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Abstract

Conventional risk importance measures are ill suited for more complex systems, where
the studied components do not have clearly defined failure states. This work studies
two of the recently defined risk importance measures for scenarios, namely the risk
achievement worth (RAW) and the risk reduction worth (RRW). The approach is
based on a definition of scenario that allows to attach measures of risk importance
to individual as well as combined components’ states with synergetic or antagonist
interactions from the viewpoint of safety.

These RIMs are studied in the context of a case study of a near-surface repository
based in Dessel, Belgium. The results show that these RIMs consistently identify
risky and safe scenarios. They also confirm relations that exist between the different
RIMs. This work serves as a proof of concept for these RIMs, and discusses the
need for further development, in the form of extending more conventional RIMs to
scenarios.
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Nuvarande former av riskanalys lampar sig daligt for undersokningen av mera kom-
plexa system, dar de undersokta variablerna inte har exakta feltillstand, och déar
vixelverkan mellan variablerna kan paverka betydligt hur en variabel uttrycker sig i
systemet. Darfor har man utvecklat en ny definition for tidigare riskmatt, sa att de
kan anviandas tillsammans med scenarier, for sa kallad scenarieanalys. Ett exempel
pa ett sadant system ar ytnara forvaringsplatser for kdrnavfall, vilka ér i fokus for
fallstudien i detta arbete. Syftet med detta arbete éar att identifiera de riskfyllda
scenarier relaterade till ytnédra forvaringsplatser av kdrnavfall, med hjalp av dessa
nyutvecklade riskmatt. Detta innebar att identifiera de kombinationer av variabel-
tillstand, som gor att det anvinda riskmatten antar sina storsta virden. Bayesiska
niatverk ett vanligt sitt i sadana har sammanhang att simulera relationerna mellan
de olika variablerna i systemet, och anvinds dven i detta arbete.

I detta arbete analyseras anvindningen av tva riskmatt, namligen riskuppnéael-
sevarde och riskreduceringsvarde. Det forstnamnda riskmattet beskriver den pro-
portionella fordndringen i forvintade risken som uppkommer da man antar att ett
visst scenario sker. Det andra riskmattet & sin sida, beskriver den proportionella
foréndringen i forvintade risken som uppkommer da man antar att scenario inte sker.

Dessa riskmatt anvinds konkret i samband med en fallstudie, dar data kommer
fran ett ytnéra forvaringstalle i Belgien. Riskmatten berdknas med hjalp av en kod
som utnyttjar bayesiska néatverk samt datan fran fallstudien. Resultaten visar bland
annat att riskuppnelsevérdet och riskireduceringsvardet haller med varandra om vilka
scenarier som ar farliga och vilka scenarier som ar sikra, dock sa rankar de scenarierna
i olika ordningar. De haller alltsa inte alltid med om vilket scenarie som ar mest
riskfyllt for systemet. Med resultaten kan man éven motivera varfér anvindningen
av olika riskmatt ar nodvandig, da de beridttar pa olika satt om systemets risk,
samt hur man bast kan reducera risken. Resultaten visar ocksa varfor det kan vara
vart att rakna risken for scenarier och inte for enskilda komponenter, for da flera
komponenter granskas pa samma gang som en del av ett scenarie far man en béttre
bild pa vaxelverkan mellan systemets olika komponenter.

Nyckelord scenarie analys, bayesiska natverk, riskmatt, karnavfall
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1 Introduction

Nuclear power may lead to lower emissions of greenhouse gases compared to fossil
fuels, but it produces hazardous waste of considerable longevity. Consequently,
nuclear waste repositories should be designed and built to last over several millennia
[Séteilyturvakeskus, 2015]. Such an extended time horizon, along with the complexity
of the interacting physical and chemical factors, entails large uncertainty about the
evolution of the repository and its surrounding environment [Tosoni et al., 2018].

This uncertainty makes it challenging to assess the safety of nuclear waste repos-
itories. Thus, multiple scenarios can be generated and analysed to characterize
the risk due to the radiological impact of the repository. Particularly, Bayesian
networks have recently been considered for estimating risk as the probability that
the radiological impact violates a reference safety threshold [Salo et al., 2019a].

