-5 2 156.08 0.02 2 156.08 0.02 0 0.00 0.00
R202-5 1 128.78 0.05 1 128.78 0.05 0 0.00 0.00
R203-5 1 179.06 0.05 1 179.06 0.03 0 0.00 -0.02
RC105-5 2 233.77 0.08 2 233.77 0.05 0 0.00 -0.03
RC108-5 2 253.93 0.08 2 253.93 0.05 0 0.00 -0.03
RC204-5 1 176.39 0.11 1 176.39 0.10 0 0.00 -0.01
RC208-5 1 167.98 0.13 1 167.98 0.10 0 0.00 -0.03

C101-10 3 388.25 0.12 3 388.25 0.08 0 0.00 -0.04
C104-10 2 273.93 1.35 2 273.93 1.65 0 0.00 0.30
C202-10 1 304.06 0.19 2 243.20 0.08 1 -20.02 -0.11
C205-10 2 228.28 0.05 2 228.28 0.03 0 0.00 -0.02
R102-10 3 249.19 0.34 3 249.19 0.21 0 0.00 -0.13
R103-10 2 206.12 2.80 3 202.85 1.33 1 -1.59 -1.47
R201-10 1 241.51 0.15 3 217.68 0.10 2 -9.87 -0.05
R203-10 1 218.21 0.60 1 218.21 0.66 0 0.00 0.06
RC102-10 4 423.51 0.08 4 423.51 0.07 0 0.00 -0.01
RC108-10 3 345.92 0.42 3 345.92 0.31 0 0.00 -0.11
RC201-10 1 412.86 0.16 3 310.06 0.07 2 -24.90 -0.09
RC205-10 2 325.98 0.11 2 325.98 0.09 0 0.00 -0.02

C103-15 3 348.46 12.02 3 348.46 6.19 0 0.00 -5.83
C106-15 3 275.13 0.22 3 275.13 0.20 0 0.00 -0.02
C202-15 2 383.61 7.07 3 369.57 2.36 1 -3.66 -4.71
C208-15 2 300.55 0.19 2 300.55 0.14 0 0.00 -0.05
R102-15 5 412.78 1.14 5 412.78 1.54 0 0.00 0.40
R105-15 4 336.15 0.31 4 336.15 0.32 0 0.00 0.01
R202-15 2 358.00 5.86 2 358.00 4.13 0 0.00 -1.73
R209-15 1 313.24 37.16 2 293.20 4.03 1 -6.40 -33.13
RC103-15 4 397.67 39.69 4 397.67 18.43 0 0.00 -21.26
RC108-15 3 370.24 167.61 3 370.24 116.04 0 0.00 -51.57
RC202-15 2 394.39 0.43 2 394.39 0.51 0 0.00 0.08
RC204-15 1 382.22 7200.00 2 310.57 625.95 1 -18.75 -6574.05

Average 0.33 -2.70 -185.94
m: number of vehicles used; f∗: best obtained solution; t(s): computation time.

Table 5.6 presents the number of vehicles used (m), the costs of the best
integer solutions obtained (f ∗), and the corresponding computation times
(t(s)) with and without limiting the number of vehicles for each test instance.
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In addition, the absolute increments in the number of vehicles (∆m), the
relative increases in the routing costs (∆f ∗(%)) and the absolute increases
in the computation times (∆t(s)) for each test instance are presented. The
relative increase in the routing cost is computed as

∆f ∗(%) =
(︄

f ∗(case m = ∞)
f ∗(case m = m) − 1

)︄
× 100

As can be seen in Table 5.6, the energy costs can be significantly reduced
in some instances by using more vehicles than the minimum required. For
example, in the instance ’C202-10’, using two vehicles instead of one results
in a 20.02% reduction in energy costs. Moreover, in ’RC201-10’, a 24.90%
reduction in energy costs is possible by using three vehicles instead of one.
Note that also the last instance ’RC204-15’ is now solved to optimality: the
optimal solution without limiting the number of vehicles is obtained with two
vehicles instead of one; the improvement over the best known single-vehicle
solution is approximately 18.75%.

The are a few more instances where the energy costs can be reduced by using
more vehicles. However, in most instances the two solutions are identical.
On average, the energy costs can be reduced by as much as 2.70%. To
compensate for this reduction, the number of vehicles required increases on
average by 0.33. As mentioned before, even though the average reduction
seems insignificant, the differences can be significant in individual problem
instances.



Chapter 6

Case study

This Chapter presents an illustrative case study that attempts to simulate
potential real-world BEV routing problems. Towards this end, a test in-
stance based on the road network of southwestern Finland is created using
the network data obtained from openstreepmap.org. Subsequently, a set of
small test cases are constructed that simulate potential real-world BEV rout-
ing problems utilizing the existing charging infrastructure. Locations of the
existing charging stations are obtained from electrictraffic.fi. Finally,
larger test cases with more customers and randomly generated time windows
are constructed based on the created test instance. All of the test cases are
solved using the improved formulation developed in Chapter 4. Computa-
tions were performed on an Intel i5-3570K desktop clocked at 3.40 GHz with
8 Gb RAM running Windows 7 Home Premium x64 Edition.

