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Abstract

This study examines how Metropolis algorithm can be applied to estimate the parameters of a geo-
metric Brownian motion. The Metropolis algorithm is a Markov Chain Monte Caro method, which
can be used for solving computational inverse problems. The geometric Brownian motion is a sto-

chastic process which is used for modelling asset prices. It is used in well-recognized models, such

as the Black-Scholes option pricing model. The geometric Brownian motion includes two parame-

ters, drift and volatility, from which the first one will be estimated.

The data is generated by simulation and the objective is to measure the performance of the algo-
rithm. The geometric Brownian motion is simulated by using a normally distributed drift and a
constant volatility. The Metropolis algorithm is set up such, that it uses the log-normally distrib-
uted returns of the geometric Brownian motion. This is accomplished by a change of variable dur-
ing the Metropolis algorithm. The distribution of the drift is estimated by assuming a known vola-
tility. The estimated distribution for the drift parameter is then compared to the one from which it
was generated from. The comparison is made by comparing the means and variances of the distri-
butions which are also communicated through visuals.

The results show that the algorithm performs well for estimating the mean of the distribution of
the drift, but the estimated variance differed from the real variance. The thesis shows results of the
estimation for one price path, which decreases the creditability of the results. However, the
method was tested for multiple different paths and gave reasonably consistent results.

Keywords Markov chain, Monte Carlo, MCMC, geometric Brownian motion, drift, Bayes, param-
eter estimation
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Tiivistelma

Tyossa tutkitaan, miten Metropolis algoritmia pystytdan hyodyntimaan geometrisen Brownin liik-
keen parametrin estimoimiseen. Metropolis algoritmi on Markovin ketju Monte Carlo simulointi
menetelma, jota pystyddn kayttamaan laskennallisten inversio-ongelmien ratkaisemiseen. Geomet-
rinen Brownin liike on stokastinen prosessi, jota kidytetdan rahoituksessa osakkeiden hintojen mal-
linnukseen. Geometrinen Brownin liike koostuu kahdesta parametrista, virtaus ja volatiliteetti,
joista ensimmainen pyritdan estimoimaan.

Tyossa kaytetty data generoidaan simuloimalla. Tyon tarkoituksena on mitata, miten Metropolis
algoritmi suoriutuu virtaus parametrin estimoinnissa. Virtaus parametrin estimointi tehdaan ase-
telmassa, jossa volatiliteetti on tunnettu. Geometrinen Brownin liike simuloidaan, siten etta, virtaus
noudattaa normaalijakaumaa ja volatiliteetti pysyy vakiona. Metropolis algoritmi hy6dyntaa para-
metrin estimoimisessa geometrisen Brownin liikkeen lisdyksia, jotka ovat log-normaalisti jakautu-
neita. Tulokset validoidaan vertailemalla estimoidun ja todellisen jakauman keskiarvoja ja varians-
seja.

Algoritmi suoriutui hyvin jakauman keskiarvon estimoimisessa, mutta sen varianssin estimaatti oli
kaksinkertainen todelliseen verrattuna. Parametrin estimointi esitetaan tyossa vain yhdelle geomet-
risen Brownin liikkeen polulle, joka heikentda tulosten luottavuutta. Estimointia kuitenkin kokeil-
tiin tyon aikana usealle eri polulle, ja tulokset olivat melko tasaisia.

Avainsanat Markov ketju, Monte Carlo, MCMC, geometrinen Brownin liike, Bayes, parametrin
estimointi
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1 Introduction

In 1946 a mathematician named Stanislaw Ulam tried to figure out the prob-
ability of winning a game of solitaire. This appeared to be a challenging
problem to be solved analytically, and hence he came up with an alternative
method to solve the problem: play solitaire numerous times and calculate
the percentage of games which turned out successful. He figured that this
approach could be used for solving other complex problems by transforming
uncertain events into random operations and simulating them on a computer,
which was then later named as Monte Carlo simulation.|14]

During the last decades technology has developed rapidly and the increased
computing capacity has become a significant asset in modern problem solving
[17]. This has allowed the creation of new modelling techniques and further
development of the ones created earlier. By exploiting Markov Chains, the
main idea behind Monte Carlo simulation has been applied in order to sample
from different kinds of probability distributions. These kinds of algorithms
are denoted as Markov Chain Monte Carlo (MCMC) methods, which consists
of multiple of different algorithms with some common principles [3]. The
most recognized algorithm from the MCMC class is the Metropolis-Hastings
algorithm, which has been referred to as one of the most influential algorithms
during the recent centuries |[5].