Nevertheless, although relevant to the safety assessment, the aggregated risk
estimate does not help identify which scenarios contribute to risk more than others.
From this perspective, useful insights can be gained through risk importance measures
[Beeson and Andrews, 2003; Noroozian et al., 2018; Zio, 2011].

However, conventional risk importance measures cannot be straightforwardly
applied to Bayesian networks for nuclear waste repositories because i) they require
the ex ante classification of the individual system components’ states as “functioning”
or “failed” from the viewpoint of impairing the overall system’s safety, and ii) they do
not highlight the effects on risk of the causal dependences between these components.

This work examines how risk importance measures can be extended to scenarios
to overcome these limitations. Specifically, we identify and rank the most important
scenarios in the case study of an illustrative nuclear waste repository. The rankings
resulting from using different risk importance measures are compared and discussed.

The work is structured as follows: Section 2 outlines the background of the
work and points out the methodological limitations in the identification of the most
important scenarios. Section 3 extends the definitions of some conventional risk
importance measures to scenarios, and presents optimization problems for calculating
these measures. In Section 4, results are obtained and discussed with reference to
the above-mentioned case study. Finally, Section 5 summarizes the work by drawing

conclusions on the benefits and limitations of risk importance measures for scenarios.



2 Background

In general, risk importance measures help identify those components of the system
whose performance is particularly important for the safety of the system. This can be,
for instance, because the failure of such components would increase the probability
of system failure to levels which are unacceptable, or because ensuring the adequate
performance of these components would improve the safety of the system significantly.

Risk importance measures have been primarily formulated in the context of
fault trees [Zio, 2011]. These are logical representations of systems consisting of
components with binary states and whose behaviour is governed by boolean logic.
The overall performance of the system, too, is assessed in binary terms of success vs.
failure. Different risk measures exist which focus on different quantities related to
risk (e.g., probability of an event occurring, probability of an occurred event leading
to an unacceptable consequence).

However, in the case of non-coherent systems, the safety performance of the
system can be impaired also by functioning states of some of its components. [Beeson
and Andrews, 2003]. This suggests that it can be more meaningful to associate risk
importance measures with the states of components rather than the components
themselves (given that it cannot be taken for granted that the risk would be caused
by the failure of the component).

In more general terms, while the notion of component failure is applicable to
technical components such as pumps, valves and heat exchangers, this is not the
case for more complex techno-environmental systems. For example, the chloride
concentration in the deep geological disposal of nuclear waste can be measured by
introducing discrete states which correspond to different concentration levels. Then,
low concentration levels can cause erosion of the bentonite buffer around the the
waste canisters, while high concentration levels may contribute to the corrosion of
the copper overpack of the canisters. In such a situation a supposed failure state of
chloride concentration would not have a clear interpretation. Rather, conclusions
about which concentration levels pose more risks can be reached only through systemic

quantitative analysis.



3 Model

3.1 Scenarios in Bayesian networks

Bayesian networks (BNs)[Pearl and Russell, 2003] are probabilistic causal models in
which a system is represented as a set V' of nodes and a set A = {(j,4)|i,j € V)i # j}
of directed arcs so that (j,7) € A indicates that node i depends on node j. We
assume the BN to be connected, i.e., for any pair k,l € V there is a sequence of nodes
(i1, ey 8jy oy in), 1 < j < m, such that 4 = k,d, = 1, (i5,7j41) € AV (ij41,7;) € A, and
acyclic, i.e., there is no sequence (i1, ...,%;,...,4,), 1 < j < n, (i;,1;41) € A, such that
iy =i,

Any node i € V with arcs pointing towards it belongs to the set of dependent
nodes V” = {ili € V,V! # @}. Here, V' = {j|(j,i) € A} is the set of parents of i,
which is therefore called their child. Complementarily, the nodes without parents
form the set V' = {i|i € V, V' = @} of independent nodes.

