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The purpose of this study is to shed light on the combinatorial optimization
problem called symmetric travelling salesman problem (STSP). STSP has been a
prominent topic on optimization research for decades with several applications
in, for example, logistics, biocomputing and microelectronics manufacturing.

The STSP is easy to understand, but due to its NP-hard nature it is ex-
tremely difficult to solve by brute force search. Lately, new metaheuristic
algorithms based on genetic inheritance, known as genetic algorithms, have
proven to be efficient on tackling this age-old problem.

In this study, I will give a brief overview on the problem, the genetic algo-
rithmic approach, and discuss different stopping criteria and selection methods.
Finally, I will compare results of several runs with varying combinations of muta-
tion operators, crossover operations and population sizes on a set of benchmark
instances.
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Symbols and abbreviations

Operators∑
i Sum over index i

O(n!) Big-Oh-notation for algorithmic complexity. The notation characterizes
how the running time or memory usage of a particular algorithm behaves
when the input size grows. O(n!) describes factorial complexity,
O(nc) polynomial complexity etc.

Abbreviations
TSP Travelling salesman problem
STSP Symmetric Travelling salesman problem
SFML A C++ library used in media and graphics programming

(Simple and Fast Multimedia Library)
GA Genetic algorithm
GP Genetic programming
TSPLIB A collection of data related to symmetric TSP,

hosted by University of Heidelberg



1 Introduction
Travelling salesman problem (TSP) has been a prominent and well-known mathe-
matical problem for nearly two centuries. The problem of finding the shortest route
that visits a given number of locations has practically always existed, but the first
mathematical formation for the problem was given in the 19th century by the Irish
mathematician W.R.Hamilton [4]. The first mathematical approach for solving the
problem was given in 1930 by Merrill Flood, and the name Travelling salesman
problem was coined soon after by Princeton University’s Hassler Whitney [2].

The TSP asks the following question: "Given a list of cities and distances between
all pairs of cities, what is the shortest possible route that visits each city once and
returns to the origin city?". Although cities serve as a good example for the prob-
lem, it can be generalized to any n-dimensional Euclidean space where the “cities”
are depicted by points in Rn. This study will focus only on the common symmetric
variants of TSP (STSP, symmetric travelling salesman problem), where the cost of
travelling between two vertices is invariant of the direction of travelling. Hence the
cost of travelling along an edge is the euclidean distance between the vertices of that
edge.

Let G = (N,E) be an undirected symmetric graph with N = {1, . . . , n} nodes
(cities) and E = {e = (i, j) : i, j ∈ N} edges between the nodes where each edge
e ∈ E has a cost ce. Let δ(i) = {(u, v) ∈ E : u = i, or v = i} be the set of edges that
include node i for all i ∈ N , and let E(S) = {(i, j) ∈ E : i ∈ S and j ∈ S} be the
set of edges for any node subset S ⊆ N . Let xe ∈ {0, 1} for all edges e = (i, j) ∈ E
where xe = 1 if edge e ∈ E is part of the TSP tour, and xe = 0 otherwise. The
symmetric TSP can be modeled as follows:

minimize
x

∑
e∈E

cexe (1)

subject to
∑
e∈δ(i)

xe = 2, ∀i ∈ N (2)

∑
e∈E(S)

xe ≤ |S| − 1, ∀S ⊆ N \ {1} : 2 ≤ |S| ≤ n− 1 (3)

xe ∈ {0, 1}, ∀e ∈ E (4)

The objective (1) minimizes the TSP tour cost. The constraints (2) ensure that
each city is adjacent to exactly two edges. The constraints (3), typically called
subtour elimination constraints, guarantee that the solution is a complete tour, and
the constraints (4) enforce integrality on the decision variables xe for all e ∈ E.
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STSP is one of the most common and intensively studied problems in the field of
combinatorial optimization. It has applications in various fields, such as logistics,
DNA sequencing and astronomy. Thus, solving the STSP has practical relevance
but due to it being an NP-hard problem [10] makes it difficult to find the optimal
solution efficiently. In worst-case scenario the basic brute-force algorithm has a com-
putational complexity of O(n!), since it must iterate through every single possible
permutation of the given points.

As a prominent problem in its field, there have been countless studies regarding
different approaches to tackling the STSP. One of these approaches is a mixed
metaheuristic called a genetic algorithm. The genetic algorithm is modelled after
the genetics occurring in living organisms. This can be divided into five parts:

1. Generate a base population. Usually this process is randomized, and the
members of said population only need to be eligible for the problem.

2. Selection: Choose several members from a base population to be the new
parent solutions, using a ranking system of some sort, based on the fitness of
the individuals. Fitness is simply a metric how well a solution performs in the
context of the problem. In STSP, fitness is the length of the route. Keep track
of the best solutions obtained so far.

3. Crossover: Combine these new parent solutions using different crossover op-
erators to obtain new child solutions that have inherited traits from their
parents.

4. Mutation: Mutate some combinations of the parent solutions to have enough
variation in the new population, using again various mutation operators

5. Repeat steps 2-4 until a satisfactory solution has been found or some other
stopping criterion is satisfied.

The purpose of this study is to examine the genetic algorithms used in solving STSP.
We aim to study different combinations of mutation and crossover operations, and
also different sizes of starting and evolving populations. We will also study different
types of selection as well. The aim is to find a good combination of parameters and
operators to solve a set of STSP instances of the problem as efficiently as possible.

