
Aalto University

School of Science

Master’s Programme in Mathematics and Operations Research

Jari Hast

Optimal work shift scheduling:

a heuristic approach

Master’s Thesis
Espoo, April 19, 2017

Supervisors: Professor Harri Ehtamo, Aalto University
Advisor: M.Sc. Santtu Klemettilä, Haahtela HR

The document can be stored and made available to the public on the open Internet pages

of Aalto University. All other rights are reserved.

Aalto University
School of Science
Master’s Programme in Mathematics and Operations Re-
search

ABSTRACT OF
MASTER’S THESIS

Author: Jari Hast

Title:
Optimal work shift scheduling: a heuristic approach

Date: April 19, 2017 Pages: 54

Major: Systems and Operations Research Code: SCI3055

Supervisors: Professor Harri Ehtamo, Aalto University

Advisor: M.Sc. Santtu Klemettilä, Haahtela HR

Work shift planning is a task of assigning work force to tasks in order to satisfy
a business defined demand. The result of a planning task is a work shift schedule
usually ranging over several weeks, sometimes called a roster. In addition to
filling the demand, a roster has to satisfy certain varying criteria including but
not limited to mandatory holidays, sufficient resting hours and employees’ wishes.

Creating a roster by hand becomes an arduous task as the number of employees
and shifts increase. Organizations in work force intensive industries often have
to employ one or more work shift planners solely for this purpose. In Finland,
the numerous rules defined by the Finnish collective agreements are particularly
tricky to deal with. This leads to suboptimal work shift schedules that have a
negative effect on the business as well as employee satisfaction.

For these reasons, an on-line optimization algorithm for scheduling work shifts
has been created in HaahtelaR© Contactor, a software as a service product sold
by the company Haahtela HR Oy. This algorithm is implemented as a linear
model. While functional and in frequent production use, it suffers from inherent
drawbacks associated with the method. For instance, the linear cost function is
not an ideal way of conveying the actual preferences of work shift planners.

This thesis sets out to devise a novel approach to this problem by introducing a
heuristic based algorithm. This method is compared with the incumbent linear
model using a real world test case. While the heuristic is found to be inferior
compared to the linear model, promising results are achieved. After the numerous
enhancements suggested in this thesis are implemented to the new heuristic, it
can be tested in production use.

Keywords: heuristic, metaheuristic, work shift scheduling, rostering, sim-
ulated annealing

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Matematiikan ja operaatiotutkimuksen maisteriohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Jari Hast

Työn nimi:
Työvuorosuunnitelun optimointi heuristisin menetelmin

Päiväys: 19. heinäkuuta 2017 Sivumäärä: 54

Pääaine: Systeemi- ja operaatiotutkimus Koodi: SCI3055

Valvojat: Professori Harri Ehtamo, Aalto University

Ohjaaja: Diplomi-insinööri Santtu Klemettilä, Haahtela HR

Työvuorosuunnittelussa käytettävissä oleville työntekjöille jaetaan ennalta
määriteltyjä tulevaisuuden työvuoroja tarkoituksena tyydyttää liiketoiminnalli-
nen työvoiman tarve. Toiminnan tuloksena syntyvä työvuorolista on yleensä viik-
kojen mittainen. Työvuorolistan pitää myös täyttää useita vaatimuksia, kuten
riittävää lepoaika, lomia ja työntekijöiden toiveita.

Kun työntekijöiden ja työvuorotarpeiden määrä kasvaa, käy työvuorosuunnittelu
usein erittäin työlääksi. Työvoimaintensiivisillä aloilla on yleensä tarpeen pal-
kata yksi tai useampi työvuorosuunnittelija pelkästään työvuorolistojen tuotta-
miseen. Erityisesti Suomen moninaiset yleissitovat työehtosopimukset asettavat
työvuorosuunnittelua monimutkaistavia sääntöjä. Nämä seikat johtavat aliopti-
maalisiin työvuorolistoihin, joilla on negatiivisia vaikutuksia sekä yritysten liike-
toimintaan että työntekijöiden työtyytyväisyyteen.

Haahtela HR Oy:n myymässä SaaS-ohjelmistossa HaahtelaR© Contactorissa
työvuorolistojen optimointi on toteuttu lineaarisena ongelmana. Vaikka ratkai-
su on todettu toimivaksi ja se on yleisesti tuotantokäytössä, on siinä useita
varjopuolia. Esimerkiksi lineaarinen hyötyfunktio on puutteellinen tapa ilmais-
ta työvuorosuunnittelijoiden toiveita työvuorolistasta.

Tämän työn tarkoituksena on luoda uusi heuristinen ratkaisutapa kyseiseen on-
gelmaan. Uutta metodia verrataan tämänhetkiseen ratkaisutapaan optimoimal-
la erään oikean organisaation todellista työvuorolistaa. Vaikka uusi algoritmi ei
muodostakaan yhtä hyviä työvuorolistoja kuin nykyinen lineaarinen malli, ovat
tulokset lupaavia. Kun kaikki tässä työssä esitetyt kehitysehdotukset uuteen al-
goritmiin toteutetaan, voidaan sen suorityskykyä testata tuotantokäytössä.

Asiasanat: heuristiikka, metaheuristiikka, työvuorosuunnittelu, simuloitu
jäähdytys

Kieli: Englanti

3

Acknowledgements

First and foremost I want to thank my instructor Santtu Klemettilä who
helped me a great deal along the way. While assisting me with technical
problems and the writing process, he also provided me with some much
needed refreshment on several occasions. In the same vein, I am grateful
to my supervisor professor Ehtamo for giving me firm and straightforward
guidance.

I also want to thank my family and friends for supporting me and listening
to my worries. Especially I would like to mention my mother Satu and
our family dog Spede, whose stress relieving talents are second to none.
Two other specials mentions go to the participants of WhatsApp groups
’0735MaKePe’ and ’Dota draft’.

Lastly, I want to thank the folks at Haahtela HR, who were supportive of my
efforts and gave me time off from work when it was necessary.

Helsinki, April 19, 2017

Jari Hast

4

Abbreviations and Acronyms

CP Constraint programming
HR Human resource
MILP Mixed integer linear programming
NRP Nurse rostering problem
SA Simulated annealing
SaaS Software as a Service
TDD Test driven development
VNS Variable neighbourhood search
VNC Variable neighbourhood descent

5

Contents

Abbreviations and Acronyms 5

1 Introduction 8
1.1 Problem statement . 8
1.2 Research problem . 8
1.3 Structure . 9

2 Background 11
2.1 Work shift planning . 11
2.2 The requirements . 13
2.3 The current solution . 14
2.4 Overview of the literature . 15
2.5 Constraint programming . 15
2.6 Mixed linear integer programming 18
2.7 Metaheuristics . 19
2.8 Hybrid methods . 21

3 Methods 22
3.1 Heuristic approach . 22
3.2 Justification for the choice of heuristics 23
3.3 Foreseeable challenges . 23

4 Implementation 25
4.1 Problem specific concepts . 25
4.2 Hard constraints . 26
4.3 Soft constraints . 26
4.4 The implementation process 27

5 Evaluation 34
5.1 Evaluation with a real world test set 34
5.2 Problem model . 35

6

5.3 Results . 40

6 Discussion 42
6.1 Result analysis . 42
6.2 Viability of the solution . 43
6.3 Next steps of development . 44

7 Conclusions 45
7.1 Summary . 45
7.2 Future research . 45

A Example of typical constraints in NRP 51

B Terms of employment in the commercial sector 53

7

Chapter 1

Introduction

1.1 Problem statement

Work shift planning is a task of assigning work force to tasks in order to
satisfy a business defined demand. The result of a planning task is a work
shift schedule usually ranging over several weeks, sometimes called a roster.
In addition to filling the demand, a roster has to satisfy certain varying
criteria including but not limited to mandatory holidays, sufficient resting
hours and employees’ wishes.

Creating a roster by hand becomes an arduous task as the number of em-
ployees and shifts increase. Organizations in work force intensive industries
often have to employ one or more work shift planners solely for this purpose.
In Finland, the numerous rules defined by the Finnish collective agreements
are particularly tricky to deal with. This leads to suboptimal work shift
schedules that have a negative effect on the business as well as employee
satisfaction.

1.2 Research problem

The aim of this thesis is to create an automated on-line optimization routine
for work shift planning. This aim stems from a business need for this kind
of feature to an existing human resources management software.

As of now, the optimization of the roster is implemented as a linear mixed
integer problem. This approach suffers from inherent drawbacks associated

8

CHAPTER 1. INTRODUCTION 9

with the optimization method. This aspect is further elaborated in section
2.3. This thesis sets out to devise a proof-of-concept version of an alternative
solving method.

When dealing with an on-line optimization service, i.e. the user can decide
when to run the routine and expects to receive the results in a reasonable
time, some properties of the algorithm such as its running time are critical
for the end-product of this thesis. On the other hand, finding the global
minimum of the problem is typically not regarded as an important feature.
The reasoning for this argument is presented in section 2.2.

In this thesis, the chosen approach is to use a heuristic optimization al-
gorithm. Heuristics are suitable for large problems when a reasonably good
local optimum suffices as a solution [Talbi, 2009]. There are already countless
different heuristic algorithms devised for the work shift assignment problem
and the process of choosing the appropriate one is a potentially time con-
suming task. Thus, simplicity is favoured in the evaluation of different ap-
proaches. The implementation process along with the justifications of using
certain methods is documented in section 4.4.