In this thesis, the Metropolis-Hastings method will be used to estimate the
parameters of a Geometric Brownian Motion (GBM). GBM, which will be
introduced more thoroughly later, is a stochastic process which is used in
finance to model asset prices [7]. Although it can be considered as a simplified
way of modelling an asset price, it is applied in well-recognized models, such
as the Black-Scholes option pricing model [4].

The geometric Brownian motion used in this study is simulated, making
the thesis a simulation study. Simulation studies are crucial for valuating
the performance of new algorithms and statistical methods. They are also
useful for finding wrong assumptions in methods, and testing the methods
sensitivity to perturbed data. [13]

This thesis begins by covering the theory behind the methods used. The
methods will be introduced in a separate section as well as the implementa-
tion of them. Finally, the results of the thesis will be covered and concluded.



2 Background

2.1 Theory

Throughout, let (€2, F, P) be a common probability space for the random
variables considered in this thesis.

A stochastic process has the Markov property, if its future state depends
only on its current state. A discrete time stochastic process which satisfies
the Markov property is called a Markov chain, whereas a continuous time
process satisfying the property is called a Markov process [10]. This section
will start by defining a Markov chain and some of its properties, which are
required by the MCMC algorithm.

Definition 2.1. A sequence of random variables (Xo, X7, ...X;) taking values
in the countable state space S is a Markov chain, if it satisfies the following

P(Xt+1 = $t+1|Xt =2, Xyo1 = Tp—1, .y Xo = 550) = P(Xt—H = $t+1‘Xt = l“t) .

Since the transition probabilities depend only on the previous states, the
transition probabilities of a Markov Chain, taking values in the countable
state space S, can be expressed with a matrix. This kind of a matrix is called
a transitton matriz. In a transition matrix P, the element P;; corresponds to
the probability of the process moving from state ¢ to j

Pij = P(i,j) = P(Xi41 =j| X, =1),
where 7,5 € S.

The Metropolis-Hastings algorithm, which will be used in the parameter
estimation, requires that the underlying Markov Chain is aperiodic and irre-
ducible in order to have an unique stationary distribution [19|. The defini-
tions for these requirements are presented below.

Definition 2.2. Let X, X, ..., X,, be a Markov Chain, taking values in the
countable state space S, and having the transition matrix P. The period of
state i, denoted as d(i), is defined as the greatest common divisor (ged)

d(i1) = ged(n : P"(i,i) > 0) ,

where P™ denotes the n : th power of P. A Markov Chain is called aperiodic,
if d(i) =1,Vi € S.

Definition 2.3. Let Xy, X1, ..., X,, be a Markov Chain, taking values in the
countable state space S and having the transition matrix P. The Markov



Chain is called irreducible, if for all states 7,7 € S there exists a t > 1, for
which P!(i,7) > 0.

The stationary distribution describes the distribution for the states over the
long run of the Markov chain. The mathematical definition for this goes as
follows.

Definition 2.4. Let m be a probability distribution. The probability dis-
tribution 7 is called the stationary distribution of a Markov Chain, taking
values in the countable state space S and having the transition matrix P, if

> w(i)P(i,j) ==(j) .j€S.

i€S

The central limit theorem is relevant for the convergence of the underlying
Markov chain in the MCMC algorithm [9]. The Central Limit Theorem states
(CLT) that the sample mean of independently and identically distributed
observations converges in distribution to a normal distribution, when n — oo.

Theorem 2.1 (Central Limit Theorem). Let X, Xo, ..., X, be a sequence of
independently and identically distributed (iid) random variables, each having
the expected value E(X;) = p and variance Var(X;) = 02 < oo. Let X, be
the sample mean, defined as,

- 1
Xn:EZXi :

The central limit theorem states that,

VX 1) —— N(0,0?) ,

n—o0

D T
where — denotes convergence in distribution.

The MCMC algorithm has numerous iterations in order to obtain a large
sample size for the results. The Weak Law of Large Numbers introduces the
benefits for the large sample size.

