
Applying modified policy iteration
to multi-component system
maintenance scheduling

Petri Koivisto

School of Science

Bachelor’s thesis

Espoo 11.5.2022

Supervisor

Prof. Antti Punkka

Advisor

M.Sc. Jussi Leppinen

Copyright © 2022 Petri Koivisto

The document can be stored and made available to the public on the open in-
ternet pages of Aalto University.
All other rights are reserved.

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the bachelor’s thesis

Author Petri Koivisto
Title Applying modified policy iteration to multi-component system maintenance

scheduling
Degree programme Engineering Physics and Mathematics
Major Mathematics and System Sciences Code of major SCI3029
Teacher in charge Prof. Antti Punkka
Advisor M.Sc. Jussi Leppinen
Date 11.5.2022 Number of pages 25 Language English
Abstract
Most technical systems consist of numerous components, that require regular mainte-
nance in order to keep the system functional. Since a single component malfunction
can render a whole system inoperable, planning of the system maintenance is usually
necessary in order to maintain the system in a reliable working condition. Moreover,
as both maintenance operations and system downtime induce expenses, maintenance
optimization can be utilized to minimize long-term system maintenance costs.

In this thesis a maintenance scheduling optimization model is examined. The
model allows modeling economical and structural dependences of the system. The
evolution of the system is modeled as a Markov decision process, for which an optimal
maintenance policy can be calculated in order to minimize maintenance costs. This
thesis implements a modified policy iteration algorithm, that can be used to calculate
an optimal maintenance policy.

The performance of the modified policy iteration algorithm is compared to policy
iteration algorithm by calculating optimal maintenance policies for an imaginary
example system. The results indicate that the modified policy iteration algorithm
outperforms the policy iteration algorithm, as over a ten-fold speed-up in computation
time was achieved in certain computing cases. In addition, the modified policy
iteration algorithm implementation requires only a fraction of the memory needed
by the policy iteration algorithm.
Keywords Maintenance optimization, multi-component system, Markov decision

process, modified policy iteration

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä

Tekijä Petri Koivisto
Työn nimi Monikomponenttisen järjestelmän huollon aikatauluttaminen muokatulla

ohjauksen iterointialgoritmilla
Koulutusohjelma Teknillinen fysiikka ja matematiikka
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Prof. Antti Punkka
Työn ohjaaja DI Jussi Leppinen
Päivämäärä 11.5.2022 Sivumäärä 25 Kieli Englanti
Tiivistelmä
Tekniset järjestelmät kuluvat käytössä, minkä vuoksi niiden säännöllinen huoltami-
nen on välttämätöntä järjestelmän toimintakyvyn ylläpitämiseksi. Koska yksittäinen
komponenttivika voi aiheuttaa koko järjestelmän toimintakyvyttömyyden, on järjes-
telmän huoltojen suunnittelu tärkeää. Huollon optimoinnilla voidaan minimoida yllä-
pitokustannukset, jotka syntyvät paitsi järjestelmän huoltotöistä myös mahdollisen
vikaantumisen aiheuttamasta tuotannonmenetyksestä.

Tässä opinnäytetyössä esitellään huollon aikataulutuksen optimointimalli, joka ottaa
huomioon järjestelmän rakenteelliset ja taloudelliset riippuvuudet. Järjestelmän tilan
kehitystä ja huoltojen ajankohtia mallinnetaan Markov-päätösprosessilla. Markov-
päätösprosessin optimaalisen ohjauksen löytämiseksi työssä implementoitiin muokattu
ohjauksen iterointialgoritmi (engl. modified policy iteration).

Muokatun ohjauksen iterointialgoritmin suorituskykyä verrattiin ohjauksen iteroin-
tialgoritmiin laskemalla optimaalisia huoltoaikatauluja mallinnettavalle tekniselle
järjestelmälle. Tulosten perusteella muokattu ohjauksen iterointialgoritmi suoriutuu
optimiohjauksen laskemisesta tietyissä laskentatapauksissa yli kymmenen kertaa
nopeammin kuin ohjauksen iterointialgoritmi. Lisäksi muokattu ohjauksen iteroin-
tialgoritmi käyttää vain murto-osan ohjauksen iterointialgoritmin vaatimasta muisti-
määrästä.
Avainsanat Ylläpidon optimointi, monikomponenttijärjestelmä,

Markov-päätösprosessi, muokattu ohjauksen iterointialgoritmi

5

Contents
Abstract 3

Abstract (in Finnish) 4

Contents 5

1 Introduction 6

2 Background 6
2.1 System maintenance optimization . 6
2.2 Dynamic programming . 8

3 Methods 9
3.1 Maintenance optimization model . 9
3.2 Markov decision process . 11
3.3 Policy iteration and modified policy iteration algorithms 14
3.4 Implementation of the MPI algorithm in MATLAB 16

4 Results 17
4.1 Example system . 17
4.2 Selection of parameters . 18
4.3 Comparison of PI and MPI algorithms 19
4.4 Performance of MPI algorithm in systems with larger state spaces . . 22

5 Conclusion 24

6

1 Introduction
Modern technical systems consist of multiple components, which require regular
maintenance to retain the system functional. These components may have numerous
operating principles, which as a result cause the components to have diverse life
spans. The fact that components have different and also uncertain lifetimes makes
planning of the system maintenance difficult, as a failure of a component can cause
substantial expenses. The problem of system maintenance planning becomes more
complex as the size of the system grows. In addition, there may exist dependences
between the components, which adds another layer of complexity to the problem.