6.1 Test instance
The structure of the test instance is presented in Figure 6.1. The correspond-
ing road network is derived from that of southwestern Finland such that only
the highways and other ’big roads’ are included. Longer road segments are
simplified to reduce the network size: the simplification reduces the number
of vertices significantly while ensuring that the lengths of the modified road
segments deviate by at most 1 km from their original length. The simpli-
fication was performed with JOSM (Scholz & Stöcker, 2013) using the tool
’simplify-roads’ and the add-on ’simplify-area’ that allow setting an upper
limit on the distance deviation between two points.

In Figure 6.1, the charging stations are located based on their actual loca-
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Figure 6.1: Test instance based on the road network of southwestern Finland.

tions; however, not all of them are presented: in particular, those in close
proximity are aggregated into a single station. In addition, the vertex num-
bers are presented by each charging station to facilitate referring to them.
The selected depot represents both the origin and the destination depots.

Since battery recharging is rather time-consuming, only the fast charging
stations are included in creating the test instances. However, as can be seen
in Figure 6.1, only seven such charging stations exist in this area. Moreover,
they are all aggregated towards the right side of the map, rendering it difficult
to efficiently service customers located at the opposite side. Therefore, in
order to create meaningful test instances, it is assumed that some of the
normal charging stations are upgraded to provide fast recharging.

6.2 Test cases
In this Section, several test cases are generated by first selecting a set of
customers from the created test instance, subsequently setting the vehicle
battery capacity, and finally incorporating randomly generated time windows
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for the customers. All the fast charging stations are included. Also, it is
assumed that the charging station ’79’ is upgraded to provide fast recharging.

Initially, no time windows are set for the customers, the only time-related
constraint being the maximum route duration T . Subsequently, customer
time windows are randomly generated and optimal routing costs (with regard
to traveled distance and thus energy consumption) are compared to those
obtained without time windows. Furthermore, the impact of the vehicle
battery capacity Q in conjunction with customer time windows is examined
by fixing a set of time windows and solving the generated instance with
different values of Q. Initially, the following assumptions are made:

• Maximum route duration T = 12 hours.

• Customer service time si = 5 minutes for each customer i ∈ N .

• Vehicle speed v = 90 km/h.

• The (fast) recharging rate g = 5 km/min.

• Vehicle battery capacity Q = 200 km.

• Vehicle load capacity C = ∞ (i.e., the vehicles can service any number
of customers within given time limits).

The vehicle battery capacity Q and the recharging rate g are presented in
distance units for simplicity. This does not alter the computation or affect
the optimal routing plan, since energy consumption is assumed to be directly
proportional to the traveled distance by (3.1). The fast recharging rate is
estimated based on the assumption that the vehicle battery can be recharged
from empty to approximately 80% within 30 - 45 minutes with almost a
constant rate, whereafter the charging rate begins to gradually decrease.

An example charging profile is presented in Figure 6.2 for the ’Tesla Super-
charger’ fast charging station. As can be seen in the figure, the charging rate
exhibits the aforementioned behavior. This provides a possible avenue for
future research to separately model the recharging behavior as linear (i.e.,
with a constant rate) up to 80% state-of-charge and as a piece-wise linear
approximation for the remaining 20% to capture the non-linear behavior.

6.2.1 First test case
Consider the following test instance presented in Figure 6.3. Initially, no
specific time windows are set, apart from those of the form [0, T ], where
T = 720 minutes denotes the maximum route duration. In the following, this
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Figure 6.2: Charging profile of the Tesla Supercharger fast charging station. Ob-
tained from www.teslamotors.com/supercharger.

test instance is referred to as ’A1-Q200’, where ’Q200’ denotes the battery
capacity value Q = 200 km that is initially used in solving the instance.

Figure 6.3: The test instance A1-Q200 without time windows.

As can be seen in Figure 6.3, there are only nine customers to be serviced.
However, due to the nature of the problem, even with such a small instance
it is not immediately clear in which order the customers should be serviced;
when, where, and how much the vehicle battery should be recharged; and

http://www.teslamotors.com/supercharger
www.teslamotors.com/supercharger
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how many vehicles should be used in order to minimize the total routing cost.
The developed model provides this information in less than one second.

The optimal solution is presented in Figure 6.4. It turns out that the mini-
mum routing cost is obtained by using only one vehicle. The order in which
the customers and charging stations are visited is indicated by arrows and
small numbers. It is assumed that the vehicle always travels the shortest
paths in the road network between any pair of customers and/or charging
stations; therefore, the arrows only indicate the visiting order. The length of
the optimal route is 823.26 km and the total duration is 718.49 minutes.

Figure 6.4: Optimal solution of the test instance A1-Q200 (Q = 200 km).