Theorem 2.2 (Weak Law of Large Numbers). Let X, Xo, ..., X,, be a se-
quence of independently and identically distributed (iid) random variables,
each having the expected value E(X;) = pu < oo and variance Var(X;) = o°.

Let X,, be the sample mean, defined as,

_ 1 <&



The Weak Law of Large Numbers states that,

Xn—>:u’7

n—oo

where <5 denotes convergence in probability.

More detailed information about convergence in probability and distribution
can be found in reference [1].

Calculating expected values may require solving integrals which are difficult
to compute. These kinds of integrals can be approximated by using Monte
Carlo techniques [15].

Assume that X is a random variable with a probability density function p(x).
The expected value of f(X) can now be approximated according to the Weak
Law of Large numbers by

BUO0] = [ f@d(e)dox 3 fw)

where x; are observed or sampled values from the distribution p(z) and n —
00.

The MCMC algorithm applies Bayes’ Theorem for obtaining the posterior
distribution for the distribution being sampled.

Theorem 2.3 (Bayes’ Theorem). Let (2, F,P) be a probability space, where
Q is a sample space, F is a sigma-algebra on 2 and P a probability measure on
(Q, F). Assume that A, B € F are events such that P(A) > 0 and P(B) > 0.
The Bayes’ theorem states that:

P(ANnB) P(A)P(A|B)

7 R 77)

Assume that f(z|f) is a density function with the parameter ¢, which gen-
erates independent random variables. The observers belief of the parameter
6 is described with the prior distribution p(#). Given the observation i,
generated from the density function f(z|f), the posterior distribution can be

calculated as (0) f(21]0)
PO = 5, o) F )




More generally, when observing the data point x,,, the distribution p(8|z,_1, ...
is used as the prior distribution and it can be updated into a posterior dis-
tribution in a similar way

_ p(0xn_1,....z1) f(2n, ..., 21|0)
Yo DO,y xy) f(@n, oy z1]0)

p(0|zn, ..., z1)

2.2 Asset Price Dynamics

This study uses an asset price model, which focuses on two features in the
asset prices: drift and volatility. The drift describes the deterministic part
of the changes in the asset price, happening in each infinitesimal timestep.
Since the asset price is a stochastic process, it also contains randomness. This
randomness creates fluctuations in the price producing stochastic variance,
or in this context, volatility.

2.2.1 Volatility

Volatility plays an important role when pricing financial derivative securities
[18]. It describes the variation in the returns of a financial instrument and is
often associated with risk. An asset’s historical volatility o, can be calculated
by exploiting its historical daily spot prices (Sp, Si, ..., S,) with

- ln(Si/Si,1)2
2 A 2Pl
o Z; - :

where A is an annualization factor. However, this value is based on the vari-
ation of prices during some historical time interval. In fact, the volatility of
an asset changes within time and thus describing an asset’s volatility as a
time independent constant is a harsh simplification [8|.

A volatility which varies over time and contains randomness is often referred
with the term stochastic volatility. The effects of this time-varying volatility
in financial instruments can be described using stochastic volatility models.
For simplicity this thesis considers only constant volatility, but for further
reading about the topic see reference |2].

2.2.2 Drift

The drift describes the mean returns of an asset. If there were no volatil-
ity present in the asset, the drift p would correspond to the continuously
compounding risk free rate r. In our model, volatility decreases the expected
returns of an asset in a longer time horizon. A short explanation for this

71;1)



goes followingly: The volatility is generated by an underlying Brownian mo-
tion, which has normally distributed increments. If the price drops within
a timestep with 20%, it should increase by 25% to reach the original price.
However, the 20% drop is more probable than the 25% rise.

To adjust this, a volatility drag coefficient is subtracted from the drift. In a
risk-neutral economy, the following equality should hold

1
=r+ -0
" 2

For further details about risk neutrality, see reference [11].

3 Methods

3.1 Simulation

In this thesis, we will generate the data by simulation. This enables us to
validate the results of the parameter estimation reliably. Thus, the study
covers the basics in the simulation of financial asset returns. The randomness
in the GBM asset price model is created by a Brownian Motion. Discrete
time Brownian motion is a stochastic process, which can be interpreted as a
random walk, where the increments are normally distributed with a mean of
zero and their variance corresponds to the size of the time-step.

