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Abstract 

 
The human brain is the most complex organ providing a control center for the human body. 
Understanding its functional principles would reveal valuable information which could be 
exploited in the treatment of brain diseases. 
 
The function of the human brain is based on regional functional specialization and collaboration 
between these regions. This collaboration is called functional connectivity which is estimated from 
the region activity. The activity of the regions can be estimated from the activity of the brain which 
can be determined by measuring the electromagnetic fields generated by neurons. 
 
The region activity is constructed by combining the activities of multiple neurons within a certain 
region. Currently, the methods used for reconstruction are quite ad hoc without any physical 
relevance. To provide more plausible method for the reconstruction of the region activity, the 
objective of this work is to examine a method based on the obtained data. In this method, the 
reconstruction is conducted using weights estimated from the data for each region. The method is 
implemented using expectation maximization algorithm with a state space model which provides a 
convenient way to obtain the region activity from Kalman filter. 
 
The implemented algorithm was tested using simulations. Though the errors made in the 
estimation of weights were in general high ranging between 30—100 %, the region activity could 
be recovered with smaller estimation error somewhat decently. This implies that some of the 
assumptions made in the construction of the algorithm need modification. A variant of the 
algorithm with maximum likelihood estimation was applied on real data producing promising 
results. Thus, carefully designed and implemented data driven method would provide more 
accurate approach for estimation of the region activity. 
 
 
 
 
 

Keywords  expectation maximization algorithm, maximum likelihood estimation, functional 

connectivity, parameter estimation, dimensionality reduction 

 



 

Aalto-yliopisto, PL 11000, 00076 AALTO 

www.aalto.fi 

Tekniikan kandidaatintyön tiivistelmä 

 

 

Tekijä  Hilkka Hännikäinen 

Työn nimi  Estimating the activity of regions of interest using Expectation-Maximization algo-

rithm 

Koulutusohjelma  Teknillinen fysiikka ja matematiikka 

Pääaine  Matematiikka ja systeemitieteet Pääaineen koodi  SCI3029 

Vastuuopettaja  Prof. Harri Ehtamo 

Työn ohjaaja(t)  TkT Narayan Puthanmadam Subramarinyam 

Päivämäärä  27.11.2018 Sivumäärä  23+5 Kieli  englanti 

Tiivistelmä 

 
Aivot ovat ihmiskehon monimutkaisin elin, jonka tehtävänä on säädellä kehon toimintoja. Aivojen 
toimintaperiaatteiden ymmärtäminen tarjoaisi arvokasta tietoa, jota voitaisiin hyödyntää aivope-
räisten sairauksien hoidossa.  
 
Aivojen toiminta perustuu funktionaaliseen erikoistumiseen alueittain sekä yhteistyöhön erilaisiin 
tehtäviin erikoistuneiden alueiden välillä. Tätä yhteistyötä kutsutaan myös funktionaaliseksi yh-
distyneisyydeksi, jota arvioidaan alueiden aktiivisuutta kuvaavasta datasta. Alueen aktiivisuus 
voidaan määrittää koko aivojen aktiivisuudesta, joka saadaan mittaamalla neuronien synnyttä-
mien sähkömagneettisten kenttien voimakkuutta. 
 
Tietyn alueen aktiivisuus saadaan yhdistämällä alueessa olevien neuronien aktiivisuus. Tällä het-
kellä neuroneiden aktiivisuuden yhdistämiseksi käytetyt menetelmät ovat ad hoc -tyyppisiä ilman 
fysikaalisia perusteita. Tämän työn tarkoituksena on tutkia dataan pohjautuvan menetelmän so-
veltuvuutta, jotta aivojen alueiden aktiivisuus voidaan määrittää mahdollisimman luotettavasti ja 
tarkasti. Suunnitellussa menetelmässä alueen aktiivisuus saadaan estimoimalla datasta painoker-
toimet jokaiselle alueelle. Menetelmä toteutetaan expectation maximization eli odotusarvon mak-
simointi -algoritmin avulla käyttäen tila-aikamallia, josta alueen aktiivisuus saadaan hyödyntäen 
Kalmanin suodinta. 
 
Kehitettyä algoritmia testattiin käyttäen simulaatioita. Vaikka painokertoimien estimoinnissa syn-
tyneet virheet olivat keskimäärin korkeita vaihdellen välillä 30—100 %, alueen aktiivisuus pystyt-
tiin estimoimaan kohtuullisesti pienemmillä virheillä. Tämä viittaa algoritmissa käytetyn mallin 
oletusten virheellisyyteen. Algoritmista toteutettiin muunnelma, jossa käytettiin suurimman us-
kottavuuden estimointia painokertoimien estimoimiseksi. Muunnettua algoritmia testattiin oike-
alla datalla, mikä tuotti lupaavia tuloksia. Tämän perusteella huolellisesti suunniteltu ja toteutettu 
dataan pohjautuva menetelmä alueiden aktiivisuuden estimoimiseksi voisi tuottaa tarkempia tu-
loksia verrattuna nykyisiin menetelmiin. 
 
 
 

Avainsanat  odotusarvon maksimointi -algoritmi, suurimman uskottavuuden estimointi, funktio-

naalinen yhdistyneisyys, parametrien estimointi 

 



Contents

1 Introduction 1

2 Neural signaling 2

2.1 Structure of a neuron . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Generation of a neural signal and approximation for a neural

source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Measuring and modeling the activity 4

3.1 Measurement techniques . . . . . . . . . . . . . . . . . . . . . 4
3.2 The inverse problem in the estimation of activity . . . . . . . 5
3.3 Estimating the activity and connectivity between regions of

interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Methods 9

4.1 State space model . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Expectation Maximization algorithm . . . . . . . . . . . . . . 10
4.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Formulation of the state space model and likelihood function . 12

5 Results 16

6 Conclusions 20

References 22

A Derivation of the log-likelihood function 24

B Kalman prediction, �ltering and smoothing equations 25



1 Introduction

The human brain is the most complex organ composed of approximately
100 billion neurons with 1000 � 10000 connections between them (Tortora
and Derrickson, 2017). This complexity enables the brain to process a vast
amount of electrical signals into meaningful patterns. Thus, the brain can
be considered as the control center of the human body (Tortora and Derrick-
son, 2017). Understanding its functional principles would provide valuable
information which could be exploited in the treatment of brain diseases.