The charging station ’79’ must be visited three times in the optimal solution
to prevent battery depletion. Note that the path 79-32-34-35-36-79 would
require one charging station visit less than the path 79-32-79-36-34-35-79
traversed in the optimal solution; however, the length of the former path
exceeds the maximum driving range of the vehicle and is therefore infeasible.

6.2.1.1 Fixed recharging scheme

A full recharge is not necessary at all of the charging station visits. In the
obtained solution, the battery is recharged to full only at the first station ’25’,
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after which the minimum required amount is recharged. Since the duration
of the optimal route is close to the maximum allowed, it is interesting to
examine how the optimal solution changes if the fixed recharging scheme
that enforces a full recharge at every station visit is used instead.

The optimal solution to the instance A1-Q200 with the fixed recharging
scheme is presented in Figure 6.5. It can be seen that two vehicles are now
required instead of one. Moreover, the total length of the optimal vehicle
routes is now 883.53 km, resulting in a 7.32% increase in the routing cost.
This small example demonstrates how the fixed recharging scheme used in
the previous studies may produce inferior solutions even for routing problems
without specific time windows (apart from those imposed by the maximum
route duration).

Figure 6.5: Optimal solution of the test instance A1-Q200 (Q = 200 km) using
the fixed recharging scheme. The different colored tours represent separate vehicle
routes.

6.2.2 Varying battery capacity
This section examines the impact of varying the battery capacity Q on the
solution quality. Towards this end, the test instance A1-Q is solved by using
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different values of Q, and the obtained results are evaluated. The optimal
routing plans of two test instances A1-Q350 (Q = 350 km) and A1-Q160
(Q = 160 km) are also presented graphically. Throughout this section, it is
assumed that the variable recharging scheme is adopted.

First, suppose that the battery capacity is changed to Q = 160 km (~100
miles), which, according to some studies, corresponds to a range that is
sufficient for individual consumers to consider switching to BEVs and is also
used as a basis for some business models for an electric transportation system
(see, e.g., Skippon & Garwood, 2011; Becker et al., 2009). The optimal
solution to the test instance A1-Q160 is presented in Figure 6.6.

Figure 6.6: Optimal solution of the test instance A1-Q160 (Q = 160 km). The
different colored tours correspond to distinct vehicle routes.

As can be seen, two vehicles are required instead of one as in the test instance
A1-Q200 presented in Figure 6.4. Moreover, the total length of the optimal
vehicle routes is now 1148.08 km, resulting in a 39.46% increase in the routing
cost. This is, of course, due to the shorter driving range: more visits to
charging stations are required to prevent battery depletion. Specifically, the
charging station ’79’ is now visited four times, whereas the station ’25’ is
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visited twice; furthermore, a previously unvisited charging station ’29’ is
now visited in the optimal routing plan.

To investigate how the optimal solution changes with a larger battery ca-
pacity, let Q = 350 km, which is currently close to the maximum driving
range of any commercially available BEV (see, e.g., Mangram, 2012). The
new optimal solution is presented in Figure 6.7.

Figure 6.7: Optimal solution of the test problem A1-Q350 (Q = 350 km).

It can be seen that only one vehicle is used in the optimal solution. Moreover,
due to the large battery capacity, only two charging stations visits are needed.
The length of the optimal route is now 712.43 km, while the total duration
amounts to 592.35 minutes. Hence, compared to the optimal solution of the
test instance A1-Q200 presented in Figure 6.4, the routing cost decreases by
13.46% and the total duration by 17.56%.
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These small examples demonstrate the impact of the battery capacity on
the optimal routing cost and duration. A more detailed analysis is pro-
vided in Figure 6.8, which presents the optimal routing cost c(Q) with dif-
ferent values of battery capacity Q up to the case where no charging sta-
tion visits are required. The test instance A1-Q was solved by using values
Q ∈ {160, 165, . . . 1000}, and the points where the optimal solution changes
are plotted in the Figure 6.8. The adjacent table presents the used battery
capacity Q, the number of vehicles m used in the solution, the optimal rout-
ing cost c(Q), and the relative increase in the routing cost ∆% with respect
to the case Q = ∞, which corresponds to the regular TSP solution, since
only one vehicle is required to service all the customers.
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160 2 1148.08 65.26
165 2 1101.81 58.60
170 2 1044.52 50.35
180 2 996.67 43.47
185 2 945.93 36.16
195 1 823.26 18.50
210 1 754.73 8.64
265 1 744.89 7.22
285 1 727.17 4.67
325 1 712.43 2.55
520 1 694.71 0.00
∞ 1 694.71 0.00
∆%: increase in routing cost
compared to the case Q = ∞.

Figure 6.8: Optimal routing cost c(Q) of the test instance A1-Q with different
values of battery capacity Q. The table presents the number of vehicles m and the
increase in the routing cost ∆% with respect to the case Q = ∞.