Work shift optimization has been researched extensively. Probably the most
visible occurrence of this is the international nurse scheduling competition
[Haspeslagh et al., 2014]. The literature is focused on the more simple in-
stances of the problem where, for instance, a working day contains only three
fixed time slots for shifts.

1.3 Structure

In the following chapter 2, a literature review of different methods in solving
the nurse rostering problem is conducted. The chapter also lists the qual-
ities required from the chosen optimization method as well as presents the
shortcomings of the incumbent linear model.

Chapter 3 gives an overview of the selected heuristic method and the justifi-
cations for the selection. In addition, the potential pitfalls of this approach
are also reflected upon.

A more thorough review of the method is given chapter 4. In this chapter,
the implementation process of the heuristic is also documented.

The algorithm is then tested on a real world dataset in chapter 5. The dataset
is anonymized to a certain extent but the most important characteristics are

CHAPTER 1. INTRODUCTION 10

described. The performance of the novel method is compared with the linear
model when applied on this set of data.

The results and their evaluation are given in chapter 6. The viability of this
method in general is also discussed. As the devised method is currently at the
proof-of-concept level, the next development steps to increase its performance
and to complete it functionality-wise are listed.

In the last chapter 7, the whole thesis and its results are summarized. If
the development of the algorithm is continued, this chapter offers several
interesting long-term directions of research.

Chapter 2

Background

This thesis is written at Haahtela HR, which is a subsidiary company under
Haahtela Oy. The company produces a SaaS-licenced HR-management soft-
ware entitled HaahtelaR© Contactor that sets the context for this thesis.

Most of the literature available is focused on the nurse rostering problem.
Although the problem is less complex, the same approaches present in the
academia are applicable in this thesis’ context as well.

2.1 Work shift planning

In the context of this thesis, rostering is a process of assigning workers to
predefined work shifts in order to satisfy a demand created by the underlying
business. The time span that contains these shifts is called a planning period.
For each shift, a competence is defined along with the starting and ending
times between which the shift is to be completed. For employees to be able
to fill this shift, they must have the corresponding competence. A shift might
also contain a need for a more specific skill or qualification, such as a hot work
permit, that acts as an additional restriction for selecting a worker.

Work shift planning is done under certain rules and preferences, which can be
described in hard and soft constraints. A solution or a roster will be consid-
ered feasible if it does not violate hard constraints. Fulfilling soft constraints
on the other hand increases the quality of the solution. Hard constraints
usually stem from legislation or physical constraints e.g. an employee can
not or is not legally allowed to complete a 24h shift. Soft constraints may

11

CHAPTER 2. BACKGROUND 12

aim to make the roster more ergonomic by, for instance, avoiding consecutive
night and morning shifts. [Smet et al., 2013] [Deb, 2014]

This thesis concentrates on non-cyclic scheduling as opposed to cyclic schedul-
ing. In cyclic scheduling, one roster is repeated in every scheduling period.
While not guaranteeing an optimal work shift plan, cyclic scheduling was
the only viable approach at the time when computers lacked the adequate
processing power. In non-cyclic scheduling, a unique roster per se is created
for every new scheduling period. [Cheang et al., 2003]

There are several ways of organizing the creation of rosters. [Silvestro and Sil-
vestro, 2000] identify three different approaches of scheduling hospital staff.
In departmental rostering a single person is responsible for creating rosters
(although an authorization might be required from a senior manager). A
more decentralized model is team rostering, where the staff is split up into
teams. For each team, one member is appointed to create a roster for the
team. The team leaders then evaluate if the entire roster is feasible and pos-
sibly acquire an approval from a senior manager before releasing the rosters.
Lastly, in self-rostering the staff themselves plan a work shift schedule which
is then typically authorized by a senior manager. [Silvestro and Silvestro,
2000]

[Silvestro and Silvestro, 2000] identify several characteristics that affect the
complexity of rostering:

• The number of staff

• Predictability of demand measured in the ratio of planned and emer-
gency operations

• Demand variability is based on the variability in the length of patient
stay and the degree of variation in the manning requirement over a
working week.

• Complexity of skill mix is measured in terms of the degree of varia-
tion in staff grades and the complexity of the manning requirement
specification.

Typically, when the number of staff increases, the demand variability and
skill mix complexity increase whereas the predictability of demand decreases.
Thus, the complexity of the rostering problem correlates strongly with the
number of workers. [Silvestro and Silvestro, 2000]

[Silvestro and Silvestro, 2000] found that from the perspective of the man-
agement the choice of optimal rostering method depends on the complexity

CHAPTER 2. BACKGROUND 13

of the rostering problem. Small hospital wards with a staff count of 35 or
less seem to benefit most from self-rostering, that empowers and increases
staff motivation. However, this method becomes unmanageable with a higher
number of workers. When the staff count is between 35 and 70, team roster-
ing is seen as the best alternative whereas departmental rostering should be
used for the most complex problems.

Work shift planning has a significant effect on the company’s personnel costs
especially in workforce intensive industries. Constant unergonomic work shift
scheduling might lead to increased sick leave rates and decreased productivity
among the personnel. While the Finnish law and the collective agreements
define most of the constraints concerning the working hours, many organi-
zations have a set of their own rules with which they try to increase job
satisfaction. By adopting centralized work shift planning in a hospital envi-
ronment, [Wright and Mahar, 2013] found the desirability of the schedules
to rise approximately 34% while seeing a decrease of costs by more than
10%.

2.2 The requirements

There are certain criteria to be satisfied As the optimization routine is on-
line, the results of the algorithm should be obtained in a relatively short time.
The defining factor for the running time of the algorithm is the satisfaction
of the end customer and the user of the software in question.

Another aspect to elaborate is the difficulty of defining an optimum roster i.e.
choosing the objective function. Rostering can be seen as a multi-objective
problem where there are several objective functions to optimize. However,
typically the objectives are cast into a single function. [Deb, 2014]

Practice has shown that there are various different sets of rostering prefer-
ences among work shift planners. Even if it was possible to work with only
one preference set, the elicitation of all the factors is exceedingly difficult
because of the sheer amount of different scenarios. For example, is it better
to fulfill one employee’s wish to work on a certain day if another employee
then needs to work on a weekend. Moreover, the elicitated weights might not
always be static under, for instance, a variable number of available staff.

Therefore, the role the soft constraints is actually not that significant. The
optimization of the roster is often thought more as an automation than actual
optimization. If a roster with hundreds of shifts is fulfilled completely, it is

CHAPTER 2. BACKGROUND 14

very difficult for a shift planner to tell if it is indeed optimal or not. In this
kind of situation, where even producing any kind of a satisfactory schedule
by hand is exceedingly laborious, the automation of creating a roster brings
most of the added value of this feature to the user.

2.3 The current solution

In the software that sets the context for this thesis, the automatic rostering is
currently modeled as a mixed integer problem. The modeling of the problem
has been implemented in the software while the actual solving of the linear
model is carried out by a third party solver. This manner of approach has
proved itself functional but there are several drawbacks present.

Firstly, exact optimization methods (as opposed to approximate ones) are
guaranteed to find optimal solutions, but typically suffer from long running
times since the algorithms are non-polynomial-time. On the other hand,
approximate methods are known to produce high-quality but non-optimal
results in a relatively short running time [Talbi, 2009].

While the third party linear solver does have built-in heuristics, the search
space simply grows too large to solve when the number of employees and shifts
grow too large. As the optimal solution the rostering problem is ambiguous
and fast running times are desirable, approximate algorithms are seemingly
the better approach.

Another issue lies within the linearity. Many of the soft constraints are in-
herently non-linear. For example, the even distribution of shifts to employees
is usually desirable. Not assigning any shifts to one employee is sometimes
seen a considerably more severe deficiency than having a one or two shift
differences among the pool of employees.

The software in question allows for manual work shift planning. When as-
signing a shift to an employee manually, the feasibility of the roster, i.e.
the hard constraints have to be checked. However, these checks are not run
through the linear solver for practical reasons. This means that the software
has a duplicate set of constraints. Consequently all new specifications to the
constraints have to be implemented twice. Moreover, all software engineers
might not be educated in the field of linear programming making the main-
tenance of the software further burdensome. In addition, the license to the
third party solver is seen as expensive from the business point of view.

CHAPTER 2. BACKGROUND 15

2.4 Overview of the literature

Although there are numerous variations of the nurse rostering problem, it
is proven to be a difficult optimization problem in addition to being NP-
complete. This is true for most of the scheduling problems. Computers have
been used to solve scheduling problems since the dawn of first commercial
computers in 1950. However, only the recent decades have seen applications
that fit for real-world use. [Kyngäs, 2011] [Goos et al., 2000] [Ásgeirsson
et al., 2011]

Most methods found in the literature can be grouped in three different cat-
egories. Exact methods, such as linear integer and constraint programming,
allow finding of optimal solutions but are costly in terms of running time
and complexity. Heuristic methods, on the other hand, yield close to optimal
solutions in a relatively short time. Heuristic methods include but are not
limited to problem specific heuristics and a number of different metaheuris-
tics. Finally, hybrid methods (or matheuristics [Boschetti et al., 2009]) are
a mixture of the two former. A hybrid approach might, for instance, try
to optimize an easier sub-problem with an exact algorithm and improve the
solution with a heuristic local search. Other, more uncommon, approaches to
the nurse rostering problem are AI-based planning [Spyropoulos, 2000] and
simulation [Sajadi et al., 2016].