The brain organization has two fundamentals. Functional segregation is de-
�ned as the anatomical separation of brain whereas functional integration
refers to connections appearing as co-operation between brain regions to
perform cognitive tasks. Functional integration can be quanti�ed in terms of
functional connectivity which is de�ned as statistical inter-dependencies in
the activity of brain regions. (Scho�elen and Gross, 2009)

The activities of the brain regions can be measured using noninvasive mea-
surement techniques like magnetoencephalography (MEG), electroencephalog-
raphy (EEG) and functional magnetic resonance imaging (fMRI). MEG and
EEG measure the magnetic and electric �elds, respectively, generated by
neurons providing a direct measure of neural activity. In fMRI, the blood-
oxygen-level dependent (BOLD) �uctuations are measured yielding an in-
direct measure of brain activity. While fMRI has good spatial resolution,
it su�ers from poor temporal resolution. In contrast, MEG and EEG have
high temporal resolution but limited spatial resolution. The estimation of
underlying brain activity from MEG or EEG recordings constitutes an under-
determined inverse problem which has no unique solution. (Hari and Puce,
2017)

The estimation of the brain activity is a little bit problematic. In MEG
and EEG recordings, the sensors measure the magnetic or electric �elds of
multiple neurons. This results in a widespread representation of the �elds
which complicates the estimation (Hari and Puce, 2017). In addition to this
source leakage, the amount of sensors is considerably smaller than the amount
of vertices which approximate an assemblage of coherently behaving neurons
(Baillet et al., 2001). To concern the source leakage and high dimensionality
of the problem, the activities of multiple vertices are combined to form the
activity of a region.

There are various approaches to construct the region activity from estimated
activity of the brain for example by taking the mean. However, these meth-
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ods have some shortcomings. The developed techniques are quite ad hoc and
don't have any physical relevance. In order to exploit the collected data in
the estimation of region activity, the objective of this thesis is to develop
an algorithm which determines weights for vertices within the region. The
weights describe how much each vertex contributes to the activity of region.
They are estimated using maximum likelihood estimation performed via ex-
pectation maximization algorithm.

This thesis is structured as follows. In section 2 the basic functional principles
of a human brain are brie�y described. In section 3 the magnetoencephalog-
raphy is presented together with insights into the modeling and estimation of
neural activity. In section 4 the methods applied in this work are described
followed by the results in section 5. The conclusions are given in section 6.

2 Neural signaling

2.1 Structure of a neuron

The nervous system of the human body consists of nervous tissue. The ner-
vous tissue comprises of neurons which are nerve cells specialized in relaying
electric signals called nerve impulses. Thus neurons form the basis of the or-
ganized and controlled function of the human body. (Tortora and Derrickson,
2017)

Neurons possess a great diversity in shape and size but they also share com-
mon features in structure. Typically, neurons have three main parts: a cell
body, dendrites and an axon which are presented in �gure 1. All three parts
are surrounded by a cell membrane which is a bilayer of lipids. In neurons,
the cell membrane has many essential tasks, especially in the transportation
of a neural signal. The cell body contains the essential cellular organelles
which ensure the function of the cell. Dendrites and axon are used for com-
munication. Neuron receives information through dendrites which are typi-
cally short and highly branched. The information is send forward with axon
which is in general long and thin. The axon ends in synaptic terminals which
connect the neuron to other cells. (Tortora and Derrickson, 2017)
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Figure 1: Illustrative picture of the structure of a neuron with the main parts
named. Figure reprinted and modi�ed from https://commons.wikimedia.

org/wiki/File:Blausen_0657_MultipolarNeuron.png.

2.2 Generation of a neural signal and approximation for

a neural source

The main reason for the generation of an extracellular electromagnetic �eld
as a result of neural activity is the electric excitability of the cell mem-
brane (Tortora and Derrickson, 2017). This property enables the neurons
to transfer electric currents which superimpose at any given point in the
brain(Buzsáki et al., 2012). The superposition of currents leads to a voltage
di�erence called electric potential which gives rise to an electromagnetic �eld
(Buzsáki et al., 2012). The electric currents constituting the electric poten-
tial can be divided into intra- and extracellular currents. The intracellular
electric currents �owing through the neurons' dendrites and axons are called
primary currents. The primary current results in a pile up of charge which is
balanced by an extracellular current called volume current �owing through
the volume of the brain outside the neuron. (Hämäläinen et al., 1993)

When a primary current is transported, there is an in�ow and an out�ow
of ions through the cell membrane of a neuron. The in�ow constitutes an

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
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extracellular sink whereas the out�ow of ions comprises a source (Buzsáki
et al., 2012). The source and the sink constitute a dipole with a localized
electric current depicted in �gure 2 with transmembrane �uxes of ions. The
approximation of a current dipole can be used in the case of multiple, closely
related coherently behaving neurons due to the structure of the uppermost
layer of the brain. Neurons in this layer are the main source for the measured
neural activity since the dendrites lie almost in parallel with respect to each
other as illustrated in �gure 2 enabling the constructive superposition of
primary currents. The dipole can be described with a location, orientation
and amplitude. (Baillet et al., 2001; Hari and Puce, 2017)

Figure 2: An illustration of the primary and volume currents in neural signal
processing with schematic picture of the spatial arrangement of neurons.
Figure reprinted from Baillet et al. (2001).