The rest of this thesis is structured as follows. In section 2, we provide historical
background for both GA and (S)TSP. Section 3 reviews the materials and methods
used in this study. Results of the study are presented in section 4, and section 5
concludes and summarises the work.
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2 Background

2.1 Konigsberg bridges

Figure 1: The bridges of Koningsberg. [15]

The then-Prussian city of Koningsberg, nowadays known as Kaliningrad, was the
origin of an interesting problem. The city was shaped such that seven different
bridges would cross the water in certain places. The shape of the city is shown in
Figure 1. The local public wondered whether or not one could find a route where
every bridge would be crossed just once, yet ending up in the same location. Seeing
as the number of possible routes is quite large (7!=5040), an intuitive explanation
did not emerge. This problem was not treated mathematically until 1735 by Euler.

The Koningsberg problem intrigued Euler, who later published a solution to the
problem in his 1735 paper ’Solutio problematis ad geometriam situs pertinentis ’,
the solution of a problem relating to the geometry of position. In his paper, Euler
brought the problem from a map to a simple figure with lines and vertices. This is
possibly the first-ever occurrence of a graph in strictly mathematical context.
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2.2 Vandermonde and Kirkman

The French polymath A.T. Vandermonde studied extensively the so-called Knight’s
tour problem, where a chess knight has to visit every single square of a chess board
and return to the starting square. The knight can only move two steps to a direc-
tion parallel with one of the edges of the board, followed by one perpendicular step.
Vandermonde published a paper in 1777, ’Remarques sur les problèmes de situation,
Remarks on problems of position, where he discusses the Knight’s tour problem in a
way faintly resembling modern graph theory. The problem itself can be generalised
to following: is it possible, for a given graph, to find a circuit where each and every
vertex is visited just once?

In the mid-1900th century an Englishman by the name of Thomas Kirkman studied
polyhedra, that is, solids bounded by plane faces, such as pyramids or cubes. In
his 1855 paper ’On the representation of polyhedra’ Kirkman asks if it is always
possible, for a given graph of a polyhedron, to find a circuit visiting every vertex
once. Although his findings were later found to be incorrect, he managed to find
common features for graphs for which it is impossible to obtain such a circuit. He
also provided terminology that would later be used in graph theory.

2.3 Hamilton and The Icosian Game

While Kirkman was working on his polyhedra, another famous mathematician was
studying a similar problem. William Hamilton, who is quite renowned for his
groundbreaking work on algebra and classical mechanics. Hamilton discovered a
system of non-commutative algebra (algebra in which multiplication does not neces-
sarily satisfy the equation ab = ba) and named it The Icosian Calculus and published
it in 1856. He based a certain puzzle named The Icosian Game as the graphical
interpretation of the aforementioned algebra. The layout of the Icosian Game can
be seen in Figure 2 .

Figure 2: Layout of the Icosian Game.
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The game involved several different objectives to find paths satisfying certain condi-
tions. The first problem was indeed that of finding a path that passes once and only
once through each vertex on the board. In the wake of Hamilton’s work, a circuit
passing through each vertex is known as a Hamiltonian circuit, and if it is possible
to find such a circuit, the graph is said to be Hamiltonian.

2.4 Flood and Whitney

In the beginning of the 20th century, TSP resurfaced again and was widely stud-
ied at the renowned Princeton University. According to Merrill Flood [2], Hassler
Whitney brought up the problem in its modern form at a seminar talk in 1934.
Flood took the problem from Whitney, started working on it and publicized it in
the mathematical community.

Flood moved to industry in 1940s, namely, to RAND Corporation, where many of
the 40s discoveries regarding optimization were brought to light. In 1954, Flood
worked at RAND with Ray Fulkerson, Selmer Johnson and George Dantzig, who
would later become very well known for their work with TSPs.

2.5 Dantzig, Fulkerson, Johnson

At RAND, the TSP work revolved primarily on solving a particular example of the
TSP in the United States [2]. Robinson (1949) describes this problem as follows:

"One formulation is to find the shortest route for a salesman starting from Wash-
ington, visiting all the state capitals and then returning to Washington." [19]

With his colleagues, Dantzig, the original author of the popular Simplex LP algo-
rithm, approached the problem by reformulating it to a form that they were able to
solve. Their approach was to create an LP-relaxation that would give them a lower
bound for the original problem. In the 1940s-1950s, LP-problems were a main focus
for many studies and research teams.

The most important discovery of Dantzig et al. was that solving a certain LP-
relaxation of the problem does not only give a lower bound; they would also use
specific subtour elimination constraints which guide the relaxation iteratively closer
to the optimal solution.

2.6 Branch & Bound

In the end of 1950s, a new method of solving TSPs emerged. Even though many
different studies employing the same search methodology emerged during this pe-
riod, the first ones to call the algorithm ’Branch and Bound (B & B)’ were Little
et al. in 1963 [13]. While some features of B & B algorithms are extensions of the
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plane cutting method were studied in the work of Dantzig et al., the method itself
did not attract that much attention until the 1960s.

The core principle of B & B-method is to divide the problem into smaller subprob-
lems that may be split into even smaller subproblems, and so on. A branch-and-
bound- tree is formed, where the original problem is in the root of the tree and each
leaf of the tree is a branched subproblem. Each leaf will then be solved and either
discarded or branched further depending on the solution of the subproblem in the
leaf node. The optimal solution is found when no nodes exist that can lead to a
better solution.

2.7 Dynamic Programming

In 1959, Richard Bellman of the RAND Corporation published his book of dynamic
programming. This method, nowadays used for many operations research and com-
puter science problems, quickly found its applications in solving the TSP. The main
idea is to assume that if a tour is optimal, any tailing path of the tour from node
1 to n, n < N , must be optimal as well. Bellman et al. used this methodology to
break the TSP-solving records of the 1960s.