Definition 3.1. A stochastic process { B; }+>¢ in the probability space (2, F, P)
is a standard Brownian motion if it satisfies:

i) P(Bp=0)=1

ii) By, — By, ,,Bt, , — Bi, ,,..., B, — By, are mutually independent for any
O=th<t;1 <..<t,.

iii) For any 0 < s < t, the increment B; — B, ~ N(0,t — s)

iv) Process B; has almost surely continuous paths.

We assume that the stock price S; follows a Geometric Brownian Motion:
dSt :,USt dt+UStdBt N (1)

where p is a constant drift term, o constant volatility and X; a standard
Brownian Motion. This stochastic differential equation can be represented in
the following discrete form

ASt = I[LStAt + UStE\/ At N



where € follows the distribution N(0,1).

This stochastic differential equation (1) can be solved by applying Itd’s
lemma. The derivation of the equation is presented in appendix section A,
and has the following analytical solution

_ 152
St _ Soe(u 50°)t+o B 7

where the Brownian Motions B; expected value is 0 and variance t.

Thus, the logarithm of the returns g—; is normally distributed:
S, 1
In(2) ~ N((1 — s0?)t,0%%) (2)
So 2

This enables us to to simulate a path for our asset price. By splitting the
time period [0, 7] into a desired amount of time-steps
0=ty <t; <..<t,=T), we can simulate an asset’s price path as:

_ €4
St - Stiez )

where ¢; is a sample generated from the distribution N((u — 302)(tis1 —
ti), 0'2(ti+1 - tz)) and ¢ = 0, ]., e — 1.

141

A few examples of GBM paths are visualised in Figure 1. Note that these
paths are not the ones used in this thesis.

Figure 1: Paths for simulated stock prices, where y = 0.1,0% = 0.1 and
So = 1.



3.2 Metropolis-Hastings

The objective of the M-H algorithm is to to generate samples from the target
distribution 7, from which conventional sampling may be difficult. To simu-
late the target distribution, a proposal density ¢(y|z) where the next state y
depends on the previous state x is introduced. The candidates generated by
the proposal distribution are accepted with the probability ratio

- m(W)q(yle)

a(y, x) mm(ﬂ(x)q(ﬂy)’l) . (3)
In the M-H algorithm, the target distribution has to be known to some pro-
portionality since in the acceptance rate (3) the normalization constant gets
cancelled. By generating a sample between [0, 1] from a uniform distribution
and comparing it to the acceptance rate, we are able to accept the candidate
samples with a correct frequency.

Assuming that the proposal distribution is chosen appropriately, the accep-
tance rate guides the algorithm to converge to the stationary distribution,
satisfying

m(y)q(zly) = m(z)q(y|r) .

The convergence may be sensitive to the initialization of the parameters and
they should be selected carefully. Even if the parameters are initialized appro-
priately, it takes time for the algorithm to reach the stationary distribution.
Thus, some amount of the first output samples are discarded when evaluating
the results. These discarded samples are often referred to as burn in samples.
For further details of the requirements of the algorithm, see reference [12].

The general algorithm is presented in pseudo code below in Algorithm 1. Note
that x and y are not necessarily single values and that they can present, e.g.,
a vector of parameters.



Algorithm 1: Metropolis Hastings
Result:

P(z), target distribution;

q(z|y), proposal density function;
x1, intial guess;

a(z,y), acceptance rate;

for i = 1,2,...,n do

y = qyle);

u < U(0,1);

if u > a(y,z;) then
‘ Ti+1 = Y;

else
‘ Ti+1 = Ti;

end

end

return (x1, z9, ..., Ty,)

This thesis applies M-H to a fairly simple problem, and does not show the
full capability of the algorithm. Usually the algorithm is used for sampling
from more complex distributions.

4 Implementation
The parameters for the GBM were chosen as follows

@~ N(0.3,0.05%)

a2 =0.12

T =10

n=255-T
T 1

dt = = = — |
n 100

Since the parameter estimation exploits only the returns of the price, it would
be sufficient to only generate the returns and store them. Thus, the problem
could be rephrased as an estimation of the parameters of Gaussian data, with
a Gaussian mean.

The price path used for this study is shown in Figure 2.
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Figure 2: Price path which is used for the MCMC algorithm.

