
Enhanced Policy Iteration Methods
for Optimal Maintenance
Scheduling

Konsta Parkkali

School of Science

Bachelor’s thesis
Espoo 27.8.2021

Supervisor

Prof. Antti Punkka

Advisor

MSc Jussi Leppinen

Copyright © 2021 Konsta Parkkali

The document can be stored and made available to the public on the open internet
pages of Aalto University. All other rights are reserved.



Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the bachelor’s thesis

Author Konsta Parkkali
Title Enhanced Policy Iteration Methods for Optimal Maintenance Scheduling
Degree programme Engineering Physics and Mathematics
Major Mathematics and Systems Sciences Code of major SCI3029
Teacher in charge Prof. Antti Punkka
Advisor MSc Jussi Leppinen
Date 27.8.2021 Number of pages 24 Language English
Abstract
Markov decision processes (MDPs) are widely used to help decision making in situa-
tions where future outcomes are partially random. The standard methods for solving
the optimal policy of an MDP are Value Iteration and Policy Iteration. However,
these methods become impractical in some cases. Value Iteration tends to converge
very slowly in discounted problems with a discount factor close to 1, whereas the
computation times with Policy Iteration depend strongly on the size of the state space.

In this thesis, we implement Modified Policy Iteration algorithm to a multi-component
maintenance scheduling model based on a discounted MDP. The optimal mainte-
nance schedule of this model was previously computed with Policy Iteration, which
greatly restricted for example the number of components in the model. We further
enhance the performance of Modified Policy Iteration with Gauss-Seidel method
and Anderson Acceleration. We compare the different algorithms derived from these
methods in terms of the computation times. We further analyze the computation
times of the algorithms by varying both the discount factor and the size of the state
space.

Modified Policy Iteration enabled us to solve the optimal maintenance schedule
much faster than previously. The algorithm also required far less computational
memory to operate when compared to Policy Iteration. This allowed us to solve
also much larger problems in terms of the size of the state space. Both Gauss-Seidel
method and Anderson Acceleration were successful in decreasing the computation
time of Modified Policy Iteration. Anderson Acceleration was especially efficient
when the discount factor was very close to 1. The best algorithm in terms of com-
putation time was achieved by combining both Gauss-Seidel method and Anderson
Acceleration.
Keywords Markov decision process, Policy Iteration, Modified Policy Iteration,

Gauss-Seidel, Anderson Acceleration, maintenance scheduling



Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä

Tekijä Konsta Parkkali
Työn nimi Tehostetut ohjauksen iterointi menetelmät optimaaliseen huollon

aikatauluttamiseen
Koulutusohjelma Teknillinen fysiikka ja matematiikka
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Prof. Antti Punkka
Työn ohjaaja DI Jussi Leppinen
Päivämäärä 27.8.2021 Sivumäärä 24 Kieli Englanti
Tiivistelmä
Markov-päätösprosessi on matemaattinen runko malleille, joita käytetään päätöksen-
teon apuna, kun tulevaisuuden tapahtumat ovat epävarmoja. Markov-päätösprosessin
ratkaisu on prosessin optimaalinen ohjaus. Kaksi tavallisinta menetelmää Markov-
päätösprosessin ratkaisemiseen ovat arvoiterointi (engl. Value Iteration) ja ohjauksen
iterointi (engl. Policy Iteration). Nämä menetelmät ovat kuitenkin joskus epäkäy-
tännöllisiä. Arvoiterointi konvergoituu erittäin hitaasti diskontatuissa ongelmissa,
joissa diskonttauskerroin on lähellä lukua yksi. Ohjauksen iteroinnin laskenta-ajat
taas riippuvat vahvasti tila-avaruuden koosta.

Tässä kandidaatintyössä implementoidaan muokattu ohjauksen iterointi algoritmi
huollon aikataulutus malliin, jonka runkona on diskontattu Markov-päätösprosessi.
Mallin ratkaisu kertoo parhaan tavan huoltaa monikomponenttinen systeemi, jonka
komponenttien välillä on erilaisia riippuvuuksia. Mallin optimaalinen huoltoaikataulu
ratkaistiin aikaisemmin ohjauksen iteroinnilla, mikä rajoitti esimerkiksi komponent-
tien mahdollista määrää. Muokattua ohjauksen iterointi algoritmia parannetaan
edelleen Gauss-Seidel-metodilla ja Anderson-kiihdytyksellä (engl. Anderson Accelera-
tion). Näistä metodeista johdettuja algoritmeja vertaillaan laskenta-ajan perusteella.
Algoritmien laskenta-aikoja analysoidaan lisäksi vaihtelemalla diskonttauskerrointa
ja tila-avaruuden kokoa.

Työ osoitti, että muokattu ohjauksen iterointi ratkaisee huollon aikataulutus mallin
optimaalisen huoltoaikataulun paljon aikaisempaa lyhyemmässä ajassa. Algoritmi
vaati myös paljon vähemmän laskennallista muistia toimiakseen verrattuna ohjauksen
iterointiin. Tämä mahdollisti myös tila-avaruudeltaan paljon suurempien ongelmien
ratkaisemisen. Sekä Gauss-Seidel-metodi että Anderson-kiihdytys pienensivät onnis-
tuneesti muokatun ohjauksen iterointi algoritmin laskenta-aikaa. Anderson-kiihdytys
oli erityisen tehokas silloin, kun diskonttauskerroin oli erittäin lähellä lukua yksi.
Laskenta-ajan kannalta paras algoritmi saatiin yhdistämällä Gauss-Seidel-metodi
sekä Anderson-kiihdytys.
Avainsanat Markov-päätösprosessi, ohjauksen iterointi, muokattu ohjauksen

iterointi, Gauss-Seidel, Anderson-kiihdytys, huollon aikataulutus



Contents
1 Introduction 1

2 Literature review 2

3 Multi-component model review 4

4 Comparison of selected methods 9
4.1 Selected methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Modified Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Gauss-Seidel method . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Anderson Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 22



1

1 Introduction

Modern systems often compose of many components. Without maintenance, these
components deteriorate and become prone to breaking. If a critical component breaks,
the whole system depending on it will fail. These failures can be extremely dangerous,
for example the engine of an airplane breaking in the middle of a flight. System
failures can also cause additional costs as the system cannot be in use before the
broken component is fixed or replaced. On the other hand, maintaining components
yields different costs, too. Hence, it is beneficial to use the components as long as
possible while avoiding failures.