2.5 Constraint programming

Rostering problems can be modeled as a constraint satisfaction problem alias
CSP. A CSP is defined as

(V,D,C), (2.1)

where V = {vi, i ∈ [1, n]} is the set of variables. For each variable, there is
a domain di ∈ D that defines the possible values with corresponding index
i. Lastly C = {cj, j ∈ [1,m]} defines a set of constraints that all have to be
satisfied in order for the solution to be viable. The triplet (2.1) is also called
a constraint network. A solution to this problem is a complete assignment
of variables while satisfying all the constraints.

A domain might be defined as the set of all natural numbers or even the set
d1 = {coffee, tea}. A Constraint on the other hand could simply be stated

CHAPTER 2. BACKGROUND 16

as a linear constraint such that v2 > v3.

Much like other methods in this section, the principle in constraint program-
ming is to express the problem declarative and let a general purpose solver
generate a solution. Constraints can be thought as relations between the
variables.

There are a number of methods for solving constraint satisfaction problems.
An essential method is called backtracking. This method is a depth-first
search for the correct assignment of variables such that it is guaranteed to find
a solution in the case of there being any. In the most basic form, backtracking
constructs a solution by selecting one variable at a time and assigns a value
to it. If the algorithm encounters a situation where no value can be assigned
without violating a constraint, it retracts the last step made and tries again
with a different step. [Rossi et al., 2006] [Dechter, 2003]

Constraint propagation is a broad concept that incorporates any reasoning
that restricts values or combinations of them for some variables. It is used
to reduce the search space of the problem in order for it to be more easily
explored by a search algorithm. [Rossi et al., 2006]

A clarifying example of constraint propagation is presented in [Rossi et al.,
2006]:

In a problem containing two variables x1 and x2 taking integer
values in 1..10, and a constraint specifying that |x1 − x2| > 5, by
propagating this constraint we can forbid values 5 and 6 for both
x1 and x2

The above quote is an example of rules iteration. Along with the most
well-known method of local consistency, these are two ways of formalizing
constraint propagation. Rules iteration specify the operations to be executed
on the problem whereas local consistencies only define the properties that
are to be satisfied after constraint propagation has taken place. [Rossi et al.,
2006]

An example of local consistency is arc-consistency. Take a constraint network
of two variables x and y with their respective domains Dx and Dy along with
a set of constraints C. The two variables are arc-consistent iff for every
assignment of a value for variable x in the domain of Dx there is value for
y in the domain Dy so that every constraint is C is satisfied. Because the
whole network consisted of only these two variables, the whole network is
arc-consistent and also globally consistent.

Figure 2.1 represents a network of three variables and a set of constraints

CHAPTER 2. BACKGROUND 17

Figure 2.1: A matching diagram for three variables [Rossi et al., 2006]

related to them. The network on the right side pictures the network on
the left after arc consistency has been applied. This type of graph is called
a matching diagram by [Dechter, 2003] although the original source [Rossi
et al., 2006] does not use this term.

Local search algorithms such as min-conflict presented by [Minton et al.,
1992] have similar properties with heuristics. They cannot guarantee find-
ing a solution but can outperform systematic procedures such as backtrack
[Jussien and Lhomme, 2002]. While systematic methods start from an empty
solution and construct a complete one (if possible), local search algorithms
try to repair an infeasible complete assignment by partial exploration of the
search space [Jussien and Lhomme, 2002].

Although CP is flexible and an easily extendable method, standard tech-
niques are often not enough to solve NP-hard problems [Wong and Chun,
2004]. That is why in [Wong and Chun, 2004] the authors present a tech-
nique dubbed meta-level reasoning and probability-based programming (MR
and PO respectively).

Meta-level reasoning (MR) is a process that deduces new implicit and redun-
dant constraints from the already defined ones [Wong and Chun, 2004]. To
give an example of how MR works, let there be three shift types: morning
(M), evening (E), night (N) and day-off (DO). Suppose a rule stating that
night shift has to be followed by another night shift or a day-off. This rule
can be expressed in patterns [N,N] and [N,DO], which describe the activities
in the range of two working days. The basic idea of MR, is to extend on
these patterns. For example, from these two patterns one could introduce
two new patterns [N,N,N] and [N,N,DO].

While MR is executed before the search, probability-based programming
(PO) is used during it. In PO heuristic, each constraint is associated with

CHAPTER 2. BACKGROUND 18

a scoring function to evaluate the probability of an assignment of a certain
value to a variable. [Wong and Chun, 2004]

Both techniques exhibit a similarity in the sense that they consider the prop-
erties of the constraints before the actual constraint propagation. This helps
to prevent situations, where backtrack must be initiated from deep within
the search tree. [Wong and Chun, 2004]

2.6 Mixed linear integer programming

Constraint programming and linear/integer programming are two very clas-
sic approaches in solving optimization problems. Both methods aim at an
optimal solution, but suffer from long execution times. Thus, the actual
solving procedure usually utilizes some kind of heuristics. For example, in-
teger decision variables could be modeled as continuous and then rounded
to the nearest integer instead of solving a full branch and bound algorithm.
[Aickelin, 2010]

There are several possible ways of modeling the decision variables of the
linear problem [Aickelin, 2010]. Perhaps the most straightforward approach
is to use binary variables xij to indicate if nurse i works on shift j. Other
examples mentioned by [Aickelin, 2010] are to expand the binary variable to
make it cover whole shift patterns or to convert it to an integer one in order
to represent the number of workers working on a particular shift. The most
suitable approach depends on the problem and the objectives of the research
problem.

An approach typically preferred when modelling a scheduling problem into
a linear of integer problem is to use the set covering formulation (referring
to the set covering problem). While this method is flexible, it tends to gen-
erate a vast number of variables. To resolve this issue, several decomposing
techniques and heuristic algorithms should be applied. [den Bergh et al.,
2013]

Decomposing methods typically split the problem into two halves. The other
half contains the ”easier” constraints while the other has the more ”compli-
cated” constraints. [den Bergh et al., 2013]

Column generation allows for large linear programming models to be solved
to optimality while holding only a subset of the original problems decision
variables. In each iteration step, a restricted master problem containing this

CHAPTER 2. BACKGROUND 19

subset is constructed and solved. The dual vector of the current solution is
then used to generate a pricing sub-problem to identify a new variable with a
reduced cost. This variable is then added to the master problem. [den Bergh
et al., 2013]

2.7 Metaheuristics

Heuristics can be roughly divided into two categories: specific heuristics and
metaheuristics. Specific heuristics are designed to solve a single specific prob-
lem or instance whereas metaheuristics can be practically tailored to solve
any kind of problem. In general, heuristics cannot guarantee any solution
quality or run-time bounds. However, they have a potential to produce ”good
enough” solutions with small computing costs. [Talbi, 2009]

There are also several other drawbacks associated with metaheuristics. They
can’t reduce the the search space nor do they have well defined stopping cri-
teria. Furthermore, metaheuristics have difficulties in operating in a search
space where feasible regions are disconnected i.e separated by an infeasible
area, which is exactly the case with the highly constrained scheduling prob-
lems. [Burke et al., 2010]

Metaheuristics are approximate optimization algorithm frameworks that are
often inspired by natural processes. A metaheuristic can be described as a
high-level strategy or as a general algorithmic framework that can be applied
to a variety of problems with only a few modifications. They are commonly
used when faced by a complex problem that cannot be solved by exact algo-
rithms in reasonable time. [Talbi, 2009]

Simulated annealing (SA) is probably one of the most known metaheuristics.
It is a local search algorithm that is based on the physical analogy of anneal-
ing solids slowly to achieve the minimal energy configuration of the particles
[Eglese, 1990]. It is typically used for solving combinatorial optimization
problems. SA can be viewed as an extension to the hill climbing algorithm
or the descent algorithm as it is dubbed in [Eglese, 1990].

In descent algorithm, one starts with an initial, possibly empty or random,
solution. By some means, a neighbor to this solution is generated and the
utility of it is calculated. If the utility is greater than the current solution’s,
the current solution is replaced by the neighbor. This process is repeated
until a neighbor with better utility cannot be found. While this algorithm

CHAPTER 2. BACKGROUND 20

is simple, its greatest weakness is getting stuck at a local minimum. [Eglese,
1990]

In simulated annealing, this flaw is mitigated by adding randomness to the
acceptance of neighboring solutions with lesser utility. This probability is
typically set to exp(−δ/T), where δ is the decrease in utility and T is the
”temperature” parameter, that is set to decrease over time. This acceptance
function is constructed so that smaller decreases in utility are more likely to
be accepted and that the probability to accept worse solutions is highest at
the first steps of the algorithm. Typically, several neighboring solutions are
tested for each temperature level. [Eglese, 1990]

Variable neighbourhood search (VNS) is also a non-deterministic metaheuris-
tic that differs from other local search based search heuristics by changing
the explored neighbourhood over the course of the execution. [Hansen and
Mladenovic̀, 2001]

There are many variations to VNS, but the basic one can be described as
follows. First, let us denote a set of pre-selected neighbourhood structures as
Nk(k = 1, ..., kmax) and the set of solutions in the kth neighbourhood of x as
Nk(x). Before the actual execution of the algorithm, the set of neighbourhood
structures along with the stopping condition have to be selected and an initial
solution x is to be found. [Hansen and Mladenovic̀, 2001]