It can be seen that the optimal routing cost decreases rapidly in the begin-
ning when the battery capacity is increased. Initially with Q = 160 km,
the routing cost is 65.26% higher compared to the case where Q = ∞ (i.e.,
where no recharging is required). When Q ≥ 210 km, the optimal routing
cost decreases significantly slower when the battery capacity is further in-
creased. With Q = 210 km, the optimal routing cost is only 8.64% higher
than with Q = ∞. When Q = 700 km, no charging stations visits are
required. Conversely, the problem becomes infeasible with Q < 160.

In the absence of time-related constraints, only the detours to the charging
stations contribute to the increase in the routing cost and not the recharged
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amount itself. In this case, the optimal solution depends only on the place-
ment and the number of charging stations. For example, with Q = 520 km,
the vehicle must stop to recharge at some point to prevent battery depletion.
Still, the optimal solution is the same as with Q = ∞: the charging station
’25’ is located along the shortest path between the customers ’26’ and ’43’,
wherefore stopping to recharge at ’25’ does not affect the routing cost if there
are no time-related constraints.

6.2.3 Customer time windows
In this section, a procedure for generating customer time windows for the
created test instance is presented. The procedure is similar to that presented
in (Solomon, 1987). Subsequently, randomly generated customer time win-
dows are included in the previous test cases with different battery capacities,
and the new optimal solutions are evaluated. It turns out that all the exam-
ple problems in this section can be solved in less than one second using the
improved formulation.

The following procedure is used in generating the customer time windows.
First, the feasible time window range is computed for each customer; i.e., the
range between the earliest time a vehicle can arrive at the customer directly
from the origin depot, and the latest time a vehicle can depart from the
customer and reach the destination depot in time. Subsequently, the time
window center is randomly drawn for each customer from the corresponding
feasible time window range. Finally, the time window width (TWW) is
randomly chosen from three alternatives wi, i = {1, 2, 3}, each associated
with a probability P (wi) of being selected. However, if some part of the
generated time window falls outside the feasible time window range, the
violated part is cut and the time window is extended to the opposite direction
by the violated amount. The time windows widths and the corresponding
selection probabilities are presented in Table 6.1. As before, it is assumed
that T = 720 minutes.

Table 6.1: Time window widths wi, i = {1, 2, 3}, and selection probabilities P (wi)
for the customer time windows.

TWW (minutes) Probability

w1 = 0.10 × T = 72 P (w1) = 0.20
w2 = 0.15 × T = 108 P (w2) = 0.50
w3 = 0.30 × T = 216 P (w3) = 0.30
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6.2.3.1 Random time windows

In this section, randomly drawn customer time windows are incorporated in
the test instance A1-Q with different values of Q. The test instance with
a specific value of Q and a specific set of time windows TW is referred
to as A1-Q-TW. Note that the set of customers remains the same in all
of the test instances; only the battery capacity and customer time windows
change. Initially, four different test instances are generated and their optimal
solutions are presented graphically. The randomly generated customer time
windows used in the test instances are presented in Table 6.2. The time
windows are presented in the form [a b], a denoting the start time and b the
end time of the time window. The corresponding time window widths (b−a)
are also presented in the table.

Table 6.2: Customer time windows used in the test instances.

TW1 TW2 TW3 TW4

Customer [a b] b-a [a b] b-a [a b] b-a [a b] b-a

26 [77 293] 216 [77 185] 108 [77 293] 216 [279 495] 216
32 [372 588] 216 [339 555] 216 [278 494] 216 [480 588] 108
34 [403 619] 216 [403 619] 216 [350 422] 72 [459 531] 72
35 [541 613] 72 [383 455] 72 [151 367] 216 [224 332] 108
36 [158 230] 72 [520 592] 72 [504 612] 108 [504 612] 108
37 [83 299] 216 [83 191] 108 [210 318] 108 [142 250] 108
39 [511 619] 108 [95 203] 108 [271 379] 108 [390 498] 108
41 [512 620] 108 [557 665] 108 [357 429] 72 [472 580] 108
43 [361 469] 108 [153 261] 108 [458 566] 108 [222 330] 108
a: time window start time (min). b: time window end time (min). b-a: time window width (min).

Figure 6.9 presents the optimal solution to the test instance A1-Q200-TW1
(i.e., the battery capacity is set to Q = 200 km and the customer time win-
dows are designated according to the set TW1 presented in Table 6.2). The
length of the vehicle routes in the optimal solution is 1090.79 km, resulting
in a 32.50% increase in the routing cost compared to the optimal solution
of the instance A1-Q200 without time windows presented in Figure 6.4. In-
terestingly, it is beneficial to let the blue vehicle service the customer ’35’
instead of sending a third, separate vehicle to service it. Consequently, the
blue vehicle must perform a long detour to service the last customer. It
can be further noted that the blue vehicle must visit two charging stations
successively to reach the customer ’35’ before returning to the depot.
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Figure 6.9: Optimal solution of the test instance A1-Q200-TW1. The different
colored tours represent distinct vehicle routes. The customer time windows are
displayed in brackets.