The colleagues of Bellman, Held and Karp, show in their work that the dynamic
programming-based approach is able to solve all instances of TSP to optimality in
time of O(n22n) which is significantly better than the upper bound of the brute
force search, namely O(n!). Woeginger states that even in the present day, the HK
dynamic programming algorithm is the most efficient algorithm for solving any TSP
instance to optimality [23] based on its theoretical complexity.

2.8 Lin-Kernighan Heuristic

In the aftermath of Held and Karp’s findings, TSP research began to focus in finding
tours that were not necessarily optimal, but still of low cost. Different methods for
this, called heuristics, were developed in the late 1960s’ and early 70s’. Even today,
the algorithm that is widely regarded as the best for finding best tours for symmetric
TSPs is the Lin-Kernighan- algorithm that was presented in their paper in 1973 [12].

The LK-heuristic algorithm works by trying to modify a given tour in order to
produce a new tour with a lower cost. The method, inspired by Flood, removes
k edges from the tour and attempts to reconnect the resulting disconnected paths
in different orders, dubbed as a k-opt move [2]. During the following decades, LK-
heuristic was pushed to larger and more complex TSP problems with great success,
leading up to Keld Helsgaun solving the enormous TSP World Problem with the
algorithm.
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2.9 Genetic and Evolutionary Algorithms in TSP

The research on genetic and evolutionary algorithms has been quite separate from
that of TSP’s. Reeves claims that the term Genetic Algorithm first surfaced in 1975
when John Holland used the term to describe a new breed of searching algorithms.
Since then, evolutionary and genetic algorithms have been applied to various prob-
lems, for instance, in mathematical optimization and product design. Due to the
structure of the TSP, genetic algorithm’s search methodology fits well into it and
can give some excellent results.

In their article The traveling salesman problem: A case study, Johnson and Geoch
formulate a basic schema for a genetic optimization algorithm that has been used
since Brady in 1985 [10] (the algorithm used in this study also resembles their
schema). Their schema is presented below:

1. Generate a population of k starting solutions S = {S1, ..., Sk}.

2. Apply a given local search algorithm A to each solution S in S, letting the
resulting locally optimal solution replace S in S.

3. While not yet converged, that is the results are still improving, do the following:

(a) Select k’ distinct subsets of S of size 1 or 2 as parents.
(b) For each 1-element subset, perform a randomized mutation operation to

obtain a new solution.
(c) For each 2-element subset, perform a (possibly randomized) crossover

operation to obtain a new solution that reflects aspects of both parents
(d) Apply local search algorithm A to each of the k’ solutions produced in

step c, and let S’ be the set of resulting solutions.
(e) Using a selection strategy, choose k survivors from S∪S′, and replace the

contents of S by these survivors.

4. Return the best solution in S.

Since Brady’s research, various other studies have been conducted to improve the
use of GAs in solving the STSP. Suh and Van Gucht improved Brady’s solution
method by using a heuristic crossover and an improved 2-opt-local search heuristic
in 1987. Muhlenbein, Gorges-Schleuter, and Krämer in 1988 were the first ones to
construct the whole algorithm in a parallelized way, thus improving the performance
of such methods significantly. They also improved the previous crossovers and se-
lection strategies.

In 1991, Johnson adapted the Lin-Kernighan algorithm as a part of the genetic
algorithm, aptly naming it Iterated Lin-Kernighan. This iterated algorithm was
able to outperform a parallel non-genetic LK-algorithm and other then state-of-
art genetic algorithms. Nowadays, as far as we know, the modified Lin-Kernighan
approach presented by Keld Helsgaun in 2000 is currently the top notch algorithm
for solving the TSP [8].
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3 Materials and methods

3.1 The genetic algorithm

Genetic algorithms are a class of search heuristics that aim to imitate the principles
of evolution and genetic inheritance in nature. To facilitate the discussion in further
chapters, the following defines a core terminology used in conjunction with genetic
algorithms.

Sastry et al. (2005) describe genetic algorithms as methods that typically encode
the problem variables as sets of strings. The strings that function as the candidate
solutions to the problem are referred to as chromosomes, alphabets are referred to
as genes and gene values alleles. In the case of the STSP, a chromosome is one of the
candidate routes, while genes are the different cities and alleles basically the numer-
ical ordering of the cities in a route. Another important definition is the concept of
fitness: in nature, fitness is usually the lifespan from the beginning of certain species.
In GAs the fitness must be measured in a way fitting to the problem at hand, so
that the algorithm guides the evolution towards better solutions. In the STSP, we
only care about the lengths of certain routes. Our fitness function therefore has to
rank the routes based on their total length and nothing else. Indeed we also have
to require that the route is legitimate: it has to visit each and every vertex (city)
once and only once. In addition, the starting point for the route must also be its
terminating vertex [20].

Population refers to all the candidate solutions currently under evaluation. Many
search methods start the search from scratch, but a GA has to be provided a start-
ing population in order to evolve and find better solutions. Starting population
size plays a significant role in the performance of the algorithm. Too big a starting
population might be too heavy and waste computational resources, whereas a start-
ing population too small typically leads to fast convergence on local minima, thus
hindering the performance of the algorithm significantly.

The steps of a GA go as follows (Sastry et al., 2005) [20] :

1. Start and initialization: Initial population is generated, usually randomly.

2. Evaluation: The candidate solutions i.e., chromosomes, are evaluated and
ranked based on the specified fitness function. The choice of the fitness func-
tion allows us to easily adapt a GA to cater to our specific needs. For instance,
we might want to find a solution where the average vertex-to-vertex-distance
is maximized.

