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Abstract
Superconductivity is a quantum mechanical phenomenon where the resistance of a
material disappears and it starts to reject magnetic fields below a certain critical
temperature. In conventional superconductors, instead of repulsion, two electrons
interact attractively via positive ions to form so-called Cooper pairs, which require
energy to be decoupled to restore resistance. In unconventional, topological super-
conductivity, exotic quasiparticles, so-called Majorana fermions, are found at the
edges or defects of the superconductor. These quasiparticles are highly stable due to
their topological nature, making topological superconductors potential candidates
for fault-tolerant quantum computing.

A superconducting material can be identified using a scanning tunneling micro-
scope, which can take atomic-level images of a material and measure differential
conductivity, which in turn gives the density of states of the material, i.e. the number
of available quantum states at a given energy. Mathematically superconductors are
modelled by Hamiltonian functions that describe the total energy of the system.
Since superconductors with different properties have both a unique density of states
and a Hamiltonian function describing them, the density of states can be used to
determine the parameters of the corresponding Hamiltonian using machine learning.

The goal of this thesis is to train a supervised neural network model to identify
Hamiltonian parameters of unconventional, potentially topological superconductors
using simulated density of states values. For this purpose, two superconducting
systems of different sizes are simulated, and two neural network models are trained
for each of these systems: one that uses as input the density of states of the whole
system and another that uses the components obtained using principal component
analysis that describe the main features of the density of states.

In this thesis, training a neural network using principal components was found to
be significantly faster, and to also give better predictions of Hamiltonian parameters.
A larger amount of training data was also found to improve the accuracy of the
results. The best performing neural network model was trained using data on the
larger system’s principal components, and its prediction errors were one order of
magnitude smaller than the other models.
Keywords superconductivity, unconventional superconductivity, topological

superconductivity, machine learning, neural networks, principal
component analysis
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Tiivistelmä
Suprajohtavuus on kvanttimekaaninen ilmiö, jossa aineen resistanssi katoaa ja aine
alkaa hylkimään magneettikenttiä tietyn kriittisen lämpötilan alapuolella. Tavanomai-
sissa suprajohteissa kahden elektronin välille syntyy hylkivän sijaan vetovoimainen
vuorovaikutus positiivisten ionien välityksellä, ja ne muodostavat ns. Cooperin pareja,
joiden hajoamiseen tarvitaan energiaa resistanssin palauttamiseksi. Epätavanomaises-
sa, topologisessa suprajohtavuudessa suprajohteen reunoilla tai vikakohdissa tavataan
lisäksi eksoottisia kvasihiukkasia, ns. Majorana-fermioneja, jotka ovat topologisen
luonteensa ansiosta erittäin stabiileja, ja tekevät tällaisista suprajohteista soveltuvia
esimerkiksi vikasietoiseen kvanttilaskentaan.

Suprajohtava materiaali voidaan tunnistaa tunnelointimikroskoopilla, jolla voi-
daan ottaa atomitason kuvia tutkittavasta materiaalista, ja mitata differentiaali-
johtavuutta, josta puolestaan saadaan selville materiaalin tilatiheys, eli käytettävis-
sä olevien kvanttitilojen määrä tietyssä energiassa. Matemaattisesti suprajohteita
mallinnetaan Hamiltonian-funktioilla, jotka kuvaavat systeemin kokonaisenergiaa.
Koska eri ominaisuudet omaavilla suprajohteilla on niitä kuvaava tilatiheys sekä
Hamiltonian-funktio, voi tilatiheyden arvoista määrittää vastaavan Hamiltonian-
funktion parametreja erilaisten koneoppimismenetelmien avulla.

Tämän työn tavoitteena on kouluttaa ohjattu neuroverkkomalli tunnistamaan epä-
tavanomaisten, potentiaalisesti topologisten suprajohteiden Hamiltonian-parametreja
simuloitujen tilatiheysarvojen avulla. Tätä varten on simuloitu kahta eri kokoista
suprajohtavaa systeemiä, joille kummallekin on koulutettu kaksi neuroverkkomallia:
yksi, joka käyttää syötteenä koko systeemin tilatiheyksiä ja toinen, joka käyttää
pääkomponenttianalyysin tuloksena saatuja komponentteja jotka kuvaavat tilatihey-
sarvojen keskeisimpiä piirteitä.

Tässä työssä havaittiin pääkomponenttien avulla koulutetun neuroverkon kou-
lutuksen olevan huomattavasti nopeampaa, ja antavan myös parempia ennusteita
Hamiltonian-parametreille. Myös suuremman opetusdatamäärän havaittiin paranta-
van tulosten tarkkuutta. Parhaiten toimiva neuroverkkomalli koulutettiin suurem-
man systeemin pääkomponenttien avulla, ja sen ennusteiden virheet olivat yhden
kertaluokan pienempiä kuin muiden mallien.
Avainsanat suprajohtavuus, epätavanomainen suprajohtavuus, topologinen

suprajohtavuus, koneoppiminen, neuroverkot, pääkomponenttianalyysi
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1 Introduction
Superconductivity is a quantum mechanical phenomenon observed in certain materi-
als, where the electrical resistance of the material drops to zero and magnetic fields
are expelled below a critical temperature. At the microscopic level the transition of
a material to its superconducting state causes its electronic structure to change as
described by the Bardeen, Cooper, and Schrieffer (BCS) theory, where electrons are
treated as waves rather than independent particles. BCS theory explains conventional
superconductivity through so-called Cooper pairs, which form when two electrons in
a lattice attract each other via positive ions instead of Coulomb repulsion. (Keller
et al., 1993)