The first step of basic VNS is shaking. In the shaking phase a random
solution x′ is generated from the current neighbourhood Ni, i ∈ [1, kmax],
where i equals 1 in the in the beginning of the algorithm. Then a local
search is applied generating a solution x′′. If x′′ is a better local optimum
than the incumbent solution x, it is selected as the current solution and
search is continued in the same neighbourhood. If not the search continues
with shaking in another neighbourhood i← i+ 1. These steps are continued
until the stopping condition is reached. [Hansen and Mladenovic̀, 2001]

VNS explores increasingly distant solutions from the starting point and
changes neighbourhoods only if an improvement is possible. This aspect
is advantageous because it preserves most of the variables that are at their
optimal value. Roughly speaking, the systematic exploration of the different
neighbourhoods is practically the only aspect that sets this algorithm apart
from a basic local search. Also note how the undeterministic nature of pro-
cedure prevents cycles. In order to generate the different neighbourhoods, a
metric has to be introduced to measure the distance between different solu-
tion. [Hansen and Mladenovic̀, 2001]

CHAPTER 2. BACKGROUND 21

2.8 Hybrid methods

A good example of a hybrid method for solving the nurse rostering problem is
presented in [Burke et al., 2010]. In this approach, a sub-problem containing
all the hard constraints and a subset of soft constraints is solved with integer
programming. The solution is further enhanced with variable neighbourhood
search. The subset of the soft constraints included in the sub-problem is de-
termined by constraint complexity, importance or their trade-off. Complexity
is defined as the number of variables and constraints that would be added
to the problem while the importance factor is determined by the hospital
staff.

The constraints presented in this article are a good example of the typical
constraint set in the literature. They are presented in appendix A.

The authors in [Burke et al., 2010] argue that the choice of the heuristic
algorithm should be simple. This is the reason for selecting VNS. They
select the neighbourhood structure as a group of consecutive shifts of two
nurses. The time frame of consecutive shifts ranges from one day to the
whole scheduling period. The longer the time frame of the consecutive shifts
is, the further the neighbourhood is regarded to be. As in the integer problem,
this heuristic respects the hard constraints of the problem.

Chapter 3

Methods

3.1 Heuristic approach

The scheduling algorithm deployed in the context of this thesis is a two-
stage heuristic. In the first phase, a greedy search is conducted to attain
the initial solution. Then, simple swap heuristics are used to enhance the
solution.

The simple nature of the solving method yields at least two tangible benefits:
the ease of development and rapid prototyping. These aspects are impor-
tant because in the literature there are no examples of this exact problem
type.

To be exact, most of the literature focuses on the NRP sub-problem where
shift types can be classified to a fixed number of categories i.e. morning and
evening shifts. In the context of this thesis, shifts can begin and end at ar-
bitrary times, which changes the nature of the problem radically. Therefore,
in order to find an adequate scheduling heuristic, several iterations of trial
and error are most likely needed, since there are virtually no ready-made
solutions for this kind of task. Moreover, most scientific articles implement
their solution in the context of one hospital ward or other specific problems
instance. In this case, the algorithm should be applicable to many different
collective agreements that are defined in HaahtelaR© Contactor.

The emphasis on the straightforwardness of the heuristic can also be based on
the fact that the increased complexity of the algorithm does not imply better
results. Even in the case where a complex algorithm would successfully be
implemented, it should be benchmarked against a simpler one in order to

22

CHAPTER 3. METHODS 23

validate the benefits. In the same vein, this thesis should at least accomplish
the tasks of establishing a valid benchmark for possible future iterations of
the scheduling algorithm.

3.2 Justification for the choice of heuristics

The promises of (meta)heuristics, namely fast solving times and solutions
of adequate quality, are a good fit for the work shift scheduling problem.
Metaheuristics are very commonly used in nurse rostering problems [Burke
et al., 2008] [Asta et al., 2016].

There are also other benefits in the context of software development. If
the scheduling algorithm was written in the C# language as the rest of the
software, the coherence and maintainability of the software can be increased.
The solving procedure could use the common routines and methods already
available eliminating the need for duplicate logic.

As metaheuristics are at their best when they are simple but powerful, there
is a chance that developers not endorsed in any formal mathematical educa-
tion could be empowered to maintain the scheduling algorithm. This would
diversify the risks for the company because there would be no need to employ
mathematically oriented programmers, who are a more scarce resource in the
job market.

3.3 Foreseeable challenges

While C# and .NET framework are battle tested and mature, they are not
particularly designed for computationally intensive code. This might repre-
sent a challenge as the search space is large. The metaheuristics need to be
implemented especially well because of this.

Furthermore, the choice of the metaheuristic must also match the problem
structure and the structure of search space. As there are several possible
collective agreements which define different rules for the algorithm, there is
a possibility that one algorithm is not sufficient for each problem case. Even
the demand for the workforce in itself might be totally different along with
the business need in separate problem instances. For example, in some cases
there could an oversupply of the workforce whereas in another instance scarce
employee resources might prevent the total fulfilment of demand.

CHAPTER 3. METHODS 24

Since there are several different algorithms available, one must somehow iden-
tify the problem structure and match it with an appropriate algorithm, which
is not a trivial task. Even in the context of one algorithm, one might need
to tune the implementation of the metaheuristic. For instance, in the case of
the Artificial bee colony metaheuristic there are several parameters, such as
the number of different types of bees, to be defined [Karaboga and Basturk,
2007].

Chapter 4

Implementation

4.1 Problem specific concepts

The planning period, also known as planning horizon, is the interval of time,
in which the the shifts are to be assigned to employees, when creating a future
roster. In a typical scenario, the length of the planning period is fixed.

In Finnish collective agreements, the concepts of period and leveling period
usually define the planning period, since the work shift schedules are planned
for one period at a time. The length of a period is typically one or several
weeks. The levering periods, which usually contain several periods, can span
to even six months.

Usually, most of the various rules and constraints of a roster are associated
with periods and leveling periods. For example, take the following fictional
rule: the maximum working hours of a regular employee during one week can
reach a maximum of 40 hours, but when averaged for the whole period, the
number of working hours in a week can’t exceed 37.5.

Although the planning period is typically the length of a period, the auto-
matic scheduling tool should also be able to function on an arbitrary time
interval. This is because of the normal fluctuations in work shift scheduling
such as sick leaves and other unpredictable changes in either the demand of
the business or employees schedules. Although such changes might sometimes
be easy to compensate manually, the convenience of a one button automatic
scheduling brings about better usability and user satisfaction.

Wishes and blocks are employee’s way of conveying the positive and negative

25

CHAPTER 4. IMPLEMENTATION 26

preferences, respectively, of a certain time slot in the planning period to
the person in charge of the rostering as well for the automatic scheduling
algorithm. Each wish and block has a starting and ending time and can
span up to 24 hours. They can be created in an ad-hoc fashion for a certain
time interval or they can be set to be recurring, for example, from midday
to midnight for every Monday. The employees’ preferences are considered to
match the shift if the shift overlaps with either a wish or block.

4.2 Hard constraints

Hard constraints are not a part of the implementation this thesis deals with.
This is because the rules and constraints defined by various collective agree-
ments are already implemented in the software for the sake of manual work
shift scheduling. The algorithm devised in this thesis merely communicates
with an interface in the software checking for any constraint violations. Thus,
the algorithm has actually no information about which constraint it might
have violated. An example of a rule set derived from a collective agreement is
presented in appendix B. This particular set of rules concerns the employees
in private sector services.

The utility function i.e. soft constraints for the heuristic algorithm are iden-
tical to the linear optimization model. Even though the heuristic algorithm
allows for more complicated utility functions, for instance non-linear ones,
the current one is validated and iterated with the input from the client. As
the new algorithm devised in this thesis is not yet in production use, there
has been no chance to design novel and rivaling utility measures with any
client.

4.3 Soft constraints

The essential role of soft constraints, i.e. the utility function, is to guide the
associated algorithm to assign as many shifts to employees as possible. For
this reason, every assigned minute is valued as one utility unit. This baseline
is, however, customizable.

Presently, there are a total of four different types of soft constraint types
available with different options to apply them. The first type of utility func-
tion is the preference unit type. A preference unit can be chosen to be or not

CHAPTER 4. IMPLEMENTATION 27

be defined for an employee. The units in this case are usually the different
companies or sections of them, who have the demand for different kind of
workers. In HaahtelaR© Contactor, the software this algorithm is implemented
in, every shift is assigned to a single unit. With the preference unit utility
function, we can define a constant coefficient to increase or decrease the util-
ity gained from assigning an employee to fill shift with his or her preference
unit by multiplying the baseline with the coefficient.

Preference occupation utility function type works in the same fashion. Em-
ployees can have several different competences and a preference occupation
or title can be set to an employee. A coefficient can then be defined to either
penalize or reward matching occupational assignments, rewarding being the
more natural choice.

Lastly, a coefficient can be defined for shifts which overlap with a wish or a
block conveying the employees preferences to the heuristic. However, it needs
to be noted that there is a way for an employee to take advantage of this
preference utility function. Since rostering often involves part-timers, it is
possible for them to fill their calendar full of wishes which makes them more
likely to get a shift. Full-timers on the other hand get payed a monthly wage
and thus they are typically the primary work force. In their case, the wish-
block system works appropriately. To avoid this pitfall, a limit must be placed
for the number of wishes on part-time workers and they should be advised
to use all of their wishes in order to ensure a fair shift assignment.