The randomness of the component breakdowns makes it hard to plan a good mainte-
nance schedule. In addition, there can be dependencies between the components. For
example, it can be cheaper to maintain the components of a system together than
separately. Thus, mathematical modelling is often needed to get a good insight on
how these systems should be maintained. One such option is Markov decision process
(MDP; Howard, 1960), which is able to tackle the randomness and the complex
structures of these systems. MDPs have been widely used in solving the optimal
maintenance schedule of different maintenance problems, such as highway pavement
maintenance (Puterman, 1994).

Leppinen et al. (2021) introduce a mathematical maintenance scheduling model for
multi-component systems, with different component dependencies. Every component
is critical and breaks according to some distinct probability distribution. Kokkonen
(2021) extends this model by allowing components to have different quality types.
For example, a ’bad’ component is more likely to break at a certain age than a
’good’ component. These quality types can be determined by inspections. The model
is based on a discounted Markov decision process, and the optimal maintenance
schedule is calculated with Policy Iteration. The downside of Policy Iteration is
that it limits for example the number of components in the system, as adding more
components quickly increases the computational complexity.

The optimal policies of Markov decision processes can also be calculated approximately.
Puterman (1994) introduces an approximate version of Policy Iteration called Modified
Policy Iteration, and a few variants that can improve its performance including the
Gauss-Seidel method. Another, more recent method for enhancing the performance of
Modified Policy Iteration is Anderson Acceleration (Geist and Scherrer, 2018). This
thesis compares the applicability of these methods to the maintenance scheduling
model presented by Leppinen et al. (2021) and Kokkonen (2021).

The rest of this thesis is organized as follows. Chapter 2 presents shortly the different
methods used for solving MDPs. In Chapter 3 we introduce the maintenance
scheduling model, for which we will apply the selected methods. In Chapter 4 we
review the basic theory behind MDPs, present the algorithms for the selected methods
and compare the performance of these methods in terms of computation time using
varying parameters for the model. Chapter 5 concludes the results and discusses
some possible future development ideas.



2

2 Literature review

Markov decision process is an extension of a discrete time Markov chain, where the
state of the system can also be affected with actions. These actions have costs that
can be discounted, meaning that future costs are seen less significant than immediate
costs. There are also other variants of MPDs. For example, a state can yield a
distinct reward when visited (Boutilier et al., 1995), or the state of the system might
not be precisely known (Cassandra, 1998). The objective of MDPs is to find an
optimal set of actions, referred to as the optimal policy, which for example minimizes
the operating costs of some system. In this thesis, we consider discounted Markov
decision processes where actions have costs.

The two main algorithms for computing the optimal policy of an MDP are Value
Iteration and Policy Iteration. A third approach for solving MDPs is linear program-
ming, although this has been considered to be impractical for most problems as the
computational complexity is often very high (Littman et al., 2013).

Value Iteration (VI) is the most widely used algorithm for solving MDPs. VI produces
an ε-optimal solution in the sense that with small enough values of ε, an optimal
solution is obtained. VI is often used as it is easy to implement in practise. However,
VI usually converges slowly with high discount factors. Puterman (1994) mentions
several variants that decrease the computation time of VI. He refers to them as
splitting methods, which include Gauss-Seidel and Jacobi Value Iterations, and
over-relaxation. All these methods can also be combined with each other.

Shlakhter (2010) introduces a General Accelerated Value Iteration algorithm (GAVI).
Two different operators can be used in the algorithm: a projective operator and a
linear extension operator. Slakhter’s thesis shows that in certain types of MDPs,
GAVI can perform significantly better than VI. GAVI can also be combined with
the splitting methods.

In more recent years, convex optimization methods have been used to create faster
algorithms for solving MDPs (Grand-Clément, 2021). For example, Geist and Scherrer
(2018) introduce Anderson Accelerated Value Iteration algorithm (AA-VI). Anderson
Acceleration is a method for solving fixed-point iterations, and it originates from
the 1960s. Nevertheless, it has not been implemented in dynamic programming
problems since very recently. Although there is no proof of the convergence of AA-VI,
experimental results have shown it to consistently outperform Value Iteration.

Other ideas from convex optimization used to improve VI’s performance are Nesterov’s
acceleration and momentum (e.g. Goyal, 2019; Akian et al., 2020). Goyal (2019)
shows that these methods can significantly improve the performance of VI. He also
proves that these methods converge to the optimal policy under certain conditions.
Akian et al. (2020) introduce a dth-order algorithm called dA-VI, which is also based
on Nesterov’s acceleration. In the paper, proofs of convergence were made with less
restrictive conditions than in the proof of Goyal (2019).



3

The second main algorithm for solving MDPs, Policy Iteration (PI), is proved to
converge to the optimal policy in a finite number of steps, and to halt when this is
achieved (Puterman, 1994). At each iteration of PI, a linear system of equations
is solved. With problems with large state spaces, the computational complexity of
solving this system of equations becomes infeasibly large, which is why PI is often an
impractical solution method. However, in small problems PI is usually the preferred
method.

Puterman (1994) introduces a modified version of the Policy Iteration algorithm,
called Modified Policy Iteration (MPI). This algorithm combines the ideas of Value
Iteration and Policy Iteration to achieve improved performance especially in dis-
counted MDPs. In the algorithm, the linear system of equations in Policy Iteration
is solved approximately with a fixed-policy Value Iteration. Puterman (1994) con-
cludes: "Therefore in practice, value iteration should never be used. Implementation
of modified policy iteration requires little additional programming effort yet attains
superior convergence."