Superconductors have long been used in magnetic resonance imaging (MRI),
and are now increasingly being used in quantum computer applications. A type of
unconventional superconductivity called topological superconductivity is an especially
potential candidate for topological quantum computing due to exotic quasiparticles
called Majorana-fermions existing at the edges or defects of a topological supercon-
ductor. These quasiparticles are highly stable and therefore robust against local
perturbations, which are common in quantum computer applications. A conventional
superconductor can be turned into a topological superconductor using a combination
of magnetic exchange fields and so-called Rashba spin-orbit coupling which couples
electron spins with their momenta. (Kezilebieke et al., 2020; Sato & Ando, 2017)

Superconductivity in a material can be recognised by using a method called
scanning tunneling microscopy, which measures the differential conductance of a
material and reveals its density of states, or number of available quantum states at a
certain energy (Zhu, 2016). A topological superconductor can be recognised from its
density of states spectra due to a clear conductance peak at zero energy caused by
Majorana-fermions (Sato & Ando, 2017). Quantum systems such as superconductors
are described mathematically using Hamiltonian functions, which parameterise the
total energy of a system (Logan, 2005).

The focus of this thesis is to build a neural network model capable of recognising
parameters of a Hamiltonian describing unconventional, potentially topological
superconductors. This is done by simulating Hamiltonians and density of states
values of unconventional superconductors with two different system sizes. The density
of states is used as input for the neural network, and the trained network is used
to predict the corresponding Hamiltonian parameters. To make training faster and
potentially decrease prediction errors, principal component analysis is used to reduce
dimensionality of inputs for the neural network.

This thesis is structured as follows: first, the theory behind superconductivity and
specifically topological superconductivity, as well as scanning tunneling microscopy
and its relation to these phenomena will be introduced in section 2. In this section
also some previous research on the topic of Hamiltonian parameter estimation
will be discussed. Section 3 covers the methods used in this thesis to simulate
superconductors and estimate Hamiltonian parameters. Section 4 presents the results
obtained, and section 5 concludes the thesis.
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2 Theoretical Background
Superconductivity is a state where the electrical resistance of a conductor suddenly
drops to zero at a certain critical temperature Tc instead of gradually decreasing
as temperature lowers, as depicted in figure 1a. This state is usually achieved at a
very low temperature, unique to each superconducting material. Above the critical
temperature Tc, the material is in normal phase, and its electrons occupy energy
levels up to the Fermi level, which is the amount of thermodynamic work required to
add a new electron to the material. In a superconducting material a new energy gap
starts forming in the band structure at temperature Tc. The band structures of the
normal phase and superconducting phase of a metal are shown in figure 2, where
holes are sites with no electrons. (Sidebottom, 2012)

(a) Superconductive vs.
non-superconductive material resistance

(b) The Meissner effect

Figure 1: Properties of superconductors (Adapted from Keller et al., 1993)

Figure 2: Formation of the superconducting gap in a metal

Another property of superconductors is their effect on magnetic fields. When
a superconducting material is cooled below Tc in the presence of a magnetic field,
the field lines are completely expelled from the inside of the material as shown in
figure 1b. This phenomenon is called the Meissner effect, which can essentially cause
a superconducting specimen to levitate as it is cooled below its critical temperature.
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The magnetic field also has a critical value Hc which is dependent on temperature,
above which the superconducting state is destroyed and the material returns back to
its non-superconducting state. (Keller et al., 1993; Sidebottom, 2012)

2.1 Microscopic Theory of Superconductivity
The microscopic theory of superconductivity is known as the Bardeen-Cooper-
Schrieffer (BCS) theory which states that superconductivity happens when electrons
with equal but opposite momenta and opposite spin attract each other through lattice
vibrations, forming a so-called Cooper pair as depicted in figure 3. More specifically,
an electron passing through the lattice attracts ions by Coulomb interaction, which
distorts the lattice structure slightly and creates a so called phonon. Phonons are
quasi-particles that represent the quantisation of vibrations within the lattice in a
similar way as photons represent quantised light waves. These phonons create an
attractive interaction between the electrons that exceeds Coulomb repulsion, lowering
the energy of the now formed Cooper pair to be lower than the energies of the two
separate electrons combined. In the BCS theory these coupled electrons enter a new
ground state called the BCS ground state. (Bardeen et al., 1957; Keller et al., 1993;
Sidebottom, 2012)

Figure 3: Formation of a Cooper pair in the lattice of a superconducting material
(Adapted from Sidebottom, 2012)

Breaking a Cooper pair, i.e., a bound state of electrons, requires energy which is
equal to the energy gap 2∆ present in the superconducting state as depicted in figure
2. The energy gap is the difference between the uncoupled electron upper energy
level and the BCS ground state. The lower the temperature, the more Cooper pairs
are formed, causing the material to transfer to a superconducting state. (Bardeen
et al., 1957; Sidebottom, 2012)

Superconductors can be divided into conventional and unconventional super-
conductors on the basis of the origin of the attractive interactions. The standard
BCS theory described above explains conventional superconductivity, but for un-
conventional superconductivity the attraction between electrons can also come from
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other quasi-particles than phonons. All fluctuations of a material are some kinds of
quasi-particles, and they can all mediate superconductivity. (Sigrist, 2005)