When planning a maintenance schedule for a system described above, one can
intuitively find several different maintenance strategies. For example, a high reliability
of the system can be achieved by replacing every component of the system at each
maintenance instance, which will result in high maintenance costs. On the other hand,
one can minimize short-term costs by committing to no maintenance, which will
eventually lead into system failure. In the scope of this thesis, objective of maintenance
optimization is to find a scheduling for system maintenances, i.e. maintenance policy,
that minimizes long-term cumulative cost of system maintenance while keeping the
reliability of the system above a preset reliability threshold.

This thesis presents a maintenance optimization model developed by Leppinen (2020).
The model describes a system maintenance scheduling problem as a Markov decision
process (e.g. Howard, 1960), for which an optimal policy can be found. In this
thesis we implement a modified policy iteration algorithm, that can be used to solve
the optimal maintenance policy. In addition, we compare the performance of the
modified policy iteration algorithm to policy iteration algorithm, that was used by
Leppinen (2020).

The remainder of this thesis is organized as follows: In Section 2 we review scientific
literature in the topics of maintenance optimization and dynamic programming. In
Section 3 we present the maintenance optimization model, Markov decision process
and the modified policy iteration algorithm. In Section 4 we compare performances
of modified policy iteration and policy iteration algorithms. In Section 5 we conclude
the results of this thesis and give suggestions for future research.

2 Background

2.1 System maintenance optimization
During the last few decades, the subject of maintenance optimization has been
under a substantial amount of research (de Jonge and Scarf, 2020; Dekker, 1996).
Automatization and mechanization of production systems have reduced the num-
ber of production personnel but in contrast raised the investments to equipment
and maintenance costs: for example, according to Bevilacqua and Braglia (2000)
maintenance costs can represent 15–70 % of total production costs. While industrial

7

systems have become increasingly reliable, component wear and exposure to produc-
tion environment can still cause unpredictable system failures, which as a result can
lead to expenses due to production losses and potential safety issues. These aspects
have lead to a wide recognition of the importance of maintenance optimization as a
business function (de Jonge and Scarf, 2020).

In general, the aim of maintenance optimization is to develop and apply mathematical
models for improving and optimizing maintenance policies. de Jonge and Scarf
(2020) present different optimality criteria that can be the objectives of maintenance
optimization; these objectives can be, for example, minimizing total system operation
costs or maximizing system availability. The objective is achieved by selecting an
optimal set of maintenance actions, which can be interpreted as the decision variables
of the optimization problem.

There are two types of maintenance actions: preventive and corrective maintenance
(e.g. Ben-Daya et al., 2016), where preventive maintenance is applied before a failure
of a system or a component and corrective maintenance is applied after failure. Figure
1 illustrates the costs of corrective and preventive maintenance as different levels
of preventive maintenance is applied. The figure implies that there is a minimum
combined cost level of preventive maintenance. According to de Jonge et al. (2015),
preventive maintenance can also significantly reduce system downtime. Preventive
maintenance policies can be further divided into time-based and condition-based
strategies, where the latter usually requires some type of inspections or monitoring
in order to determine the condition of the system (de Jonge and Scarf, 2020).

Maintenance optimization models have been applied to both single-component and
multi-component systems (de Jonge and Scarf, 2020). In multi-component systems
there may exist dependences between the components of the system. Particularly,
three types of dependence are commonly covered in maintenance optimization lit-

Figure 1: Illustration of corrective maintenance (CM) and preventive maintenance
(PM) costs as different levels of preventive maintenance is applied (Ben-Daya et al.,
2016).

8

erature: economic, structural and stochastic dependence (e.g. de Jonge and Scarf,
2020; Thomas, 1986). For example, economic dependence can arise from shared
maintenance set-up costs for the components, structural dependence may result from
some components having to be dismantled before maintenance of other components,
and stochastic dependence may be caused by some external factor affecting the
reliability of multiple components of the system. Olde Keizer et al. (2017) also
mention a fourth type dependence, resource dependence, which can originate from
a limited stock of spare parts that are shared with multiple components, or from a
limited amount of repair time available. These dependences and combinations of
them are incorporated in numerous maintenance optimization models (de Jonge and
Scarf, 2020).

In the maintenance optimization literature, different mathematical approaches have
been used to find optimal maintenance policies for multi-component systems. For ex-
ample, simulation has traditionally been used in order to compare various heuristically
determined maintenance policies, when the evolution of the system is uncertain (de
Jonge and Scarf, 2020). However, as computation speeds have increased, more exact
methods have been developed to find optimal maintenance policies. Dynamic pro-
gramming approaches offer such tools, and those have lately been used in maintenance
optimization models (e.g. Leppinen, 2020).

2.2 Dynamic programming
Dynamic programming (Bellman, 1957) can be described as a mathematical frame-
work for solving complex mathematical optimization problems by reducing them
into more easily solvable sub-problems. According to Bellman (1957), dynamic pro-
gramming can be used to achieve an optimal sequence of decisions for a multi-stage
decision processes. As a type of a multi-stage decision process, Bellman (1957)
mentions a Markov decision process (MDP), which has been used to model complex
decision problems in diverse fields such as ecology, economics and engineering (Put-
erman, 1994). In maintenance optimization literature, for example Maillart (2006)
and Leppinen (2020) apply Markov decision process in the objective of minimizing
long-term cumulative cost of system maintenance.

Markov decision processes are well-suited for modelling maintenance decisions for a
technical system, as MDPs can be used to model the probabilistic evolution of the
system. The Markov decision processes are also widely studied and are mathematically
robust method (Puterman, 1994). In addition, Markov decision processes can be
used to analyze decision problems with an infinite time-horizon, and many problems
arising from real-life situations can be formulated in such way, that the Markov
decision process always has a mathematically optimal policy that can be obtained
algorithmically (Puterman, 1994).