The returns Y; for a price path S; are calculated as

Siy.

ti—1

where 0 = tg < t; < t,,. Since the increments in the price between timesteps
are mutually independent, the distribution for each Y;, can be calculated with

equation (2). Thus, Y;, follows the distribution N((p — $02)dt, o2dt), where
dt =t; — t;_,. Figure 3 illustrates the returns of the simulated price path.
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0.08

Figure 3: Returns of the price path which is used for the MCMC algorithm.

The likelihood for Y as a univariate function of y is visualised in Figure 4.
We see how the likelihood function reaches its maximum roughly between
0.2 and 0.3, as expected. This includes the volatility drag coefficient —%02,
which will be cancelled out when calculating the results.
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Figure 4: Likelihood function for Y as a function of x, when o2 = 0.1. The
likelihood function is scaled such that it takes values between 0 and 1.

The likelihood for Y as a univariate function of o2 is visualised in Figure 5.

likelihood
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Figure 5: Likelihood function for Y as a function of o2, when p = 0.3. The
likelihood function is scaled such that it takes values between 0 and 1.
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We see how the likelihood function as a function of o peaks at slightly over
0.1. This might be due to the deviation caused by the distribution of u. The
true variation for the returns can be derived as

1
Vi~ (N(p,07) — 502)dt + N(0, odt)
1
Y; ~ N(udt,o’dt*) + N(0,0°dt) — 502dt
1
Y; ~ N(udt,o,dt* + o*dt) — §a2dt ,

which yields Var(Y;) = o7.dt* 4 o*dt.

However, since the distribution of u is treated at this stage as unknown, the
likelihood function will not exploit its variance. Thus, the likelihood function
is conditioned only with the known variance.

The conditional likelihood for the vector Y is
Soio (Vi — (= 30°)dt)?

p(Y | 0%) = (2mo®dt) 3 exp(~

).

202dt
By making the variable changes
. L,
p=(n—go%)dt (4)
6 =o%dt (5)

the likelihood function can be expressed in a more simple form

Z?:O ({fl B la>2) )

Y|, 0%) = (2m6%) 72 exp(—
p(Y|p,07) = (2m67) " exp( ¥

The objective is to sample from the posterior distribution p(u|Y,o?). To
accomplish this, we will first sample from the distribution p(i|Y;6?), and
transform the samples with the closed form equation (4).

First, we will assume the following prior distribution

p(f) ~ N .

Bayes Theorem implies that the posterior distribution for f is

p(Y |7, 67)p(f)
p(Y|j, 6%)p(f)dfe

~2
, O
2

=

p(ﬂm 6.2) = f
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having the proportionality
p(plY,6%) o p(Y|f1, *)p(f2) -

Since the prior distribution for ji is normal, its transition kernel will also be
normal. The new candidates /i, will be drawn from

ﬂp ~ N([L“US) )

where /i; is the current state and o3 a predefined variance for the distribution.
The variance will be adjusted by testing different values and looking at the
acceptance percent of the algorithm. For example, a too large variance in the
proposal distribution will result in a small acceptance rate, which is undesir-
able. The importance of the proposal distribution’s variance is discussed in
reference [16].

Since the proposal distribution is symmetric, the algorithm used is more
precisely a Metropolis algorithm. The Metropolis-Hastings algorithm is a
generalized version of the Metropolis algorithm, where the proposal distribu-
tion is symmetric. The symmetric proposal density gets cancelled out from
the acceptance rate, making the acceptance rate depend only on the target
distribution. [5]

The algorithm used in the study is presented in Algorithm 2.

Algorithm 2: Metropolis
Result:

x; = 0.01;

for i = 1,2,...,n do

z, < N(xi,00);
P(Y]pp,0?) 1);

a < max|(

P(Y|pi,02) 7

u < U(0,1);
if © > o then

‘ Tit1 = Tp;
else

‘ Tit+1 = Li;
end

end

return (z1,zy,...,z,)

When using large sample sizes the likelihood functions takes large values
which results in numerical overflows in computation. To mitigate this problem
the probabilities and their ratios were calculated in log scale.



15

After the simulation, the samples i = (fi1, f2, ..., flm) Were transformed as

~

dt 2 7
and the transformations were then used for evaluating the performance. This
transformation is done for all data used in the results section.