These utility functions can be further specified. Every utility function can
be set to apply only for a certain contract type, for instance part-timers. In
addition, the applicable shifts for each function can be constraint by the day
of week and starting time.

4.4 The implementation process

The creation of the algorithm was executed by means of test driven devel-
opment. In TDD, a test case for the wanted solution is written before any
implementation takes place. Then, implementation is iterated until the test
case has been successfully passed. Then, a more demanding test is writ-
ten.

First, a test ensuring the assignment of a single shift was created. In this
test set, there is only one employee with a blank schedule and a shift that is
applicable to her. To pass this test case, a greedy search was implemented.

CHAPTER 4. IMPLEMENTATION 28

It is a simple way to pass this test and also generates a good starting solution
for more complex cases. The greedy search terminates, when it can’t find
any shifts that can be assigned to workers.

For the second test case, two fictional employees were created. The first,
named Tauno, has two competences: inventory making and packing. The
other, Tero, can only do packing. In this test case, there are two hard
constraints concerning working hours:

• maximum workings hours during a week are 40

• minimum number of combined Friday-Saturday and Saturday-Sunday
day-offs is one.

The objective is now to assign Tauno and Tero to the shifts presented in
figure 4.1. In this visualization, the shifts requiring different competences
are color-coded. There are no additional utility functions at play. Only the
total number of minutes of the assigned shifts, i.e. the baseline the utility,
are regarded desirable. The optimal solution to this test case is presented in
the schedule visualization 4.2. To be exact, there are actually two optimal
solutions, because the shifts scheduled on Tuesday can be switched between
the two employees. Note that all the shifts in question are 8 hours long
except for the the other Monday and Friday shifts.

For this test case, it felt appropriate to devise a shift swap operation. This
operation searches for two assigned shifts that can be swapped between two
employees. The employees must have competences for both of the shifts
and the swap cant violate any hard constraints. It is executed several times
after the greedy search. To determine the number of execution times, a
terminal condition had to be chosen. For this purpose simulated annealing
was implemented. Now, the algorithm would first greedily assign all the
shifts it can, and then swap the shifts under the context of SA.

The swap heuristic could now potentially improve the utility of the schedule.
Yet there are occasions where swapping two shifts opens up a slot for a
new shift for the employee to have. In order to take advantage of this fact, a
greedy search was set to run every time a successful swap was made. That is,
when the utility of the solution is greater after the swap or when simulation
annealing allowed it anyway.

However, the test case was still not passed. The algorithm got stuck in a
situation described in figure 4.3. In this particular scenario, no combination
of swap move could optimize the schedule without the violation of the hard
constraints. This is due to the fact that the greedy search happened to assign

CHAPTER 4. IMPLEMENTATION 29

M
on

da
y

8:
00

-1
8:
00

8:
00

-1
6:
00

Tu
es
da

y

8:
00

-1
6:
00

8:
00

-1
6:
00

W
ed

ne
sd
ay

8:
00

-1
6:
00

8:
00

-1
6:
00

Th
ur
sd
ay

8:
00

-1
6:
00

8:
00

-1
6:
00

Fr
id
ay

8:
00

-1
6:
00

Sa
tu
rd
ay

Su
nd

ay

8:
00

-1
4:
00

Pa
ck
in
g

In
ve

nt
or
y

F
ig

u
re

4.
1:

T
h
e

d
em

an
d

fo
r

th
e

se
co

n
d

te
st

ca
se

CHAPTER 4. IMPLEMENTATION 30

M
on

da
y

8:
00

-1
8:
00

8:
00

-1
6:
00

Tu
es
da

y

8:
00

-1
6:
00

8:
00

-1
6:
00

W
ed

ne
sd
ay

8:
00

-1
6:
00

8:
00

-1
6:
00

Th
ur
sd
ay

8:
00

-1
6:
00

8:
00

-1
6:
00

Fr
id
ay

8:
00

-1
6:
00

Sa
tu
rd
ay

Su
nd

ay

8:
00

-1
4:
00

Ta
un

o

Te
ro

Pa
ck
in
g

In
ve

nt
or
y

Pa
ck
in
g

F
ig

u
re

4.
2:

T
h
e

op
ti

m
al

as
si

gn
m

en
t

of
sh

if
ts

fo
r

th
e

se
co

n
d

te
st

ca
se

CHAPTER 4. IMPLEMENTATION 31

the packing shifts to Tauno, as they, in fact, contribute equally to the utility
function.

The most simple solution to this scenario was to define another heuristic to
move shifts from one employee to another. Let the name of this heuristic be
the switch heuristic. The case for this heuristic is similar to the swap heuristic
in the sense of new slots opening up in the schedule after the operation.
Thus, greedy search was again implemented to run if this operation was
successful. The decision of picking the switch or the swap heuristic was
implemented as a random choice and the switch heuristic was also added
to the SA context. With these modifications the test case was passed in
approximately 500 milliseconds. All test were run on a setup with 32GB of
RAM and an Intel processor i7-4470 on clock speed of 3,4 GHz.

The final form of the algorithm is presented in pseudo code in algorithm 1.
The annealing OK phrase in the algorithm refers to the acceptance function
of simulated annealing. To elaborate, a heuristic operation is to be approved
if it increases the total utility of the solution or if it is randomly accepted by
the simulated annealing even though the utility would decrease.

CHAPTER 4. IMPLEMENTATION 32

M
on

da
y

8:
00

-1
8:
00

8:
00

-1
6:
00

Tu
es
da

y

8:
00

-1
6:
00

8:
00

-1
6:
00

W
ed

ne
sd
ay

8:
00

-1
6:
00

Th
ur
sd
ay

8:
00

-1
6:
00

Fr
id
ay

8:
00

-1
6:
00

Sa
tu
rd
ay

Su
nd

ay

8:
00

-1
4:
00

Ta
un

o

Te
ro

Pa
ck
in
g

In
ve

nt
or
y

Pa
ck
in
g

F
ig

u
re

4.
3:

A
su

b
-o

p
ti

m
al

as
si

gn
m

en
t

of
sh

if
ts

fo
r

th
e

se
co

n
d

te
st

ca
se

CHAPTER 4. IMPLEMENTATION 33

Data: assignable shifts, employees and competences, hard and soft
constraints

Result: shifts assigned to employees

greedy search;
while annealing is not finished do

pick random shift;
pick swap heuristic randomly;
if swap heuristic then

find suitable shift to swap with the random shift;
if possible swap found and annealing OK then

swap shifts;
end

end
else if switch heuristic then

find suitable employee for the random shift;
if suitable employee was found and annealing OK then

assign the random shift to the new employee;
end

end
if switched or swapped then

greedy assignment;
end

end

Algorithm 1: The shift assignment algorithm

Chapter 5

Evaluation

5.1 Evaluation with a real world test set

One real world optimization case was selected for evaluation. The test case
was run with the heuristic algorithm as well as with the incumbent linear
optimization model.

This test case includes 422 open shifts all of which have the same competency
requirement. The shifts range over a three-week period starting from the
20th day of January. Each of the 84 employees in this test case have the
corresponding competence. There are 28 employees, who have a full-time
contract with differentiating weekly hours for this time period. The rest have
a so-called zero-hour contract. Simply put, the working hours stated in the
contract are guaranteed to the employee by the employer. The distribution
of employees and their contract hours is presented in table 5.1.

Contract hours Number of employees
0 56
15 8
22.5 6
30 5
37.5 9

Table 5.1: Distribution of employees and their contract hours in the real
world test case

All the shifts are 7 hours 30 minutes long with an additional 30-minute
lunch break. There are a total of five different starting and ending time

34

CHAPTER 5. EVALUATION 35

combinations among the shifts:

• 9:00 - 17:00

• 8:00 - 16:00

• 7:00 - 15:00

• 14:00 - 22:00

• 22:00 - 06:00

The customer’s process in this particular test case is to first assign shifts to
the full-time employees and then use the part-timer work force to fulfill the
roster. The optimization feature of HaahtelaR© Contactor is used in both of
these steps.

5.2 Problem model

To formulate the problem, let

D := the set of days in the planning horizon
Dnat

y := the set of national holidays during year y

D
c(n)
d := the set of consecutive days starting from day d

W := the set of weeks in the planning horizon
Wp := the set of weeks contained by leveling period p
Wy := the set of weeks contained by year y

W
c(n)
w := the set of n consecutive weeks starting from week

I := the set of workers
J := the set of shifts
Jw := shifts that start during week w ∈ W
Jp := shifts that start during leveling period p ∈ P
Jy := shifts that start during year y ∈ Y
J
c(n)
i := the set of n consecutive shifts starting from shift i

J
ct(n)
i := the set of shifts that start within n hours from ei
P := the set of leveling periods overlapping the planning horizon
Y := the set of years overlapping with the planning horizon
Sd := shifts that start during day d ∈ D
lj := the length of shift j ∈ J in hours
si := the starting time of shift i
ei := the ending time of shift j
qi := weekly contract hours of employee i

CHAPTER 5. EVALUATION 36

The problem has the following utility functions along with their coefficients:

• Preference occupation for full-timers, 5

• Preference occupation for part-timers, 0.5

• Preference unit, 2

• Wish, 1.7

• Block, 0.3

Let xij be a binary variable indicating if a worker i ∈ I works on a shift
j ∈ J . To formulate the wishes and blocks utility functions into an objective
function let

pij =


1.7 if shift j overlaps with the wishes of worker i

0.3 if shift j overlaps with the blocks of worker i

1 otherwise.