Puterman (1994) also presents action elimination procedures, which can improve the
performance of MPI even further. This method tries to find non-optimal actions and
remove them from the problem. This reduces the number of possible policies, and
consequently the computation time needed.



4

3 Multi-component model review

This chapter introduces the maintenance scheduling model developed by Leppinen
et al. (2021) and extended by Kokkonen (2021). In this model, a system composes
of N = {1, ..., |N |} components. These components age, which makes them prone to
breaking. The components can be maintained, which makes them as good as new.
Every component in these systems is critical, which means that the breakdown of
any single component will cause the whole system to fail as well. The breakdowns of
the components are considered to be independent of each other.

The components can have different quality types. These quality types affect how
the components break. For example, a component with a ’bad’ quality type will
break more likely at a certain age than a component with a ’good’ quality type.
Each quality type of every component breaks according to a distinct probability
distribution. The quality types can be determined by inspections. Let M ⊆ N
denote the set of components that can be inspected.

The dependencies between the components are modelled with a directed graph
G = (V, D). Here, V is the set of nodes. The root node 0 is the starting point of
every maintenance session. There are two different kinds of action nodes: maintenance
action nodes n for every component in N and inspection nodes m for every component
in M . Maintenance action nodes n refer to the action of maintaining the corresponding
component. Similarly, inspection nodes m refer to the action of inspecting the
component. D is the set of directed arcs (i, j), where i is the start node and j is the
end node of the corresponding arc. The arcs have weights cij ≥ 0, which represent
the costs of action j, if action i is also completed.

If a node is connected to the root node, the corresponding action can be done on
its own. A node that is not connected to the root node is representing a structural
dependency: the action cannot be completed without completing another action as
well. There can also be multiple arcs leading to one node. This is a representation of an
economical dependency: the maintenance cost is dependent on the other maintained
components. Every time at least one component is maintained or inspected, a fixed
set-up cost c0 ≥ 0 is paid. A broken component is always maintained. Maintaining a
broken component causes an additional cost, called a corrective replacement surplus
cost. For component i, this cost is denoted by ri ≥ 0.

Figure 1 is the case example used by Leppinen et al. (2021). We will refer to this as
system 1, because we use it as an example in the following chapter. Here, the system
composes of four components. The components are E1, E2, C and W. In addition
there is a dummy node ’DE12’, which represents the decision to dismantle both E1
and E2. For example, in order to maintain component W, both E1 and E2 must be
dismantled. In this system all components have only one quality type.



5

Figure 1: Case example used by Leppinen et al. (2021).

The model operates in discrete time. At each maintenance instance tk+1 = tk+∆t, k ∈
N the components can be maintained or inspected. The time taken for these actions
is considered to be negligible compared to the maintenance interval ∆t. The ages of
the components are known. We denote the ages of the components at maintenance
instance tk by gk = tk − τ ∈ R|N |, where τ ∈ R|N | is the maintenance history of
the components. Here, τi is the last maintenance instance when component i was
maintained.

Between two consecutive maintenance instances, the components either break or
age. The breakdown probabilities depend on the quality types of the components.
For simplicity, let each component i have Q quality types, which are denoted by
qi ∈ {1, 2, ..., Q}. We model the probability of component i breaking before the age
(gk)i with a cumulative distribution function Φqi

((gk)i). If the quality of component
i is not known, a joint distribution is used. This joint distribution is defined as

Φi((gk)i) =
Q∑︂

qi=1
Φqi

((gk)i)Pqi
((gk)i),

where Pqi
((gk)i) is the probability of component i being of quality type qi at the age

of gk. These probabilities are also referred to as inspection probabilities, and can be
calculated using the quality types’ initial distributions.

It is assumed that only one component can break at a time. This assumption is
not very strong, as Leppinen et al. (2021) state. With this assumption, we can
calculate the conditional probabilities for the individual components breaking during



6

(tk, tk+1) and the probability for the whole system to keep operating during that same
maintenance interval. These are denoted by Fi(tk) for component i and Rsys(tk) for
the whole system. This probability Rsys(tk) is also considered as the reliability of
the system. The system must be maintained so that Rsys(tk) ≥ ρ, where ρ ∈ [0, 1) is
the reliability threshold. For more details on these probabilities, see Leppinen et al.
(2021) and Kokkonen (2021).

We can model the state of this system using the components’ ages gk, the inspection
state Ik and the failure state fk. The inspection state is a vector Ik ∈ {0, 1, ...}|N |,
where (Ik)i is the quality type of component i. If the quality type is unknown, we set
(Ik)i = 0. The failure state is a binary vector fk ∈ {0, 1}|N |, where (fk)i = 1 means
that component i has broken. The possible age combinations gk are limited by the
reliability threshold constraint. From this point forward we consider only those age
combinations gk which satisfy this constraint. Now, the state of the system at tk is
denoted by a matrix sk:

sk :=

⎡⎢⎣g⊤
k

I⊤
k

f⊤
k

⎤⎥⎦ ∈ R3×|N |.

As a result of the reliability threshold constraint, the number of possible age combi-
nations gk is finite and can be denoted by h. Each component i ∈ M has Q different
quality types. For components that cannot be inspected, the quality type is always
unknown. The number of possible inspection states is therefore (Q + 1)M . However,
not all inspection states are feasible with all age combinations. For example, a
’good’ component can satisfy the reliability threshold at an older age than a ’bad’
component. In addition, the quality type of a new component is always unknown as
Kokkonen (2021) assumed. Between every two maintenance instances, one of the
components i ∈ N can break, or all components can remain functional. Thus, the
number of possible outcome scenarios is |N | + 1 in total. Altogether, the number
possible states S the system can be in is limited above by h(Q + 1)M(|N | + 1).