3 Measuring and modeling the activity

3.1 Measurement techniques

Electroencephalography (EEG) and magnetoencephalography (MEG) are
commonly used noninvasive measurement techniques based on measuring
electromagnetic properties. Both methods possess excellent temporal resolu-
tion with limited spatial resolution. EEG and MEG may be combined with
other information gathered from the brain, e.g. MRI images to achieve more
precise picture about the brain activity. (Hari and Puce, 2017)
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The data used in this work is collected using MEG and thus the main focus
of the following paragraph is on MEG and its' basic principles. The MEG
measurement device consists of a dewar vacuum �ask which resembles a giant
helmet presented on the left in �gure 3. This helmet contains 306 magnetic-
�eld sensors on the inner surface. A schematic illustration of the sensors is
depicted on the right in �gure 3. Because the magnetic �eld generated by
neural currents is very weak, the sensors have to be extremely sensitive. At
the moment, the sensors used are superconducting quantum interference de-
vices i.e. SQUIDs. In the sensors, the magnetic �eld of the brain generates a
current in a coil which is again transformed into a magnetic �eld sensed by the
SQUID. The SQUID is attached to a circuit which transforms the magnetic
�ux into ampli�ed voltage which is recorded. In generation of the magnetic
�eld based on neural currents, the structure of the cerebral cortex plays a
signi�cant role. If the brain is considered as a volume conductor, radially
oriented currents don't produce magnetic �eld outside the conductor. These
currents are hence invisible for the measurement devices and only currents
with tangential components can be detected making the folded structure im-
portant. The superposition of primary currents plays also a signi�cant role
making the magnetic �elds detectable. The MEG measurement should be
conducted inside a shielded room which dampens the Earth's magnetic �eld
and other magnetic �elds arising from nearby electrical sources. (Hari and
Puce, 2017)

3.2 The inverse problem in the estimation of activity

The objective of the measurements is to estimate the activity of the neural
current sources from the collected data which means solving the equation

yt = Gqt + εt , (1)

where yt is the measured data, G is the lead �eld matrix, qt is the amplitudes
of the sources and εt is the measurement noise. This is an inverse problem.
The problem doesn't have a unique solution due to the physical circumstances
(Baillet et al., 2001; Hämäläinen et al., 1993).

In order to solve the inverse problem, the associated forward problem must
also be solved. The forward problem means, in the case of MEG, calculating
the generated magnetic �eld based on distribution of the neural sources and
the head model. (Tadel et al., 2016)
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Figure 3: The MEG measurement device is presented inside a shielded room
(left) with illustration of the sensors inside the dewar (top). Typical MEG sig-
nals are illustrated in the bottom right corner of the �gure. Figure reprinted
from Baillet et al. (2001).

The neural sources are modeled using current dipole approximation or ex-
tending it to be a multipole of current dipoles. To get the complete source
space model describing the distribution of activity in the brain, the distri-
bution of neural sources is needed. There are two common approaches to
distribute the sources. In dipole �tting models, a few equal current dipoles
are placed over the surface with free orientations and amplitudes, possibly
with indeterminate locations. The other, called distributed models, is to dis-
tribute the neural sources into a dense mesh over the cerebral cortex with
constrained locations. The orientations of the current dipoles may be con-
strained. The whole set of neural sources forms the source space. (Baillet
et al., 2001)

When solving the inverse problem, another considerable property is a head
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model which takes into account the layered structure and conductivity pro-
�le of the brain (Baillet et al., 2001). Conductivity is a material speci�c
quantity which describes how well the material conducts electricity and thus
the conductivity pro�le a�ects more on EEG than on MEG (Hari and Puce,
2017). The simplest head model assumes the brain to consist of concentric
symmetric spherical shells with uniform conductivity. More accurate method
is to extract the surface boundaries from an image of the brain and skull and
then apply the boundary element method assuming the homogeneity in con-
ductivity. If the assumption of homogeneity is discarded, the �nite element
method needs to be applied in the calculations. (Baillet et al., 2001)

With the source space and head models, one can calculate the lead �eld ma-
trix G appearing in the equation (1). The lead �eld matrix is a mapping from
the source space to the sensor space. In other words, it tells how each dipole
contributes to the obtained data. Using the lead �eld matrix, one is able to
solve the inverse problem. The inverse problem produces an estimate for the
set of parameters depending on the chosen source space model. The source
space model also determines the method applied to obtain the solution. In
principle, two types of approaches, parametric and imaging methods, are
utilized. Parametric methods enable the estimation of the orientations and
locations of the dipoles in addition to the amplitudes and thus they are com-
monly applied with dipole �tting models. Examples of parametric methods
are least-squares estimation using Frobenius norm, beamformer method and
multiple signal classi�cation method. In imaging methods, which are applied
with distributed models, the only parameters to be estimated are the ampli-
tudes due to constraints on locations and orientations of the current dipoles.
This problem is linear and it can be solved using Bayesian approach. (Baillet
et al., 2001)

3.3 Estimating the activity and connectivity between

regions of interest

Connectivity describes the relations between distinct regions. It can be
classi�ed into neuroanatomical, functional and e�ective connectivity. Neu-
roanatomical connectivity means the physical connections between regions
and it is commonly measured using techniques like di�usion MRI. Functional
and e�ective connectivity are related to temporal correlations during signal
processing and thus require measurement techniques, such as MEG, with
higher temporal resolution. Functional connectivity is measured in terms of
statistical dependencies in the activity of distant regions. E�ective connec-
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tivity is more focused on trying to �nd the generative model behind these
dependencies. It refers to the dynamic directed in�uences that one neural
system exerts over another. (Sakkalis, 2011; Scho�elen and Gross, 2009)

A schematic chart of methods to determine the functional connectivity is
represented in �gure 4. The methods are classi�ed into categories based on
domain and characteristics. More information about the methods is provided
for example in Sakkalis (2011).
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Figure 4: Schematic graph of di�erent methods to estimate functional con-
nectivity.

The estimation of connectivity is in general conducted at the source level.
Due to wide-spread representation of the neural �elds, estimation of connec-
tivity at sensor level might lead to deceptive interpretation of the connectivity
analysis (Scho�elen and Gross, 2009). Spatial leakage also causes the esti-
mates of connectivity to be dependent on each other. In order to obtain
independent estimates and reduce the dimensionality of the problem, the es-
timation is constrained on regions of interest. The regions of interest can be
de�ned based on atlases which are anatomical parcellation maps connecting
a region of cerebral cortex to a speci�c function.