Different algorithms have been developed for finding the optimal policy of a Markov
decision process. Howard (1960) presents a value iteration algorithm, that calculates
an approximated optimal policy of a preset accuracy. Howard (1960) also presents a

9

policy iteration algorithm that can be used to find the exact mathematically optimal
policy for the MDP. Puterman and Shin (1978) present a modified policy iteration
algorithm that is based on the idea of using value iteration to approximate results
needed in the policy iteration algorithm iteration steps. The policy iteration and
modified policy iteration algorithms are later covered in Section 3.3.

3 Methods
In this section we present a maintenance optimization model developed by Leppinen
(2020). The model can be used to find a minimum cost maintenance policy for a multi-
component system incorporating economic and structural dependences. Sections 3.1
and 3.2 present the model, including slight improvements to necessary probability
calculations. Sections 3.3 and 3.4 are the key contributions of this thesis, where
we describe the modified policy iteration algorithm and implementation of it in
MATLAB.

3.1 Maintenance optimization model
In this thesis we examine a technical system that consists of n components denoted by
Ni ∈ N, i ∈ {1, . . . , n}. The system is considered to be a series system, which means
that a failure of any component will cause the system to be inoperable. We assume,
that the system is only maintained at discrete maintenance instances tk, k ∈ N.
The difference between two maintenance instances is called the maintenance interval
and denoted by ∆t = tk+1 − tk > 0. The maintenance interval can either be a fixed
time interval or it can be based on the system operation time or travel distance.
Moreover, we assume that during the maintenance instances the components can
only be replaced with new ones: no other maintenance procedures are considered in
the scope of this thesis.

Each component of the system has its own known failure probability distribution with
a cumulative distribution function denoted by Fi(t), which gives the probability that
component Ni will fail before age t. The components of the system are assumed to be
stochastically independent in the sense that they will fail independently of each other.
For the system we require a reliability threshold ρ that gives the minimum reliability
level for the system between maintenance instances. For example, if ρ = 0.9, at
maintenance instance tk, we require that the probability that the system is functional
at maintenance instance tk+1 has to be at least 90 %; if the probability is lower,
then maintenance is required to increase the system reliability, since the failure rate
of each component is assumed to be increasing. The mathematics of the system
reliability are explained in Section 3.2.

The system can have structural and economical dependences between the components.
Such system and its dependences can be modeled as a directed graph, as presented
by Leppinen (2020). In the graph each node i ∈ {0, . . . , n} describes replacement or
other maintenance operation of component Ni in the system. Node 0 is called the

10

root node, that describes the starting point for the system maintenance. Each arc
(i, j) between the nodes i and j respectively describes dependences in the system. If
component Ni in the graph is accessible directly from the root node, there are no
structural dependences for replacing the component. However, if component Nj is
only accessible from node describing component Ni, then Nj can only be replaced
if Ni is replaced also. In addition, the weights of the arcs describe the cost of each
component replacement or other maintenance operation, denoted by cij which is the
cost of maintenance operation j given that maintenance operation i is conducted
before it.

Figure 2: An example of a directed graph illustrating a system with structural and
economical dependences.

An example of such graph is presented in Figure 2. The graph illustrates the structural
and economical dependences of an imaginary transportation system: the nodes E1
and E2 represent two engines of the system, node DE12 represents a disassembly of
both engines and the nodes W and C describe the wheels and chassis of the system,
respectively. From the graph we see that the wheels or the chassis cannot be replaced
without disassembling the engines first. We also see that if for example E1 is replaced
without disassembling it first, the cost of the maintenance is 416 units. However, if
the engines are disassembled first, the cost of engine replacement is 393 units but
since the disassembly costs 51 units, the total cost of such operation is 444 units.

In addition to the costs cij the model includes a fixed set-up cost c0 ≥ 0. The
set-up cost is paid at each maintenance instance if any maintenance operations are
carried out. Thus it simulates for example the cost of the system being inoperable
during maintenance. The model can also incorporate a corrective surplus cost ri ≥ 0
which describes the extra cost that may result from component Ni breaking between
maintenance instances.

In the next section we describe modeling the evolution of the system while taking into
account the effect of the maintenance operations executed at maintenance intervals.

11

This is achieved by modeling the state and maintenance operations as a discrete time
Markov decision process, as developed by Leppinen (2020).

3.2 Markov decision process
Let S denote a state-space of the system and sk ∈ S be the state vector of the system
at maintenance instance tk. The vectors sk can be described by two factors: the age
of the components ak ∈ Rn, where (ak)i describes the age of component Ni, and the
failure state of the components fk ∈ {0, 1}n, where (fk)i = 1 if component Ni has
failed. Thus the state vector of the system can be written as sk = [a⊤

k , f⊤
k]⊤ ∈ R2n.

During each maintenance interval ∆t the states of the components evolve by either
ageing or failing. The failure time tf

i of component Ni follows a probability distribution
with cumulative distribution function Fi((ak)i). Thus, if component Ni operates
at maintenance instance tk having age (ak)i, then it operates until tk+1 with the
conditional probability

P i
k

(︂
tf
i > tk+1|tf

i > tk

)︂
= 1 − Fi((ak)i + ∆t)

1 − Fi((ak)i)
:= Ri((ak)i). (1)

This is the reliability of component Ni at maintenance instance tk given its age
(ak)i. We assume that the reliability of a component decreases as the component
ages. Because in a series system every component is critical and the failures are
independent, the reliability of the system at tk given component ages ak is

Rsys(ak) =
n∏︂

i=1
Ri((ak)i). (2)

Because system failure is unwanted, we set a reliability threshold ρ ∈ (0, 1) for the
system. At every maintenance instance, the system must be maintained so that the
system reliability in (2) remains above the threshold until the next maintenance
instance meaning that

Rsys(ak) ≥ ρ (3)

for all k ∈ N.

