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Abstract
Transportation networks like public transport and highway systems are a critical
part of modern society’s infrastructure. They enable the fast and reliable transporta-
tion of goods, people and information. Due to their critical nature, it is extremely
important to secure their performance against disruptions caused by deterioration
of the network’s components or external hazards like natural disasters or terrorist
attacks for example. This motivates the decision makers to invest in reinforcement
actions, which secure the network’s performance.

The decision makers need some help in identifying those reinforcement actions,
which have the biggest positive impact on the performance of the network while
also having minimal cost. A collection of such reinforcement actions is called a cost-
efficient portfolio. This thesis presents an algorithm for identifying these portfolios.
Transportation networks are modeled as undirected and unweighted graphs consisting
of nodes and edges connecting them.

Two types of reinforcement actions are considered: Type I, which reinforce ex-
isting edges, and Type II, which add new edges to the network. We illustrate the
algorithm with an example network with 10 nodes and 12 edges, where Type II
reinforcement actions have a cost double the cost of Type I actions. There are 12
Type I actions and 13 Type II actions to consider. The results show us that it is
far more beneficial to favor Type II reinforcement actions. However, there was one
exception to this which was the reinforcement of a particular edge connecting one
weakly connected node to the rest of the network, which was reinforced in most
cost-efficient portfolios. The results infer that decision makers should favor Type II
reinforcement actions when they are not unreasonably expensive.

One could support the decision makers with the cost-efficient portfolios given by
the algorithm by recommending those portfolios or by recommending just some
reinforcement actions, which have a high relative share amongst the cost-efficient
portfolios. Additionally suggesting to avoid those reinforcement actions, which are
not amongst any of the cost-efficient portfolios is possible.
Keywords Critical infrastructure, transportation network, decision analysis
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Tiivistelmä
Kuljetusverkot, kuten joukko- ja ilmaliikenne, ovat äärimmäisen tärkeä osa modernin
yhteiskunnan infrastruktuuria. Ne mahdollistavat tavaroiden, ihmisten ja informaa-
tion nopean ja luotettavan liikkumisen paikasta toiseen. Niiden tärkeyden takia
on ratkaisevaa turvata niiden toimintakyky olosuhteista riippumatta. Äärimmäiset
sääilmiöt, komponenttien rappeutuminen ja muut ulkoiset uhat vahingoittavat verkon
toimintakykyä, mikä motivoi päätöksentekijöitä investoimaan verkon vahvistamiseen.

Päätöksentekijät kaipaavat apua niiden vahvistustoimien identifioimiseen, joilla on
isoin positiivinen vaikutus verkon toimintakykyyn, jotka ovat samalla mahdollisim-
man edullisia. Kokoelmaa tällaisia vahvistustoimia kutsutaan kustannustehokkaiksi
portfolioiksi. Tässä kandidaatintyössä esitellään algoritmi, joka identifioi juuri tällaiset
portfoliot. Kuljetusverkkoja mallinnetaan suuntaamattomina ja painottamattomina
verkkoina, jotka koostuvat solmuista ja niitä yhdistävistä kaarista.

Vahvistustoimia on kahdenlaisia: ensimmäisen tyypin vahvistustoimessa vahvistetaan
jo olemassa olevia kaaria ja toisen tyypin taas lisäävät uusia kaaria verkkoon. Ku-
vaamme algoritmin toimintaa esimerkkiverkolla, jossa on 10 solmua ja 12 kaarta, kun
toisen tyypin vahvistustoimet olivat kustannukseltaan kaksinkertaisia ensimmäisen
tyypin vahvistustoimiin verrattuna. Tulokset osoittavat, että on paljon kannattavam-
paa rakentaa uusia kaaria kuin vahvistaa jo olemassa olevia. Tästä poikkeuksena oli
yksi kriittiseksi osoittautunut kaari, jota vahvistettiin lähes jokaisessa kustannuste-
hokkaassa portfoliossa. Tästä päätellen uusien kaarien rakentaminen on lähes aina
vanhojen vahvistamista kannattavampaa, kun niiden rakentaminen ei ole kohtuutto-
man kallista.

Päätöksentekijöitä voi tukea algoritmin palauttamien kustannustehokkaiden portfo-
lioiden avulla sekä suosittelemalla kokonaisia portfolioita että antamalla suosituksia
yksittäisistä vahvistustoimista, joilla on suuri esiintyvyys kustannustehokkaissa port-
folioissa. Lisäksi päätöksentekijöitä voi kehottaa välttämään niitä vahvistustoimia,
jotka eivät esiinny lainkaan kustannustehokkaissa portfolioissa.
Avainsanat Kriittinen infrastruktuuri, kuljetusverkko, päätösanalyysi
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1 Introduction
Transportation networks like highway systems, public transport networks of a
metropolitan area or non-physical networks like content delivery networks are a
part of modern society’s critical infrastructure. Networks like these are critical in
enabling modern society to function. We use them for food and goods distribution
and also for the transportation of people and information across short and vast
distances alike. The criticality of these transportation networks motivates decision
makers (DM) like network operators or a government representative, to secure their
performance against disruptions caused by natural disasters and deterioration of the
network components. Additionally, their critical nature makes them prone to external
hazards like terrorist attacks. This brings up the question of how to reinforce these
transportation networks to be more resilient against these threats and minimize the
effect of these disruptions.