2.2 Conventional superconductivity
The physical properties of quantum systems can be represented by Hamiltonians,
or total energy operators, that are written using so-called second quantisation, in
which all operators can be expressed using creation and annihilation operators c†

i

and ci (Logan, 2005).
The standard BCS theory Hamiltonian describing conventional superconductivity,

or so called s-wave superconductivity, is shown in (1), where c†
ns creates and cns

annihilates an electron in site n with spin s. The term tij is the hopping amplitude
between sites i and j and ⟨ij⟩ runs over nearest neighbors of a lattice, µ is the
on-site chemical potential, and U the on-site interaction, with U < 0 corresponding
to attractive interaction needed for superconductivity. All the terms are vectors or
matrices. The first and second term of the Hamiltonian thus represent the kinetic
and chemical potential energy of the system, respectively, and the last term is the
(attractive) two-particle interaction between electrons. (Madhuparna, 2020)

H =
∑︂

⟨ij⟩,s
tijc

†
iscjs + µ

∑︂
i,s

c†
iscis +

∑︂
i

Uc†
i↑ci↑c

†
i↓ci↓ (1)

This Hamiltonian includes quartic terms in the interaction part, which means the
Hamiltonian is not (exactly) solvable. To make the system quadratic, i.e., exactly
solvable, a method called mean-field approximation (2) can be used.

Uc†
i↑ci↑c

†
i↓ci↓ ≈ U⟨c†

i↑c
†
i↓⟩ci↑ci↓ + h.c.

≈ ∆ci↑ci↓ + h.c.
(2)

Here ∆ ∼ ⟨c†
i↑c

†
i↓⟩ is the superconducting order and h.c. the hermitian conjugate

∆∗c†
i↑c

†
i↓. The mean-field Hamiltonian for an s-wave superconductor can now be

written as follows:

H =
∑︂

⟨ij⟩,s
tijc

†
iscjs + µ

∑︂
i,s

c†
iscis +

∑︂
i

∆ci↑ci↓ + h.c. (3)

Since the mean-field Hamiltonian defined by (3) is quadratic, it can be solved by
diagonalisation. This process is known as Bogoliubov-de-Gennes transformation, for
which we define a so called Nambu spinor (4), and rewrite the Hamiltonian in this
new basis, which allows the Hamiltonian to be written in diagonal form (5), where k
is the electron momentum and ϵα are the Nambu eigenvalues. (Röntynen & Ojanen,
2015; Zhu, 2016)

Ψn =

⎛⎜⎜⎜⎜⎝
cn↑
cn↓
c†

n↓

−c†
n↑

⎞⎟⎟⎟⎟⎠ (4)
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H =
∑︂

k

ϵkΨ†
kΨk (5)

The diagonalisation described above is also the how Hamiltonians are essentially
defined when simulating them in this thesis.

2.3 Topological superconductivity
While conventional s-wave superconductors discussed so far exhibit a simple elec-
tron pairing through phonon mediated interactions, the interactions in topological
superconductors are more complex. Topological superconductors are unconventional
superconductors with unique quantum properties that give rise to the emergence of
so called Majorana fermions. These Majorana fermions are their own antiparticles,
and they are predicted to exist at the edges of topological superconductors. (Sato &
Ando, 2017)

Due to the topological nature of materials where Majorana fermions can exist,
these particles are very stable, which provides robustness and allows them to carry
information without losing it due to surrounding noise. This property makes them
very promising candidates for robust quantum computing applications. (Kezilebieke
et al., 2020; Sato & Ando, 2017)

A conventional s-wave superconductor can be turned into a topological super-
conductor by introducing a magnetic exchange field and so called Rashba spin-orbit
coupling (SOC). The magnitude of the exchange field essentially controls the tran-
sition between trivial and topological states so, that in a weak exchange field the
superconductor remains in a trivial non-topological superconducting state, but as
the strength of the field increases, it eventually causes the superconducting gap to
close and then reopen in a topological state. Rashba SOC on the other hand changes
how electrons behave in the material by coupling their spin with their momentum,
which allows for mixed pairing states. Under the right conditions, the combination
of these two effects can lead to topological superconductivity, which is especially
promising in the field of topological quantum computation. (Kezilebieke et al., 2020;
Khosravian & Lado, 2022; Sato & Ando, 2017)

The Hamiltonian describing an exchange field in the z-direction is defined as

HJ = Jz

∑︂
i,s,s′

σs,s′

z c†
iscis′ (6)

where Jz is the exchange coupling term and σs,s′
z is the Pauli matrix representing the

spin component along the z-axis as defined in (7).

σx =
(︄

0 1
1 0

)︄
, σy =

(︄
0 −i
i 0

)︄
, σz =

(︄
1 0
0 −1

)︄
(7)

The Hamiltonian for Rashba SOC can similarly be defined as

HR = iλR

∑︂
⟨ij⟩,ss′

dij · σs,s′
c†

iscjs′ (8)
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where the term λR is the spin-orbit coupling constant, σs,s′ denote the spin Pauli ma-
trices as defined by (7), and dij determines the relative position between neighboring
sites i and j. In both (6) and (8) the terms c†

ns and cns again create or annihilate an
electron with spin s in site n. (Khosravian & Lado, 2022)

2.4 Scanning Tunneling Microscopy
Superconductivity of a material can be recognised by using a method called scanning
tunneling microscopy (STM). STM can be used to obtain atomic-scale images of
surfaces (Chen & Smith, 1994), and it is specifically used to measure the differential
conductance dI

dV
of a material, which is proportional to the quasi-particle density of

states (DOS) (Zhu, 2016). Density of states, parameterised by (9), is the number
of quantum states available to be occupied by particles, in this case electrons, at
each given energy level (Zasadzinski, 2003). In (9) ω are the energies the DOS is
evaluated for, ϵk are the eigenenergies of the corresponding Hamiltonian and δ is the
Dirac delta function which ensures only states with energy equal to ω contribute to
the integral.