We assume that at most one component can fail during each maintenance interval
(tk, tk+1). This is reasonable since after a component fails the system becomes
inoperable which prevents other component failures. The probability of no failures
occurring is given by (2). Component Ni will fail during (tk, tk+1) if it is the first
component that fails. We denote this as event Ei,k. Mathematically it means that
failure time tf

i of component Ni satisfies

tk ≤ tf
i = min

{︂
tf
1 , . . . , tf

n

}︂
≤ tk+1.

12

In order for event Ei,k to take place every component must operate until tk given
ages ak. When component ages ak and the maintenance interval ∆t are known, the
probability of Ei,k can be calculated as a conditional probability

P (Ei,k(ak)) =
∫︁ ∆t

0 F ′
i ((ak)i + t) ∏︁

j ̸=i [1 − Fj((ak)j + t)] dt∏︁n
i=1 [1 − Fi((ak)i)]

(4)

where F ′
i is the probability density function of the corresponding cumulative distri-

bution function.

To speed up the model implementation we approximate the calculation of (4). Using
(1) we can calculate that only component Ni will fail during (tk, tk+1) with probability

Bi(ak) := (1 − Ri(ak))
∏︂

j=1,...,n, j ̸=i

Rj(ak). (5)

Now ∑︁n
i=1 Bi(ak) + Rsys(ak) < 1, where the remainder

M(ak) := 1 −
n∑︂

i=1
Bi(ak) − Rsys(ak)

describes the possibility of multiple components having their failure times at interval
(tk, tk+1). This M(ak) is now divided and added to the values of Bi(ak) with respect
to their sizes so that our approximation for (4) is

P (Ei,k(ak)) ≈ Bi(ak) + Bi(ak)∑︁n
i=1 Bi(ak)M(ak). (6)

Since the system has a reliability requirement (3), by reliability of the system (2) we
must also have

Ri((ak)i) ≥ ρ ∀ i ∈ {1, . . . , n}, k ∈ N.

This indicates that at each maintenance instance tk, every component must have
their reliability over the reliability threshold ρ; in other words this means at some
point every component, after reaching a certain age, must be replaced. This restricts
the number of possible states of the system, that is, the size of the state space S, to
be finite. Since we assume that only one component can fail at each maintenance
interval ∆t, the number of possible failure state vectors fk is n + 1. If we denote the
number of possible age vectors ak that satisfy reliability threshold (3) by h, we can
write

|S| = h(n + 1).
Since there is a finite number of states, we can denote them with σi ∈ S, i ∈
{1, . . . , |S|}, where every σi is unique.

At each maintenance interval (tk, tk+1) the system can evolve to n + 1 states: either
all components stay functional to the end of the interval or one of the n components
fails. The system will evolve from state σi to state σj during maintenance interval
(tk, tk+1) with a transition probability Pij. These probabilities are calculated with

13

(6) and (2). The transition probabilities Pij depend only on state σi, so the process
follows the Markov property (Puterman, 1994).

At each maintenance instance tk, a decision is made whether one or more components
in the system are maintained or not. This decision is called a maintenance portfolio
and denoted by pk ⊆ N, pk ∈ A, where A is called the action space of the MDP.
If component Ni is included in portfolio pk, it is replaced at maintenance instance
tk. An empty maintenance portfolio indicates that no maintenance operations are
carried out at the corresponding maintenance instance. After a portfolio has been
applied, the state of the system is modified to represent the current state: for any
replaced components Ni, both failure state (fk)i and age (ak)i are set to 0.

The maximum number of maintenance portfolios that can be applied in each state
is 2n. However, this number is usually smaller, as not all maintenance portfolios
are feasible. Firstly, all broken components of the system must be replaced in order
to restore the system into functioning condition. In addition, after applying the
maintenance operations of the portfolio, reliability threshold (3) must be fulfilled.
Moreover, the portfolio must take structural dependences into account: for example,
in the system presented in Figure 2, if the portfolio includes chassis (C), it must
also include disassembly of engines 1 and 2 (DE12). A maintenance portfolio that
satisfies aforementioned conditions is called a feasible portfolio.

Each portfolio pk induces a cost c∗(pk) that is sum of the costs of maintenance
operations executed in pk. This cost can be calculated from the graph that represents
the structural and economical dependences of the system, as in Figure 2. Calculating
c∗(pk) for a feasible portfolio requires finding a minimum-cost path from the root
node of the graph to all nodes included in the portfolio pk. This path is called
the minimum-cost absorbance tree and it can be found using Edmond’s algorithm
(Kleinberg and Tardos, 2006). The total cost of a portfolio is denoted by c(pk) and it
also includes the set-up cost c0 and corrective surplus costs r. For an empty portfolio,
c(pk) = 0. In all other cases, the cost is given by

c(pk) = c0 + c∗(pk) + f⊤
k r,

where fk is the failure state vector of the components at tk.

A maintenance policy U prescribes a rule for maintenance portfolio selection in
each state sk. Thus a policy is a function U : S → A. This means that at every
maintenance instance tk, based on the state of the system, the policy U gives an
unambiguous and feasible maintenance portfolio pk. Figure 3 illustrates a Markov
decision process and the relations between states, portfolios, costs and maintenance
policy. A policy U is called stationary if it does not depend on the maintenance
instance tk: that is

sk = σi ⇒ U(sk) = U(σi) ∀ i ∈ {1, . . . , |S|}, k ∈ N.