Figure 6.10 presents the optimal solution to the test instance A1-Q180-TW2
with customer time windows designated according to the set TW2 in Table
6.2 and battery capacity set equal to Q = 180 km. As in the previous
test instance A1-Q200-TW1, the optimal routing cost is obtained with only
two vehicles. In this test instance, however, the customers are distributed
more evenly among the two vehicles. The total length of the optimal vehicle
routes amounts to 1203.94 km, which is approximately 20.80% more than
the optimal routing cost of the same instance without time windows, which
is 996.67 km (see Figure 6.8). Since the time windows of A1-Q180-TW2 are
different than those of A1-Q200-TW1, no comparison is made with regard
to the routing costs between these two instances. Routing cost comparisons
using the same time windows are presented in the following Section 6.2.3.2.
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Figure 6.10: Optimal solution of the test instance A1-Q180-TW2. The different
colored tours represent distinct vehicle routes. The customer time windows are
displayed in brackets.

Two more test instances A1-Q160-TW3 and A1-Q350-TW4 are presented in
Figures 6.11 and 6.12, respectively. Similarly to the previous test instances,
the customer time windows are designated according to the sets TW3 and
TW4 presented in Table 6.2, and the battery capacities are set equal to
Q = 160 km and Q = 350 km.

Figure 6.11 presents the optimal solution to the test instance A1-Q160-TW3.
It can be seen that the minimum routing cost is obtained by using three
vehicles, whereas in the optimal solution of A1-Q160 presented in Figure 6.6,
two vehicles are sufficient. Due to the shorter driving range and the presence
of customer time windows, the charging station ’79’ is now visited a total of
six times, whereas in the solution of A1-Q160, only four visits are required.
Note that a single vehicle services most of the customers located at the left
side of the map; only the customer closest to the depot, customer ’41’, is
serviced by using an additional vehicle. The total length of the optimal
vehicle routes amounts to 1373.80 km, resulting in a 19.66% increase in the
routing cost compared to the corresponding instance without time windows.
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Figure 6.11: Optimal solution of the test instance A1-Q160-TW4. The different
colored tours represent distinct vehicle routes. The customer time windows are
displayed in brackets.

Notice that due to the number of visits to the charging station ’79’, the
optimal solution cannot be obtained if an artificial upper bound (less than six
in this case) is imposed on the number of stops to a single station. Moreover,
even by setting this upper bound appropriately, solving the problem by using
the standard formulation presented in Section 3 takes over 7200 seconds with
the same implementation that was used in Chapter 5, whereas the problem
can be solved in less than one second with the improved formulation. This
small example emphasizes the benefit of the new formulation, since no upper
bound is required on the number of station visits.

Finally, Figure 6.12 presents the optimal solution to the test instance A1-
Q350-TW4. Despite the long driving range, one vehicle is no longer enough
to service all the customers as in the corresponding instance without time
windows A1-Q350 presented in Figure 6.7; instead, two vehicles are required
to service all the customers in time. Due to the longer driving range, only one
charging station visit is needed in both of the vehicle routes. The combined
length of these vehicle routes is 1028.03 km, resulting in a 44.30% increase
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in the routing cost compared to the optimal solution of the corresponding
instance without time windows presented in Figure 6.7.

Figure 6.12: Optimal solution of the test instance A1-Q350-TW4. The different
colored tours represent distinct vehicle routes. The customer time windows are
displayed in brackets.

6.2.3.2 Fixed time windows

In this section, the impact of the vehicle battery capacity Q in conjunction
with customer time windows is examined by fixing the time windows accord-
ing to the set TW4 presented in Table 6.2 and comparing the optimal routing
costs with different values of Q. The optimal solutions of two test instances
A1-Q200-TW4 (Q = 200 km) and A1-Q160-TW4 (Q = 160 km) are also
presented graphically. Note that Figure 6.12 presents the optimal solution
to the instance A1-Q350-TW4 with the same set of time windows TW4 but
with Q = 350 km.

Figure 6.13 presents the optimal solution to the test instance A1-Q200-TW4.
As in the optimal solution of the test instance A1-Q350-TW4 presented in
Figure 6.12, two vehicles are sufficient in servicing all the customers even
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though the battery capacity is considerably smaller. However, the blue ve-
hicle must now also service some of the customers located at the left side;
due to the shorter driving range, the red vehicle must stop to recharge more
frequently, wherefore it cannot service all those customers in time. The total
length of the optimal vehicle routes is 1163.08. With respect to the optimal
solution of the corresponding instance without time windows (i.e., A1-Q200
presented in Figure 6.4), the routing cost increases by 41.28%. Furthermore,
in comparison to the optimal solution of the instance A1-Q350-TW4, the
optimal routing cost increases by 13.14%.

Figure 6.13: Optimal solution of the test instance A1-Q200-TW4. The different
colored tours represent distinct vehicle routes. The customer time windows are
displayed in brackets.