D(ω) =
∫︂

δ(ω − ϵk)dk (9)

From STM measurements it is possible to gain information on the magnitude of the
superconducting gap ∆ as well as pairing symmetry (Zasadzinski, 2003). In addition
to this, the DOS measurements for the edge sites of topological superconductors
show a spike at zero energy, signaling the existence of Majorana fermions (Sato &
Ando, 2017).

2.5 Previous research
Traditionally Hamiltonian models have been fitted to experimental data (Fujita et al.,
2018), and many tools have already been developed in condensed matter physics
to obtain the state of a system from the Hamiltonian describing it (Bairey et al.,
2019). The development of quantum devices however requires the opposite, namely
recovering the Hamiltonian of a system from measurable observables of its physical
state (Bairey et al., 2019). Machine learning has been used in many quantum physics
related problems, and has been shown to work well also in estimating Hamiltonians
(Che et al., 2021).

Bairey et al. (2019) have shown that obtaining the Hamiltonian of a specific
region from measurements is possible in the case of short-range interactions by using
measurements on local observables. Che et al. (2021) on the other hand showed that
it is possible to learn Hamiltonian parameters from expectation values of single-qubit
measurements using recurrent neural networks (RNNs), whereas a gradient descent
algorithm was used to construct Hamiltonians from energy- and entanglement spectra
by Fujita et al. (2018).

A more similar approach to the one taken in this thesis was taken by Khosravian
et al. (2024), where Hamiltonian parameters of unconventional superconductors were
successfully extracted using fully connected neural networks with local density of
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states (LDOS) measurements as inputs. Here both the superconducting order as
well as exchange coupling were extracted, and extracting the superconducting order
was found to be a harder task.

3 Data and Methods
This section will focus on describing how a neural network model able to recognise
unconventional (topological) superconductivity is built. In short, this is done by
first simulating data on superconductors, compressing it for faster computation,
and building and training neural network models with both non-compressed and
compressed data. This section begins by describing how a topological superconductor
can be simulated, after which principal component analysis as a dimensionality
reduction technique will briefly be discussed. Lastly the theory behind neural
networks and how they are used in the scope of this thesis are explained.

All the data creation, preprocessing as well as machine learning model training
and testing done for this thesis is done using Python. The Python code used for
building, training and testing the machine learning models defined in this section
can be found in appendix A.

3.1 Simulating a Topological Superconductor
In this thesis the Hamiltonian of interest is defined by combining exchange coupling,
Rashba spin-orbit coupling and superconductivity, which gives rise to a topological
superconducting state as described in section 2.3. The Python-library Pyqula (Lado,
2021) is used to construct a Hamiltonian of the form

H = Hkin + HR + HJ + HSC (10)

where Hkin = t
∑︁

⟨ij⟩,s c†
i,scj,s + µ

∑︁
i c†

i,sci,s accounts for kinetic energy and chemical
potential and HSC = ∑︁

i ∆ci↑ci↓ + h.c. for superconductivity as in the mean-field
Hamiltonian for an s-wave superconductor defined by (3). HR and HJ are the Hamil-
tonians for Rashba SOC and exchange coupling defined by (8) and (6), respectively.

The variables quantifying the nature of topological superconductivity are Rashba
SOC λR, exchange coupling Jz and the superconducting order ∆, which is why the
values of these are varied randomly to create Hamiltonians with different couplings.
The variable ∆ gets random values in the range [0, 0.5], whereas variables Jz and λR

both get random values in the range [0, 1]. These values are the output that will be
predicted by the machine learning model defined later in this section.

Pyqula can also be used to obtain the DOS values corresponding to a given
Hamiltonian and site. DOS values are obtained for each site of each Hamiltonian in
the output data, and these will serve as inputs of the machine learning model. It is
worth noting that because the values for ∆, Jz, and λR are randomly determined,
not all of the Hamiltonians in the data are in a topological state. The edge site DOS
of a random Hamiltonian from data simulated for a 10 site system is shown in figure
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4, where we can clearly see a spike at zero energy, meaning that this Hamiltonian is
potentially one describing a topological superconductor.

Two datasets were simulated for the purposes of this thesis. The first dataset
consists of 20 000 Hamiltonians as defined in (10) that describe systems with 10 sites,
and the corresponding DOS values for each site. This dataset was used to confirm
that unconventional superconductivity can be recognised from DOS measurements
using machine learning. The second dataset consists of 40 000 Hamiltonians also of
the form (10) and the corresponding DOS values, this time describing systems with
30 sites. As this data has more sites, it also has more inputs, which makes it a more
interesting dataset for exploring dimensionality reduction techniques.

Figure 4: Edge site DOS of a Hamiltonian describing a system with 10 sites

3.2 Principal Components Analysis
Principal components analysis (PCA) is an orthogonal, linear transformation that
projects the original data onto a new coordinate system corresponding to the directions
of greatest variance. The new variable space consists of so-called principal components
(PCs), where the first PC represents the linear combination of the variables in the
original data that accounts for most of the variance, the second PC represents the
largest proportion of variance once PC1 is removed, and so on. Due to using linear
combinations of the original data as data points, this new representation has lower
dimensionality than the original data, which makes PCA an effective method for
dimensionality reduction. (Goodfellow et al., 2016)