Each node is associated with a random variable X;,7 € V with discrete states
s; € S; such as low, medium and high. An independent chance node 7 € V! assumes
the state s; with probability p,:. For a dependent node 7 € VD, the state probability
Psilsi is conditioned on the combination sses = XjeviS; of states of its parents
(where X denotes the Cartesian product).

Let also s = {s;}, Vi € V, denote a specific combination of states of all chance
nodes, and refer to it as a full path in the BN. The set of all such paths is, then,
S = XievS;. According to the global semantics of BNs [Pearl and Russell, 2003], the
probability of a path is

p(S) = l_[ Ds; * l_[ psj|sv_ja (1)

iev! jevP

where s;, s; and s\ are the states of 4, j and V7 as specified by s, respectively.
These probabilities define the full joint probability distribution function over the
realizations of the random variables X, € V, associated with the chance nodes of
the BN.

Additionally, let U be the set of values nodes, which are the sink of the network in
that they have no children, i.e., (u,7) ¢ A, Vu € U, Vi € V. The outcome at a value
node is a function X" : S = C", Vu € U, of its parents’ states. Because a value node
serves to assess safety, there also exists a real-valued function ¢ : C* = R, Vu € U,
of its outcomes. We assume U to be nonnegative and, as usual in decision theory,

unique up to positive affine transformations. More specifically, U is a disutility



function such that large values represent less desirable consequences on, e.g., the
public or the environment.
Then risk corresponds to the expected disutility. If there is but one value node g,

i.e., |U| = 1, the risk implied by the system is

E[U(X")] =) p(s) - ULX"(sy2)]. (2)
SES
By comparison with a predefined risk limit, this estimate helps assess whether the
system is safe or not.

Nonetheless, it is also useful to identify the scenarios that are most important in
determining the overall risk. To this end, we interpret a scenario as a set of paths.
Formally, we define the set S of all scenarios S as the powerset P(S) of S, excluding
the empty set (where by S # @) and S itself (where by S # S) to prevent vacuous

and noninformative scenarios, respectively.

3.2 Risk importance measures

This work investigates two of the recently proposed risk importance measures for
scenarios [Salo et al., 2019b]. These measures are extended from system components
to scenarios defined as sets of paths, which are combinations of component states.
This extension is compatible with conventional risk importance measures in that it
is still possible to examine the importance of individual components’ failures. Quite
importantly, though, this approach makes it possible to measure risks associated
with states of components for which failure is not defined, and which are related by
uncertain casual dependencies.

As a risk measure, the risk achievement worth (RAW)

_ ElU(X,)IS]

RAW(S) = S (3)

is the relative change in the expected disutility from the baseline in case scenario S
occurs. This ratio is well defined unless all paths are associated with consequences
which have null disutilities (in which case the baseline level is zero).

If RAW(S) = 1, the occurrence of the scenario increases the risk level, which

implies that scenario S is risky.
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As a risk measure, risk reduction worth (RRW)

E[U(X,)]

MVE) = S s

(4)
is the relative change in the expected disutility in case the scenario S does not occur
(which implies the occurrence of its complement, S). Therefore, if RRW(S) = 1, the
non-occurrence of scenario S lowers the risk, which implies that scenario S is risky.

Specifically, the equivalence
RAW(S) 21 < RRW(S) = 1, (5)

indicates that risky scenarios are identified consistently by the two measures.

Furthermore, the relations

RRW(S;) = RRW(S;) = 1,p(S;) < p(S;) = RAW(S;) = RAW(S,), and  (6)
RAW(S,) = RAW(S;) = 1,p(S;) = p(S;) = RRW(S;) = RRW(S,) (7)

help understand how risky scenarios are ranked by the RAW and the RRW. Particu-
larly, the RRW tends to be low for scenarios with low probabilities, because assuming
that they will not occur does not constitute a significant change from the baseline
situation. Thus, a scenario with a larger RRW, but with a lower probability than
another, must be a riskier scenario that has a larger RAW, too (6). Analogously, the
RAW is small for scenarios with high probability, because their occurrence would not
imply large differences from the expectations (unless their consequences have very
large disutilities). Hence, if a scenario has a larger RAW and a higher probability
than another, then it must also have a larger RRW (7).