The action of maintaining and inspecting components at a maintenance instance
tk is denoted by ak = {aM

k aI
k}, where aM

k ∈ {0, 1}|N | is the decision of maintaining
components and aI

k ∈ {0, 1}|M | is the decision of inspecting components. If component
i is maintained, we set (aM

k )i = 1. Similarly, we set (aI
k)i = 1 when choosing to

inspect component i. In total, there are 2N × 2M ways to choose a maintenance
action for each state sk. However, the number of feasible maintenance actions is
smaller due to the reliability threshold constraint, the structural dependencies in the
system, and since a broken component must be maintained. In addition, maintained
components can not be inspected. We will denote the set of feasible actions at state
sk as Ask

. For the detailed formulation of these feasible actions, see Leppinen et al.
(2021) and Kokkonen (2021).



7

When a feasible maintenance action ak ∈ Ask
at state sk is chosen, the corresponding

costs C(sk, ak) can be determined from the graph G using Edmond’s algorithm
(Kleinberg and Tardos, 2006). This algorithm finds the cheapest possible way of
executing the chosen maintenance action. If at least one component is maintained or
inspected, the set-up cost c0 is included in the cost. If component i has broken the
surplus cost ri is also included. These costs are discounted with a discount factor
β ∈ (0, 1).

After executing the chosen maintenance actions, the maintenance history τ is updated
by

τi = max{τi, (aM
k )itk}, ∀i ∈ N.

The inspection states are also updated. If an inspected component i is maintained,
the next inspection state (Ik+1)i is zero as the quality type is no longer known.
On the other hand, if a component is inspected, then the next inspection state
(Ik+1)i is set to match the quality type of the component qi. After updating the
maintenance history and inspection state, the system transitions to the next |N | + 1
states according to the transition probabilities determined before. These probabilities
can be expressed as a row vector

Psk
(ak) = [F1(tk), ... , FN(tk)), Rsys(tk)] ∈ R1×(|N |+1).

Using these probabilities together with the inspection probabilities, the probability to
move from state si to sj with action ak can be calculated and is denoted by Psisj

(ak).

Figure 2: Case example used by Kokkonen (2021).

The system in Figure 2 is one of the case examples used by Kokkonen (2021). We
will refer to it as system 2. Here c1, c2, c3 and c4 are the decisions to maintain



8

the corresponding four components and d1 is the decision to inspect component 1.
Component 1 has two different quality types: good and bad. The probability for the
quality type of component 1 being good after maintenance is 0.75.

In both system 1 and 2, we set the reliability threshold to ρ = 0.8, the discount factor
to β = 0.99, and use Weibull distributions as the cumulative distribution functions
that model component breakdowns. In the following chapter, we use the maintenance
interval ∆t as a free parameter to adjust the size of the state space S of the systems.



9

4 Comparison of selected methods

4.1 Selected methods

The methods we chose for comparison are Modified Policy Iteration (MPI), Gauss-
Seidel Modified Policy Iteration (GS-MPI), Anderson Accelerated Modified Policy
Iteration (AA-MPI) and the combination of all of these, Anderson Accelerated Gauss-
Seidel Modified Policy Iteration (AA-GS-MPI). Other methods were left aside as
they were not compatible with our framework or did not improve the computation
times of our numerical examples.

Jacobi Value Iteration differs from regular VI only if the probabilities Pii of moving
from some state back to itself are positive. This means that the system can be
in the same state on multiple consecutive steps. In our model, this would require
that all components are new, and all components are maintained on the very next
maintenance instance. As this is not a very sensible action, the performance of Jacobi
VI would be practically the same as VI.

Shlakhter (2010) mentions that General Accelerated VI is "expected to be inefficient",
with MDPs where the proportion of non-zero elements in transition matrices is less
than 5%. In addition, for very sparse transition matrices (less than 0.1% non-zero
elements) the performance of GAVI is considered to be poor. Since the transition
matrices of the MDPs considered in this thesis are always very sparse, GAVI was
discarded as an infeasible method.

The methods derived from Nesterov’s acceleration (Goyal, 2019) can also be applied
to the fixed-policy value iteration phase of MPI. However, the methods were only
proved to converge in the case that the Markov chain produced by the policy is
irreducible and reversible. In our model, not all policies produce an irreducible
Markov chain. Leppinen et al. (2021) show that with the optimal policy, less than
half of the states are reachable in some cases. Nevertheless, these methods were
found to diverge in our numerical examples.

From the remaining methods, over-relaxation and action elimination procedures
(Puterman, 1994) were not able to improve the performance of Modified Policy
Iteration in our examples. Action elimination procedures were not able to find any
non-optimal actions at all.

4.2 Theory

Before presenting the algorithms, we review the basic theory of MDPs. A discounted
Markov Decision Process can be defined as a tuple (S,As, P, C, β). In this thesis, S
is a finite set of states and As is the finite set of actions that are feasible in state
s. A stationary policy is a function π : S → ⋃︁

s∈S
As, that attaches each state s to



10

some feasible action a ∈ As. P ∈ R|S|×|A|×|S| is a kernel that models the transition
probabilities from each state-action pair to the new states. The transition probabilities
from state s to state s′ with action a are denoted by Pss′(a). C ∈ R|S|×|A| denotes
the costs relating to each state-action pair, which are discounted with a discount
factor β ∈ (0, 1).

The long term running costs of a discounted MDP with a chosen policy π, are
represented by a value vector vπ ∈ R|S|. In this vector, vπ(s) stands for the long term
expected cost of the process when it starts at state s. This vector can be defined
componentwise as

vπ(s) = E

[︄ ∞∑︂
t=0

βtC(st, π(st)) | s0 = s

]︄
, ∀s ∈ S.