5 Results

The amount of iterations used in the Metropolis algorithm was 10000. The
algorithm converged quickly, depending on the chosen initial value and the
variance of the proposal distribution. The 2000 first samples were considered
as burn in samples, and thus were discarded. Figure 6 presents the trace plot
for all generated samples.

251

-0.5

. . . \ . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
MCMC lteration

Figure 6: The trace of the sampled values of u. The red line describes the
burn in limit.

We see how the iterations converge quickly from the initial value and create a
consistent pattern. The autocorrelation, which is presented in Figure 7, also
supports the convergence.
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Figure 7: Autocorrelations of the samples as a function of lag.
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Figure 8: Histogram and a normal distribution fit for the MCMC samples.

The histogram in Figure 8 shows the estimated posterior distribution of .
The fitted normal distribution is N(0.30,0.10). More detailed statistics of
the estimated posterior distribution are presented in Table 1.
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Table 1: Comparison of the estimated and known values for p. The known
values are presented in a bold format. The percents present confidence inter-

vals.
Parameter Mean SD 2.5%  Median 97.5%

1 0.302 0.102 0.100 0.303 0.495
n 0.3 0.05 0.202 0.3 0.398

The estimation of the mean performed very well, the error being under 1%
compared to the real value. However, the standard deviation of the estimated
distribution differed considerably from the real one. This thesis lacks the
estimation of the variance, and therefore the estimated variance of p is not
reliable. Although the study was only made for one sample, the results were
fairly consistent also for other simulated data samples.

6 Conclusions

The study introduced how geometric Brownian motion can be used to model
an asset’s price. This theory was then used to simulate a price path, where the
drift followed a normal distribution and the variance was set as a constant.
The mean of this simulated price path was estimated using a Metropolis
algorithm to validate how the algorithm works for this kind of data.

The results were good regarding the mean of the drift, however the variance
of the drift differed from the real, which might be a result of a relatively
small sample size or a bias in the model. This implies that the algorithm
could be used to model the drift of a geometric Brownian motion. However,
the variation of the drift was significantly smaller than the variance caused
by the Brownian motion, which gave a good basis for the study.

The asset price model used assumes that the dynamics of the asset remains
constant during the time series. Earlier studies imply, that the drift rate is
sensitive to changes in the economic variables, and news stories related to
the asset [6]. In addition, asset prices often include jumps, which are not
taken into account by the geometric Brownian motion [20]. The first step
in continuing the study would be including the estimation of the variance.
After this, the geometric Brownian motion could be replaced with a more
sophisticated model for the asset price.
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A Derivation of Asset Price Formula

Ito’s Lemma

Let X; be a process that satisfies the following stochastic differential equation

dXt = ,utXtdt + UtXtth . (6)
For a function f = f(t, X;) the Taylor expansion gives the following
f of 19°f 19°f ,  OPf
d dt ——dX; + - —(dt dX dtdXy) ...
f = ¢t + g, 4Xi+ 5 g (0 + 555 (X0 + 555, (At dX.)

By substituting X; with the equation (6), we have

_of of L 1of
! 6)2]0( 2(dt)? + o dtdWy + z(dW)Q)—f-ﬁ(( dt + o dW,)dt)
28X2 Hy MOt t T 0y t X, 0t Mt 144" TR

where (dt,dt) =0, (dt,dW;) = 0 and (dW;, dW;) = dt. Thus,

of | Of 1,0 . 0f
ot “HMoax, T2 tax? 09X,

daf = (2L )t + oy~ dW, . (7)

Stock Price Formula
In this thesis, we model the stock price S; as a geometric Brownian motion:
dSt = ,LLtdt + Utth s

where p; = uS; and oy = 05;.
Let f = f(t,S;) = InS;, for which

of . of 1 &f 1

ot 1 aS, S 082 S
Now, by equation (7) we have
1
d(hl St) = (M - éa)dt + O'th

By integrating both sides

t t 1 t
/ d(ln S;) = / (n— —0)dt+/ odW, ,
0 0 2 0
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we obtain that

1
lnSt—lnSo = (,u— §U)t+U(Wt—W0) s

where W, = 0. By rearranging the equation, the stock price S; can be ex-
pressed as

1
Sy = Spelhm 3o