In this thesis PCA is used to reduce the dimensionality of input data significantly
before feeding it to the neural network model. This is done by transforming the
DOS data into its principal components, and using as input the PCs explaining
approximately 99.9 % of the variance in the full DOS. The results of the model
trained with principal components will then be compared to those obtained using
the full DOS.
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3.3 Supervised Learning with Neural Networks
The learning process of all machine learning (ML) algorithms begins by specifying a
model, i.e. the structure of a mathematical function that maps inputs to outputs.
The model initially has random parameters called weights, and the objective of ML
models is to optimise these weights during training by minimising a so-called loss
function that essentially quantifies the difference between predictions and true values.
Machine learning models can be roughly divided into supervised and unsupervised
learning based on whether they are trained using labeled data or not. The focus of
this thesis is on building supervised models, in which the model uses predetermined
input-output pairs to learn how inputs are mapped to outputs and make predictions
on unseen data. (Goodfellow et al., 2016; Greplova et al., 2020)

The models built in this thesis are based on a specific type of supervised learning,
namely neural networks (NN), that work analogously to biological brains. A neural
network is essentially a mathematical function consisting of elementary functions
called (artificial) neurons that are organised in connected layers. The output from
one layer of neurons is the input of the next layer of neurons, and information
moves like this through the network, with the last layer giving the final output.
NNs are extremely powerful algorithms and can technically learn to predict any
smooth function as the number of neurons tends to infinity, but they generally
require a large amount of data and parameters to learn effectively, making them very
computationally heavy. (Greplova et al., 2020)

3.3.1 Mathematical Representation

The function corresponding to a single neuron in a NN is a composition of a linear
function q : Rk → R and a non-linear activation function g : R → R:

F (z1, . . . , zk) = g(q(z1, .., zk)) (11)

where z1, .., zk are the outputs of neurons from the previous layer. The linear function
q in (11) is parameterized by (12), where wj are weights that represent the importance
of connections between a neuron and the neurons in the previous layer, and b is a
constant offset or bias, both of which are optimised during training.

q(z1, . . . , zk) =
k∑︂

j=1
wjzj + b (12)

The activation function g in (11) is chosen heuristically for one layer at a time, but
it can vary by layer. In this thesis the activation function used in all hidden layers of
the NN models is the so-called rectified linear unit (ReLu), which is defined by (13).
ReLu gives a value 0 for negative inputs and is linear for positive ones. (Goodfellow
et al., 2016)

g(q) = max{0, q} (13)
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3.3.2 Parameter Optimisation and Training

In this thesis the outputs of the models are continuous, which is why mean squared
error (MSE) is used as the loss function when training the model. MSE is defined by

L(θ) = 1
m

m∑︂
i=1

∥F (xi) − yi∥2
2 (14)

where ∥a∥2 =
√︂∑︁

i a2
i is the L2-norm, F (xi) are the predictions of the model on the

data and yi are the true data output values (Goodfellow et al., 2016). As can be
seen from (14), the loss decreases when the difference between the predictions and
the true values decreases. Root mean square error (RMSE), which is the square-root
of MSE, is used in this thesis alongside MSE for comparing the model predictions
against true test values when testing the model on previously unseen data. RMSE
quantifies the error in the same units as the target variables, so it shows the average
absolute amount the predictions differ from true values.

In addition to choosing a loss function, an optimisation algorithm also needs to
be chosen, with which the NN optimises the weights and biases. The optimiser used
in this thesis is adaptive moment estimation (ADAM), which is based on gradient
descent methods and is the most common optimiser used in NNs due to its ability to
efficiently optimise models with less memory. (Greplova et al., 2020)

Network parameters are not updated after each training sample, but are instead
divided into so-called batches. These batches, or groups of training data, are fed to
the network at the same time and weights and biases are adjusted after each batch,
which usually leads to faster optimisation. Each batch is processed several times, and
one cycle through the full training data is called an epoch. If the number of epochs
is too low, the model might not learn patterns in the data well, and conversely, if the
amount of epochs is too high the model might start overfitting, reducing its ability
to generalise on new, unseen data. (Greplova et al., 2020)

A method called early stopping can be used to prevent overfitting, which stops
the training right before the model begins to overfit, meaning that not all the
predetermined epochs will be completed. The training process of a NN involves so
called validation, which also monitors and prevents overfitting. Validation evaluates
the model’s performance on a separate dataset (validation set) between epochs, and
the loss values for training and validation data after each epoch can be compared to
see how well the model performs on previously unseen data. (Greplova et al., 2020)

In this thesis training is done on all models with a batch size of 32 and maximum
200 epochs. Early stopping is also used in all models to prevent overfitting.

3.3.3 Network Architecture

The NN models built in this thesis are all so called fully connected or dense neural
networks, meaning that each neuron in a layer takes as input the output of all neurons
in the previous layer (Greplova et al., 2020). A general architecture of a NN is shown
in figure 5a, where the input and output layers are visible layers that can be accessed
directly, and the layers between them are so called hidden layers.
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In this thesis two types of models will be built for both system sizes: models
taking as input the full DOS of the system, and models taking as input the PCs
explaining approximately 99.9 % of the variance in the full DOS. Figures 5b and 5c
show the architectures of the models with DOS and PC inputs, respectively.

(a) A general neural network
architecture

(b) Architecture of NN with
DOS as input

(c) Architecture of NN with
PCs as input

Figure 5: Neural network architectures

The amount of neurons in the input layer of the model using the full DOS is
250 · n.o.sites, where 250 is the amount of energies the DOS values are simulated for
for each site of each Hamiltonian. The dataset describing systems with 10 sites has
2500 inputs, and the dataset describing systems with 30 sites has 7500 inputs per
Hamiltonian. The original 20 000 and 40 000 Hamiltonian datasets are both split
into 80 % training, and 20 % test data, and the models are trained using 10 % of
the training data for validation.

4 Results
This section covers the results obtained from the neural network models built for both
10 and 30 site systems simulated as described in the previous section. First the results
for the smaller dataset describing the more simple systems of 10 sites are presented
and discussed, after which the same will be done for the more complicated dataset
describing systems with 30 sites. Lastly a comparison between the systems and
models is conducted, and some recommendations for further improvements discussed.