The dynamic programming principle states that for a fixed policy π, the value vector
vπ is a solution to the Bellman equation:

vπ(s) = C(s, π(s)) + β
∑︂
s′∈S

Pss′(π(s))vπ(s′), ∀s ∈ S. (1)

The long term running costs vπ of a certain policy π can be solved analytically from
the above system of linear equations (1) in matrix form by v = (I − βP )−1C. The
vector vπ can also be solved with an iterative algorithm called value computation
(Puterman, 1994). Value computation is also referred to as fixed-policy value iteration
or policy evaluation. Value computation is defined as vn+1 = Tπvn, where

vn+1(s) = C(s, π(s)) + β
∑︂
s′∈S

Pss′(π(s))vn(s′), ∀s ∈ S.

This iteration is proved to converge to vπ, with any initial guess v0 ∈ R|S| (Puterman,
1994).

Let π∗ be the optimal policy, which minimizes the expected long term costs. Then
the value vector vπ∗ is the solution to the Bellman optimality equation:

vπ∗(s) = min
π(s)∈As

⎧⎨⎩C(s, π(s)) + β
∑︂
s′∈S

Pss′(π(s))vπ∗(s′)

⎫⎬⎭ , ∀s ∈ S.

This value vector can be solved iteratively with Value Iteration. It is defined as an
iteration vn+1 = Tvn, where

vn+1(s) = min
π(s)∈As

⎧⎨⎩C(s, π(s)) + β
∑︂
s′∈S

Pss′(π(s))vn(s′)

⎫⎬⎭ , ∀s ∈ S. (2)

This iteration is proved to converge to the optimal value vector vπ∗ , with any initial
guess v0 ∈ R|S| (Puterman, 1994).



11

Next we present the algorithm for Policy Iteration, which will form the base for our
methods comparison.

Algorithm 1: Policy Iteration
initialization Select a policy π0
for n ≥ 0 do

Value-determination
Solve vπn from the system of equations (1)
Policy-improvement
Set πn+1(s) to the argument π(s) which minimizes the right hand side of
equation 2 for all s ∈ S.

if πn+1 = πn then
return πn

end
end

When the Policy Iteration algorithm stops, the policy πn will be equal to the optimal
policy π∗ with any initial policy π0 (Puterman, 1994). The initial policy π0 used in
our implementation consists of the cheapest possible feasible actions in each state.

We solve the system of equations (1) approximately using the conjugate gradients
squared method built in Matlab (function cgs). We set the tolerance to 10−6 and
maximum number of iterations to 500.

4.3 Modified Policy Iteration

Next, we introduce the Modified Policy Iteration algorithm. In this algorithm, instead
of solving the value vector vπn analytically, only a small number of value computation
iterations is done to improve the estimate of this vector.

Algorithm 2: Modified Policy Iteration
initialization Select a value vector v0, specify ε > 0, choose M ∈ N
for n ≥ 0 do

Policy-improvement
Set πn+1(s) to the argument π(s) which minimizes the right hand side of
equation 2 for all s ∈ S.

Set u = Tvn

if |u(s) − vn(s)| < ε(1 − β)/2β ∀s ∈ S then
return πn+1

end
Partial value computation
Set vn+1 = (Tπn+1)Mu

end



12

In this algorithm, the parameter M denotes the number of value computation
iterations done in the partial value computation phase at each iteration of the
algorithm. For example, (Tπ)M means that the operator Tπ is applied M times.
This number M could also change from one iteration to another, or be dynamically
set. However, in our numerical examples we were not able to find any changing
or dynamic M that would outperform a fixed M . Notice that when M → ∞, this
algorithm essentially becomes Policy Iteration. In addition, if M = 0 the algorithm
is the same as Value Iteration.

The parameter ε can be seen as the required accuracy of the algorithm. When MPI
stops, the returned policy πn+1 will be ε-optimal in the sense that

|vπn+1(s) − vπ∗(s)| < ε/2 ∀s ∈ S. (3)

Intuitively this means the following. We choose ε = 1 for example. Then the long
term costs related to the returned policy πn+1 are at most 0.5 more than the costs
related to an optimal policy. We use ε = 1 in the following examples, and we will
return later to this choice of ε.

In our implementation, we use the cost vector C(s, π0(s)) ∀s ∈ S as our initial guess
for v0. Here π0 is the same policy as the initial policy used in our implementation of
PI. This initial guess v0 is also used for other algorithms presented in this thesis.

Figure 3: Comparing the choice of M in terms of computation time in systems 1 and
2.

In Figure 3 we compare the total running time of MPI with different values for
the parameter M in systems 1 and 2. For M , we use the values from 50 to 140,



13

with a stepsize of 5. Here we have set ∆t = 0.7 for system 1 and ∆t = 0.9 for
system 2. With low values of M , the approximation vn+1 is too poor for the next
policy-improvement phase. This results in a large number of total iterations for the
algorithm, and in a long total computation time. Too large values of M will only
result in doing useless computations, as the approximation vn+1 is already good
enough for the policy-improvement phase. The graphs are not smooth, as increasing
M does not always decrease the number of total iterations needed. This makes
it hard to choose the best M . In addition, the best choice of M depends on the
parameters of the problem. According to Figure 3, a good choice of M seems to be
around 100 with these settings.

4.4 Gauss-Seidel method

The Gauss-Seidel Modified Policy Iteration algorithm is otherwise similar to MPI,
except instead of operators T and Tπ it uses operators T GS and T GS

π , respectively.
The Gauss-Seidel value computation can be defined as vn+1 = T GS

π vn, where

vn+1(s) = C(s, π(s)) + β
∑︂
s′<s

Ps,s′(π(s))vn+1(s′) + β
∑︂
s′≥s

Ps,s′(π(s))vn(s′), ∀s ∈ S.