The selected portfolio U has an effect on the transition probabilities between states.
A transition matrix PU ∈ R|S|×|S| at index (i, j) contains probabilities that the system

14

Figure 3: An illustration of a Markov decision process in maintenance optimization
model.

will evolve from state σi to state σj when stationary policy U is applied. Finding
the optimal maintenance policy for a system requires finding a stationary policy U
that minimizes the long-term cumulative costs of system maintenance. In the next
section, we present two algorithms for finding such policy.

3.3 Policy iteration and modified policy iteration algorithms
An optimal policy of a Markov decision process can be obtained using a policy
iteration algorithm (PI; see Howard, 1960). However, since the policy iteration
algorithm is computationally somewhat heavy, Puterman and Shin (1978) present a
modified policy iteration algorithm (MPI), that can be used to find an ε-optimal
policy with ε > 0. In this thesis, we examine a discounted Markov decision process,
where future costs are discounted with a discount factor of λ ∈ [0, 1).

We first look at the policy iteration algorithm. We can calculate the expected
discounted cost of stationary policy U over k maintenance instances with starting
state σi by

Vk(σi, U) = c(U(σi)) + λ
|S|∑︂
j=1

(PU)ij · Vk−1(σj, U), (7)

which is a recursive formulation of the Bellman equation (Bellman, 1957). If we
denote vk(U) ∈ R|S| such that (vk(U))i = Vk(σi, U) for all i ∈ {1, . . . , |S|}, we can
write (7) as

vk(U) = cU + λPUvk−1(U), (8)
where cU is a cost vector for policy U ; that is, (cU)i = c(U(σi)) for all i ∈ {1, . . . , |S|}.
Now the expected total discounted cost of policy U can be calculated by letting
k → ∞, so that from (8) we get

v(U) = cU + λPUv(U),

15

which can be rewritten as
(I − λPU)v(U) = cU .

For 0 ≤ λ < 1 it can be shown, that the matrix I − λPU is inversible (Puterman,
1994). Thus the total expected discounted cost of a policy is

v(U) = (I − λPU)−1cU . (9)

The optimal policy U∗ is a solution to a minimizing problem

v(U∗) = min
U

{cU + λPUv(U)} . (10)

The system of equations of form (10) is called the optimality equations of the MDP.
This problem can be solved iteratively using policy iteration algorithm, that in
Puterman (1994) is presented as follows:

Step 1. Set n = 0 and select an arbitrary policy U0.

Step 2. (Policy evaluation) Obtain v(Un) by solving

v(Un) = (I − λPUn)−1cUn .

Step 3. (Policy improvement) Choose Un+1 to satisfy

Un+1 ∈ arg min
U

{cU + λPUv(Un)} .

Step 4. If Un+1 = Un, stop and set U∗ = Un. Otherwise increment n by 1 and
return to step 2.

If the size of the state space S is finite, and for each state, the number of feasible
portfolios is also finite, the policy iteration algorithm is guaranteed to terminate in a
finite number of iterations (Puterman, 1994).

Obtaining the precise solution to the system of linear equations in step 2 of the policy
iteration algorithm is not necessary in order to find the optimal policy. Alternatively,
we can approximate the value for v(Un+1) by approaching it from the approximated
value of v(Un). Thus we can avoid solving the system of linear equations in step 2 by
using a modified policy iteration algorithm. The algorithm finds an ε-optimal policy
denoted by Uε. The MPI algorithm is adopted from Puterman (1994) as follows:

Step 1. Set n = 0, select an arbitrary policy U0, set v(U0) = cU0 , specify ε > 0
and select a sequence of non-negative integers {mn}.

Step 2. (Policy improvement) Choose Un+1 to satisfy

Un+1 ∈ arg min
U

{cU + λPUv(Un)}

setting Un+1 = Un if possible (when n > 0).

16

Step 3. (Partial policy evaluation).

(a) Set k = 0 and select u0(Un) ∈ R|S| by

u0(Un) := min
U

{cU + λPUv(Un)}.

(b) If ||u0(Un) − v(Un)|| < ε(1 − λ)/2λ, go to step 4. Otherwise go to
(c).

(c) If k = mn, go to (e). Otherwise compute uk+1(Un) by

uk+1(Un) = cUn+1 + λPUn+1uk(Un).

(d) Increment k by 1 and return to (c).

(e) Set v(Un+1) = umn(Un), increment n by 1 and go to step 2.

Step 4. Set Uε = Un+1 and stop.

The sequence {mn} may be, for example, a constant number for all iterations, a
prefixed pattern of non-negative integers, or selected adaptively by requiring

||umn+1(Un) − umn(Un)|| < εn

for some εn. Similarly to the PI algorithm, the MPI algorithm is guaranteed to
terminate in a finite number of iterations for all sequences {mn}. However, the
number of iterations the algorithm takes to converge depends on the selection of
{mn}, which is covered in Section 4.2.

An implementation of the PI algorithm is done by Leppinen (2020), so in this thesis
we focus on the implementation of the MPI algorithm. As the performance of an
algorithm usually depends on the implementation, next we look at some of the
aspects of the implementation of the MPI algorithm in MATLAB.

3.4 Implementation of the MPI algorithm in MATLAB
In this thesis, the modified policy iteration algorithm is implemented in MATLAB
as a function, similarly as the policy iteration algorithm is implemented by Leppinen
(2020). This way we can straightforwardly call the algorithms with same parameters
and compare the results and running times of the algorithms.