3.3 Calculating RIMs through optimization

A challenge in analysing risk importance with scenarios is that the number of scenarios
grows rapidly with the number of components and their states. For example, if there
are five components with three states for each, there are 3> = 243 paths from
which one can generate 2 _ 9= 1,4 % 10" different scenarios (excluding the two
cases mentioned in Section 3.1). The explicit enumeration of all scenarios may
consequently be impossible, making it necessary to develop efficient ways to identify
which scenarios have the highest values of the risk importance measure. For instance

the most important scenarios could be identified via optimization.
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Specifically, binary variables are defined as z(+) : S + {0, 1} to either include
(2(s) = 1) or exclude (2(s) = 0) each path from the scenario. All scenarios must

satisfy the constraints

1<) 2(s) =S| -1 (8)

s€S
to ensure that the set of paths {s € S|z(s) = 1} is a scenario as per the definition in
Section 3.1.

Then, riskiest scenarios can be found by optimizing objective functions corre-
sponding to the different measures. The RAW is the largest for the scenario Sk
for which the conditional risk E[U/(X,)|Skaw ] attains its maximum, so that the
optimization problem is

T AU ()] o
() Y ses 2(s)p(s)
Instead, as it can be shown [Salo et al., 2019a], the RRW can be maximized by
minimizing the RAW of the complement set g; rw Which contains all the paths that

are not in the riskiest scenario Sppy being searched for. Therefore, the optimization

problem is

.- D ses ? (S)p(s)u[Xu(SV_“)]’ (10)

2'(s) zseS Z’(S)p(S)

where the binary variable z'(s) = 1 — z(s) (which is required as a constraint in the

optimization) is utilized to select and discard the paths which are excluded from and
included in Skpy, respectively. The challenging nonlinearities implied by the ratios
in the objective functions can be eliminated by linear fractional transformations
through which the optimization problems (9) and (10) become easily solvable mixed
integer linear programs [Salo et al., 2019a].

In both optimization problems, the respective riskiest scenarios Spay and Skry
are identified by the set of paths s € S for which z(s) = 1 (or z'(s) = 0, in the case
of RRW). The RAW of S}, 4y is given by the ration between the optimized objective
function in (9) and the baseline risk. Vice-verse, the RRW of Sk is the ratio
between the baseline risk and the optimized objective function in (10).

Different kinds of scenarios can be generated by introducing constraints. Here,
we focus on projected scenarios, which are defined by restricting the set S; & S; of

states for one or more nodes in I C V. Binary variables associated with these nodes’
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states can be defined such that

1, S; € Eﬂ
z(s;) =

0, otherwise.

The size of the sets S; can be bounded through

n, < Z 2i(s;) <my, Viel, (11)
SiESi
with n, 2 1 and n; < |S;| = 1.
The consistency between the binary variables for paths and those for the nodes’

states can be ensured through further linear constraints. On one hand,
1
z(s) = Z%(Si) (12)

guarantees that the scenario does not contain paths for which z;(s;) = 0,7 € I. On

the other hand, the constraint

2(s) 2 ) z(s) = 1] +1 (13)
i€l
implies that the scenario contains all paths for which z;(s;) =1, Vi € I.
Finally, either optimization problem can be solved repeatedly to find the second,

third, etc., riskiest scenarios beside the top one. At each iteration, the constraint

Z 2(s) + |ST| - Z 2(s) =1 (14)

s¢S* seS*

can be added to exclude the scenario S* found as the riskiest at the previous iteration.
These constraints can be added until sufficiently many of the most important scenarios

have been found.

4 Results and discussion

We illustrate the risk importance measures for scenarios through the near-surface
repository studied by Salo et al. [Salo et al., 2019b] (Figure 1). In particular, the
data refers to the repository planned for the site of Dessel (Belgium). The repository

is modeled through a Bayesian network, whose nodes can assume the states in Table
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1. These states derive from the discretization of continuous ranges of values for the
variables that correspond to the nodes [Uusitalo, 2007]. Their discretized probabilities

are found in Table 2

|Earthquake ) / Cr;ck ™
h - _ aperture
\ \ “Diffusion "
. _coefficient
Monolith " Hydraulic - - -
p \ degradatlon conductlwty B
Barrler \ i ~
/Distribution’,

degradatlon
Water ﬂux )

\_coefficient ,

“Chemical
degradation

Dose rate

u/’

Figure 1: Bayesian network of a near-surface nuclear waste repository.