3. Selection: As discussed before, in this phase the chromosomes for our new
generation are selected. Obviously we tend to favour those that rank higher
on the fitness function and disregard the worse-performing ones. Selection can
be based on purely the fitness of the chromosome, or it can be anything else.
Different selection methods are discussed in more detail in the next section.
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4. Recombination/Crossover: As in nature, the selected chromosomes are used as
parents to create a new population via recombination. The general idea is to
use the best qualities of the parent solutions, while still varying the solutions
enough so that the algorithm does not instantly converge on a weak local
solution.

5. Mutation: The new population resulting from the recombination undergo a
mutation phase, like in nature, to increase the variation in the new chro-
mosomes. Mutation usually only focuses on a certain part of the solution,
changing just parts of its traits.

6. Replacement: The original population is replaced by the new recombined and
mutated population of solutions aka. new generation.

7. Iteration: We iterate steps 2-6 until the algorithm stops. Stopping criteria
can be, for instance, a computation limit time or no improvement in the best
solution over a predefined number of successive generations.

3.2 Experiment set-up

3.2.1 General notes of the setup

Figure 3: General view of the simulation.

The environment used in this study is a simple C++ - based simulation program
that visualizes the TSP solution in a simple manner as seen in 3. The main idea is
to make the algorithm as clear as possible. The simulation is capable of running the
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algorithm with varying parameters easily. We can also easily generate new graphs
and run the algorithm on them. Step-by-step-approach is also possible, should the
user want it.

3.2.2 The program and functionality

The program is based on a number of different collections that keep track of current
route populations. One of them presents the current work-in-progress route collec-
tion while others are used as auxiliary memory to facilitate the computation of new
generations.

The user is able to use either a custom number of randomized vertices, or a prede-
fined vertex set that can be imported in the program. The application offers a simple
framework where customizing the stopping criterion, population sizes, and different
crossover-, mutation-, and selection algorithms are readily available. Visualizing the
results is not done separately; instead, MS Excel may be used for this functionality.

3.2.3 Used hardware and software

All the simulations have been ran on the following setup:

• OS: Microsoft Windows 10 Education, version 10.0.17134 Build 17134

• Environment/IDE: Visual Studio Community 2017, version 15.7.1. SFML
version 2.5.1.

• Compilation (built in VS): g++ with c++17 standard. Compiler flags: -
fopenmp -Wall -O3 -march=native

• CPU: Intel Core i5-6600K CPU @3.5GHz, overclocked to 3.8GHz

• RAM: 16GB of DDR4

3.3 Used data

The data used in this thesis has been obtained from TSPLIB database maintained
by University of Heidelberg [18]. The data repository hosts hundreds of different
TSP instances and their confirmed optimal solutions. The problem instances used
in the computational tests are listed in table 1.
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Table 1: Instances used in the experiment and their respective node (city) counts.

Instance name Node count

berlin52 52
bays29 29
rat99 99

kroA100 100
lin105 105
pr76 76
pr124 124
att48 48
st70 70

3.4 Variation in experiment

The genetic algorithms are tested on different problem graphs with varying param-
eters. The modified parameters are as follows:

1. Crossover operators: the operators that govern how the fittest members that
are chosen will be combined with each other.

2. Mutation operators: these operators govern how the resulting routes from the
crossover are mutated before they are added to the new generation, to ensure
that the algorithm does not get stuck on local minima.

3. Population size: the size of the population from which fittest parents are
chosen. An initial population too big will lead to slower execution, whereas a
population too small typically converges fast but tends to get stuck on a local
minima.

4. Stopping criteria: the rules by which the algorithm ceases its execution. For
instance, if the cost (length) of the best route does not improve after a specified
number of generations, the algorithm may terminate. Another example could
be a time-based stopping criterion.

5. Selection methods: there are different ways to select the best candidate solu-
tions for the GA. We can simply sort the solutions in ascending order based on
their fitness, or randomly choose the new population and weigh the random
selection with the fitness of each solution?

The main focus of this study is on the first two aspects, namely the crossover and
mutation operators. However, the other mentioned variations will be experimented
with as well.
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3.4.1 Crossover operators

Let us give a brief overview on the operators used in this study. The following
crossover operators will be used:

1. Order crossover (OX) (Olivier et al.1989, Goldberg 1987)

2. Edge recombination crossover (ER) (Whitley et al. 1987)

The OX is based on maintaining the implicit order of the parent tours. After the
two parent chromosomes are selected, the first parent is cut from two points (these
points can be randomly selected or pre-determined). The substring between the two
cut points is copied on the offspring directly. Then we will complete the offspring
by adding the following cities in the same order they appear in the second parent.
J.Y. Potvin explains the process clearly as follows.

Let us study a simple TSP with 8 cities, identified by numbers 1-8. Via random
selection and ranking, we have selected two parent solutions. We shall take an ar-
bitrary substring from the first parent, substitute it directly to the second parent,
and then add all other cities after the cut-and-pasted substring in the same order as
they appear in parent 2. If they are already in the added cut, the next city in order
is chosen. In the following example, the basic principle of the OX is demonstrated.

Starting with parents 1 and 2 as given in (5), we randomly choose an arbitrary sub-
set of subsequent cities from the first parent. In this example, we choose the subset
[2,7,3,6]. Then we add all the remaining cities outside the subset in the order the
cities first appear in parent 2.