Similarly, the Gauss-Seidel Value Iteration can be defined as vn+1 = T GSvn, where

vn+1(s) = min
π(s)∈As

⎧⎨⎩C(s, π(s)) + β
∑︂
s′<s

Ps,s′(π(s))vn+1(s′) + β
∑︂
s′≥s

Ps,s′(π(s))vn(s′)

⎫⎬⎭ , ∀s ∈ S.

Here, the state space S can be seen as an indexed list, where s′ < s is true for every
s′ that has an index smaller than s. The updates are done in order, from the state
with the smallest index to the state with the largest. It is worth noting that the
order of the states s can significantly affect the performance of the Gauss-Seidel
variations. The order of states used in our implementation is illustrated in Table
1 with a system of 2 components, where each component can be a maximum of
2 units old. We set broken component = 3 when no components have broken. If
component inspections are possible, the inspection states are added before the last
column broken component. The inspection states would start at the bottom with a
zero and go up in order. This order of states was first chosen because it is easy to
implement in practise. However, we noticed that this order is also very efficient in
terms of computation time. For example, a reversed order performed much worse.
Wingate et al. (2005) present an algorithm which reorders the states more efficiently.
This order turned out to be very similar to the one illustrated in Table 1. As a result
to the initial state order being so good, any small possible benefits of the new order
were lost to the computational needs of this algorithm.



14

Table 1: Example of state ordering in GS-MPI.
state index age of component 1 age of component 2 broken component

1 2 2 1
2 2 2 2
3 2 2 3
4 2 1 1
5 2 1 2
6 2 1 3
7 1 2 1
8 1 2 2
9 1 2 3
10 1 1 1
11 1 1 2
12 1 1 3

An additional requirement is needed to ensure that GS-MPI converges. For the
initial value vector v0, Tv0(s) ≥ v0(s) needs to hold for all s ∈ S. This holds with
the initial value vector chosen before.

Figure 4: Comparing the choice of M in terms of computation time using GS-MPI.

In Figure 4 we compare the performance of GS-MPI with different values for M
with similar settings as in Figure 3. Here, the best choice of M is around 20-40
considering both systems. This is far less than in MPI. This shows that the operator
T GS

π is more effective in estimating the value vector vπ than the operator Tπ.



15

4.5 Anderson Acceleration

Next, we introduce Anderson Acceleration presented by Geist and Scherrer (2018).
Let π be our chosen policy and Tπ the corresponding operator. First, we need to
calculate the current estimate vm and memorize the last k estimates vm−1, ..., vm−k

for our value vector vπ. Here, k can be seen as the size of the memory. Then, a
vector α ∈ Rk+1 is defined by

α = arg min
α∈Rk+1

⃦⃦⃦⃦
⃦

k∑︂
i=0

αi(Tπvm−k+i − vm−k+i)
⃦⃦⃦⃦
⃦ st.

k∑︂
i=0

αi = 1. (4)

Now, the new estimate vm+1 can be calculated by

vm+1 =
k∑︂

i=0
αiTπvm−k+i.

In equation (4) different norms can be used. Here, we use the L2 norm since
the solution to the optimization problem (4) can be solved analytically using the
Karush-Kuhn-Tucker conditions. Here, we define Bi = Tvi − vi ∈ R|S| and B =
[Bm−k Bm−k+1 ... Bm−1 Bm] ∈ R|S|×(k+1). In addition, 1 ∈ Rk+1 refers to a vector of
ones. According to Geist and Scherrer (2018), we can now calculate the vector α by

α = (B⊤B)−11
1⊤(B⊤B)−11

(5)

Next, we present the algorithm for Anderson Accelerated Modified Policy Iteration.
In the algorithm, M is again the number of value computation iterations. We use
Anderson Acceleration to accelerate the value computation phase. Here, we denote
kmax as the maximum possible size of memory.



16

Algorithm 3: Anderson Accelerated MPI
initialization Select v0, specify ε > 0, choose M, kmax ∈ N
for n ≥ 0 do

Policy-improvement
Set πn+1(s) to the argument π(s) which minimizes the right hand side of
equation 2 for all s ∈ S.

Set u0 = Tvn

if |u0(s) − vn(s)| < ε(1 − β)/2β ∀s ∈ S then
return πn+1

end
Anderson Accelerated value computation
for m from 0 to M do

choose km such that km ≤ min(m, kmax)
Bm = Tπn+1um − um

Set B = [Bm−km Bm−km+1 ... Bm−1 Bm]
Calculate α by (5)
Set um+1 = ∑︁km

i=0 αiTπn+1um−km+i

end
Set vn+1 = uM+1

end

In the algorithm, km is the size of the memory at iteration m of the value computation
phase. Note that if km = 0, the Anderson Accelerated value computation step reduces
to a normal value computation step as the optimization problem (5) becomes trivial.
Geist and Scherrer (2018) proposes that this is chosen by km = min(kmax, m). This
would mean that the acceleration would be done on every iteration using the largest
possible memory. However, we noticed that doing less accelerations results in better
performance in terms of computation time. We suggest the following way to choose
km:

km =
{︄

min(kmax, M − 5), if m ≥ M − 5
0, otherwise.

This choice of km means that we do M − (M − 5) + 1 = 6 acceleration steps with a
fixed memory in the end of the value computation phase. For example, let M = 50.
Now, the acceleration is done only when m ∈ {45, 46, 47, 48, 49, 50}.

Figure 5 compares the time spent for AA-MPI as a function of the parameter M . Here
we have again a similar setting than in Figures 3 and 4. We use a maximum memory
size of kmax = 20. In our experience, too small a memory causes the algorithm to
become inefficient as there is not enough information to do the acceleration. On
the other hand, too large a memory will cause the algorithm to use very old value
vector approximations in the acceleration, which can also decrease the performance.
With very large memories, the matrix B can become badly scaled. This means that
the scale of the elements in the matrix are so different that numerical accuracy is
lost. In addition, with large values for the parameter M , the columns Bm of the



17

matrix become essentially zero vectors. This means that the matrix becomes close to
singular. Both of these numerical issues can cause the algorithm to diverge. However,
with good choices of M and km the algorithm seems robust.