9

Connectivity estimation methods are in general based on analyzing the time
series representing the activity of a region. The region activity can be esti-
mated from the neural source activity for example by taking mean or �ipped
mean of the source activities within the region or analyzing the principal
components. These methods are proven to be convenient in practice and
thus applied generally. But as far as we know, there isn't any research on
the relevance of these estimation methods. In order to obtain more plausible
approach to estimate the region activity and preserve the information present
in the data, the aim of this work is to survey the prospects of a data-driven
method.

4 Methods

4.1 State space model

State space model can be used to describe a system which has a hidden
variable with linear characteristics (Shumway and Sto�er, 2006). It is suitable
approach for this work as the neural activity can be modeled as a hidden
variable. The model is also capable of modeling systems with uncertainty
in both state and measurement dynamics which is quite necessary when
considering the physical plausibility of the model. Linearity and Gaussian
characteristics of the model variables enable simple way for Bayesian �ltering
with closed form solutions and lighten up the computational demand (Särkkä,
2013).

The state space model consists of two models �rst of which illustrates the
dynamics of the latent variable. Let the latent variable of the system be
x = (x1,x2, ...,xt). The variable x is now the state variable which fully
describes the state of the whole system. It is assumed to follow the equation

xt = Axt−1 + ϑt, (2)

where A is the evolution matrix and ϑ ∼ N (0,S) is the process noise. The
noise is assumed to be white and Gaussian. Equation (2) is called the dy-
namic model which states the Markovian and autoregressive properties of
the state variable x. The initial value of x is assumed to follow some normal
distribution x0 ∼ N (µ,Σ). (Shumway and Sto�er, 2006)

The second model in the state space model determines the relation between
the state variable x and the observed variable y. This relation is described
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through equation
yt = Zxt + ε, (3)

where Z is the matrix de�ning the deterministic linear mapping from the
state space to the measurement space and ε ∼ N (0,Q) is the measurement
noise which is also assumed to be white and Gaussian. Equation (3) represent
the measurement model. (Shumway and Sto�er, 2006)

Gathering the equations together, the state space model is

xt = Axt−1 + ϑt,ϑ ∼ N (0,S),

yt = Zxt + εt, ε ∼ N (0,Q),

x0 ∼ N (µ,Σ).

4.2 Expectation Maximization algorithm

Expectation maximization algorithm is an iterative method to obtain maxi-
mum likelihood estimates from incomplete data formally developed by Demp-
ster et al. (1977). It has gained popularity since then due to its applicability
in a wide range of �elds. The incompleteness can mean for example that
some observations are missing or the model includes variables whose values
have not been obtained (Schön, 2009). These variables are called hidden
or latent variables (Chen and Gupta, 2010). The applicability in a case of
incomplete data makes the expectation maximization suitable for this work.

In the set up of expectation maximization algorithm, there are the observed
data Y = (y1,y2, ...,yT) and some latent variable X = (x1,x2, ...,xT) both
of which have some parametric densities p(y|θ) and p(x|θ). The paramet-
ric density functions can be considered as likelihood functions describing the
plausibility of the parameter θ. The observed data y is a realization of the
latent variable x through some deterministic function. To make the obtained
data as likely as possible, we wish to �nd the maximum likelihood estimate
θ̂ for θ by maximizing the likelihood function p(y|θ). For convenience, log
of the likelihood function ln p(y|θ) can be considered. Maximization of the
log-likelihood function might be a di�cult problem so another closely related
maximization problem is considered. Assuming that necessary information
about the latent variable x is available, it can be shown that maximizing the
joint log-likelihood function ln p(x,y|θ) is equivalent to maximizing ln p(y|θ).
Because the latent variable x is actually unknown, expectation of the joint
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log-likelihood function conditioned to the current information has to be con-
sidered. Current information is considered to be the obtained data y and
previous guess for the parameter value θk. (Chen and Gupta, 2010; Schön,
2009)

To formulate the expression for expectation of the joint log-likelihood func-
tion as an integral, the distribution of x conditioned to the current infor-
mation p(x|y,θk) needs to be constructed. This is called the E-step in the
expectation maximization framework. Using the expression obtained in E-
step and integrating over possible values of x, the expectation of the joint
log-likelihood is

Ex[ln p(x,y|θ)|y,θk] =
∫

ln p(x,y|θ)p(x|y,θk)dx . (4)

This equation is the objective function of the optimization problem. Maxi-
mizing the equation will give the next estimate for the parameter values

θ̂k+1 = arg max
θ

Ex[ln p(x,y|θ)|y,θk] .

Performing maximization is called the M-step. (Chen and Gupta, 2010)

The two steps, E- and M-step, described above are repeated until the solu-
tion convergences. Convergence can be quali�ed by calculating for example
changes in the estimates or in the objective function (Schön, 2009). In the
beginning of the algorithm, one needs to pick an initial guess for the values
of the parameters to be estimated. This will possibly a�ect the obtained
solution because the expectation maximization algorithm always converges
but there is no guarantee that the solution is a global maximum. Hence, it
is recommended to use multiple initial guesses for the parameters to attain
an estimate close to the global optimum. (Chen and Gupta, 2010)

4.3 Kalman Filter

To obtain the expectation of the joint log-likelihood in (4) the estimate of
the complete data x is needed. One way to produce the estimate is to use
�ltering methods which can be applied to estimate a time dependent, indi-
rectly observed systems. Optimal �ltering is a statistical inversion problem
where the unknown state of the system is de�ned from the given measure-
ments in a statistically optimal way. In practice, this means calculating the
posterior distribution of all the states given all the measurements. As the
number of measurement increases, the calculation becomes intractable. The
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idea behind �ltering is to consider some marginal distribution instead of the
complete distribution. The marginal distributions considered are called pre-
diction, �ltering and smoothing distributions. Prediction distribution is the
distribution of the future state given the current measurement whereas �lter-
ing distribution is the distribution of the current state given the current mea-
surement. Smoothing distribution describes the distribution of some state
given measurements on a certain interval which extends also to the future.
(Särkkä, 2013)

Deciding to use a state space model, a prior information about the system
can be included in the �ltering procedure meaning a Bayesian �lter can be
applied. Due to linear and Gaussian characteristics presented in equations
(2) and (3), a convenient means to implementing a Bayesian �lter is a Kalman
�lter developed by Kalman (1960). The Kalman �lter provides a recursive
method with closed form solutions to the Bayesian �ltering problem where
the system dynamics are discrete time, linear and Gaussian (Särkkä, 2013).