(5.1)

Also to express preference unit and preference occupation utility functions,
let

uij =

{
2 if shift j is assigned to the preference unit of worker i

1 otherwise
(5.2)

and

oij =


5 if i is full-timer and preference occupation matches j

0.5 if i is part-timer and preference occupation matches j

1 otherwise.

(5.3)

The function to be maximized is∑
I

∑
J

xijpijuijoij (5.4)

subject to the following hard constraints.

There can be only one employee per shift:

CHAPTER 5. EVALUATION 37

∑
I

xij ≤ 1 ∀j ∈ J (5.5)

The maximum length of a working day is 10 hours:

∑
Jd

xijli ≤ 10 ∀d ∈ D, ∀i ∈ I. (5.6)

The minimum length of a working day is 4 hours:

∑
Jd

xijli ≥ 4 ∀d ∈ D, ∀i ∈ I. (5.7)

The maximum hours during a week are equal to the hours stated in the
employees contract:

∑
Jw

xijli ≤ qi ∀w ∈ W,∀i ∈ I. (5.8)

The maximum number of working hours in a leveling period is 975:

∑
Jp

xijli < 975 ∀p ∈ P, ∀i ∈ I. (5.9)

The maximum number of working days in a week is 6. Note that in this
problem, an employee can only work one shift per day which simplifies this
constraint to the form:

∑
Jw

xij ≤ 6 ∀w ∈ W,∀i ∈ I. (5.10)

The maximum number of working days in a week when averaged for the
leveling period is 5:

∑
Jp
xij

|Wp|
≤ 5 ∀p ∈ P, ∀i ∈ I, (5.11)

where |Wp| denotes the number of weeks during a leveling period p.

CHAPTER 5. EVALUATION 38

The maximum number of consecutive working days is 9. Again, note the fact
that there can only be one shifts per employee per day:

∑
J
D

c(10)
d

xij ≤ 9 ∀j ∈ J,∀i ∈ I, (5.12)

To help formulate the next constraints, let

v(xij, a) =

{
1 if shift j starts on day a

0 otherwise
(5.13)

and

giw(a, b) =
∑
Jw

v(xij, a)xij + v(xij, b)xij (5.14)

hiw(a, b) =
∑
Jw

v(xij, a)(1− xij) · v(xij, b)(1− xij) (5.15)

Additionally, let us define an auxiliary combined day-off binary decision vari-
able:

ziw ≤ 1− giw(fri, sat) · giw(sat, sun) · giw(sun,mon)

M
, (5.16)

where M ≥ 8.

Now, the minimum number of Friday-Saturday, Saturday-Sunday or Sunday-
Monday combined day-offs during a three week period is 1:

∑
W

c(3)
w

ziw ≥ 3 ∀w ∈ W,∀i ∈ I (5.17)

The minimum number of Friday-Saturday, Saturday-Sunday or Sunday-Monday
combined day-offs during a year is 17:

∑
Wy

ziw ≥ 17 ∀y ∈ Y, ∀i ∈ I, (5.18)

CHAPTER 5. EVALUATION 39

The minimum number of Friday-Saturday combined day-offs during a year
is 9:

∑
Jy

hij(fri, sat) ≥ 9 ∀y ∈ Y, ∀i ∈ I (5.19)

The minimum number of Sunday day-offs during a year is 22:

∑
Jy

v(xij, sun)(1− xij) >= 22 ∀y ∈ Y, ∀i ∈ I (5.20)

The minimum number of Sunday day-offs during two weeks is 1:

∑
JW

c(2)
w

v(xij, sun)(1− xij) >= 1 ∀w ∈ W,∀i ∈ I (5.21)

The minimum number of day-offs on eves of national holidays during a year
is 2:

∑
JDnat

y

xij ≤ |Dnat
y | − 2 ∀y ∈ Y, ∀i ∈ I, (5.22)

where |Dnat
y | is the number of national holidays during year y.

The minimum time between two consecutive shifts is at least 11 hours:

xik + xil ≤ 1 +
ek − sl

11h
∀k ∈ J,∀l ∈ J,∀i ∈ I (5.23)

The maximum difference in hours between the starting times of shifts during
a week is 2:

xik + xil ≤ 2−H(sk − sl − 2h) ∀k ∈ J,∀l ∈ J,∀i ∈ I, (5.24)

where

H(n) =

{
0 n ≤ 0

1 n > 0
(5.25)

CHAPTER 5. EVALUATION 40

Lastly, the minimum hours of an uninterrupted time span without any shifts
during a week is 35. To formulate this constraint, let an auxiliary decision
variable

aij ≥
∑

J
ct(35)
j

xij ∀i ∈ I. (5.26)

Now, the constraint is of form

∏
Jw

aij ≤ 0 ∀w ∈ W,∀i ∈ I. (5.27)

The length of a leveling period in this problem is six months. Note the
auxiliary weekly day-off constraints that ensure that the yearly constraints
are not violated. These constraints would otherwise not be considered by
either optimization method until the end of the year. Also note that for the
part-timer optimization round, the maximum hours during a working week
is overridden to equal 15 hours.

The employees do have shifts before the starting time of this particular
roster. However, the earlier shifts mainly affect this roster only via the
”Friday-Saturday, Saturday-Sunday or Sunday-Monday combined day-offs”
constraints.

5.3 Results

The linear optimization took approximately 3 seconds to complete the full-
timer round assigning 176 shifts and accumulating 599280 units of utility.
The part-timer round was completed in 8 seconds. All but four of the re-
maining shifts were assigned during this round. The final utility of the roster
totaled 1493280.

The results for the heuristic algorithm for the full-timer round are presented
in table 5.2. The difference between the two different steps of the algorithm
is notable. The swapping phase takes a time two magnitudes greater than
the greedy phase. It manages to increase the utility by only less than one
percent. The notation ”#” is to be read ”the number of”. The column
”#Assigned shifts” denotes the number of assigned shifts by the respective
method. It is not a cumulative measure.

CHAPTER 5. EVALUATION 41

Method #Assigned shifts Utility increase Elapsed time (seconds)
Greedy 174 579900 2
Swap 0 1680 105

Table 5.2: Results of the heuristic algorithm for the full-timer round

The second round for the part-timers is described similarly in table 5.3. In
this case, the swap heuristics enhanced the solution considerably. The total
running time of this phase was also considerably faster. The total utility of
the heuristic approach was 1394760 which is more than 6% less than what
was achieved with the linear model.

Method #Assigned shifts Utility increase Elapsed time (seconds)
Greedy 236 496764 1
Swap 15 329694 8

Table 5.3: Results of the heuristic algorithm for the part-timer round

As both methods are non-deterministic, these results vary slightly across
different runs. However, these changes are insignificant. Note that the du-
rations of each solving method are rounded to the nearest second as the
precise length of the time span is irrelevant in the context these methods are
used.

Chapter 6

Discussion

6.1 Result analysis

In short, even though the algorithm developed in this thesis underperformed
the incumbent one, it showed promising results. When taken into account
that it was in fact a proof of concept and the very first implementation, this
approach is valid for further exploration and research. Even though the test
case presented surprises in how the automatic scheduling functionality was
used by the customer, the new heuristic still proved functional.

In the test case, the customer had a small group of full-time employees and a
large pool on-call workers. This pool of employees was used to fill a demand
much larger than the full-time employees could cover. The way this cus-
tomer utilizes the automatic scheduling feature is to first use it on full-time
employees. Once these employees had their schedules filled, the rest of shifts
are then automatically scheduled to the part-timers. The reasoning behind
this course of action is the fact that full-time employees are paid a monthly
salary regardless of their working hours, while part-timers only receive wage
for the hours they have worked.

The disproportionate number of shifts compared to the number of employees
presented a problem with the greedy search, when the heuristic was used
to assign shifts to the full-timers. Since the initial greedy search can only
assign a fraction of the total number of shifts, most of them are then used in
the greedy searches after the switch and swap operations. Consequently, a
huge number of shifts are tested for compatibility with the employees in the
majority of the iterations, which number in thousands.

42

CHAPTER 6. DISCUSSION 43

This approach taken by the customer is of course sub-optimal. Two op-
timization rounds can’t produce the global optimum of the problem. The
reasons for this course of action are unclear but this fact confirms one of
the premises of this thesis. Namely, the optimality of the roster is not seen
as important as the fact that the process is automated. This observation is
valuable in itself for future development.

By taking this aspect into account, the greedy search phase in itself might
be something of value to the customer even if it is inferior to the linear
optimization method. In purely business sense, it is easy and inexpensive to
put into operation and it does not require an expensive third party linear
solver.

6.2 Viability of the solution

The algorithm is still not ready for production use where a performance close
to the linear solver is expected. Ultimately it is a proof of concept in which
there are bound to be weaknesses that can, however, be mitigated.

This single test case, however, does not ascertain if this approach is general
enough to cover all the possible scenarios that are possible in the context of
HaahtelaR© Contactor. This potential shortcoming mentioned in section 3.3
is thus still undetermined.

If indeed this solution method was determined to be unfit to generalize, the
concept of using heuristics for this problem would become fruitless. If the
solution needed maintenance and re-implementation for every new problem
instance, it would be too cumbersome to maintain. Even in the case of having
a range different heuristics for different problem instances, the challenge of
choosing the right one remains.