The next question that one might ponder is what the performance of a network
means. This can be measured in many ways, which may include looking at distances
in the network or how connected the network is. The measurement is dependent on
the preferences of the DM or a possible regulatory context, which is often the case
with transportation networks like public transport and other government-mandated
networks. We will be discussing performance measuring more in-depth in Section 3.

In this thesis, we introduce, discuss and explore how to improve and secure the
performance of transportation networks. Reinforcement actions can be for example:
upgrading the components of the network to be more reliable, constructing new
connections to the network to provide alternate routes or placement of emergency
supplies for rebuilding or fixing destroyed components quickly after a disaster. The
DM is interested in implementing these reinforcement actions in such a way, that
has the most positive impact on the performance of the network while also being
inexpensive to implement.

The DM seeks to identify, which reinforcement actions they should implement to
the network depending on their budget. We introduce a framework for distinguishing
those portfolios of reinforcement actions, which have the best positive impact on the
transportation network in question while also accomplishing this as inexpensively
as possible. This framework could then assist DM by recommending reinforcement
actions to them.

This thesis is structured as follows, in Section 2 we go through some background
on the problem by exploring earlier work in the area. In Section 3 we discuss the
methods required for improving the performance of transportation networks more
in-depth by walking through every step of the process in detail. At the end of the
section, the entire procedure is captured in Algorithm 2. In Section 4 we go through
an illustrative example, which clarifies the procedure presented in the previous section
better. We also introduce a method to conduct sensitivity analysis on the problem
at hand to make some more robust conclusions about the results themselves. Lastly
Section 5 summarizes the key points of the thesis neatly.
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2 Background
Kangaspunta and Salo (2014) presents a general framework for securing the perfor-
mance of transportation networks and how to approach computing the cost-efficient
portfolios of node and edge reinforcement actions. The problem is modeled as a
multi-objective optimization problem: maximize the network’s expected performance
and minimize the investment cost of the applied portfolio of reinforcement actions.
We adapt this general framework for our application in this thesis.

An alternative approach to improving the performance of transportation networks
is taken in Ip and Wang (2011). They modeled the problem as a multi-objective
optimization problem, where they wanted to maximize the network’s resilience and
minimize its friability. The paper uses the concept of independent passageway sets to
quantify the resilience of a network. We adapt the concept of independent passageway
sets for building one performance metric.

In Latora and Marchiori (2001) the concepts of global efficiency and local efficiency
are introduced for measuring the performance of networks like communication and
transportation systems. They analyze these two performance metrics for unweighted
and weighted graphs representing real-world networks. From their paper, we use
global efficiency as a performance metric in this thesis.

Another approach is taken in Cappanera and Scaparra (2011) for identifying
how to allocate protective resources to transportation networks. They introduce a
multilevel optimization model, which identifies optimal strategies for protecting a
transportation network. Their model proves to be effective even with large networks
having over 200 nodes and 1000 edges.

Haritha and Anjaneyulu (2024) compare different measures of resilience for
networks. They conduct a thorough analysis of varying measures on abstract networks
with different topologies. They adapt the concept of independent passageway sets
from Ip and Wang (2011) and use them to build the measure number of independent
paths. This is similar to our performance metric, which is built with independent
passageway sets.

3 Methods

3.1 Transportation Networks
Transportation networks can be modeled as unweighted and undirected graphs.
Denote by G(V, E) a transportation network, where V = {1, 2, 3, ..., N} is the set of
nodes in the network and E ⊆ {(i, j) | i, j ∈ V, i ≠ j} is the set of edges represented
by pairs of nodes. For readability purposes, we label the edges with an arbitrary
function f : E → {1, 2, 3, ..., M}, where M = |E|. An edge being disrupted means
that the edge is non-operational and we can model this by removing the disrupted
edge from the graph. Without loss of generality, we consider edge disruptions.
Then a node disruption can be modeled by removing all edges connected to the
node. Additionally, we only consider two possible states for each edge: either fully
operational or disrupted. Also, we assume here that there are no ripple effects in the
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disruptions of edges, that is that all of the disruptions are uncorrelated from each
other. From now on edge k refers to the edge (i, j) ∈ E, which is labeled with k, that
is f(i, j) = k ∈ {1, 2, 3, ..., M}. Denote by xk the state of edge k, which indicates
whether or not the edge is operational or disrupted, more precisely

xk =

⎧⎨⎩1, if edge k is operational
0, otherwise

, k = 1, 2, 3, ..., M

The state of a network is defined to be a binary vector x = [x1, x2, x3, ..., xM ] ∈
{0, 1}M = X , where X is called the state space. The collection of disrupted edges of
the network in state x is denoted by Dx = {(i, j) ∈ E | f(i, j) = k ∧ xk = 0} ⊆ E.
The disrupted network is modeled without the disrupted edges. Therefore let the
network, which is in state x, be G(V, Ex), where Ex = E \Dx.