4.4 Formulation of the state space model and likelihood

function

The state space model for the brain activity and its dynamics is formulated
as follows. In the following equations, the activity of the regions of interest
is denoted with u = u1,u2, ...,un, which is chosen to be the state variable
in the model. The measured quantity in the model will be the obtained
data denoted with y = y1,y2, ...,yn. The activity of the neural sources is
denoted as q = q1,q2, ...,qn. Each of the presented variables is discretely
time dependent denoted by the subscript where n is de�ned to be the number
of time points in the measurement. Hence, the column vectors ut, qt and yt

have the dimensions p× 1, q × 1 and s× 1.

The dynamics of the region activity are described as a probabilistic Markov
sequence through equation (Yang et al., 2016)

ut = Aut−1 + ϑt, ϑ∼N (0,S), (5)

where A is a p× p matrix describing the dependency of ut and ut−1, and ϑt
is a p × 1 column vector modeling the uncertainty drawn from a Gaussian
distribution with zero mean and S as a p× p covariance matrix. The initial
probability distribution for u0 is assumed to be Gaussian: u0∼N (µ,Σ).
(Särkkä, 2013)
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To construct the measurement model, the relation between the region activity
and dipole activity is determined with equation

qt = Lut + ξt, ξ∼N (0,R), (6)

where L is the q × p matrix containing weights for individual source points
within each region, ξt is the q × 1 column vector for the uncertainty in the
activity of the source points, and R its q × q covariance matrix. The source
points are assumed to be independent and thus the covariance matrix R is
a diagonal matrix. It is constructed so that a variance σ2 for the dipole
activity is speci�ed for each region of interest and source points outside all
the regions. Thus each entry Ri,i is determined by where the ith source point
belongs to.

Combining (6) with the equation (1) introduced in the inverse problem results
in measurement equation of the form

yt = GLut + ηt, η∼N (0,Ω), (7)

where G is the s × q lead �eld matrix and the s × 1 column vector ηt is
equal to Gξt+εt with s× s covariance matrix Ω = GRGᵀ+Q. In previous
de�nition, the εt is the measurement noise which is also a s×1 column vector
with Q as s× 1 covariance matrix.

Equations (7) and (5) with prior probability distribution for u0 construct the
state space model:

yt = GLut + ηt, η∼N (0,Ω),

ut = Aut−1 + ϑt, ϑ∼N (0,S),

u0∼N (µ,Σ).

(8)

The primary aim of this work is to survey the estimation of the weight ma-
trix L from the given data. Instead of assigning for example equal weights
for the dipoles in a region of interest, the weights would be adjusted so that
the dipoles which have the highest activity would have a larger weight coef-
�cients than other dipoles. Based on the processing of a neural signal, the
weights are assumed to have Gaussian spread around the dipole with higher
activity. Hence, dipoles close the center of activity would have more e�ect on
the activity of the region than dipoles further away from the centre. To in-
corporate this prior of spatial smoothness on L, an additional penalty term
is included. The columns of the weight matrix L are assumed to follow a
multivariate Gaussian distribution with zero mean and Qm

pen as covariance
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matrix where m ∈ 1, ..., p. The covariance matrix Qm
pen is constructed for

each region separately according to equation

(Qm
pen)i,j = φni

ᵀnj exp(−λ‖ri − rj‖2), i, j ∈ 1, ..., dipoles

where nk is the normal vector, rk is the position vector of the kth dipole in
the parcel, and φ, λ ∈ R+ are hyperparameters.

Using the constructed state space model and the formulated penalty matrices,
one is able to derive the joint log-likelihood function of the activity of the
regions of interest u and the observed data y. The complete derivation is
presented in appendix A.

For simplicity, the only parameter to be estimated is the weight matrix L.
Thus, taking the expectation of the derived joint log-likelihood conditioned
to the obtained data and previous estimates for the parameters, and moving
the sums and expectation inside the trace results in

E[ln p(u,y)|Y,Lk−1]

= Ξk−1 −
1

2
Tr{Σ−1(û0|nû

ᵀ
0|n

− û0|nµ
ᵀ − µûᵀ

0|n + µµ
ᵀ)}

− 1

2
Tr{S−1

n∑
t=1

(Φt,t −Φt,t−1A
ᵀ

−AΦᵀ
t,t−1 + AΦt−1,t−1A

ᵀ)}

− 1

2
Tr{Ω−1

n∑
t=1

(ytyt
ᵀ − ytû

ᵀ
t|nL

ᵀ
k−1G

ᵀ

−GLk−1ût|nyt
ᵀ + GLk−1Φt,tL

ᵀ
k−1G

ᵀ)}

− 1

2

p∑
m=1

Tr{(Qm
pen)

−1(L∗,m)k−1(L∗,m
ᵀ)k−1},

(9)

where

Ξk−1 = −
1

2
(ln[det 2πΣ]+T ln[det 2πS]+T ln[det 2πΩk−1]+

p∑
m=1

ln[det 2πQm
pen]),
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and abbreviations for the expectations are,

ût|n = E[ut|yn,θk−1],

Pt,s|n = E[(ut − ût|n)(us − ûs|n)
ᵀ|yn,θk−1],

Φt,t = ût|nû
ᵀ
t|n + Pt|n,

Φt,t−1 = ût|nût−1|n + Pt,t−1|n,

Φt−1,t−1 = ût−1|nût−1|n + Pt−1|n .

The expectations ût|n and Pt,s|n are obtained using Kalman smoother. The
Kalman prediction, �ltering and smoothing equations are presented in ap-
pendix B.

The equation (9) is the objective function of the maximization problem. In-
stead of maximizing the obtained equation, the related problem of minimizing
the negative of the objective function is considered because the optimiza-
tion problems are equivalent. Hence, the objective function is LL(u,y) =
−2E[ln p(u,y|Y,Lk−1)]. The objective function is nonlinear and noncon-
vex.