Note that choosing the best M can be a little tricky. For example in system 1 the
optimal choice of M seems to be around 25. However, when decreasing the size
of M , the performance of the algorithm decreases rapidly. Thus, to ensure a good
performance, slightly larger M is often the better choice.

Figure 5: Comparing the choice of M in terms of computation time using AA-MPI.

Next, we will combine Anderson Acceleration with the Gauss-Seidel method. This
is done by changing the operators Tπ and T in algorithm 3 with the operators T GS

π

and T GS, respectively. We also change the way km is chosen. Now we do only one
acceleration on the very last step of the partial value computation phase. In our
numerical examples, we found this to be the best option. This is achieved by choosing
km by

km =
{︄

min(kmax, M), if m = M
0, otherwise.

We call this algorithm Anderson Accelerated Gauss-Seidel Modified Policy Iteration
(AA-GS-MPI). In Figure 6 we compare the performance of AA-GS-MPI with different
values of M with similar settings as in Figure 3. We have set the maximum memory
again to kmax = 20. Here, the best choice of M is around 7-15.



18

Figure 6: Comparing the choice of M in terms of computation time using AA-GS-
MPI.

4.6 Results

In Figure 7 we compare the accuracies of the methods using system 1. We have
set ∆t = 1.65 to ensure that the methods run in approximately similar times. We
have chosen the parameters M = {100, 30, 35, 8} for MPI, GS-MPI, AA-MPI and
AA-GS-MPI, accordingly. At every iteration of the algorithm, the current time and
the accuracy of the value vector is measured and the progress is plotted. With the
accuracy of a value vector, we mean the smallest ε for which equation 3 can be
shown to hold. This figure is here to illustrate the fact that these methods based on
Modified Policy Iteration can be as accurate as Policy Iteration when a small enough
accuracy requirement ε is chosen. In theory, PI should reach an accuracy of ε = 0
when terminating. However, since the system of equations is solved numerically
using the conjugate gradients squared method, ε = 0 is not quite reached. With
our implementation of PI, the algorithm stops at around ε = 1. This is why we set
the accuracy requirement to ε = 1 for the other algorithms as well. Notice that the
Anderson Accelerated versions of MPI converge suddenly to very precise solutions.
Thus, even if the accuracy is set to ε = 1, the result may be even closer to the
optimum.



19

Figure 7: Comparison of the accuracies of the algorithms.

Next, we compare the total computation times of the algorithms with different sizes
for the state space. The algorithms were run on version R2020b of MATLAB. The
hardware used was a Macbook Pro (Mid 2014) with 2.6Ghz Intel Core i5 processor
and with 8GB of RAM. We use the same parameters M as previously. We use
system 1 and we adjust the size by changing the maintenance intervals ∆t according
to Table 2.

Table 2: Maintenance intervals used in Figure 8.
Maintenance interval ∆t 0.7 0.6 0.5 0.4 0.3

Size of state space |S| 95940 212055 529930 1634360 6972365

We illustrate the computation times in Figure 8. The black vertical lines represent
the maintenance intervals. We can see that the computation time is approximately
linear in the size of the state space. For reference, it took 184 seconds for Policy
Iteration to finish with ∆t = 1.0 and |S| = 16155. This shows how slow it is to solve
the system of linear equations (1), even when done with approximate methods.

In our numerical experiments, we found that the maintenance interval does not affect
how the parameter M should be chosen. This makes it possible to choose a good M
with a problem with a small state space, before moving on to solve bigger problems.

From Figure 8 we can see that the Gauss-Seidel variants of the algorithms perform



20

significantly better than algorithms without Gauss-Seidel method. The computation
time of GS-MPI is about 85% smaller than the computation time of MPI. Anderson
Acceleration is also able to decrease the computation times. For example, the
computation times of AA-GS-MPI are about 15-45% less than the ones of GS-MPI.

Figure 8: Algorithm running time comparison as a function of the size of the state
space.

Next, we compare the performances with an increased discount factor. We change
the discount factor β from 0.99 to 0.999 and use the maintenance intervals in Table
3. This change in discount factor slows the convergence of the value computation
phase significantly. This means that a larger value for the parameter M could be
more efficient. Here, we will use M = {200, 80, 50, 8} for MPI, GS-MPI, AA-MPI
and AA-GS-MPI, respectively.

Table 3: Maintenance intervals used in Figure 9.
Maintenance interval ∆t 0.9 0.8 0.7 0.6 0.5

Size of state space |S| 27330 49225 95940 212055 529930

The results are in Figure 9. We can see that the increase in discount factor de-
creases the performance of MPI and GS-MPI significantly. With ∆t = 0.7, MPI is



21

approximately 15 times slower when the discount factor was increased from β = 0.99
to β = 0.999. Similarly, GS-MPI is over 6 times slower. On the other hand, the
Anderson Accelerated versions are not affected much. With ∆t = 0.5, AA-GS-MPI
became only 23 % slower when the discount factor was increased. This shows that
Anderson Acceleration is especially efficient with problems with high discount factors,
as normal value computation converges very slowly.

Figure 9: Comparing the computation times with a discount factor β = 0.999.

The best algorithm it terms of computation time turned out to be the combination
of Gauss-Seidel method and Andersson Acceleration. However, 8GB of RAM became
quickly the limiting factor with the calculations. For testing our algorithm with even
larger problems, we switched on a windows 10 desktop computer with Intel Xeon
Platinum 8176 CPU and 32GB of RAM. The version of MATLAB was R2021a.
With AA-GS-MPI, we were able to solve the optimal maintenance schedule of system
1 with ∆t = 0.18 and β = 0.99. The size of the state space with this choice of
maintenance interval was 91 685 270. This calculation took 29 minutes and 46
seconds. With shorter maintenance intervals than ∆t = 0.18, we run out of memory
when setting up the problem.