Parent 1: | 1 | 5 | 2 | 7 | 3 | 6 | 4 | 8 |
Parent 2: | 8 | 6 | 7 | 5 | 4 | 2 | 3 | 1 |

Offspring
Step 1: | − | − | 2 | 7 | 3 | 6 | − | − |
Step 2: | 5 | 4 | 2 | 7 | 3 | 6 | 1 | 8 |

(5)

The ER uses a specialized ’edge map’, a simple map data structure that "maintains
the list of edges that are incident to each city in the parent tours and that lead to
cities not yet included in the offspring" (Potvin 1996). We add to the offspring a
city that has the least number of edges to those cities that are not yet included in
the offspring. Should two cities share the same number of such edges, one of them
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will be chosen randomly.

According to Potvin, ER reduces the chances of our algorithm getting trapped in a
local optimum. Let us use the following parent tours:

Parent 1: | 1 | 4 | 2 | 6 | 3 | 5 |
Parent 2: | 4 | 5 | 3 | 2 | 6 | 1 |

(6)

Let us construct the edge map and keep track of the cities and their neighbors.

city 1 has edges to: 4 5 6
city 2 has edges to: 3 4 6
city 3 has edges to: 2 5 6
city 4 has edges to: 1 2 5
city 5 has edges to: 1 3 4
city 6 has edges to: 1 2 3

(7)

All of these cities have the same number of distinct neighbors. Next, we will select
one of the cities randomly; in this case the city 3. We remove the corresponding
entry from the edge map and all references to it from the respective edge collections.

city 1 has edges to: 4 5 6
city 2 has edges to: 4 6
city 4 has edges to: 1 2 5
city 5 has edges to: 1 4
city 6 has edges to: 1 2

(8)

Select city 5:

city 1 has edges to: 4 6
city 2 has edges to: 4 6
city 4 has edges to: 1 2
city 6 has edges to: 1 2

(9)

Select city 2:

city 1 has edges to: 4 6
city 4 has edges to: 1
city 6 has edges to: 1

(10)
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Select city 4:

city 1 has edges to: 6
city 6 has edges to: 1

(11)

The last two cities will be, again, chosen randomly. By collecting all the cities in
order, our crossover result is the following:

Offspring: | 3 | 5 | 2 | 4 | 6 | 1 | (12)

3.4.2 Mutation operators

The following mutation operators are to be used:

1. Swap mutation (SM)

2. Scramble mutation (CM)

3. 2-Opt heuristic (2O)

4. 3-Opt heuristic (3O)

5. Lin-Kernighan heuristic (LKH)

Even though the 2O, 3O and LKH could be treated as crossover operators, I will
regard them as mutation operators for the sake of simplicity after Potvin [16].

The SM is a simple operator that swaps two randomly selected cities in a tour with
each other. The change made is quite small, akin to the original concept of mu-
tation. However, as the swaps are completely randomized, our algorithm may not
lead to better solutions frequently.

The CM chooses a random substring from the offspring and randomly permutates
this substring. If the chosen substring is too small, this mutation only affects locally
and might not prevent us from getting stuck in local minima. On the other hand,
choosing a substring too big will completely scramble a significant portion of the
route, thus leading to excessive randomization.

The following three: 2O, 3O and LKH, are known as k-opt heuristics, operating
around the principle of local hill climbing. The heuristic operates by removing k
edges from the graph, creating 2 or more distinct paths depending on the k value.
Thereafter the algorithm tries to form a shorter route by recombining these paths
into a new route using every possible edge configuration and choosing the shortest
one. The same process is iterated over every possible set of the vertices until all
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possible combinations have been iterated trough and no further improvement can
be achieved. A single k-opt swap will allow k2−1 ways of recombining the resulting
paths, thus resulting in a O(nk) computational complexity per single execution.

The 2-opt heuristic is the simplest k-opt heuristic. This algorithm removes two
edges from the graph, thus creating 2 node-disjoint paths. It then tries to combine
these paths with edges that make the tour complete while improving it as much as
possible. As there are only two edge combinations for reconnecting any two paths
into a tour, the 2-opt inherently removes all edge crossings. An example of 2-opt
swap is presented in Figure 4. We shall present an interesting result regarding the
2-opt swap:

Theorem 3.1. If any Hamiltonian path for a graph G = (N,E) is a boundary to
a convex set, the path in question is uniquely the shortest Hamiltonian path for the
graph G. Additionally, this path will always be the result of a single iteration of the
2-opt hillclimb heuristic for any Hamiltonian path in G.

Proof. Let G = (N,E) be an undirected symmetric graph with N = {1, . . . , n}
nodes (cities) and E = {e = (i, j) : i, j ∈ N} edges between the nodes where each
edge e ∈ E has a cost ce. A simple iteration of 2-opt heuristic iterates through every
single possible 2-partition of the tour and tries to find the optimum by reversing
the partitioned paths. Therefore 2-opt effectively removes all edges that cross each
other. Since we are operating in R2 and the graph is symmetric, triangle inequality
must hold. Therefore if a tour P resulting from 2-opt forms a boundary to a convex
set, it is hence the shortest Hamiltonian path (tour), since any other tour would
not satisfy the triangle inequality and would have crossing edges, which the 2-opt
procedure removes, and thus can not be any shorter than P.
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Figure 4: Example of a single 2-opt swap [24].

The 3-opt heuristic removes three edges from the graph, creating 1-3 node-disjoint
paths that can be reconnected in 7 different ways to create new routes. Otherwise
3-opt works similarly to 2opt. After removing the three edges, it goes through every
possible recombination of the three resulting node-disjoint paths, finding the best
way of combining the paths. An example of 3-opt swap is presented in Figure 5

Figure 5: Example of possible 3-opt swaps [7].

The Lin-Kernighan algorithm published in 1973 [12] is hailed as the most successful
heuristic for solving the STSP [8]. LK-heuristic is a generalization of the previously
mentioned 2-opt and 3-opt heuristics. The LK heuristic works in the same fashion
as the previous swap heuristics, with the exception that the swap size k is decided
adaptively between each step. The algorithm deduces how many edges need to be
removed in each stage in order to find a better route.