The minimization problem is unconstrained, so gradient descent method is
applied. In gradient descent method, a minimizing sequence of parameter
values is formed by moving some amount de�ned by an adjustable value called
step size into the direction of the negative gradient which points the direction
of steepest descent of the objective function (Boyd and Vanderberghe, 2004).
To construct the update equation for L, the negative gradient of the objective
function is calculated with respect to L using Petersen and Pedersen (2012),

∂LL(u,y)

∂L
=

n∑
t=1

(−GᵀΩ−1ytû
ᵀ
t|n −Gᵀ(Ω−1)ᵀytû

ᵀ
t|n

+ Gᵀ(Ω−1)ᵀGLk−1(Pt|n + ût|nû
ᵀ
t|n) + GᵀΩ−1GLk−1(Pt|n + ût|nû

ᵀ
t|n))

+

p∑
i=1

2(Qm
pen)

−1L∗,mk−1

,

that should be equal to zero. The equation doesn't have a closed form solu-
tion for L so backtracking line search is implemented with gradient descent
method. Backtracking line search is an inexact line search method in which
the step size is chosen so that it minimizes the objective function for a certain,
prede�ned amount. (Boyd and Vanderberghe, 2004)
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5 Results

The expectation maximization algorithm with minimization procedure de-
scribed in the previous section is implemented using MATLAB R2017a.
The code can be found in https://github.com/HilkkaH/Estimating-the-

activity-of-regions-of-interest-using-EM-algorithm-. A sample da-
ta set for left auditory stimulus and the minimum norm solution for the in-
verse problem from MNE-library for Python are exploited in both simulations
and experiments with real data.

Simulations are used to test the validity and performance of the algorithm.
The data for simulations are generated using the lead �eld matrix G from
the sample data set and identity matrix as the evolution matrix A. The
region activity u is initialized as a multivariate normal distribution with zero
mean and identity matrix as covariance. The dipole and measurement noise
covariance matrices are adjusted so that the amount of noise is relatively
small. The penalty matrices are constructed using values 10 and 1 for hy-
perparameters φ and λ, respectively.

The weight matrix L is designed to have a Gaussian amplitude distribution
and is generated in the following manner: The dipole closest to the geometric
center of the region is assigned to be the most active point within the region
and thus having the highest weight. Other weights are drawn as normalized
probabilities from a normal distribution with zero mean and some variance.
The variance is used to describe the spread of activity around the most
active dipole. Later, this variance is referred as radius. Visualization of L
with variance of 0.02 for the superiortemporal area on the left hemisphere is
shown in �gure 5.

To take into account the in�uence of dipole orientation, L is multiplied
element-wise with a matrix containing values {−1, 1} indicating the orienta-
tion of the dipole.

https://github.com/HilkkaH/Estimating-the- activity-of-regions-of-interest-using-EM-algorithm-
https://github.com/HilkkaH/Estimating-the- activity-of-regions-of-interest-using-EM-algorithm-
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Figure 5: Visualization of the weight matrix L on the surface of the brain
for superiortemporal area on the left hemisphere.

The accuracy of the algorithm is tested in two di�erent manners. At �rst, the
estimation is initialized with the true values of L to obtain a possible lower
bound for the estimation error and secondly, the estimation is initialized with
L drawn from standard normal distribution to attain a limit for the estima-
tion error. The tests are performed for seven di�erent radii between 0.07 �
0.01 using a hundred randomly drawn signals. The expectation maximization
algorithm is let to run one hundred iterations with constrained orientation
and the estimation errors of L and u are measured. The means and standard
deviations of the relative estimation errors for the superiortemporal areas as
a function of the radius are presented in �gure 6.
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Figure 6: The relative estimation errors of L and u with two di�erent ini-
tialization manners.

Overall, the relative estimations errors of L are high. The minimum error is
around 30 % in the largest radius of 0.07 but increases to be over 100 % in
the smallest radius of 0.01. This implies that the model is possibly invalid
or not accurate enough to capture really localized activity. The chosen es-
timation method might also have an e�ect on the obtained errors especially
on smaller radius when random initialization gives more accurate result than
initializing with the true values. The di�erence in the obtained estimation
errors with two di�erent initialization methods shows that the algorithm is
dependent on the initial values set for the estimated parameters. The devia-
tion in the errors implies that the shape of the estimated signal and thus the
amount of noise has an e�ect on the estimation result. Though the relative
estimation errors of L are high, the relative estimation errors of the signal u
are relatively small with smaller variances. The relative error of u behaves
similarly with the relative error of L starting from error of around 10 % and
increasing up to 60 %. The smaller errors are possibly due to the robustness
of the Kalman �lter, but it also implies that di�erent combinations of the
weights can present the same signal with decent accuracy. In conclusion, the
implemented algorithm works tolerably when the radius is greater represent-
ing an activation of a larger patch on the cortex. Unfortunately, the greater
radii with values between 0.03�0.07 are quite large in the scale of brain.

To survey further the possibilities of determining the weights using data
driven method, maximum likelihood estimation for the parameters is con-
ducted on real data. For the initial guess of L, the dipole closest to the
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geometric center of the area is chosen to be most active point and the vari-
ance is chose to be 0.05. The dipole noise matrix R was determined to be
zero. Before applying the algorithm, the data is whitened. The region ac-
tivity u is calculated as a minimum norm solution to equation (6) based on
the estimated L. The obtained signals for superiortemporal areas on left and
right hemispheres are presented together with signals obtained using mean,
�ipped mean and PCA in �gure 7.

Figure 7: The minimum norm estimate for the region activity calculated
using maximum likelihood estimation compared to other estimates for region
activity obtained with di�erent methods for the superiortemporal area on left
(top) and right (bottom) hemisphere.

The maximum likelihood estimation produces good results for both hemi-
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spheres since the obtained shape of the estimated signal is in accordance with
other signals. The signal representing the activity of the superiortemporal
area on the right hemisphere has higher peak than the activity of the left
superiortemporal area due to the left stimulus used in the measurement. The
activity of the right superiortemporal area has also signi�cantly higher peak
compared to obtained activities with other methods indicating the maximum
likelihood estimation is able to capture better the activation of underlying
neural sources. However, the calculated signals are not really smooth and
have quite a lot of �uctuations before and after the peak.