The probability of edge k being operational is P(xk = 1) = 1 − pk and the
probability of it being disrupted is P(xk = 0) = pk. These probabilities are collected
to a probability vector p = [p1, p2, p3, ..., pM ] ∈ [0, 1]M . Since we consider all edge
disruptions to be independent of each other and therefore uncorrelated we can
compute the probability of the network being in a particular state x with (1).

P(x | p) =
M∏︂

k=1
xk · (1− pk) + (1− xk) · pk (1)

3.2 Measuring the Performance
A passageway between two nodes v1, vm ∈ V is a sequence of edges denoted by
P = [(v1, v2), ..., (vm−1, vm)] one could use to get from node v1 to node vm. This
brings us to one of our performance metrics, where we consider the number of different
independent passageways between nodes. These can be characterized by the concept
of an independent passageway set, which is introduced in Ip and Wang (2011) and is
defined in Definition 3.1.

Definition 3.1 (Independent passageway set). If a set of passageways between two
nodes i, j ∈ V contain no common edges with other passageways in the set, the set
is an independent passageway set for the nodes i and j denoted by L(i, j).
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Figure 1: An example of an independent passageway set.

Since the users of transportation networks often seek to use the shortest possible
passageway to get from node i ∈ V to node j ∈ V , we consider only those independent
passageway sets, which consist of the shortest independent passageways possible.
From now on this kind of set for nodes i, j is denoted by L(i, j). The cardinality of
this set is denoted as k(i, j) = |L(i, j)|. From Figure 1 we can see that there are
two different independent passageways between nodes 2 and 7 since all other paths
between these two nodes would have common edges with these two paths. Therefore
k(2, 7) = 2.

In addition to introducing the concept of independent passageway sets, an algo-
rithm for finding these independent passageway sets is presented in Ip and Wang
(2011). Because in this thesis we are only interested in the cardinality of the set k(i, j)
for nodes i, j ∈ V we can further simplify their algorithm. To find this cardinality
we need the concepts of distance between nodes and degree of a node in a graph.
Let d(i, j) be the minimum distance between two nodes i, j ∈ V in the graph. This
distance can be computed with Dijkstra’s algorithm for example. If no passageway
between nodes i, j exists, we define d(i, j) = ∞. The degree of a node is defined
as the number of edges connected to the node denoted by di, i ∈ V . With these
concepts, we can use Algorithm 1, which is adapted from Ip and Wang (2011), for
finding k(i, j), i, j ∈ V .

Algorithm 1 Procedure for computing k(i, j)
1: N(i, j)← min{di, dj}
2: k(i, j)← 0
3: while d(i, j) ̸=∞∧ k < N(i, j) do
4: k(i, j)← k(i, j) + 1
5: Delete all edges in the found shortest passageway
6: end while
7: Recover all deleted edges
8: Output the result k(i, j)
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Now we can use the procedure described in Algorithm 1 to calculate k(i, j) for
all nodes i, j ∈ V . The sum of these is called number of independent paths like
introduced in Haritha and Anjaneyulu (2024). We use the average of these as one of
our performance metrics. It can be computed for a network G in a given state x like
in (2).

v1(x) = 2
N(N − 1)

N∑︂
i=1

N∑︂
j=i+1

k(i, j) (2)

In addition to looking at the number of independent passageways between nodes,
we consider the distances between these nodes, which can be interpreted in a trans-
portation network for example as the number of exchanges between different vehicles
in a public transportation network or the number of different flights needed to take
to go from point A to point B in a network of airports and flight routes. To capture
this aspect we use global efficiency introduced in Latora and Marchiori (2001). It
can be computed for a network G in a given state x as in (3).

v2(x) = 2
N(N − 1)

N∑︂
i=1

N∑︂
j=i+1

1
d(i, j) (3)

Let us assume that the two attributes of the network the two performance metrics
are measuring are mutually preferentially independent and also that a few other
technical details hold for them as described in Dyer and Sarin (1979). With these
assumptions, we can combine them with a linear combination to get the additive
multi-attribute value function defined in (4) for the performance of the network G
in some state x. For this, we need some weights for the performance metrics. Let
w = (w1, w2) ∈ S, where S ⊆ S0 = {w ∈ R2 | w1 + w2 = 1, w1, w2 ≥ 0} be the
vector consisting of the two weights. It belongs to the set of feasible weights S, which
is a subset of all possible weights S0.

V (w, x) = w1v1(x) + w2v2(x), w ∈ S (4)

Now with the help of (1) and (4) we can define the expected utility for the network
G given some weight vector w and the disruption probabilities p. This is done in (5).