Most successful implementations of the genetic algorithm in TSP tend to revolve
around LKH due to its relative simplicity and tremendous computational prowess.
Keld Helsgaun of Roskilde University namely has developed an LKH-based algo-
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rithm that holds the record for shortest route of the 1,904,711-city World TSP.

Due to lack of time and resources, the LKH implementation will be completed after
the publication of this thesis.

3.4.3 Population size

The population size of the TSP genetic algorithm plays a tremendous role in its
performance. In 1986 Grefenstette claimed that a population size of 60-110 is op-
timal for these purposes [6]. However, M.O. Odetayo presented studies that do
not support this claim [14]. Using Grefenstette, Reeves and Odetayo as a basis, a
population size varying between 40-100 will be used in this thesis.

3.4.4 Stopping criteria

Different stopping criteria can be devised in order to stop the execution of the algo-
rithm if a desired outcome is achieved. For testing sets in which an optimal solution
is known, the stopping criterion can be quite simply the relative difference of the
costs of the route found and the known optimal route. In bigger instances or prob-
lems without a known optimal, one valid stopping criteria is the difference in the
route length between subsequent generations. If the best route does not improve
after a number of generations, satisfactory convergence has been reached and the
algorithm will likely not find any better solutions. In the business world, a computa-
tional time limit might be used in problems where time or computational resources
are more important than fine-tuning the obtained solutions.

In this work, combinations of various stopping criteria are used. The two main ones
are:

1. A constraint requiring an improvement over a number of successive genera-
tions.

2. A clause that terminates the algorithm if

(a) More than 4 generations have passed and

(b) Two successive generations do not improve the length of the best route
enough.

3.4.5 Selection methods

Selection should be related to the fitness in a way that better fit solutions are more
likely chosen as the parents of the new generation. Choosing an efficient selection
method is of utmost importance, as it ensures that the algorithm is progressing
towards a better solution constantly while still maintaining a heterogeneous par-
ent population that is unlikely to get stuck on local minima. We use two different
selection methods: roulette wheel selection following Baker’s stochastic universal
selection [3], and a simple elitism selection. A survival rate of 50% is used in the
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code, meaning that 50% of the candidate solutions are selected as a basis for the
next steps of the algorithm.

The simplest form of selection, fitness selection (i.e., elitism selection), ranks the
routes in fitness order, resulting in a simple and efficient selection. In short, we
select the n best parents from a generation and use their combinations in the suc-
cessive steps. Albeit this kind of a selection is very easy to implement, it converges
easily and contributes to the homogeneousness of successive populations.

The fitness proportionate selection, i.e., Roulette wheel selection, operates similarly
to a weighted roulette wheel. The selection probability for each route is proportional
to its fitness so that routes with highest fitness scores are more likely to be selected as
parent chromosomes for the next generation. We shall use a stochastic universal se-
lection method proposed by Baker [3] to obtain a systematic and nonbiased selection.

Figure 6: Figure of a roulette wheel selection [22]

The basic execution of a roulette wheel selection goes as follows:
1. A fitness value is assigned to every route in the generation.

2. Based on their respective fitness scores, the chromosomes will be assigned
decimal values so that the sum over all of the chromosomes in the generation
is one, e.g., a probability distribution, as shown in figure 6.

3. We select random values from a uniform distribution over [0, 1] and select
chromosomes based on the corresponding random values.

This way the algorithm favours those candidates that have higher fitness values and
are thus more likely to be selected. However, the probability-based selection means
that even chromosomes with low fitness values may occasionally be selected, thus
contributing to the heterogeneity of the population.
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4 Results
This section studies the genetic algorithm and the different algorithmic components
and parameters introduced in Section 3 by solving a set of STSP benchmark in-
stances. Due to the enormous number of possible parameter and algorithm settings,
most of the parameter values and settings have been found by trial and error. The
best found solutions and algorithm variations will be studied here in further detail.
However, the reader is invited to get the software for themselves and play around
with the experimental setup in order to confirm the findings presented in this study.

The used instances and their respective optimal solutions have been obtained from
Universität Heidelberg’s TSPLib, courtesy of Prof. Dr. Gerhard Reinelt.

The following results are calculated with various parameter and operator combina-
tions. The starting population size varies between 40 and 70 and the generation size
is 70. The stopping criteria used consists of two distinct components:

1. If the average route length of a given generation is less than 2% shorter than the
average route length of the preceding generation, the algorithm will terminate
and returns the best solution found over all generations.

2. If the current generation is at least the nth one (where n = 4) and two
successive generations contain identical routes, the algorithm will terminate,
returning the best solution found over all generations.

All the simulation runs presented in this section were repeated 5-10 times, each run
initiated randomly by selecting the initial population size to be between 40 – 70.
The smaller problems were repeated 10 times while the larger ones only 5 times due
to the time constraints to finish the simulation tool to complete the thesis.

The purpose of the first criterion is simply to save time. Albeit better solutions
may still be found, the required 2% improvement indicates that the algorithm has
already converged significantly, thus rendering further calculations and generations
ineffective relative to the additional computation time required. The second crite-
rion ensures that successive generations remain heterogeneous.

Table 2 presents the shorthand notations for the different algorithmic components.
The names consist of three parts: selection, crossover and mutation. For instance,
Ru-EX-2opt means fitness proportionate (roulette) selection, edge recombination
crossover and 2-opt hillclimb mutation.
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Table 2: Acronyms and their meanings for different algorithmic components.