6 Conclusions

The activity of the brain can be recorded using noninvasive measurement
techniques such as EEG or MEG which measure the electromagnetic �elds
generated by neurons. From the collected data, the underlying neural activity
can be estimated by solving an inverse problem. The region activity can be
constructed based on the estimated neural activity using various methods.
Only validation for these developed methods is their convenience in practice
and thus in this thesis, the possibility implement a data driven method to
estimate the region activity is surveyed.

The method examined estimates the region activity using a weight matrix
which describes how much each vertex contributes to the activity of the
region. The weight matrix is obtained as maximum likelihood estimate from
the data using expectation maximization algorithm with a state space model.
The signal representing the region activity is obtained via Kalman �lter.

The performance of the implemented algorithm was �rst tested using simula-
tions. Though the calculated relative estimation errors of the weight matrix
were overall quite high, the underlying signal could be decently recovered
with smaller relative estimation error. The obtained errors were approxi-
mately proportional to the inverse of the radius representing the spread of
activity. Thus the algorithm can provide any valid information only on larger
values of the radius. To test the possibility to estimate the weights from the
data, a simple maximum likelihood estimation algorithm is implemented on
real data. The minimum norm estimate for the region activity produced
promising results when considering the shape and amplitude of the signal.

The major defect in the algorithm is the inability to capture the underlying
activity accurately. One prospect of improving the performance of the algo-
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rithm could be developing a di�erent model which could describe the localized
activity better. The assumptions made in the state space model are valid
but the signi�cant amount of noise in the problem hinders the detectability
of the activity. Though the state space model ful�lled the requirements of
modeling these di�erent process noises, the projections of noises made the
algorithm unstable causing severe estimation errors. Hence eventually, the
dipole noise had to be left out from the model. The modeling and estimation
of di�erent process noises would require more subtle methods.

The amount of estimable weights per region that can be estimated is over a
hundred, on average. This amount is quite high and might complicate the es-
timation. To cover this problem the amount of parameters should be reduced
or �nd a way to include additional information. The additional information
currently included in the algorithm is the designed penalty matrices. The
validity of this design isn't tested and it can be unsuitable. The covariance
could be designed using some other approach, for example the Mátern class
of kernels.

The estimation was conducted using gradient descent method with backtrack-
ing line search. The gradient descent has in general proven to be a robust
estimation method but the complexity of the objective function might cause
an issue. It is highly nonlinear with respect to the estimated weights and
the curvature of the function is unknown. The objective function might be
convex only locally and thus have multiple local minima. Algorithm can only
detect a local minimum and even multiple initializations might not lead to
a global minimum. So more advanced optimization algorithm designed for
nonlinear functions would improve the accuracy of the algorithm.

Based on the results from maximum likelihood estimation, carefully designed
and implemented data driven method would provide more accurate approach
for estimation of the region activity. This could improve the quanti�cation
of functional integration and hence provide more detailed information about
the functional principles of the brain.



22

References

Sylvain Baillet, John C. Mosher, and Richard M. Leahy. Electromagnetic
Brain Mapping. IEEE Signal Processing Magazine, 18(6):14�30, November
2001.

Stephen Boyd and Lione Vanderberghe. Convex Optimization, chapter 9,
pages 455�483. Cambridge University Press, Cambridge, United Kingdom,
2004.

György Buzsáki, Costas A Anastassiou, and Christof Koch. The origin of
extracellular �elds and currents � EEG, ECoG, LFP and spikes. Nature
reviews neuroscience, 13(6):407, 2012.

Yihua Chen and Maya R. Gupta. EM Demysti�ed: An Expectation-
Maximization Tutorial. Technical report, Department of Electrical En-
gineering, University of Washington, Seattle, Washington, USA, February
2010.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B (Methodological), 39:1�38, 1977.

Riitta Hari and Aina Puce. MEG-EEG Primer, chapter 1�6, pages 3�87.
Oxford University Press, 2017.

Matti Hämäläinen, Riitta Hari, Risto J. Ilmoniemi, Jukka Knuutila, and
Lounasmaa Olli V. Magnetoencephalography theory, instrumentation, and
applications to noninvasive studies of the working human brain. Reviews
of Modern Physics, 65(2):413�497, 1993.

R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1):35�45, 1960.

K. B. Petersen and M. S. Pedersen. The Matrix Cookbook, November 2012.
URL http://www2.imm.dtu.dk/pubdb/p.php?3274. Version 20121115.

V. Sakkalis. Review of advanced techniques for the estimation of brain con-
nectivity measured with EEG/MEG. Computers in Biology and Medicine,
41:1110�1117, 2011.

Thomas B. Schön. An Explanation of the Expectation Maximization Algo-
rithm. Technical report, Department of Electrical Engineering, Linköpings
Universitet, Linköping, Sweden, August 2009.

http://www2.imm.dtu.dk/pubdb/p.php?3274


23

Jan-Mathijs Scho�elen and Joachim Gross. Source connectivity analysis with
MEG and EEG. Human Brain Mapping, 30(6):1857�1865, June 2009.

Robert H. Shumway and David S. Sto�er. Time Series Analysis and Its
Applications with R Examples, chapter 6, pages 324�404. Springer Sci-
ence+Business Media, United States, 2. edition, 2006.

Simo Särkkä. Bayesian Filtering and Smoothing, chapter 1�4. Cambridge
University Press, 2013.

Francois Tadel, Elizabeth Bock, John C. Mosher, Richard M. Leahy, and Syl-
vain Baillet. Tutorial 20: Head Model, 2016. URL https://neuroimage.

usc.edu/brainstorm/Tutorials/HeadModel.

Gerard J. Tortora and Bryan H. Derrickson. Principles Of Anatomy and
Physiology, chapter 12, 14, pages 353�389, 417�444. JohnWiley, 15 edition,
2017.