E[V (w, x) | p] =
∑︂
x∈X

P(x | p) · V (w, x) (5)
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Figure 2: An example of a possible set of feasible weights.

The set of feasible weights S depends entirely on the preferences of the DM
between the two performance metrics. These preferences can be captured in many
ways as described in Morton (2018). An example of a possible set of feasible weights
S, which resulted from the preference w1 ≥ w2 is visualized in Figure 2 as the bold
line segment. The dotted line represents those possible weights, which are no longer
feasible given this preference.

Due to the fact the DM themself do not always know their preferences regarding
the exact weights for the performance metrics, evaluating the performance seems
difficult due to the uncountably infinite size of the set of feasible weights. To help
with this problem we define Sext ⊆ S to be the set of extreme points of S. Luckily it
is sufficient to just examine the performance for the weights in this set according
to Liesiö et al. (2008). The performance for the weights in Sext gives us enough
information about the performance for all weights in S to compare the effects of
reinforcement actions on the performance of the network.

3.3 Securing the Performance
We consider two types of reinforcement actions. Type I action is reinforcing existing
edges in the graph. Reinforcing an existing edge reduces its disruption probability.
Type II actions then add new edges to the network with some disruption probability.
Consider that there are r alternate reinforcement actions in the set of reinforcement
actions R = {1, 2, 3, ..., r}, which can be combined in all possible ways. This leads to
2r different combinations of reinforcement actions. Let a portfolio of reinforcement
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actions q = [q1, q2, q3, ..., qr] ∈ {0, 1}r be such a combination, where qm = 1 if
reinforcement action m ∈ R is implemented in the portfolio and qm = 0 otherwise.
Denote by Q = {0, 1}r the set of all portfolios of reinforcement actions.

Implementing a portfolio of reinforcement actions qj ∈ Q to the network G(V, E)
modifies it, which results in a network G(V, Ej). In the case that qj includes no Type
II actions E = Ej and when it does E ⊂ Ej . Applying a portfolio might also modify
the original disruption probabilities as discussed earlier. If edge k ∈ {1, 2, 3, ..., Mj},
where Mj = |Ej|, is reinforced in portfolio qj it lowers its disruption probability to
some p′

k < pk. Therefore when portfolio qj is applied to the network G(V, E) the
disruption probability of edge k becomes

pk(qj) =

⎧⎨⎩p′
k, if edge k was reinforced in portfolio qj

pk, otherwise

Reinforce edge k

Do not reinforce edge k

Disruption

No disruption

Edge k is not available

Edge k is available

Disruption

No disruption

Edge k is not available

Edge k is available

Figure 3: Decision tree for reinforcing edge k.
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Figure 4: An example of possible reinforcement actions.
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Both types of reinforcement actions will always increase the expected utility for
the performance of the network because it monotonically increases when disruption
probabilities decrease and when the number of edges in the network increases. There
is a decision tree to capture the process of choosing to reinforce a particular edge in
the network in Figure 3. Figure 4 represents an example of possible edges to add
depicted with dotted lines and possible edges to reinforce in bold to an example
network with 10 nodes and 12 edges.

In addition to considering the two performance metrics, the DM seeks to minimize
investment costs. All reinforcement actions come with some cost, which can all be
collected into a cost vector c = [c1, c2, c3, ..., cr] ∈ Rr

+, where the elements are the
costs of the reinforcement actions associated by index. Let us assume that there
are no cost synergies between the reinforcement actions and therefore the cost of a
reinforcement action does not depend on whether or not any other reinforcement
actions are implemented. With the cost vector c and this assumption we can define
the cost of a portfolio of reinforcement actions as a dot product of the portfolio and
the cost vector as in (6).

C(q) =
r∑︂

k=1
ckqk, q ∈ Q (6)

Now with the cost of a portfolio, we can prune out those portfolios, which are
too expensive. Given some budget b the set of feasible portfolios of reinforcement
actions is defined as QF = {q ∈ Q | C(q) ≤ b} ⊆ Q. Since the DM seeks to
maximize performance, while minimizing investment costs, we need to identify those
portfolios, which outperform other ones while also having a lower or equal cost. We
start by defining what it means to outperform another portfolio. This is captured
with the concept of dominance, which is defined in Definition 3.2. Additionally, we
are also interested in identifying portfolios, which perform equally well so we can
prune the one, which is more expensive. Two portfolios qk, qj ∈ QF are considered
to be equal with regard to efficiency denoted by qk ∼ qj if and only if ∀w ∈ Sext :
E[V (w, x) | qk] = E[V (w, x) | qj].
Definition 3.2 (Dominance between portfolios). A portfolio qk ∈ QF dominates
portfolio qj ∈ QF denoted by qk ≻ qj if and only if⎧⎨⎩∀w ∈ Sext : E[V (w, x) | qk] ≥ E[V (w, x) | qj]