Legend Meaning

R Ranked/elitism selection
Ru Roulette selection
OX Order crossover
EX Edge recombination crossover
2opt 2-opt local hillclimb mutation
3opt 3-opt local hillclimb mutation

Table 3 lists the instances used in the experiment, their number of cities, the optimal
tour lengths for the instances, the best solution found with the used GA variant, the
parameters of the used GA algorithm, the average time elapsed over 5-10 runs, and
the relative difference (∆optimal) between best found solution cost and the known
optimal cost. The relative differences are computed as

∆optimal = (Best/Optimal− 1)× 100%

The complete results are presented in appendix B. The use of the mutation
methods swap and scramble have been omitted from the results since it quickly
became evident that, due to their high degree of randomness, they are not able
to produce significant improvements even with longer computation times. However,
they are still implemented in the software. Figure 7 shows the best solution obtained
(which is also optimal) for the instance pr76 which has 76 cities.

Table 3: Results of the GA on the selected benchmark instances over 5-10 runs.

Instance Algorithm Time/iteration Avg Best Optimum Best ∆optimal

berlin52 Ru-EX-3opt 26.06s 7700 7542 7544 0.027%
att48 R-EX-2opt 44.34s 33719 33523 33523 0.000%
bays29 Ru-OX-2opt 1.32s 9116 9074 9078 0.044%
st70 Ru-OX-2opt 109.98s 678 675 677 0.296%

kroA100 Ru-EX-3opt 422.20s 21436 21282 21285 0.014%
lin105 Ru-OX-2opt 715.93s 14506 14375 14406 0.216%
pr124 Ru-OX-2opt 1531.04s 59527 59030 59030 0.000%
rat99 Ru-EX-3opt 495.62s 1240 1211 1223 0.997%
pr76 R-OX-2opt 123.64s 108825 108159 108159 0.000%

Average - 385.57s 28527 28319 28325 0.177%
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Figure 7: One of the problem instances, pr76, solved to optimality. This solution
was obtained with the Ranked-OX-2opt variant. The optimal cost is 108159.
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5 Conclusions and summary

5.1 General conclusions

Based on the results, the studied algorithm for the STSP is able to solve mid-sized
problem instances very close to optimality in a relatively short time using a standard
desktop computer. The custom built simulation software also provides meaningful
visualizations for the instances.

Albeit the achieved success depends greatly on the chosen algorithm and how suit-
able it is for the problem instance at hand, several conclusions can be drawn from
the data. It is also worth noting that the computed test instances are not too broad
in variety or in size, and thus the conclusions are not as robust as they could be in
a more extensive study.

First thing to note is that most of the problem instances were solved to less than
0.3% from optimality. Sensible approaches to achieve optimality could be, for exam-
ple, using less strict stopping criteria, adding an extra layer of randomized mutation
operators after the local hillclimb procedure, or simply re-weighting the roulette
selection. Improvements to the current algorithm are discussed in more depth in
Section 5.2.

Another noteworthy aspect is that the algorithm which employed 3-opt local hill-
climb operated relatively faster in almost all of the used instances compared to 2-opt.
3-opt hillclimb has a theoretical time complexity of O(n3), whereas 2-opt has that
of O(n2). This indicates possible problems in the code, because 2-opt algorithm
should perform much faster than 3-opt.

Moreover, of all the 9 problem instances, algorithms employing the 2-opt mutation
produced the best results for 6 of the 9 instances. Since 3-opt also includes 2-opt
as a sub-procedure, one likely reason for this anomaly is that 3-opt causes the pop-
ulation to become too homogeneous much faster than the 2-opt, thus getting more
easily stuck in local minima. A countermeasure for this would also be some forced
method to mutate the generation after the 3-opt procedure, perhaps by the same
methods as suggested in Section 3.

As Potvin found is his research [16], the EX and OX are the premier crossover op-
erations for the GA TSP. His research showed that EX was able to find marginally
more optimal solutions than OX, but the difference was not huge. In our data, 4 out
of 9 of the best solutions were produced by an algorithm employing EX, whereas
in 5/9 cases OX performed better. Thus both of these methods should be used on
mid-sized instances to improve the chances of finding an optimal solution. From a
time intensity point of view, EX was approximately 10-30 % slower than the OX on
the same instances.
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Regarding the selection operators, the results were as expected: the roulette wheel
selection outperformed the simple elitism selection in 7 of the 9 test instances. This
is to be expected, since even though simple elitism selection always ensures the
fitness of the parent population to be maximized, the downside is that the not-so-fit
candidates are never selected, even though some of their characteristics might be
useful in escaping possible local minima. Using a simple ranked selection comes at
a cost of risking the heterogeneousness of the population. However, as the results
show, the differences between these two selection methods are not too significant.
If the instances would have been bigger in scale, the difference between these two
would perhaps have been clearer due to the aforementioned reasons.

5.2 Possible improvements to the current algorithm

As we briefly discussed in the previous section, most of the instances were solved to
optimality or close to optimality. This demonstrates that the algorithm indeed con-
verges quite well. The biggest issues of solving the instances relate to the problem
of converging to local minima that is suboptimal. However, the results clearly show
that the optimization method produces near-optimal solutions.

Thus, one of the main improvements would be to further increase the heteroge-
neousness of the populations in order to avoid local optima pitfalls. One possible
method of achieving this is adding another step to the method: an extra mutation
operation that is solely based on randomness and not local hillclimbing. This way
we would be able to increase the variety of the populations. For instance, instead
of using, e.g., Ru-OX-2opt, the diversity of the generations could be increased by
adding a small randomized mutation (swap or scramble) in the end, resulting in
Ru-Ox-2opt-swap. However the algorithm would then likely require more time to
converge to a (probably improved) solution, so a suitable trade-off must be decided.