The first step in the MATLAB function is to define the Markov decision process in
an initialization step. In the initialization step the dependences of the maintenance
optimization model are formed, and the costs of different portfolios are calculated
using Edmond’s algorithm. In addition, the reliabilities of the components at each
age ak are calculated using (1), and the allowed age combinations of the components
are selected using the system reliability requirement (3). Thus we have the unique
states σi, and feasibility of each portfolio for every state can be tested. The initial

17

policy U0 in step 1 of the MPI algorithm is selected by choosing the cheapest feasible
portfolio for each state σi, after which transition probabilities (PU0)ij are calculated.

In general, in the implementation we can assume that |S| ≫ n. Since the system
can evolve from state σi to n + 1 states and the dimension of the transition matrix
PU is |S| × |S|, PU is very sparse. If we order the states σj that can follow state
σi such that σj denotes the failure of component N1, σj+1 denotes the failure of N2
etc., we can save a considerable amount of memory by storing the probabilities in a
matrix of dimension |S| × (n + 2), where only the non-zero probabilities (PU)ij and
the starting index j are stored for each state σi. This also allows speeding up the
matrix-vector multiplications in steps 2 and 3(c) of the MPI algorithm, since the
multiplications with 0 can be omitted.

For the sake of simplicity, the sequence {mn} in the MPI algorithm is selected to
be a constant value mn = m for all n. The stopping criterion in step 3(b) of the
MPI algorithm is implemented using maximum norm, since it is computationally
less heavy and in tests produces similar results as the Euclidean norm.

4 Results
In this section we test the performance of the modified policy iteration and policy
iteration algorithms. First in Sections 4.1 and 4.2 we define an example system
and its parameters used in the tests. Later in Sections 4.3 and 4.4 we present the
performance results for the algorithms.

The tests performed in this section are run with a workstation computer having
Intel Core i5-11600 processor at 2.80 GHz clock speed, 32 GB of RAM and running
MATLAB R2022a on Ubuntu.

4.1 Example system
The MPI and PI algorithms can be tested using an imaginary example system similar
to what is presented in Figure 2. The system is a transportation system, and since
measuring the usage of such system is customary to do by mileage, the maintenance
interval between each maintenance instance tk is assumed to be 100 000 kilometers.
In the implementation of the algorithm, the maintenance interval is scaled to be
∆t = 1 for the 100 000 km maintenance interval.

The failure distributions for the components are chosen to be Weibull distributions,
because those are common in reliability analysis literature (e.g. Kapur and Lamberson,
1977). The probability density function of a Weibull distributed random variable t is
given by

F ′(t; γ, k) =

⎧⎨⎩ k
γ

(︂
t
γ

)︂k−1
e−(t/γ)k

t ≥ 0,

0 t < 0,
(11)

where γ > 0 and k > 0 are called the shape and scale parameters of the distribution,
respectively. In order to fulfil the assumption of increasing failure rate, we set k > 1.

18

Weibull
parameters Component spesific costs

Component k γ Dismantle Replacement Corrective surplus
Engine 1 5.1 10.8 23 393 300
Engine 2 5.1 10.8 28 403 300
Chassis 5.5 9.9 167 413 160
Wheels 4.0 9.0 0 1000 613

Table 1: Weibull distribution parameters and component specific costs of the example
system.

Figure 4: Failure probability density functions of the components of the example
system.

The cumulative distribution function of (11) is given by

F (t; γ, k) =

⎧⎨⎩1 − e−(t/γ)k

t ≥ 0,

0 t < 0.

The Weibull distribution parameters for the components in the example system are
presented in Table 1. The probability density functions of the Weibull distributions
are plotted in Figure 4. Table 1 also shows the component specific costs associated
with the system. In addition, the maintenance set-up cost is c0 = 388.

4.2 Selection of parameters
The number of iterations in steps 3(b)–3(d) of the MPI algorithm is selected by
setting the sequence {mn} to be a constant m for every n. The constant m can be

19

λ = 0.98 λ = 0.99 λ = 0.993
m Niter Talg (s) Niter Talg (s) Niter Talg (s)
5 37 3.90 74 7.85 94 10.00
10 20 2.76 39 5.45 55 7.73
15 14 2.38 28 4.85 39 6.81
20 11 2.19 21 4.32 31 6.43
30 8 2.05 14 3.73 23 6.29
40 7 2.20 11 3.58 18 6.07
50 7 2.62 10 3.88 12 4.73
75 7 3.68 8 4.27 10 5.46
100 7 4.75 8 5.49 8 5.50

Table 2: The number of iterations and computation time before convergence with
different numbers of MPI algorithm inner loops and different discount factors λ.

chosen by performing tests with a different number of iterations and measuring their
convergence times. The test is run using discount factors λ ∈ {0.98, 0.99, 0.993},
reliability threshold ρ = 0.9 and maintenance interval ∆t = 1, which results to a
state space of size |S| = 6840. In addition, the stopping criterion in step 3(b) of the
MPI algorithm is set to ε = 0.01 for every test. The results of the test runs are shown
in Table 2. In the table, m denotes the number of iterations in steps 3(b)–3(d), Niter
denotes the number of iterations that the algorithm takes before convergence and
Talg denotes the algorithm convergence time in seconds. Time Talg does not include
the time it takes to initialize the problem, as described in Section 3.4, so it only
measures the time the algorithm takes to converge to an optimal policy.