Figure 6.14 presents the optimal solution to the instance A1-Q160-TW4.
It can be observed that four vehicles are used in the optimal solution to
service all the customers. Further tests indicate that four vehicles are actually
required, since the problem becomes infeasible by limiting the number of
vehicles to three (for this small example, the infeasibility is determined in a
fraction of a second with the improved model). As can be seen, two vehicles
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are now dispatched to service the customers located at the left. Moreover, the
customer ’41’ must now be serviced by a separate vehicle, because otherwise
it cannot be serviced in time. The customers located at the right side of
the map are also serviced by a separate vehicle: the distance between the
charging stations ’25’ and ’79’ exceeds the driving range of 160 km.

Figure 6.14: Optimal solution of the test instance A1-Q160-TW4. The different
colored tours correspond to distinct vehicle routes. The customer time windows
are displayed in brackets.

The aggregate length of the optimal vehicle routes amounts to 1575.74 km,
which results in a 37.25% increase in the routing cost compared to the corre-
sponding instance without time windows (A1-Q160) presented in Figure 6.6.
Also, with respect to the instances A1-Q350-TW4 and A1-Q200-TW4 with
the same set of time windows TW4, the optimal routing cost is approximately
53.28% and 35.48% higher, respectively.

These small test instances demonstrate the impact of varying the battery
capacity in conjunction with fixed customer time windows on the solution
quality. A more comprehensive analysis is provided in Figure 6.15, which
presents the optimal routing cost c(Q) with different values of battery ca-
pacity Q. The customer time windows are fixed according to the set TW4
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of Table 6.2 when computing the results. The problem was solved by using
values Q ∈ {160, 165, . . . 1000}, and the points where the optimal solution
changes are plotted if the figure. The optimal routing costs without customer
time windows are also presented for comparison. The adjacent table reports
the used battery capacity Q, the number of vehicles m, the optimal routing
cost c(Q), and the relative increase in the routing cost ∆% with respect to
the case Q = ∞ (i.e., ∆% = (c(Q)/c(∞) − 1) × 100).
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160 4 1575.74 58.28
165 4 1529.47 53.63
170 3 1183.10 18.84
180 3 1172.42 17.76
190 2 1163.08 16.83
210 2 1090.27 9.51
245 2 1079.88 8.47
280 2 1077.09 8.19
285 2 1058.91 6.36
300 3 1052.24 5.69
340 2 1028.03 3.26
365 2 1017.63 2.22
485 2 995.57 0.00
∞ 2 995.57 0.00
∆%: increase in routing cost
compared to the case Q = ∞.

Figure 6.15: Optimal routing cost c(Q) of the test problem with different values of
battery capacity Q and fixed time windows TW4. The table presents the number
of vehicles m and the increase in routing cost ∆% with respect to the case Q = ∞.
The optimal solutions without time windows are also presented for comparison.

As can be seen in Figure 6.15, the optimal routing cost decreases more rapidly
in the beginning with the fixed time windows. Initially with Q = 160 km,
the optimal routing cost is 58.28% higher than with Q = ∞. However, when
the battery capacity is increased by 10 km (i.e., by setting Q = 170 km), this
difference reduces to 18.84%.

Comparing the solutions with and without the customer time windows, the
differences in the optimal routing costs appear to change unevenly with re-
gard to the battery capacity Q. Initially with Q = 160 km, the optimal
routing cost is 37.25% higher with the time windows, whereas with Q = 170
km this difference is only 13.27%. After this point, the gap between these
two cases becomes larger. Eventually with Q = ∞, this difference is 43.31%.
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6.2.4 Outcome evaluation
These small examples demonstrate the potential impact that customer time
windows and different battery capacities can have on the optimal routing
plan. Unlike with regular VRPTW instances, the recurring need to recharge
in conjunction with relatively long recharging times complicate the route
planning considerably. In particular, complications arise with determining:

1. When and where to recharge?

2. How much should be recharged?

3. How many vehicles should be used?

From the previous examples it should be obvious how difficult even small
BEV routing problems can be without proper decision support, especially
when customer time windows are included.

6.3 Larger test cases
In this Section, a larger test instance is constructed by selecting 26 customers
from the road network and generating time windows for the customers based
on Table 6.1. Several test cases are subsequently generated by varying the
battery capacity Q but keeping the time windows fixed. Initially, the opti-
mal solutions of two different test instances are presented graphically. Sub-
sequently, the optimal solutions with different values of Q are computed and
the corresponding routing costs are reported.

Figure 6.16 presents the test instance with 26 customers and randomly gen-
erated customer time windows. The same set of charging stations is used as
before. Due to the large number of customers, designing an optimal rout-
ing plan is practically impossible without decision support (see the three
questions in 6.2.4). Fortunately, by using the developed model, the optimal
solution can be computed in a reasonable time for different values of Q.