∃w ∈ Sext : E[V (w, x) | qk] > E[V (w, x) | qj]
The dominance between portfolios is not sufficient for pruning inefficient portfolios

from the set of feasible portfolios, since it does not take into account the cost of
portfolios. We define that a feasible portfolio qk ∈ QF dominates with cost another
feasible portfolio qj ∈ QF if it dominates it and has at most the same cost associated
with it or in the other case if they are equal with regard to efficiency and the cost of
portfolio qk is strictly less than the cost of portfolio qj.
Definition 3.3 (Dominance with cost between portfolios). A portfolio qk ∈ QF

dominates with cost another portfolio qj ∈ QF denoted by qk ≻C qj if and only if
(qk ≻ qj ∧ C(qk) ≤ C(qj)) ∨ (qk ∼ qj ∧ C(qk) < C(qj)
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We are especially interested in those portfolios, which are non-dominated with
taking cost into account otherwise known as cost-efficient portfolios. With the help of
Definition 3.3 we can now prune inefficient portfolios from the set of feasible portfolios
QF to get the set of cost-efficient portfolios QCE, that is those portfolios which are
not dominated with cost by any other portfolios in the set of feasible portfolios. In
Definition 3.4 the formal definition of a cost-efficient portfolio is presented. The
procedure for finding this set is presented and explained in Section 3.4.

Definition 3.4 (Cost-efficient portfolio). A portfolio qk ∈ QF is cost-efficient and
therefore belongs to the set of cost-efficient portfolios QCE ⊆ QF if and only if

∄qj ∈ QF : qj ≻C qk

Table 1: Example of a set of feasible portfolios.
Portfolio Cost E[V (x, w1) | qk] E[V (x, w2) | qk]
q1 0.0 0.90 0.40
q2 1.0 0.95 0.45
q3 1.0 0.95 0.44
q4 1.0 1.00 0.43
q5 1.9 1.15 0.47
q6 2.0 1.15 0.47
q7 2.0 1.16 0.46

Let us go through a small example of cost-efficiency. Consider that there are
seven feasible portfolios and two extreme points w1 and w2 as in Table 1. Starting
from the top: we consider portfolio q1, which has a cost of 0. We see that there
are no other feasible portfolios with equal or lower cost and therefore according to
Definition 3.4 it is cost-efficient. Now consider portfolios q2, q3, and q4 which all
have a cost of 1. We can see that portfolio q2 dominates portfolio q3 since their costs
are equal and we see that⎧⎨⎩E[V (x, w1) | q2] = E[V (x, w1) | q3]

E[V (x, w2) | q2] > E[V (x, w2) | q3]

There is no dominance between portfolios q2 and q4. Additionally, we notice that
portfolio q5 dominates q6, since the latter is more expensive C(q5) < C(q6), while
they have the same expected performance for both extreme points⎧⎨⎩E[V (x, w1) | q5] = E[V (x, w1) | q6]

E[V (x, w2) | q5] = E[V (x, w2) | q6]

Now that we prune out portfolios q3 and q6 there is no longer dominance between
any of the other feasible portfolios. Therefore QCE = {q1, q2, q4, q5, q7}.
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3.4 Finding the Cost-Efficient Portfolios
We have now gone over how to model transportation networks as graphs, how
to calculate the expected utility for the performance of such networks and how
to compare portfolios of reinforcement actions with our notion of expected utility.
With these, we can determine if a portfolio of reinforcement actions is cost-efficient
according to Definition 3.4. Next, we are going to go over the procedure for finding
the cost-efficient portfolios of reinforcement actions when given a transportation
network G(V, E), the set of extreme points Sext of the set of feasible weights S,
the possible r alternative reinforcement actions and their costs and effects. This
procedure is presented in Algorithm 2, which is adapted from Kangaspunta and Salo
(2014).

Algorithm 2 Procedure for finding the cost-efficient portfolios
1: Q0 ← [0, 0, 0, ..., 0] ∈ QF

2: for l = 1, 2, 3, ..., r do
3: Ql ← {qk ∈ QF | qj ∈ Ql−1 : qk

l = 1 ∧ ∀i ̸= l : qk
i = qj

i }
4: for qk ∈ Ql do
5: Compute E[V (w, x) | qk] ∀w ∈ Sext

6: end for
7: Ql ← Ql \ {qk ∈ Ql | ∃qj ∈ Ql−1 : qj ≻C qk}
8: Ql−1 ← Ql−1 \ {qj ∈ Ql−1 | ∃qk ∈ Ql : qk ≻C qj}
9: Ql ← Ql ∪Ql−1

10: end for
11: QCE ← Qr

12: Output the result QCE

In Step 1 we initialize Q0 with the trivial cost-efficient portfolio portfolio containing
no reinforcement actions at all. In Step 3 we consider only those feasible portfolios,
which add the reinforcement action l to a portfolio of Ql−1 for iteration l. We compute
the expected utility of the performance for all weights w in the set of extreme points
Sext given portfolio qk is applied to the network in Step 5. After we have done that
for all portfolios in Ql, in Step 7 we prune out those portfolios from Ql which are
dominated with cost by at least one portfolio in Ql−1 and vice versa in Step 8. Then,
in Step 9 of iteration l we can combine these two sets to be Ql. Lastly, after the final
iteration r we can save Qr as the set of cost-efficient portfolios QCE and output it in
Steps 11 and 12.