The states for the FEPs are for example low and high, or fast and slow. For water

fluz for example, the states low and high indicate the speed at which water flows

into the system. For barrier degradation, on the other hand, the states fast and slow

define the speed at which the protective barrier is degrading.

Table 1: The nodes of the network of Figure 1 and respective states.

FEP States

Earthquake BDBE, Earthquake
Water flux Low, High

Crack aperture Micro, Macro
Diffusion coefficient Low, High
Distribution coefficient Low, High
Chemical degradation  Fast, Slow

Barrier degradation Fast, Slow

Monolith degradation

Very fast, Fast, Slow

Low, Medium, High
Respect, Violation

Hydraulic conductivity
Dose rate

The FEP earthquake is also included, because it can affect the speed of barrier
degradation. The arc from crack aperture to hydraulic conductivity explains the
increased effective conductivity of fissured concrete. In this case study, the safety

target is the Dose rate to the public, normalized by the confidential safety threshold.
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Table 2: The probability distributions of FEPs in Figure 3. The numerous conditional
probabilities for the dose rate are not reported for the sake of brevity.

FEP Parents Probability distributions
0 1 2

Earthquake No 0.9954 0.0046
Water flux No 0.8641 0.1359
Crack aperture No 0.8074 0.1926
Diffusion coefficient No 0.5000 0.5000
Distribution coefficient No 0.5000 0.5000
Chemical degradation  No 0.5000 0.5000
Barrier degradation Earthquake

BDBE 0.0580 0.9420

Earthquake 0.3600 0.6400

Monolith degradation  Earthquake
BDBE 0.2950 0.2920 0.4130
Earthquake 0.2950 0.4250 0.2800

Hydraulic conductivity Crack aperture
Low 0.6670 0.1888 0.1442
High 0.1888 0.6670 0.1442

We first examine the scenarios made of different states of hydraulic conductivity,
which are listed in Table 3, along with their RAW, RRW and probabilitiy.

Table 3: The RAW and RRW values for the scenarios of hydraulic conductivity.

. Hydraulic .
Scenario Conductivity RAW RRW Probability
L M H
1 | 1.747  1.144 0.144
2 [ m  1.189 1.935 0.719
3 [ 1.049 1.071 0.575
4 [ m 0934 0.953 0.425
5 E = 0.874 0.572 0.856
6 [ 0.518 0.841 0.281

The scenario where the hydraulic conductivity is high has the largest RAW,
meaning that it should be prevented to avoid an almost two-fold increase in risk. The
largest RRW is instead achieved by the scenario in which the hydraulic conductivity

is either low or high. This is because the probability for this scenario is significantly
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larger than for the first scenario. Hence, this scenario should be prevented to achieve
the largest risk reduction.

In Table 3, all the scenarios that are risky (i.e., whose RAW and RRW are
larger than 1), have the hydraulic conductivity either low or high. Conversely, all
scenarios that are safe, are characterized by a medium hydraulic conductivity, in
some combination with the low or high. This indicates that risk is not a monotonic
function of the states of hydraulic conductivity.

Figure 2 confirms, that risky scenarios are consistently identified by RAW and
RRW (Relation 5). Furthermore, the figure shows that scenarios 1 and 2 of Table
3 constitute a pareto front (dotted line) in that scenario 1 is the most important
scenario if the goal is to prevent a significant risk increase during the repository

lifetime, while scenario 2 is the most important scenario if the goal is to reduce risk.

Figure 2: RAW and RRW of the scenarios (dots) of hydraulic conductivity (numbering
as per Table 3). The dotted line represents the pareto front of the riskiest scenarios.