The larger test instances are referred to as A2-QX-TW, where X denotes the
battery capacity value Q = X that is used in solving the instance. The TW
part is always the same, since only a single set of customer time windows
is used. These time windows are displayed in brackets next to the selected
customers in Figure 6.16.
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Figure 6.16: Test instance with 26 customers and randomly generated customer
time windows.

Figure 6.17 presents the optimal solution to the test instance A2-Q200-TW
(i.e., with the battery capacity set equal to Q = 200 km). The optimal
solution was computed in 222.04 seconds. As can be seen, five vehicles are
used in the optimal routing plan. The total length of the optimal vehicle
routes amounts to 2520.98 km. It can be further observed that 12 charging
station visits are required in the optimal solution, the charging station ’79’
being visited six times in total by three different vehicles. Additionally, the
previously unused charging stations ’23’, ’130’ and ’27’ are now utilized in
the optimal routing plan to help achieve lower routing costs. As an example
of how a less frequently used charging station may affect the route planning,
the removal of the charging station ’27’ from the network causes an increase
in the optimal routing cost of approximately 5.60%.
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Figure 6.17: Optimal solution of the 26-customer test instance A2-Q200-TW. The
different colored tours represent distinct vehicle routes.

Figure 6.18 presents the optimal solution to the test problem A2-Q350-TW.
It can be seen that only four vehicles are now used instead of five as in
the previous instance in Figure 6.17. In addition, due to the longer driving
range, only four charging station visits are required in the optimal solution.
Consequently, the optimal routing cost is considerably smaller: the aggregate
length of the optimal vehicle routes amounts to 1753.51 km, resulting in a
30.44% reduction in the routing cost.

The same time windows as in the previous instance were used in computing
the optimal solution. However, for this instance, the optimal solution was
obtained in only 76.73 seconds, whereas for the previous instance it took
222.04 seconds. This difference in computation times is not entirely intuitive,
since not only the number of non-dominated paths is considerably larger, but
also the preprocessing steps based on battery capacity are relatively weaker
with higher values of Q. The impact of varying the battery capacity on the
computation time is further examined in Figure 6.19.
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Figure 6.18: Optimal solution of the 26-customer test instance A2-Q350-TW. The
different colored tours represent distinct vehicle routes.
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Figure 6.19: Computation times of the 26-customer test instances with varying Q.
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According to Figure 6.19, the computation times are heavily dependent on
the used battery capacity: as a trend, the larger Q becomes, the faster the
optimal solution can be computed. For example, when Q becomes large
enough so that no charging station visits are needed, the problem becomes a
regular VRPTW and the optimal solution can be obtained in approximately
one second. However, there are two values of Q (approximately Q = 215 and
Q = 265) around which the problem becomes very difficult.

In the following, the test instance of Figure 6.16 is solved with several differ-
ent values of battery capacity Q and the optimal routing costs are reported.
According to the developed model, the problem is infeasible for values of
Q ≤ 190 km; this information was obtained in a fraction of a second upon
attempting to solve the problem for values Q = 150 . . . 190 km. Figure
6.20 presents the optimal routing costs c(Q) for both the fixed and vari-
able recharging schemes. The points where the optimal solution changes are
plotted in the figure. The adjacent table presents the used battery capacity
Q, the number of vehicles m used in the solution, the optimal routing cost
c(Q), and the relative increase in the routing cost ∆% with respect to the
case Q = ∞ (i.e., ∆% = (c(Q)/c(∞) − 1) × 100), which corresponds to
the regular VRPTW solution. This information is presented for the variable
recharging scheme only; the optimal routing costs with the fixed recharging
scheme are presented only for comparison.
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195 5 2520.98 55.37
220 6 2391.30 47.38
225 5 2130.53 31.31
235 5 2084.25 28.46
255 5 2068.37 27.48
270 4 1988.45 22.55
275 4 1896.20 16.87
285 4 1812.82 11.73
295 4 1806.81 11.36
305 4 1800.47 10.97
340 4 1753.51 8.07
360 4 1736.01 6.99
365 4 1697.06 4.59
375 4 1684.98 3.85
380 4 1660.40 2.33
425 3 1656.63 2.10
∞ 3 1622.53 0.00
∆%: increase in routing cost
compared to the case Q = ∞.

Figure 6.20: Optimal routing cost c(Q) of the 26-customer test instance with
different values of battery capacity Q. The table presents the number of vehicles
m and the increase in the routing cost ∆% with respect to the case Q = ∞.
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Conclusion

This thesis examined the optimal routing of plug-in battery electric vehi-
cles (BEVs) and presented two mathematical models to determine optimal
routing plans in scenarios, where a set of locations (e.g., customers) is to
be visited by one or more BEVs, and where the traveled distance exceeds
the initial driving range, thus making it necessary to recharge the battery
at charging stations en route to prevent it from depleting. The presented
models also incorporate customer time windows, service times and vehicle
capacities that represent the most relevant constraints of real-world routing
problems. The models were implemented in C programming language and
solved with CPLEX (ILOG, 2013) using the CPLEX 12.5 callable library
interface functions.