4 Results

4.1 Example Network
We illustrate the procedure depicted in Algorithm 2 with a small example. First let
us consider a transportation network, which has 10 nodes and 12 edges connecting
them as depicted in Figure 5. Estimating the disruption probabilities for each edge



16

in the network is difficult due to the complexity of estimating the probabilities of
different events like earthquakes or terrorist attacks causing disruptions. For the sake
of the example let us arbitrarily choose that each edge has a disruption probability
of 0.2, pk = 0.2, ∀k ∈ {1, ..., 12}.
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Figure 5: Example network with 10 nodes and 12 edges.

Let us consider a total of 25 alternative reinforcement actions to choose from. The
first 12 of them are Type I actions each corresponding to reinforcing its corresponding
edge. These reinforcement actions lower the disruption probability of the edge it
corresponds to from 0.2 to 0.1 and all have a cost of 1 unit. Additionally, there are
13 Type II actions as depicted in Figure 6, which all have an estimated disruption
probability of 0.3 and come with a cost of 2 units. With these 25 reinforcement
actions, one could construct 225 different portfolios. With the restriction of having a
budget b = 9, this number then reduces to around 250 000 different feasible portfolios.
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Figure 6: Possible Type II actions.

Let us also assume that the DM has not stated any preference regarding the
two performance metrics defined in (2) and (3). That means that our set of feasible
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weights is just S = S0 = {w ∈ R2 | w1 + w2 = 1, w1, w2 ≥ 0} and its corresponding
set of extreme points is Sext = {(1, 0), (0, 1)}. With the help of the methods presented
in Section 3 and Algorithm 2, computing the set of cost-efficient portfolios yields
28 cost-efficient portfolios. They are numbered from 1 to 28 in ascending order
about the cost of the portfolio (see Appendix A). Computing these took around 110
minutes on a modern CPU (6 cores, 12 threads, 3.7 GHz).

To get a better understanding of the results, in Figure 7 all 28 cost-efficient
portfolios with varying costs are plotted. On the x-axis is the expected average
number of independent passageways of the portfolio and on the y-axis the expected
global efficiency. From it, we can see that there seems to be a positive correlation
between the two expectations of the performance metrics, which was expected since
both of them measure the connectivity of the network.

Figure 7: Performance of the cost-efficient portfolios.

Additionally in Figures 8 and 9 the expected values of the two performance
metrics are plotted against the cost of a portfolio for all 28 cost-efficient portfolios.
From these two figures, we can see that there is approximately a 79% increase in
the expected average number of independent passageways and a 28% increase in
expected global efficiency when comparing the expected effects of those portfolios
having a cost of 9 units to the expected performances of the original network.
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Figure 8: Expected average number of independent passageways as a function of
cost.

Figure 9: Expected global efficiency as a function of cost.

Since the budget in this example problem was 9 units, let us take a closer look
at those portfolios utilizing the whole budget. In Figure 10 those six portfolios
are plotted with the x-axis having the expected average number of independent
passageways and on the y-axis is the expected global efficiency. Comparing the two
extremes here portfolio 25 and 26 we see that the resulting expected global efficiency
from implementing portfolio 25 is about 0.6% better than that of portfolio 26, but
on the other hand portfolio 26’s resulting expected average number of independent
passageways is approximately 5.7% larger than that of portfolio 25. In the case
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where the DM does not value global efficiency as much as the average number of
independent passageways of the network, they should probably favor portfolios 26
and 27 over the other portfolios, when they are seeking to spend their whole budget.

Figure 10: Cost-efficient portfolios with a total cost of 9 units.

4.2 Sensitivity Analysis
The results of Algorithm 2 are highly dependent on parameters like the disruption
probabilities of the edges, the costs and effects of the reinforcement actions and the set
of feasible weights representing the preferences of the DM. It is instructive to conduct
some sensitivity analysis about those parameters where there is uncertainty to get a
better understanding of the results and identify robust reinforcement actions. For this
we can use the core index of a reinforcement action, which was introduced in Liesiö
et al. (2008) and defined in (7). First, let us limit ourselves to only those cost-efficient
portfolios that have a total cost equal to some level β ∈ R+ the DM is seeking to invest
to secure the network performance Qβ

CE = {q ∈ QCE | C(q) = β} ⊂ QCE. Then we
compute the relative share of each reinforcement action in this set of cost-efficient
portfolios to get the core indexes of all the reinforcement actions.