22

5 Conclusion

This thesis improved the solution method used for solving the optimal maintenance
policy of a maintenance scheduling model developed by Leppinen et al. (2021)
and extended by Kokkonen (2021). In this model, a system consists of many
components. These components can have different quality types, which affect how the
components break when aging. The quality types can be determined by inspections.
A maintenance action consists of the decision to maintain or inspect the components.
The state of the system is defined with the ages and quality types of the components
in addition with the possibility that some component has broken. This model
can be formulated as a discounted Markov decision process. Previously the optimal
maintenance policy was solved with Policy Iteration. The downside of Policy Iteration
is that the computational complexity grows quickly when the size of the state space
increases. This limits for example the number of components and the length of the
maintenance interval.

First, we implemented Modified Policy Iteration to the maintenance scheduling
model. Then we enhanced its performance even further with Gauss-Seidel method
and Anderson Acceleration. With Modified Policy Iteration, we were already able to
solve much larger problems in reasonable times than with Policy Iteration. This was
expected as Policy Iteration is known to be impractical for solving MDPs with large
state spaces. Gauss-Seidel method proved to improve the performance of MPI greatly.
This is partly due to the way in which we ordered the states. Anderson Acceleration
also improved the performance of MPI, especially in problems with discount factors
very close to 1. The best algorithm turned out to be the combination of both of these
methods: Anderson Accelerated Gauss-Seidel Modified Policy Iteration. Depending
on the parameters of the problem, AA-GS-MPI was up to 97% faster than MPI.
Although these solution methods based on Modified Policy Iteration are approximate,
we were able to obtain just as accurate solutions as with Policy Iteration.

The challenge with these algorithms is that the parameters of the model, such as
the discount factor, affect how the parameters of the algorithms should be chosen.
When solving a new problem, a good choice of parameters should be first chosen by
testing the algorithms with a reduced state space. This can be done by increasing the
maintenance interval. Fortunately, with Anderson Accelerated Gauss-Seidel Modified
Policy Iteration, the choice of good parameters seemed to be roughly constant.

The limiting factor of this model and solution method turned out to be memory
usage. The explicit enumeration of all of the states takes up quickly the RAM of a
standard laptop or desktop computer. Using a computer with 32 GB of RAM, we
were able to solve a problem with 91 million states in just under 30 minutes. This is
three orders of magnitude larger than the state space of the largest problem we were
able to solve with Policy Iteration. However, with more efficient memory usage the
number of states could be increased even further.

The computation times of the algorithms used in this thesis could be reduced with



23

parallelization. The steps in Modified Policy Iteration can largely be done in parallel
using multiple processors. When done synchronously, this would not change any
theoretical aspects of the algorithm. With the Gauss-Seidel variants, small changes
would be needed (see e.g. Shang, 2009). Bertsekas and Yu (2010) propose a more
efficient way of implementing this parallelization to Modified Policy Iteration. In their
implementation the processors operate asynchronously. However, some additional
requirements are imposed to ensure the convergence for this approach.



24

References
M. Akian, S. Gaubert, Z. Qu, and O. Saadi. Multiply accelerated value iteration

for non-symmetric affine fixed point problems and application to markov decision
processes. arXiv preprint arXiv:2009.10427, 2020.

D.P. Bertsekas and H. Yu. Distributed asynchronous policy iteration in dynamic
programming. In 2010 48th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 1368–1375. IEEE, 2010.

C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy
construction. In IJCAI, volume 14, pages 1104–1113, 1995.

A.R. Cassandra. A survey of pomdp applications. In Working notes of AAAI 1998
fall symposium on planning with partially observable Markov decision processes,
volume 1724, 1998.

M. Geist and B. Scherrer. Anderson acceleration for reinforcement learning. In
EWRL 2018 - 4th European workshop on Reinforcement Learning, France, 2018.

J. Goyal, V. Grand-Clément. A first-order approach to accelerated value iteration.
arXiv preprint arXiv:1905.09963, 2019.

J. Grand-Clément. From convex optimization to mdps: A review of first-order, second-
order and quasi-newton methods for mdps. arXiv preprint arXiv:2104.10677, 2021.

R.A. Howard. Dynamic programming and markov processes. John Wiley, 1960.

J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India, 2006.

S. Kokkonen. A condition-based maintenance scheduling model with periodic
inspections. School of Science, Aalto University, Espoo, Finland, 2021.

J. Leppinen, A. Punkka, and T. Ekholm. A dynamic optimization model for
maintenance scheduling of a multi-component system. Preprint submitted to
European Journal of Operational Research, 2021.

M.L. Littman, T.L. Dean, and L.P Kaelbling. On the complexity of solving markov
decision problems. arXiv preprint arXiv:1302.4971, 2013.

M.L. Puterman. Markov Decision Processes, Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, Hoboken, New Jersey, 1994.

Y. Shang. A distributed memory parallel gauss–seidel algorithm for linear algebraic
systems. Computers & Mathematics with Applications, 57(8):1369–1376, 2009.

O. Shlakhter. Acceleration of Iterative Methods for Markov Decision Processes. PhD
thesis, Graduate Department of Mechanical and Industrial Engineering, University
of Toronto, Toronto, Canada, 2010.

D. Wingate, K.D. Seppi, and S. Mahadevan. Prioritization methods for accelerating
mdp solvers. Journal of Machine Learning Research, 6(5):851–881, 2005.


	Contents
	1 Introduction
	2 Literature review
	3 Multi-component model review
	4 Comparison of selected methods
	4.1 Selected methods
	4.2 Theory
	4.3 Modified Policy Iteration
	4.4 Gauss-Seidel method
	4.5 Anderson Acceleration
	4.6 Results

	5 Conclusion