Still, there are dozens of aspects of the algorithm that can be further en-
hanced. For instance, the algorithm could be fed more information about
the constraints it violated or is about to violate. Moreover, the straightfor-
wardness was heavily emphasized in the implementation. There is still room
for more complex operations without compromising the maintainability of
the code.

CHAPTER 6. DISCUSSION 44

6.3 Next steps of development

There are still some functionalities missing from the heuristic implementation
that are present in the linear optimization model. For instance, employees
can be set to be eligible for shifts in certain time interval during a day. Also
there are some more complicated utility functions that were not included this
thesis. As an example, one of these functions add utility with respect to how
close the full-timers’ hours are filled to the maximum.

For the heuristic itself, a method must be found to overcome the situation
of disproportionate number of shifts and employees. Before making changes
to the heuristic itself, one option could be to modify the problem. If all the
shifts could be assignable in a single optimization round, the initial greedy
search could assign more shifts which would make the subsequent searches
less intensive. Whether or not this step would prove functional, the frequency
of greedy searches could be lowered or the otherwise limited.

Probably the most efficient development step would be to increase the knowl-
edge of the violated constraints for the heuristic. For instance, if an employee
has full weekly hours, the heuristic wouldn’t go through the trouble of check-
ing all the constraints in an attempt to assign a shift to the employee during
the week in question. As there are a considerable number of constraints, the
violation check is an expensive operation in terms of computation.

To test these improvements more robustly, a test case containing at least the
mass the real world test case has should be created. This would facilitate
the testing of performance improvements considerably.

Chapter 7

Conclusions

7.1 Summary

This thesis set out to develop a proof-of-concept of an alternative way of
optimizing work shift schedules. This goal was met, even though the novel
method did not perform as well as the incumbent one. There are still, how-
ever, numerous ways of enhancing the algorithm.

It is still unclear, if this approach will be sufficient for production use in
Contactor. Even on the single schedule this algorithm was tested against,
a surprising way of utilizing the automatic rostering feature was discovered.
Moreover, one can find problems an order of magnitude larger from different
real world cases. Of course, full coverage is probably not going to be achieved
in the near future with any method as the problem is np-hard.

However, the linear model is a result of years of development and it is backed
by a top-of-the-line third party linear solver. Against this background, the
results achieved in this thesis are promising. The results serve as a good
proxy in search of a better rostering method. Lastly, the novel algorithm is
cheaper with regard to the requirement of a third party solver and it is easy
to deploy for testing in the production environment.

7.2 Future research

There are numerous interesting directions to take when considering the long
term development of what was achieved in this thesis. The most technical

45

CHAPTER 7. CONCLUSIONS 46

of which would be to parallelize the solving process. This would require a
substantial new work to the algorithm. Moreover, not all of the algorithm
can be made parallel as every operation modifies the global solution. That
is, if in one thread a shift is assigned to an employee, other threads need to
know about it. Thus, the search operation for suitable shifts for an employee
suitable for a certain shift could prove to be an appropriate candidate for
evaluating this method.

Hybrid algorithms are another intriguing target of development. There are
multiple examples of such successful implementations, for instance by [Burke
et al., 2010] and [Rahimian et al., 2017]. Since the linear solver is already
in use in HaahtelaR© Contactor, it would be relatively easy to harness as
such. However, this would require a substantial amount of researching and
testing to discover which parts of the solving process would be solved by
which method.

As machine learning has gained popularity in solving various types of prob-
lems, it has also been applied to the nurse rostering problem [Asta et al.,
2016]. The concept of machine learning is close to the concept of hyper
heuristic if a learning component is present in it. Hypothetically, this would
solve the problem of deciding the suitable set of different low level heuristics
for each problem instance.

Bibliography

Uwe Aickelin. Genetic algorithms for multiple-choice problems. CoRR,
abs/1004.3147, 2010. URL http://arxiv.org/abs/1004.3147.

Shahriar Asta, Ender Özcan, and Tim Curtois. A tensor based hyper-
heuristic for nurse rostering. Knowledge-Based Systems, 98:185 –
199, 2016. ISSN 0950-7051. doi: http://dx.doi.org/10.1016/j.knosys.
2016.01.031. URL http://www.sciencedirect.com/science/article/pii/

S0950705116000514.

Marco A. Boschetti, Vittorio Maniezzo, Matteo Roffilli, and Antonio
Bolufé Röhler. Matheuristics: Optimization, Simulation and Control,
pages 171–177. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
ISBN 978-3-642-04918-7. doi: 10.1007/978-3-642-04918-7 13. URL http:

//dx.doi.org/10.1007/978-3-642-04918-7_13.

Edmund K. Burke, Timothy Curtois, Gerhard Post, Rong Qu, and Bart
Veltman. A hybrid heuristic ordering and variable neighbourhood search
for the nurse rostering problem. European Journal of Operational Research,
188(2):330 – 341, 2008. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/j.
ejor.2007.04.030. URL http://www.sciencedirect.com/science/article/

pii/S0377221707004390.

Edmund K. Burke, Jingpeng Li, and Rong Qu. A hybrid model of integer
programming and variable neighbourhood search for highly-constrained
nurse rostering problems. European Journal of Operational Research, 203
(2):484 – 493, 2010. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/j.
ejor.2009.07.036. URL http://www.sciencedirect.com/science/article/

pii/S0377221709005396.

B Cheang, H Li, A Lim, and B Rodrigues. Nurse rostering problems –
a bibliographic survey. European Journal of Operational Research, 151
(3):447 – 460, 2003. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/

47

http://arxiv.org/abs/1004.3147
http://www.sciencedirect.com/science/article/pii/S0950705116000514
http://www.sciencedirect.com/science/article/pii/S0950705116000514
http://dx.doi.org/10.1007/978-3-642-04918-7_13
http://dx.doi.org/10.1007/978-3-642-04918-7_13
http://www.sciencedirect.com/science/article/pii/S0377221707004390
http://www.sciencedirect.com/science/article/pii/S0377221707004390
http://www.sciencedirect.com/science/article/pii/S0377221709005396
http://www.sciencedirect.com/science/article/pii/S0377221709005396

BIBLIOGRAPHY 48

S0377-2217(03)00021-3. URL http://www.sciencedirect.com/science/

article/pii/S0377221703000213.

Kalyanmoy Deb. Multi-objective optimization. In Search methodologies,
pages 403–449. Springer, 2014.

R. Dechter. Constraint Processing. The Morgan Kaufmann Series in Artificial
Intelligence. Elsevier Science, 2003. ISBN 9780080502953. URL https:

//books.google.fi/books?id=U_6G5txE8_MC.

Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeule-
meester, and Liesje De Boeck. Personnel scheduling: A literature review.
European Journal of Operational Research, 226(3):367 – 385, 2013. ISSN
0377-2217. doi: http://dx.doi.org/10.1016/j.ejor.2012.11.029. URL http:

//www.sciencedirect.com/science/article/pii/S0377221712008776.

R.W. Eglese. Simulated annealing: A tool for operational research. European
Journal of Operational Research, 46(3):271 – 281, 1990. ISSN 0377-2217.
doi: http://dx.doi.org/10.1016/0377-2217(90)90001-R. URL http://www.

sciencedirect.com/science/article/pii/037722179090001R.

Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, D. T. Lee, and Shang-
Hua Teng, editors. Classification of Various Neighborhood Operations
for the Nurse Scheduling Problem, pages 72–83. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2000. ISBN 978-3-540-40996-0. doi: 10.1007/
3-540-40996-3 7. URL http://dx.doi.org/10.1007/3-540-40996-3_7.

Pierre Hansen and Nenad Mladenovic̀. Variable neighborhood search: Prin-
ciples and applications. European Journal of Operational Research, 130
(3):449 – 467, 2001. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/
S0377-2217(00)00100-4. URL http://www.sciencedirect.com/science/

article/pii/S0377221700001004.

Stefaan Haspeslagh, Patrick De Causmaecker, Andrea Schaerf, and Mar-
tin Stølevik. The first international nurse rostering competition 2010.
Annals of Operations Research, 218(1):221–236, 2014. ISSN 1572-
9338. doi: 10.1007/s10479-012-1062-0. URL http://dx.doi.org/10.1007/

s10479-012-1062-0.

Narendra Jussien and Olivier Lhomme. Local search with constraint
propagation and conflict-based heuristics. Artificial Intelligence, 139
(1):21 – 45, 2002. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/
S0004-3702(02)00221-7. URL http://www.sciencedirect.com/science/

article/pii/S0004370202002217.

http://www.sciencedirect.com/science/article/pii/S0377221703000213
http://www.sciencedirect.com/science/article/pii/S0377221703000213
https://books.google.fi/books?id=U_6G5txE8_MC
https://books.google.fi/books?id=U_6G5txE8_MC
http://www.sciencedirect.com/science/article/pii/S0377221712008776
http://www.sciencedirect.com/science/article/pii/S0377221712008776
http://www.sciencedirect.com/science/article/pii/037722179090001R
http://www.sciencedirect.com/science/article/pii/037722179090001R
http://dx.doi.org/10.1007/3-540-40996-3_7
http://www.sciencedirect.com/science/article/pii/S0377221700001004
http://www.sciencedirect.com/science/article/pii/S0377221700001004
http://dx.doi.org/10.1007/s10479-012-1062-0
http://dx.doi.org/10.1007/s10479-012-1062-0
http://www.sciencedirect.com/science/article/pii/S0004370202002217
http://www.sciencedirect.com/science/article/pii/S0004370202002217

BIBLIOGRAPHY 49

Dervis Karaboga and Bahriye Basturk. A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony (abc) algo-
rithm. Journal of Global Optimization, 39(3):459–471, 2007. ISSN 0925-
5001. doi: 10.1007/s10898-007-9149-x. URL http://dx.doi.org/10.1007/

s10898-007-9149-x.