CI(m) = |{q ∈ Qβ
CE | qm = 1}|
|Qβ

CE|
, m = 1, 2, 3, ..., r (7)

A reinforcement action that has a core index of one indicates to us that it is in all
portfolios of Qβ

CE. Based on this we can safely recommend this reinforcement action
to the DM when they are looking to invest β units in reinforcing the transportation
network. A reinforcement action with a core index of zero on the other hand indicates
to us that that reinforcement action is not in any of the portfolios in Qβ

CE and
thus we can safely discard the reinforcement action from the selection. For those
reinforcement actions for which 0 < CI(m) < 1 we can not draw such conclusions
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without more information about the parameters. In the case, that the DM trusts all of
the parameters and we have no further information, we can recommend reinforcement
action for which 0 < CI(m) < 1, but even in this case the resulting recommendation
is not guaranteed to be optimal.

One way how to make more robust recommendations is to use decision rules like
minimax regret or maximin, see Greco et al. (2016) for more information. When where
there is uncertainty in the parameters, we can still draw some meaningful conclusions
with sensitivity analysis. Suppose that we have some real-valued uncertain parameters
(y1, y2, y3, ..., yn) ∈ Rn and some confidence intervals (I1, I2, I3, ..., In) for each of them.
With these, we can define the uncertainty set to be D = I1 × I2 × I3 × ...× In. We
can then take a similar approach as we took with the weights of the two performance
metrics and we can just consider the set extreme points Dext of the uncertainty set
D for similar reasons as with the weights in Section 3.2. Then one could conduct
sensitivity analysis using this set of extreme points and the concept of core indexes
to make more robust recommendations for reinforcement actions.

Let us consider a scenario, where we have uncertainty in the disruption probabili-
ties of new edges and in the costs of them in our example problem from Section 4.1. For
simplicity let us consider the two cases separately. In the first case, suppose all we know
is that each new edge has a disruption probability pk ∈ [0.2, 0.4], k = 13, 14, 15, ..., 25.
This would result in an uncertainty set with 13 dimensions, which has 213 extreme
points. Computing the cost-efficient portfolios for all of these points would be very
costly time-wise because computing the cost-efficient portfolios just once in Section
4.1 took almost 2 hours. To simplify the computations we assume that all new edges
still have the same disruption probability. Additional simplification is to compute the
cost-efficient portfolios just for four values on this interval pk ∈ {0.2, 0.25, 0.35, 0.4}
to illustrate this process of sensitivity analysis. The resulting core indexes of the
reinforcement actions, when β = 9 was used, are plotted together with the core
indexes of the reinforcement actions from the default scenario in Figure 11. Those
reinforcement actions, which have CI(m) = 0 are omitted from the plot.
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Figure 11: Core indexes with uncertainty in the disruption probabilities of new edges.

From Figure 11 we can see that there are three reinforcement actions 5, 13 and
15, which have a CI(m) = 1. This tells us that these three reinforcement actions
are selected in every cost-efficient portfolio, which has a total cost of 9 units, in this
case with varying disruption probabilities of new edges. Based on this and with
the assumptions we made we can recommend these three reinforcement actions to
the DM when they seek to use the full budget of 9 units. If one wishes to be even
more confident about a recommendation like this, one would have to conduct more
sensitivity analysis for example using the uncertainty sets discussed earlier.

We can safely discard the reinforcement actions, which have a CI(m) = 0 because
they are not present in any of the cost-efficient portfolios with a total cost of 9. That
leaves us to consider the reinforcement actions 16, 17, 18, 24 and 25. We can not
draw such conclusions about these as we can for the three reinforcement actions
with CI(m) = 1. The choice for the reinforcement actions selected to use the rest of
the budget depends on the DMs preferences, but we can for example recommend
reinforcement actions 24 and 25 over the other ones in the case there is no further
information or preferences from the DM. This is due to the case that they are more
reliable when we know that there is uncertainty in the disruption probabilities of
new edges.

For the second case, we consider uncertainty in the costs of adding new edges.
Again for simplicity, we assume that all new edges have the same cost. In this case, we
only know that adding a new edge has a cost ck ∈ [1.5, 2.5], k = 13, 14, 15, ..., 25. Com-
puting the cost-efficient portfolios with just four different values ck ∈ {1.5, 1.75, 2.25, 2.5}
yields us the results presented in Figure 12. The results are quite similar to the
ones in Figure 11 and we can draw similar conclusions from it. What we can say
is that these results do not seem to vary as much as in the first case, when there
was uncertainty in the disruption probabilities of new edges. The core indexes are
constant across all five choices of costs for the new edges.
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Figure 12: Core indexes with uncertainty in the costs of Type II actions.

Based on the sensitivity analysis done on the two uncertain parameters, in this
example, we would recommend the DM to choose the reinforcement actions 5, 13
and 15 since they have a CI(m) = 1 in both cases. The rest of the budget should be
spent on 16, 17, 18, 24 or 25 depending on the preferences of the DM. They should
not consider other reinforcement actions not listed here since they have a CI(m) = 0
and are therefore not selected in any of the cost-efficient portfolios with a total cost
of 9 units.