4.1 Predictions on 10 Site Systems
4.1.1 Full DOS as Training Data

The smaller system was trained on a model with five hidden layers using 80 % of
the original data, after which it was tested using the remaining 20 %. Predictions
on the test data output variables λR, Jz and ∆ against their true values are shown
in figure 6 with the red dotted line showing where the points should ideally lie.
Table 1 shows the errors in these predictions for each output variable. These results
show that the model is predicting the three Hamiltonian parameters relatively well,
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with RMSE around 0.01 for all three variables. Predictions for the superconducting
order are a bit less accurate than those of Rashba SOC, while the most accurate
predictions are for exchange coupling with RMSE being approximately 0.001 less than
for superconducting order and Rashba SOC. Figure 6 also shows that predictions for
all parameters are less accurate near the boundaries of the parameter spaces.

Figure 6: 10 site Hamiltonian test data vs. predicted values without data compression

Table 1: MSE and RMSE for predictions against true values

Variable MSE RMSE
λR 1.70 · 10−4 0.0130
Jz 1.41 · 10−4 0.0119
∆ 1.77 · 10−4 0.0133

The loss values during training are shown in figure 7, which shows that early
stopping was executed at 41 epochs. This model usually started to overfit around
35-45 epochs. The final values of both the training and validation loss end up being
less than 3.00 · 10−4, while the test loss is approximately 1.81 · 10−4.

Figure 7: MSE loss for 10 site model without data compression
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4.1.2 Training With PCA Transformed Data

To see if the model could be improved with dimensionality reduced data, PCA was
performed. For the 10 site system 1000 PCs were found to explain 99.9 % of the
variance in the data, so these were chosen as inputs instead of the full DOS. The
model used here has five hidden layers as before, but the amount of neurons per
layer is now smaller due to the input space being only slightly over a third of the
original one.

Figure 8 shows the predictions against true values for each output and table 2
the errors in these predictions. There seem to be some outliers in the predictions
for each variable, which is expected as the data does not include all the information
from the original data. Overall the results are improved with RMSE for Rashba SOC
improving by 0.001 and for superconducting order by almost 0.003. Interestingly
the predictions for superconducting order ∆ improve the most, with both MSE and
RMSE values now being the smallest of the three outputs, whereas in the full DOS
predictions they were the largest. However, PCA does not seem to perform any
better on the boundaries of the parameter spaces.

Figure 8: 10 site Hamiltonian test data vs. predicted values with PCA

Table 2: MSE and RMSE for predictions against true values

Variable MSE RMSE
λR 1.41 · 10−4 0.0119
Jz 1.32 · 10−4 0.0115
∆ 1.16 · 10−4 0.0108

Figure 9 shows the loss values during training, which are similar to those of the
non-compressed data. The training and validation loss are again below 3.0 · 10−3,
with a test loss of 1.82 · 10−4. Early stopping is executed here at 44 epochs, and was
executed around 35-45 epochs on each training similar to the full DOS model.

These results show evidence that PCA can be used to make NN model predictions
more accurate. This is especially important as the system size, and consequently the
input space, grows.
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Figure 9: MSE loss for 10 site model using PCA

4.2 Predictions on 30 Site Systems
4.2.1 Full DOS as Training Data

A very similar model was built for the larger system, with five hidden layers but more
neurons per layer than in the 10 site system full DOS model. Figure 10 shows the
predictions for outputs and table 3 the prediction errors. This time the predictions for
exchange coupling are the least accurate, whereas in the 10 site full DOS predictions
they were the most accurate. Rashba SOC errors are nearly the same as before, but
both MSE and RMSE for superconducting order predictions are better than for the
10 site model.

Figure 10: 30 site Hamiltonian test data vs. predicted values without data compres-
sion

Table 3: MSE and RMSE for predictions against true values

Variable MSE RMSE
λR 1.73 · 10−4 0.0131
Jz 1.82 · 10−4 0.0135
∆ 1.57 · 10−4 0.0125

The loss values during training are shown in figure 11, which shows that early
stopping was executed at 21 epochs. When training the model several times with new
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splits into training and testing sets, the amount of epochs usually ended up being
around 20, so much earlier than for the 10 site system models. Both the training and
validation loss end up being around 3.0 · 10−4, with test loss being approximately
1.7 · 10−4.

Figure 11: MSE loss for 30 site model without data compression

4.2.2 Training on PCA Transformed Data

As mentioned, dimensionality reduction is especially relevant for larger sized systems,
as they require more inputs. 1500 PCs explain 99.9 % of the variance in the 30
site system dataset, so these were used as inputs instead of the full DOS in the last
model. The prediction results of this model are shown in figure 12, and the errors in
table 4. Both MSE and RMSE for all outputs are one order of magnitude smaller
than in any of the previous models, meaning that this model is the most accurate
one. However, the issue of larger prediction errors on the boundaries of parameter
spaces still prevails in this model as well.

Figure 12: 30 site Hamiltonian test data vs. predicted values with PCA

The PCA loss is shown in figure 13, which shows that the training and validation
loss both end up very close to 0, while the test loss here is 5.90 ·10−5, further showing
that this model is more accurate than the previous ones.

For the 30 site models PCA was found to decrease training time to only 1/3 of
the training time when using the full DOS as input, whereas for the 10 site model
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Table 4: MSE and RMSE for predictions against true values

Variable MSE RMSE
λR 7.64 · 10−5 0.0087
Jz 6.50 · 10−5 0.0081
∆ 4.11 · 10−5 0.0064

Figure 13: MSE loss for 30 site model using PCA

PCA did not significantly reduce training time. PCA did, however, make results
more accurate for both models compared to using the full DOS as input.