The initial model generalizes the Electric Vehicle Routing Problem with Time
Windows (E-VRPTW) introduced by Schneider et al. (2013) by also allowing
the possibility of recharging a variable amount of energy at the charging
stations (variable recharging scheme) rather than performing a full recharge
at every visit (fixed recharging scheme). Computational tests performed in
this thesis indicate that significant reductions in the routing cost can be
obtained by adopting the variable recharging scheme over the fixed one.

A major disadvantage of the standard E-VRPTW formulation proposed by
Schneider et al. (2013) is the need to model every possible charging station
visit as a separate ’dummy’ vertex in the network graph. To overcome this
drawback, a new formulation for the E-VRPTW was developed that does
not model the charging stations explicitly, but replaces them with a set of
non-dominated energy paths between every customer pair. The new formu-
lation was shown to reduce the number of decision variables in the model

80
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and to provide considerable computational improvements over the standard
formulation. Some new preprocessing steps and valid inequalities were also
presented to strengthen the new formulation.

The effect of the preprocessing steps and valid inequalities were examined,
and the two models were evaluated by solving a set of small benchmark in-
stances presented in (Schneider et al., 2013). The preprocessing steps reduced
the number of decision variables considerably, and the valid inequalities were
shown to improve the LP-relaxation of the new formulation.

The benchmark results indicate that the new formulation is capable of solv-
ing moderately sized instances with up to 15 customers efficiently: all but
one benchmark instance were solved to optimality in less than 300 seconds.
However, the number of vehicles was limited in the computations; without
limiting this number, all the benchmark instances were solved to optimality
and significantly lower routing costs were obtained in some instances by us-
ing 1-2 additional vehicles. The results further indicate that since recharging
times affect the route planning, considerable improvements can be obtained
by adopting the variable recharging scheme over the fixed one.

Finally, a test instance based on the actual road network of Finland was
constructed and the improved formulation was used to solve various test
cases simulating potential real-world BEV routing problems. First, a set of
small test cases with nine customers was constructed by varying the battery
capacity and incorporating randomly drawn customer time windows. Sub-
sequently, a set of larger test cases with 26 customers was constructed by
randomly generating time windows for the customers, and by varying the
battery capacity. All the small test cases were solved in less than one second,
whereas solving the larger test cases with 26 customers took up to one hour
depending on the value of the battery capacity. The results were examined
by presenting some of the optimal solutions graphically and plotting the op-
timal routing cost for different battery capacity values. The results clearly
demonstrate how sensible the optimal routing cost is to small battery capac-
ity variations, and how difficult it is to design optimal routing plans even for
small test cases. The results further indicate that the value of the battery
capacity may have a dramatic impact on the computation time when solving
the formulation proposed in this thesis by branch-and-cut.

Since the previous studies adopted a fixed recharging scheme, the new for-
mulation also provides a tool for estimating how much the total energy cost
can be reduced without performing a full recharge at charging station vis-
its. The developed model could also be used in evaluating the performance
of a heuristic algorithm designed for similar problems, or to facilitate the
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calibration and design of such heuristics.

Even though this thesis focuses specifically on BEV routing, the developed
model can also be used in modeling routing problems involving different
types of alternative fuel vehicles (e.g., hydrogen or natural gas vehicles),
especially those with a limited charging infrastructure and/or slow refueling
time that must be considered in the route planning. Additionally, since
the model is capable of solving regular VRPTW problems, it is possible to
compare the routing costs incurred by using BEVs to those incurred by using
conventional internal combustion engine (ICE) vehicles. Another possibility
is to compare the routing costs incurred by using BEVs to those incurred by
deploying other alternative fuel vehicles. Such information could be helpful
for organization planning to convert their fleet from conventional ICE vehicles
to BEVs or other alternative fuel vehicles. By performing several comparisons
in problem instances reflecting real-world routing problems, potential benefits
and disadvantages could be evaluated, thus facilitating such decisions.

Future avenues of research could be to also model fixed service times in addi-
tion to the variable recharging times for the charging station visits through
expanding the definition of e-paths, and developing new dominance rules
that allow to handle these service times efficiently. Another possibility is to
focus on the hierarchical objective and develop new modeling techniques that
minimize first the number of vehicles and then the total energy cost of the
vehicle routes.

The models proposed in this thesis have been evaluated on relatively small
instances. Further research should be devoted to the development of new
models and solution methods that allow solving larger E-VRPTW instances
to optimality. Towards this end, a possibility could also be to concentrate on
some special cases of the E-VRPTW for which, as far as this thesis is aware
of, no exact solution methods have been so far proposed in the literature,
such as the problem variant without customer time windows, or the single
vehicle version of the E-VRPTW.

Finally, the model can be extended to incorporate the simultaneous opti-
mization of the routing of BEVs and the placement of new charging stations.
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