This kind of sensitivity analysis should be conducted more extensively when facing
uncertainty in the parameters and wanting to make more robust recommendations
for reinforcement actions. In this example, it should have been done with the help
of the resulting uncertainty set D constructed on both the uncertain disruption
probabilities and costs of new edges.

5 Summary
This thesis introduces an application of the framework from Kangaspunta and Salo
(2014) by considering two types of reinforcement actions: reinforcing existing edges
and adding new edges to the network. The framework allows the identification of
cost-efficient portfolios of reinforcement actions on transportation networks, where the
transportation network’s edges may be disrupted due to deterioration of components,
extreme weather conditions, natural disasters or other external hazards like terrorist
attacks.

Additionally, we explore a method for sensitivity analysis to make robust recom-
mendations of reinforcement actions when faced with uncertainty in the parameters.
This method is useful for identifying robust reinforcement actions with uncertainty
in the parameters, but it is computationally expensive because it requires the main
algorithm used in this thesis to be run multiple times. This is because the algo-



23

rithm itself already proved to be computationally expensive even for relatively small
networks having around 10 nodes and 12 edges.

To further improve this framework one could explore alternate ways for deter-
mining the expected utility for the performance of a network in a faster way. The
expected utility used in this thesis proved to be computationally expensive as its
complexity was exponential in the number of edges in the network. What could
be done with a completely alternative way of evaluating performance, for example
adapting the resilience of a transportation network defined in Ip and Wang (2011).
Another approach would be to speed up the computation of the expected utility by
reducing the size of the state space by rare-event approximation or by fixing some
edges to be always operational.

The second aspect one could explore is the possibility of getting rid of the
assumption of uncorrelated edge disruptions. This could be done for example with
the aid of Bayesian networks to model the correlated disruption probabilities. A
Bayesian network could then be used to compute the probabilities of the possible
states the network can be in and would replace the presented method in (1) for
computing the probability of a state. This would allow us to model more accurately
threats, which affect multiple edges at the same time like large-scale natural disasters
and terrorist attacks. Another problem one could dive deeper into is the elicitation
of the weights given to the performance metrics. This could be done with many
well-known methods discussed in Morton (2018).
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A Cost-Efficient Portfolios for the Example Net-
work

In Table A1 the resulting cost-efficient portfolios of the example problem from Section
4.1 are presented. They are numbered in ascending order about their cost from
1 to 28. Also, the portfolios themselves, their costs and their respective effects
are presented in the table. Their effects being their expected average number of
independent passageways E[v1(x)] and their expected global efficiency E[v2(x)] of
the resulting networks when the corresponding portfolio has been applied.

Table A1: Cost-efficient portfolios.
Index Portfolio Cost E[v1(x)] E[v2(x)]
1 [ 0000000000000000000000000 ] 0 0.9771 0.4310
2 [ 0000100000000000000000000 ] 1 0.9946 0.4388
3 [ 0000000100000000000000000 ] 1 1.0041 0.4384
4 [ 0000000000000010000000000 ] 2 1.1598 0.4648
5 [ 0000000000000001000000000 ] 2 1.2004 0.4647
6 [ 0000100000000010000000000 ] 3 1.1781 0.4727
7 [ 0000100000000001000000000 ] 3 1.2188 0.4726
8 [ 0000000100000001000000000 ] 3 1.2236 0.4705
9 [ 0000000000000001000000001 ] 4 1.4094 0.4942
10 [ 0000100000000001000000001 ] 5 1.4284 0.5022
11 [ 0000000100000001000000001 ] 5 1.4387 0.4997
12 [ 0000000000000010100000010 ] 6 1.4868 0.5212
13 [ 0000000000000010010000010 ] 6 1.4601 0.5224
14 [ 0000000000000010100000001 ] 6 1.5393 0.5203
15 [ 0000100000000010100000010 ] 7 1.5060 0.5295
16 [ 0000100000000010010000010 ] 7 1.4792 0.5306
17 [ 0000100000000010100000001 ] 7 1.5586 0.5286
18 [ 0000000000001011000000010 ] 8 1.7021 0.5472
19 [ 0000000000001010100000010 ] 8 1.7000 0.5478
20 [ 0000000000001010010000010 ] 8 1.6684 0.5489
21 [ 0000000000001011000000001 ] 8 1.7649 0.5457
22 [ 0000000000001010100000001 ] 8 1.7596 0.5462
23 [ 0000100000001011000000010 ] 9 1.7318 0.5519
24 [ 0000100000001010100000010 ] 9 1.7297 0.5527
25 [ 0000100000001010010000010 ] 9 1.6976 0.5539
26 [ 0000100000001011000000001 ] 9 1.7951 0.5504
27 [ 0000100000001010100000001 ] 9 1.7902 0.5511
28 [ 0000100000001010010000001 ] 9 1.7507 0.5519
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