5 Discussion and Summary
In this thesis four slightly different neural network models were trained on simulated
Hamiltonians and DOS measurements of unconventional superconductors. Neural
networks proved to be an effective way to recognise superconductivity from real space
conductance measurements, and PCA was found to be effective not only for reducing
the size of the input space and making training less computationally heavy, but also
for making the models more accurate.

Out of the four models, the one with the lowest prediction error was one trained
with PCA transformed data on a 30 site system. The RMSE values of this model were
0.0087 and 0.0081 for Rashba spin-orbit coupling and exchange coupling respectively,
and only 0.0064 for superconducting order, which means this model gave predictions
with errors one order of magnitude smaller than the three other models. Based on
the results of all the models, it is clear that neural networks are able to recognise
Hamiltonian parameters from real space (simulated) conductance measurements well.

As the results of the 30 site system models are better than for the 10 site one
even before dimensionality reduction, it could be that simulating a larger dataset for
the smaller model would make the results better, as this would also allow for more
training examples on topological superconductors for which the DOS is different. The
same applies in general, as more training examples help neural networks learn better.
Another way to improve the results would be to have more DOS measurements per
site. In this thesis 250 measurements per site were computed to get just enough detail
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in the DOS without making computation too heavy, but for even more accurate
predictions the amount could be doubled to get a more detailed DOS that captures
even smaller spikes in the DOS spectra.
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A Appendix

Python Code for Neural Network Models

This notebook consists of the following sections:
(I) 10 site models:
Model 1: No data compression
Model 2: PCA
(II) 30 site models:
Model 3: no data compression
Model 4: PCA
(III) Testing models and plotting results

Each model 1-4 is trained in its separate section, after which it can be evaluated
and tested in section (III)

Libraries
# ML model libraries
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense
from tensorflow.keras.metrics import R2Score
from tensorflow.keras.callbacks import EarlyStopping

# sklearn libraries
import sklearn.model_selection as sk
from sklearn.utils import shuffle
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA # to apply PCA
from sklearn.metrics import mean_absolute_error,

mean_squared_error, r2_score↪→

# other libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
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10 site models
Opening data files

# input
x = np.loadtxt('dos_10sites.txt', delimiter='\t', skiprows=1)

#output
y = np.loadtxt('delta_rashba_exchange_10sites.txt', delimiter='\t',

skiprows=1)↪→

Model 1: No data compression

# split data into training and testing
x_train, x_test, y_train, y_test, = sk.train_test_split(x, y,

test_size=0.2)↪→

Model architecture
# define neural network structure
model = Sequential([

Dense(512, input_shape=(2500,), activation='relu'),
Dense(256, activation='relu'),
Dense(128, activation='relu'),
Dense(64, activation='relu'),
Dense(32, activation='relu'),
Dense(3)

])

# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error',

metrics=[R2Score()])↪→

# Summarise model
model.summary()

Training

# train the model
hist = model.fit(x_train, y_train, epochs=200, batch_size=32,

validation_split=0.1,↪→

callbacks=[EarlyStopping(monitor='val_loss',
patience=5, restore_best_weights=True)])↪→
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Model 2: PCA

# scale input data
scaler = StandardScaler()
scaled_data = pd.DataFrame(scaler.fit_transform(x))

# perform PCA
pca = PCA(n_components = 1000)
x_pca = pca.fit_transform(scaled_data)

# total variance explained by the chosen principal components
np.cumsum(pca.explained_variance_ratio_)[999]

# plot total variance
plt.plot(np.cumsum(pca.explained_variance_ratio_))

# split data into training and testing
x_train, x_test, y_train, y_test, = sk.train_test_split(x_pca, y,

test_size=0.2)↪→

Model architecture
# define neural network structure for PCA
model = Sequential([

Dense(256, activation='relu', input_dim=900),
Dense(128, activation='relu'),
Dense(64, activation='relu'),
Dense(32, activation='relu'),
Dense(16, activation='relu'),
Dense(3)

])

# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error',

metrics=[R2Score()])↪→

# Summarise model
model.summary()
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Training

# train the PCA model
hist = model.fit(x_train, y_train, epochs=200, batch_size=32,

validation_split=0.1,↪→

callbacks=[EarlyStopping(monitor='val_loss',
patience=5, restore_best_weights=True)])↪→

30 site models
Opening data files

# input
x = np.loadtxt('dos_30sites40k.txt', delimiter='\t', skiprows=1)

# output
y = np.loadtxt('delta_rashba_exchange_30sites40k.txt',

delimiter='\t', skiprows=1)↪→

Model 3: No data compression

# split data into training and testing
x_train, x_test, y_train, y_test, = sk.train_test_split(x, y,

test_size=0.2)↪→

Model architecture
# define neural network structure
model = Sequential([

Dense(512, input_shape=(7500,), activation='relu'),
Dense(256, activation='relu'),
Dense(128, activation='relu'),
Dense(64, activation='relu'),
Dense(32, activation='relu'),
Dense(3)

])