Based on the results presented in Table 2, it seems that a larger number of approx-
imation step iterations leads to a smaller number of overall algorithm iterations;
however, the algorithm run time has a minimal value at some point. In these tests
the smallest convergence time seems to occur around 30 ≤ m ≤ 50. Based on this
test, the sequence {mn} was selected to be 40 for all n.

4.3 Comparison of PI and MPI algorithms
The performance of both policy iteration and modified policy iteration algorithms are
tested by measuring their convergence times while varying parameter values of the
example system described in Section 4.1. Furthermore, the optimal policies found by
the algorithms are tested for similarity.

An important detail in the implementation of the PI algorithm by Leppinen (2020)
is that it uses MATLAB implementation of conjugate gradients squared method for
solving the system of linear equations in step 2 of the PI algorithm. This makes the
PI implementation considerably faster than by solving the system with the standard
method of using the backslash operator.

First, the performances of the algorithms are tested with different reliability thresholds

20

MPI PI
ρ |S| Niter Talg (s) Niter Talg (s)

0.999 40 24 0.05 1 0.06
0.99 550 18 0.45 4 0.09
0.98 1225 16 0.89 7 0.12
0.96 2560 14 1.63 9 0.94
0.93 4780 13 2.83 9 3.70
0.90 6840 11 3.38 8 6.06
0.85 10570 13 6.31 9 19.79
0.80 15520 9 6.26 10 38.06
0.75 19750 11 9.94 9 65.86
0.70 25060 10 11.30 8 121.38

Table 3: Convergence times of MPI and PI algorithms with different reliability
threshold levels.

Figure 5: Algorithm convergence times of MPI and PI algorithms for different state
spaces sizes.

ρ. The reliability threshold ρ affects the state space size |S|: if a lower reliability is
allowed for the system, there are more possible age combinations for the components.
Since a smaller ρ value leads to a larger state space size while not changing any
other parameters of the model, the test gives a benchmark of the algorithms’ overall
performance with differently sized state spaces. The test is run using a discount
factor of λ = 0.99, and the results are presented in Table 3. In the table Niter denotes
the number of algorithm iterations, and Talg denotes the algorithm convergence time
in seconds. The convergence times are also plotted in Figure 5.

21

From Table 3 and Figure 5 we see that with small state spaces the PI algorithm seems
to perform better. However, as the size of the state space grows, MPI algorithm
can find the optimal policy much faster than PI algorithm: for example, with
|S| = 25060 the MPI algorithm converges over 10 times faster than PI algorithm.
The overall number of iterations before convergence is generally higher for the MPI
algorithm, which indicates that selecting the policy with an approximated value for
the discounted cost of the policy v(U) is less optimal than using the exact solution
for (9). On the other hand, each iteration of the MPI algorithm takes much less time
than on PI algorithm.

The convergence time of the algorithms are also tested with different discount factors
λ. The discount factor does not affect the size of the state space S, so each test is
run using reliability threshold ρ = 0.9, which results in |S| = 6840. The results of the
tests are presented in Table 4 and Figure 6. From the table we see that as discount
factor λ approaches 1, MPI algorithm needs a larger number of iterations to converge,
which results as a longer computation time. This is natural, since the termination
criterion in step 3(b) of the MPI algorithm becomes increasingly constraining as λ
grows. Conversely, PI algorithm does not seem to be that sensitive for the value of
the discount factor, which is in line with results of Leppinen (2020).

In every comparison test for MPI and PI algorithms, the policies found by the
algorithms are compared for similarity. In every test case presented in Tables 3 and
4, the optimal policy U∗ and the ε-optimal policy Uε found by the algorithms are
exactly the same. This indicates that the chosen accuracy of ε = 0.01 is sufficiently
small.

MPI PI
λ Niter Talg (s) Niter Talg (s)

0.90 6 1.78 7 4.41
0.93 7 2.11 9 4.42
0.95 7 2.08 8 4.03
0.97 7 2.07 9 5.36
0.98 7 2.09 8 5.31
0.99 11 3.42 8 5.91
0.993 16 5.13 10 6.71
0.995 23 7.49 9 6.28
0.998 35 11.47 9 6.50
0.999 92 30.55 7 5.12

Table 4: Number of iterations and convergence times of MPI and PI algorithms with
different discount factors.

22

Figure 6: Algorithm convergence times of MPI and PI algorithms for different
discount factors.

4.4 Performance of MPI algorithm in systems with larger
state spaces

While comparing MPI and PI algorithms with varying state space size, it quickly
becomes apparent that the implementation of PI algorithm requires more memory
than is available on the test computer. For example, if state space size is |S| = 75000,
storing the transition matrix PU ∈ R|S|×|S| as double precision floating point numbers
requires about 45 gigabytes of memory, whereas storing the matrix as described in
section 3.4 only requires about 3.6 megabytes.

The maintenance interval has a great effect on the size of the state space S: if the
maintenance interval is shorter, then there are more possible age combinations for
the components. On the other hand, longer maintenance interval leads to smaller
reliability of the system and fewer possible component age combinations. For example,
in the example system with ρ = 0.9, halving the maintenance interval increases the
state space size |S| from 6840 to 232755. Thus these tests with varying maintenance
interval are only performed with the MPI algorithm.

Changing the maintenance interval also has an effect on the discount factor. If the
discount factor is assumed to be λ = 0.99 for the span of 100000 kilometers, when
varying maintenance interval we must also calculate a new discount factor. The
discount factor can be calculated as

λ = 0.99∆t,

where ∆t = 1 for a maintenance interval of 100000 km.