Ying Yang, Elissa Amino�, Michael Tarr, and Kass E Robert. A state-space
model of cross-region dynamic connectivity in MEG/EEG. In Advances in
neural information processing systems, pages 1234�1242, 2016.

https://neuroimage.usc.edu/brainstorm/Tutorials/HeadModel
https://neuroimage.usc.edu/brainstorm/Tutorials/HeadModel


24

A Derivation of the log-likelihood function

The probability function for obtaining u and y can be written in the form

p(u,y) = p(y|u)p(u) (10)

using Bayes' rule. Probabilities in the equation above can be expressed as

p(y|u) =
n∏

t=1

p(yt|ut),

p(u) = p(u0)
n∏

t=1

p(ut|ut−1),

(11)

where n is the number of time points. Probability functions for p(ut|ut−1)
and p(yt|ut) can be obtained using the state space model (8):

p(yt|ut) = p(yt −GLut)∼N (0,Ω),

p(ut|ut−1) = p(ut −Aut−1)∼N (0,S).
(12)

Combining equations (10), (11) and (12) gives

p(u,y) = p(u0)
n∏

t=1

p(ut|ut−1)
n∏

t=1

p(yt|ut),

and taking the natural logarithm results in

ln p(u,y) = ln p(u0) + ln
n∑

t=1

p(ut|ut−1) + ln
n∑

t=1

p(yt|ut). (13)

If variable x follows a multivariate normal distribution N (ω,Γ), the proba-
bility density function is given by

p(x) = (det 2πΓ)−
1
2 exp(−1

2
(x− ω)ᵀΓ−1(x− ω)).

Using this de�nition with (12), including also the penalty term for L, taking
natural logarithm of the distributions and plugging these into (13) gives the
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log-likelihood function for u and y:

ln p(u,y) =− 1

2
ln[det 2πΣ] + (u0 − µ)ᵀΣ−1(u0 − µ)

− 1

2

n∑
t=1

(ln[det 2πS] + (ut −Aut−1)
ᵀS−1(ut −Aut−1))

− 1

2

n∑
t=1

(ln[det 2πΩ] + (yt −GLut)
ᵀΩ−1(yt −GLut))

− 1

2

p∑
m=1

(ln[det 2πQm
pen] + L∗,m

ᵀ(Qm
pen)

−1L∗,m).

(14)

In order to derive more simpler form, Ξ is de�ned to be equal to all constants
in (14),

Ξ = −1

2
(ln[det 2πΣ] + T ln[det 2πS] + T ln[det 2πΩ] +

p∑
m=1

ln[det 2πQm
pen]).

Using the de�nition above and applying the trace trick

xᵀDx = Tr{xᵀDx} = Tr{Dxxᵀ},

equation (14) can be written as,

ln p(u,y) = Ξ− 1

2
Tr{Σ−1(u0 − µ)(u0 − µ)ᵀ}

− 1

2

t∑
t=1

Tr{S−1(ut −Aut−1)(ut −Aut−1)
ᵀ}

− 1

2

t∑
t=1

Tr{Ω−1(yt −GLut)(yt −GLut)
ᵀ}

− 1

2

p∑
m=1

Tr{(Qm
pen)

−1L∗,mL∗,m
ᵀ}.

B Kalman prediction, �ltering and smoothing

equations

To calculate the Kalman smoother, the Kalman prediction and �ltering have
to be calculated �rst. The equations to calculate the prediction and �ltering
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are

ût|t−1 = Aût−1|t−1

Pt|t−1 = APt−1|t−1A
ᵀ + S

ût|t = ût|t−1 + Kt(yt −GLût|t−1)

Pt|t = (I−KtGL)Pt|t−1 ,

where
Kt = Pt|t−1L

ᵀGᵀ(GLPt|t−1L
ᵀGᵀ + Ω)−1

is the Kalman gain. With predicted and �ltered values of the signal one can
calculate the backward smoother with following equations:

ût−1|n = J−1t−1(ût|n − ût−1|t−1) + ût|t−1,

Pt−1|n = J−1t−1(Pt|n −Pt−1|t−1)(J
ᵀ
t−1)

−1 + Pt|t−1,

where
Jt−1 = Pt−1|t−1A

ᵀ(Pt|t−1)
−1.

The Kalman smoother is initialized with ûn|n and Pn|n, obtained from the
Kalman �lter. With de�nition of Kt one can also calculate the covariance
for one time step lag using equation

Pt−1,t−2|n = Pt−1|t−1J
ᵀ
t−2 + Jt−1(Pt,t−1|n −APt−1|t−1J

ᵀ
t−2),

with
Pn,n−1|n = (I−KnGL)APn−1|n−1,

as initial quess. In all presented equations above, the values used for pa-
rameters in θ at the jth iteration round are the previous estimates for the
parameters θj−1.
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Abbreviations and nomenclature

η Sum of measurement noise and projected dipole noise

µ Mean of the initial distribution of the state variable

Ω Covariance of the sum of the measurement noise and projected dipole
noise

Σ Covariance of the initial distribution of the state variable

θ A vector containing all the parameters

ε Measurement noise

ϑ State noise

ξ Dipole noise

λ Hyperparameter for Euclidean distance between two dipoles

Z Matrix representing the linear mapping from the state to the measure-
ment

A Evolution matrix

G The lead �eld matrix

L Weight matrix

Qm
pen Penalty matrix corresponding to mth region

Q Measurement noise covariance

R Dipole noise covariance

S State noise covariance

u Activity of the regions of interest

x The state variable, complete data

y Measured data, the incompelete data

φ Hyperparameter for orientation of the dipole

EEG electroencephalography



28

fMRI functional magnetic resonance imaging

MEG magnetoencephalography

MRI magnetic resonance imaging

p Number of regions

q Number of vertices in the source space

s Number of sensors


	Introduction
	Neural signaling
	Structure of a neuron
	Generation of a neural signal and approximation for a neural source

	Measuring and modeling the activity
	Measurement techniques
	The inverse problem in the estimation of activity
	Estimating the activity and connectivity between regions of interest

	Methods
	State space model
	Expectation Maximization algorithm
	Kalman Filter
	Formulation of the state space model and likelihood function

	Results
	Conclusions
	References
	Derivation of the log-likelihood function
	Kalman prediction, filtering and smoothing equations