# Compile the model
model.compile(optimizer="adam", loss='mean_squared_error',

metrics=[R2Score()])↪→

# Summarise model
model.summary()
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Training

# train the model
hist = model.fit(x_train, y_train, epochs=200, batch_size=32,

validation_split=0.1,
callbacks=[EarlyStopping(monitor='val_loss',

patience=5, restore_best_weights=True)])↪→

Model 4: PCA

# scale input data
scaler = StandardScaler()
scaled_data = pd.DataFrame(scaler.fit_transform(x))

# perform PCA
pca = PCA(n_components = 1500)
x_pca = pca.fit_transform(scaled_data)

# total variance explained by chosen principal components
np.cumsum(pca.explained_variance_ratio_)[1499]

# plot total variance
plt.plot(np.cumsum(pca.explained_variance_ratio_))

# split data into training and testing
x_train, x_test, y_train, y_test, = sk.train_test_split(x_pca, y,

test_size=0.2)↪→

Model architecture
# Define neural network structure for PCA
model = Sequential([

Dense(256, activation='relu', input_dim=1500),
Dense(128, activation='relu'),
Dense(64, activation='relu'),
Dense(32, activation='relu'),
Dense(16, activation='relu'),
Dense(3)

])

# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error',

metrics=[R2Score()])↪→
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# Summarise model
model.summary()

Training

# train the PCA model
hist = model.fit(x_train, y_train, epochs=200, batch_size=32,

validation_split=0.1,↪→

callbacks=[EarlyStopping(monitor='val_loss',
patience=5, restore_best_weights=True)])↪→

Testing models and plotting results

Run the following after training a model (No data compression / PCA)

Evaluation
# evaluate the model
test_loss, test_r2 = model.evaluate(x_test, y_test)

Testing

# test model
y_pred = model.predict(x_test)

# split predictions and test data into own lists for plotting

y_pred_1 = []; y_pred_2 = []; y_pred_3 = []
y_test_1 = []; y_test_2 = []; y_test_3 = []

for i in y_pred:
y_pred_1.append(i[0])
y_pred_2.append(i[1])
y_pred_3.append(i[2])

for i in y_test:
y_test_1.append(i[0])
y_test_2.append(i[1])
y_test_3.append(i[2])
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Prediction errors
print(f"Superconductivity $\Delta$:")
mse1 = mean_squared_error(y_test_1, y_pred_1)
print("Mean Squared Error (MSE):", mse1)
rmse1 = np.sqrt(mse1)
print("Root Mean Squared Error (RMSE):", rmse1)

print(f"Rashba spin-orbit coupling $\lambda_R$:")
mse2 = mean_squared_error(y_test_2, y_pred_2)
print("Mean Squared Error (MSE):", mse2)
rmse2 = np.sqrt(mse2)
print("Root Mean Squared Error (RMSE):", rmse2)

print(f"Exchange coupling $\J_z$:")
mse3 = mean_squared_error(y_test_3, y_pred_3)
print("Mean Squared Error (MSE):", mse3)
rmse3 = np.sqrt(mse3)
print("Root Mean Squared Error (RMSE):", rmse3)

Plotting actual data vs. predictions

# plot actual test data vs. predicted values
plt.figure(figsize=(15, 5))

# Rashba SOC
plt.subplot(1, 3, 1)
plt.scatter(y_test_2, y_pred_2, alpha=0.5, c="#65BAD5", zorder=3)
plt.xlabel('Test value')
plt.ylabel('Predicted value')
plt.title('Rashba spin-orbit coupling ($\lambda_R$)', fontsize=18)

# diagonal line representing perfect predictions
max_val = max(np.max(y_pred), np.max(y_test))
min_val = min(np.min(y_pred), np.min(y_test))
plt.grid(color='grey', alpha=0.2, zorder=0)
plt.plot([min_val, max_val], [min_val, max_val], color='#FF343A',

linestyle='--', zorder=4)↪→

# exchange coupling
plt.subplot(1,3,2)
plt.scatter(y_test_3, y_pred_3, alpha=0.5, zorder=3,

color="#65BAD5")↪→

plt.xlabel('Test value')
plt.ylabel('Predicted value')
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plt.title('Exchange coupling (J$_z$)', fontsize=18)

# diagonal line representing perfect predictions
max_val = max(np.max(y_pred), np.max(y_test))
min_val = min(np.min(y_pred), np.min(y_test))
plt.grid(color='grey', zorder=0, alpha=0.2)
plt.plot([min_val, max_val], [min_val, max_val], color='#FF343A',

linestyle='--', zorder=4)↪→

plt.tight_layout()

# Superconductivity
plt.subplot(1, 3, 3)
plt.scatter(y_test_1, y_pred_1, alpha=0.5, zorder=3, c="#65BAD5")
plt.xlabel('Test value')
plt.ylabel('Predicted value')
plt.title('S-wave superconductivity ($\Delta$)', fontsize=18)

# diagonal line representing perfect predictions
max_val = max(np.max(y_pred), np.max(y_test))
min_val = min(np.min(y_pred), np.min(y_test))
plt.grid(color='grey', alpha=0.2, zorder=0)
plt.plot([min_val, max_val], [min_val, max_val], color='#FF343A',

linestyle='--', zorder=4)↪→

Plotting loss

# plot loss
plt.figure()

# training and validation loss
plt.plot(hist.history['loss'], label='Training Loss', c='#65BAD5',

linewidth=3.5)↪→

plt.plot(hist.history['val_loss'], label='Validation Loss',
c='#fcb130', linewidth=2.5)↪→

# test loss at the last epoch
plt.grid(color='grey', zorder=0, alpha=0.2)
plt.scatter(len(hist.history['loss']) - 1, test_loss, c='darkblue',

marker='x', s=400, label='Test loss', zorder=4)↪→

plt.title('Model Training vs. Validation Loss', fontsize=22)
plt.xlabel('Epochs')
plt.ylabel('Loss (mse)')
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epochs = len(hist.history['loss'])
plt.xticks(range(0, epochs))
plt.legend()
plt.show()
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