23

The MPI algorithm is now tested with different maintenance intervals and the results
are presented in Table 5. In the table, also the time for the algorithm initialization
step explained in Section 3.4 is presented as Tinit. The results are also plotted in
Figure 7. From the results we see that the convergence time for MPI algorithm
seems to grow almost linearly as the state space grows. Moreover, we see that the
MPI algorithm can be used to solve systems with much larger state spaces than PI
algorithm, as storing the transition matrix PU for maintenance interval ∆t = 0.5
would require about 430 gigabytes of memory.

∆t λ |S| Niter Tinit (s) Talg (s)
1.0 0.99 6840 11 0.98 3.63
0.95 0.9905 9090 16 0.65 7.07
0.90 0.9910 11635 17 0.81 9.72
0.85 0.9915 15875 10 1.06 7.44
0.80 0.9920 21600 17 1.42 17.79
0.75 0.9925 29885 13 1.95 18.52
0.70 0.9930 42185 13 2.74 26.26
0.65 0.9935 61890 15 3.99 45.07
0.60 0.9940 92875 12 6.03 53.27
0.55 0.9945 143040 12 9.42 81.86
0.50 0.9950 232755 13 15.92 145.43

Table 5: Convergence time of MPI algorithm for different maintenance intervals.

Figure 7: Algorithm convergence time of MPI algorithm for different state space
sizes when varying the maintenance interval length.

24

5 Conclusion
In this thesis we presented a maintenance optimization model that utilizes a discrete
time discounted Markov decision process to model the state and maintenance decisions
of a multi-component system with structural and economical dependences. In addition,
we presented and implemented modified policy iteration algorithm, that can be used to
find an optimal maintenance policy for the system, and compared the computational
performance of the modified policy iteration and policy iteration algorithms.

Based on the results presented in Section 4, the modified policy iteration algorithm
seems to be a viable method for solving the optimal policy for a Markov decision
process in the maintenance optimization model. The MPI algorithm has a significant
speed advantage compared to the ordinary policy iteration algorithm, while in every
test case the algorithms found the same optimal policy. However, when applying the
MPI algorithm, some caution is required since at some specific cases an approximative
algorithm takes considerably longer to converge.

One of the most important benefits of the MPI algorithm implemented in this thesis is
the memory save explained in Section 3.4. While the usual implementations of matrix
inversion algorithms require a square matrix input, the ability to store a transition
matrix of the MPD into a more compact data structure allows solving optimal policies
for much larger systems than with ordinary PI. Since adding components to the
system model increases the size of the state space greatly, MPI algorithm might be
usable for solving maintenance policies for much larger systems.

At the moment, the algorithm uses only one computer processor (CPU) thread to
perform calculations. However, the large matrix-vector multiplications executed in
the MPI algorithm should be reasonably straightforward to parallelize to multiple
CPU cores, which would propose an interesting topic for future development. In
addition, the maintenance scheduling model and MPI algorithm could be tested for
systems containing more components and larger state space.

The maintenance optimization model presented in this thesis could also be further
developed by making it model real technical system more accurately: for example,
more component condition states instead of just two, working or not working, could
be included. In addition, incorporation of resource dependence, for example in form
of limited available repair time per maintenance instance, and its effects on feasible
maintenance policies could propose an interesting research subject. Such model could
also include a cost for the system shutdown time.

References
R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

M. Ben-Daya, U. Kumar, and D. N. Prabhakar Murthy. Introduction to maintenance
engineering: modelling, optimization and management. John Wiley & Sons, 2016.

25

M. Bevilacqua and M. Braglia. The analytic hierarchy process applied to maintenance
strategy selection. Reliability Engineering & System Safety, 70:71–83, 2000.

B. de Jonge and P. A. Scarf. A review on maintenance optimization. European
Journal of Operational Research, 285:805–824, 2020.

B. de Jonge, W. Klingenberg, R. Teunter, and T. Tinga. Optimum maintenance
strategy under uncertainty in the lifetime distribution. Reliability Engineering &
System Safety, 133:59–67, 2015.

R. Dekker. Applications of maintenance optimization models: a review and analysis.
Reliability Engineering & System Safety, 51:229–240, 1996.

R. A. Howard. Dynamic programming and markov processes. John Wiley & Sons,
1960.

K. C. Kapur and L. R. Lamberson. Reliability in engineering design. John Wiley &
Sons, 1977.

J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India, 2006.

J. Leppinen. A dynamic optimization model for maintenance scheduling of a
multi-component system. Master’s thesis, Aalto University School of Science,
2020.

L. M. Maillart. Maintenance policies for systems with condition monitoring and
obvious failures. IIE Transactions, 38:463–475, 2006.

M. Olde Keizer, S. Flapper, and R. Teunter. Condition-based maintenance policies
for systems with multiple dependent components: A review. European Journal of
Operational Research, 261:405–420, 2017.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 1994.

M. L. Puterman and M. C. Shin. Modified policy iteration algorithms for discounted
markov decision problems. Management Science, 24:1127–1137, 1978.

L. C. Thomas. A survey of maintenance and replacement models for maintainability
and reliability of multi-item systems. Reliability Engineering, 16:297–309, 1986.

	Abstract
	Abstract (in Finnish)
	Contents
	1 Introduction
	2 Background
	2.1 System maintenance optimization
	2.2 Dynamic programming

	3 Methods
	3.1 Maintenance optimization model
	3.2 Markov decision process
	3.3 Policy iteration and modified policy iteration algorithms
	3.4 Implementation of the MPI algorithm in MATLAB

	4 Results
	4.1 Example system
	4.2 Selection of parameters
	4.3 Comparison of PI and MPI algorithms
	4.4 Performance of MPI algorithm in systems with larger state spaces

	5 Conclusion