Jari Kyngäs. Solving Challenging Real-World Scheduling Problems. PhD
thesis, University of Turku, 2011.

Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Min-
imizing conflicts: a heuristic repair method for constraint satisfaction and
scheduling problems. Artificial Intelligence, 58(1):161 – 205, 1992. ISSN
0004-3702. doi: http://dx.doi.org/10.1016/0004-3702(92)90007-K. URL
http://www.sciencedirect.com/science/article/pii/000437029290007K.

PAM. Terms of employment in the commercial sector, 2016. URL http:

//netpaper.lonnberg.fi/pam/tes-fi/kaupan/.

Erfan Rahimian, Kerem Akartunali, and John Levine. A hybrid inte-
ger and constraint programming approach to solve nurse rostering prob-
lems. Computers I& Operations Research, 82:83 – 94, 2017. ISSN
0305-0548. doi: http://dx.doi.org/10.1016/j.cor.2017.01.016. URL http:

//www.sciencedirect.com/science/article/pii/S0305054817300163.

Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint
programming. Elsevier, 2006.

Seyed Mojtaba Sajadi, Shima Ghasemi, and Hashem Vahdani. Simu-
lation optimisation for nurse scheduling in a hospital emergency de-
partment (case study: Shahid beheshti hospital). International Jour-
nal of Industrial and Systems Engineering, 23(4):405–419, 2016. doi:
10.1504/IJISE.2016.077691. URL http://www.inderscienceonline.com/

doi/abs/10.1504/IJISE.2016.077691.

Rhian Silvestro and Claudio Silvestro. An evaluation of nurse rostering prac-
tices in the national health service. Journal of Advanced Nursing, 32(3):
525–535, 2000. ISSN 1365-2648. doi: 10.1046/j.1365-2648.2000.01512.x.
URL http://dx.doi.org/10.1046/j.1365-2648.2000.01512.x.

Pieter Smet, Patrick De Causmaecker, Burak Bilgin, and Greet Vanden
Berghe. Automated Scheduling and Planning: From Theory to Practice,
chapter Nurse Rostering: A Complex Example of Personnel Scheduling

http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s10898-007-9149-x
http://www.sciencedirect.com/science/article/pii/000437029290007K
http://netpaper.lonnberg.fi/pam/tes-fi/kaupan/
http://netpaper.lonnberg.fi/pam/tes-fi/kaupan/
http://www.sciencedirect.com/science/article/pii/S0305054817300163
http://www.sciencedirect.com/science/article/pii/S0305054817300163
http://www.inderscienceonline.com/doi/abs/10.1504/IJISE.2016.077691
http://www.inderscienceonline.com/doi/abs/10.1504/IJISE.2016.077691
http://dx.doi.org/10.1046/j.1365-2648.2000.01512.x

BIBLIOGRAPHY 50

with Perspectives, pages 129–153. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013. ISBN 978-3-642-39304-4. doi: 10.1007/978-3-642-39304-4 6.
URL http://dx.doi.org/10.1007/978-3-642-39304-4_6.

Constantine D Spyropoulos. {AI} planning and scheduling in the med-
ical hospital environment. Artificial Intelligence in Medicine, 20(2):
101 – 111, 2000. ISSN 0933-3657. doi: http://dx.doi.org/10.1016/
S0933-3657(00)00059-2. URL http://www.sciencedirect.com/science/

article/pii/S0933365700000592. Planning and Scheduling in the Hos-
pital.

E.G. Talbi. Metaheuristics: From Design to Implementation. Wiley Series on
Parallel and Distributed Computing. Wiley, 2009. ISBN 9780470496909.
URL http://books.google.fi/books?id=SIsa6zi5XV8C.

G.Y.C. Wong and Andy Hon Wai Chun. Constraint-based rostering us-
ing meta-level reasoning and probability-based ordering. Engineering Ap-
plications of Artificial Intelligence, 17(6):599 – 610, 2004. ISSN 0952-
1976. doi: http://dx.doi.org/10.1016/j.engappai.2004.08.001. URL http:

//www.sciencedirect.com/science/article/pii/S0952197604000831.

P. Daniel Wright and Stephen Mahar. Centralized nurse scheduling to simul-
taneously improve schedule cost and nurse satisfaction. Omega, 41(6):1042
– 1052, 2013. ISSN 0305-0483. doi: http://dx.doi.org/10.1016/j.omega.
2012.08.004. URL http://www.sciencedirect.com/science/article/pii/

S0305048312001119.

E. I. Ásgeirsson, J. Kyngäs, K. Nurmi, and M. Stølevik. A framework for
implementation-oriented staff scheduling. In J. Fowler, G. Kendall, and
B. McCollum, editors, In proceedings of the 5th Multidisciplinary Interna-
tional Conference on Scheduling : Theory and Applications (MISTA 2011),
9-11 August 2011, Phoenix, Arizona, USA, pages 308–321, 2011. Paper.

http://dx.doi.org/10.1007/978-3-642-39304-4_6
http://www.sciencedirect.com/science/article/pii/S0933365700000592
http://www.sciencedirect.com/science/article/pii/S0933365700000592
http://books.google.fi/books?id=SIsa6zi5XV8C
http://www.sciencedirect.com/science/article/pii/S0952197604000831
http://www.sciencedirect.com/science/article/pii/S0952197604000831
http://www.sciencedirect.com/science/article/pii/S0305048312001119
http://www.sciencedirect.com/science/article/pii/S0305048312001119

Appendix A

Example of typical constraints in
NRP

The hard constraints presented in [Burke et al., 2010]:

• daily coverage requirement of each shift type

• for each day, a nurse may not start more than one shift

• maximum number of total working days during the scheduling period

• maximum number of on-duty weekends during the scheduling period

• maximum number of night shifts during the scheduling period

• no stand-alone night shift (i.e. no night shift between two non-night
shifts)

• minimum two free days after a series of night shifts

• maximum number of consecutive night shifts

• maximum number of consecutive working days

• no late shifts for one particular nurse

The soft constrains identified in [Burke et al., 2010] are:

• complete weekends (i.e. either no shifts or two shifts in weekends)

• avoiding any stand-alone shift (i.e. a single day between 2 days off)

• minimum number of free days after a series of shifts

51

APPENDIX A. EXAMPLE OF TYPICAL CONSTRAINTS IN NRP 52

• maximum/minimum number of consecutive assignments of early and
late shifts

• maximum/minimum number of weekly working days

• maximum number of consecutive working days for part-time nurses

• avoiding certain shift type successions (e.g. a day shift followed by an
early one, etc.)

Appendix B

Terms of employment in the com-
mercial sector

In Finland, employees in private service sectors, such as retail and wholesale
trade, travel and restaurant sectors, belong under the collective agreements
negotiated by Service Union United (PAM).

The rules concerning working hours can be extracted from the collective
agreement that Service Union United has negotiated for the workers in the
commercial sector for the year 2017. Note that according to the collective
agreement [PAM, 2016], the rules may vary depending on the chosen work
time balancing system i.e. are there periods in use and other circumstances.
Also, the agreement only defines the minimum terms that the employer must
abide to. A single employment contract can be negotiated to be more bene-
ficial for the employee.

The following simplified rule set, that is of importance to this thesis, is one
possible application of the terms defined by the collective agreement:

• maximum length of a working day is 10 hours

• minimum length of a working day is 4 hours

• maximum working hours in a week are agreed on in an employment
contract

• the minimum time between two consecutive shifts is at least 11 hours

• maximum number of workdays in week is 6 days

• maximum number of consecutive working days is 9

53

APPENDIX B. TERMS OF EMPLOYMENT IN THE COMMERCIAL SECTOR54

• minimum number of Sunday day-offs during a year is 22

• minimum number of Friday-Saturday, Saturday-Sunday or Sunday-
Monday combined day-offs during a year is 17

• minimum number of Friday-Saturday combined day-offs during a year
is 9

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Research problem
	1.3 Structure

	2 Background
	2.1 Work shift planning
	2.2 The requirements
	2.3 The current solution
	2.4 Overview of the literature
	2.5 Constraint programming
	2.6 Mixed linear integer programming
	2.7 Metaheuristics
	2.8 Hybrid methods

	3 Methods
	3.1 Heuristic approach
	3.2 Justification for the choice of heuristics
	3.3 Foreseeable challenges

	4 Implementation
	4.1 Problem specific concepts
	4.2 Hard constraints
	4.3 Soft constraints
	4.4 The implementation process

	5 Evaluation
	5.1 Evaluation with a real world test set
	5.2 Problem model
	5.3 Results

	6 Discussion
	6.1 Result analysis
	6.2 Viability of the solution
	6.3 Next steps of development

	7 Conclusions
	7.1 Summary
	7.2 Future research

	A Example of typical constraints in NRP
	B Terms of employment in the commercial sector