2 T Z T
’ RISKY SCENARIOS ‘
15r 1
1
3 :
; .
x 1 4
[a g .6
5
05 1
O 1 1
0 0.5 1 15 2
RAW

Thus, no state can be uniquely identified as the failure state of hydraulic con-
ductivity. These results confirm that nuclear waste repositories are an example of
systems for which it is usually not possible to distinguish functioning and failed
states of its relevant factors. Rather, each factor’s state may be more or less risky

depending on the state of the other factors it interacts with.
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Table 4: The RAW and RRW values for the scenarios of water flur and hydraulic
conductivity. Black squares indicate the possible states for each scenario.

Water Hydraulic

Scenario

RAW RRW  Probability

Flux Conductivity
L H L M H
1 E n 5.396 1.594 0.078
2 E n m 5.151 1.817 0.098
3 E E = 4.487 1.849 0.117
4 E E = m 4442 2.181 0.136
5 [ | m  4.175 1.068 0.019
6 [ | [ | m 3152 1.152 0.058
7 [ | [ | 2.627 1.069 0.038
8 [ | [ | m 1.747 1.144 0.144
9 [ | m 1365 1.055 0.125
10 [ | E u m 1.189 1.935 0.719
11 [ | E m 1.049 1.071 0.575
12 [ | [ ] [ ] m 0934 0.953 0.425
13 [ | E E = 0.874 0.572 0.856
14 [ | [ | m  0.585 0.806 0.367
15 [ | [ | B 0.565 0.584 0.621
16 [ | [ ] [ | 0.517 0.841 0.281
17 [ | E n m 0459 0.225 0.864
18 [ | [ | 0.365 0.615 0.497
19 [ | E = 0.306 0.337 0.739
20 [ | [ | 0.185 0.793 0.243

To investigate these interactions further, let us consider the different scenarios of
hydraulic conductivity together with water flux, which are ranked by RAW in Table
4, along with RRW and their respective probabilities. Different from Table 3, low
is the riskiest state of hydraulic conductivity (based on RAW), when matched with
high water flux. A potential explanation for this might be that, if a large amount
of water is seeping through the repository and it encounters the resistance of a low
hydraulic conductivity, there might be some accumulation of water and a consequent
flooding of the repository. When the state of water flux is unspecified, high hydraulic
conductivity gives the largest RAW, but it only ranks eight in Table 4.

The scenarios in Table 4 are also represented in Figure 3.
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Figure 3: RAW and RRW of the scenarios (dots) of water flur and hydraulic
conductivity (numbering as per Table 4) .
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As can be seen from Figure 3, the determination of the riskiest scenario of all
depends on the preference for RAW (scenario 1), RRW (scenario 4) or something
between the two (scenario 2). We can also conclude that the scenarios are all correctly
identified by both the RAW and the RRW, respectively.

Confirming the relation (Relation 7) scenario 4 has a larger RRW and a lower
probability than, for instance, scenario 8, whereby it also has a larger RAW. Similarly,
scenario 4 has both larger RAW and probability than, for instance, scenario 5,
implying that it also has a larger RRW (Relation 7).
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5 Summary

This work has been a proof of concept for this new approach presented by Salo et al.
[Salo et al., 2019b]. The results illustrate how the new risk importance measures for
scenarios enable the analysis of complex, non-coherent and non-binary state systems.

The benefits of this approach it that we can analyse multiple components at a
time as well as the effect on risk of single component’s states.

The results confirm the relations between the risk importance measures suggested
in [Salo et al., 2019b]. Specifically, it has been verified that the RAW and RRW
identify the same set of risky scenarios, but may rank them by different risk pri-
oritizations. This means that the riskiest scenario depends on which measure is
chosen for the analysis. This is why several different risk importance measures are
necessary, as they all give a different angle for the risk analysis. One path for further
development could be to extend other risk importance measures to scenarios, and
consequently analysing the produced results and their reliability in this new context.

This work focused on one possible application for the RIMs extended to scenarios,
namely near-surface nuclear waste repositories, However, other similar systems could
benefit from them as well. Another path for further further development could be
to have other data sets and other systems as case studies, and show how well they

perform in comparison to more conventional methods.
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