Another idea akin to the previous one would be to simply adjust the weights of the
roulette wheel selection. In its classical form, the probability of choosing a specific
individual for the next generation is directly proportional to its fitness value rela-
tive to the fitness values of other chromosomes. If we would rescale the probability
weights, for instance, by taking some root of all the fitnesses and doing a similar
roulette wheel selection on those, the likelihood of choosing suboptimal individuals
would be increased. As with the previous improvement suggestion, this would likely
increase the time it takes for the algorithm to converge.

Furthermore, the stopping criterion should not stop the algorithm if the best tour
does not improve enough over a number of generations. Instead, this criterion should
require that the the algorithm stops when the best found tour does not improve over
a number of successive iterations.
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5.3 Possible improvements to the program

Regarding the simulation program, a lot of improvements could be made. First off,
as stated previously, our 2-opt routine takes more time than the 3-opt in practically
all of the instances. That should not be the case due to the computational complex-
ities of these being O(n2) and O(n3), respectively. This could be resolved by using
exactly the same style of programming in both of these. The current implementa-
tion of 2-opt is vastly different from that of the 3-opt, even though it performs very
similar operations (remember that 3-opt includes 2-opt as subroutine). Therefore,
by refactoring the 2-opt to be similar to the 3-opt routine would already speed up
all of the 2-opt computations by a vast margin, thus leading to a more efficient
execution of the program.

Possibly the biggest improvement that can be made to the program is moving the
computation from CPU to GPU. Tsutsui (2013) has listed genetic algorithms as an
embarrassingly parallel problem, meaning that the problem can be efficiently par-
allerized easily [21]. Modern day GPUs are very powerful when computing simple
arithmetic operations, being able to do them in a massively parallerized fashion. As
Brodtkorb et al. (2013) state, their 1000-city TSP instance takes 175 seconds on the
CPU, compared to 2 seconds on GPU [5], a 80-fold speedup. Thus using GPU for
the computation would allow faster simulation runs on bigger instances with similar
hardware.

Furthermore, since the hillclimb heuristics take up about 99% of all the computa-
tion time, they are the only part of the program that has been parallerized in the
code. Most of the instances used here are so small that parallerizing selection or
crossover would not benefit us all too much, since spawning and killing the parallel
threads also takes a bit of time. However, if this simulation would be used for bigger
instances, parallerizing the other methods as well would benefit in the long run.

The whole program is coded in C++ using standard collection vectors as primary
data structures. This leaves some room for improvement, as according to Daniel
Lemire of University of Quebec[11], standard library vectors require specific opera-
tions to use the memory efficiently and thus require extra care when used in high
performance code. Another software engineering approach is to use hashed sets
where necessary to further improve the memory access pattern and therefore the
performance of the entire simulation.

5.4 Next steps

Next steps to this research would be:

1. Evaluate more instances than we have here. Drawing dependable conclusions
from a limited sample size makes the performance evaluation insufficient. Since
that requires more time and computing resources, doing so was not possible
in the scope of this study.
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2. Solve larger STSP instances. The largest tackled instance in this study con-
sisted of 124 cities, which is still very small in the world of combinatorial
optimization. Optimizing the simulation software is the priority here starting
with the improvements discussed in the previous chapter, such as GPU paral-
lerizing. In order to scale up the simulation, both code optimization and more
computing resources would be necessary.

3. To tackle the most demanding STSP instances, improving the algorithms used
in this study would be to change the 2-opt and 3-opt to a Helsgaun modified
Lin-Kernighan heuristic, the current state-of-the-art TSP algorithm.
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A Best found solutions
Presented are the best solutions for each problem instance. Best solution is that
that has the lowest cost. If two costs are the same, the one with lowest runtime will
be chosen

Figure 8: Berlin52. Cost:7544.
Roulette-EX-3opt

Figure 9: Att48. Cost:33523. Ranked-
EX-2opt

Figure 10: Bays29. Cost:9074.
Roulette-OX-2opt

Figure 11: St70. Cost:677. Roulette-
OX-2opt
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Figure 12: KroA100. Cost:21285.
Roulette-EX-3opt

Figure 13: Lin105. Cost:14406.
Roulette-OX-2opt

Figure 14: Pr124. Cost:59030.
Roulette-OX-2opt

Figure 15: Rat99. Cost:1223. Roulette-
EX-3opt
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B Simulation data
Instance Selection CO Mutate Start Gen N AVG best(N) Runtime Best

berlin52 Roulette OX 2-opt 70 60 10 7550 4.57 7544
berlin52 Roulette EX 3-opt 70 60 10 7700 4.34 7544
berlin52 Ranked OX 3-opt 70 60 10 7565 4.64 7544

att48 Ranked EX 2-opt 70 60 10 33719 7.39 33523
att48 Ranked OX 2-opt 70 60 10 33616 3.36 33555
att48 Roulette OX 3-opt 70 60 10 33651 2.8 33555
att48 Roulette EX 3-opt 70 60 10 33769 3.03 33600

bays29 Ranked EX 3-opt 70 40 10 9562 0.27 9219
bays29 Ranked OX 3-opt 70 40 10 9423 0.22 9151
bays29 Roulette EX 2-opt 70 40 10 9089 0.53 9074
bays29 Roulette OX 2-opt 70 40 10 9078 0.39 9074

pr76 Ranked OX 2-opt 70 70 8 108825 16.4 108159
pr76 Ranked EX 3-opt 70 70 8 113227 12.82 113086
pr76 Roulette OX 2-opt 70 70 8 108440 19.7 108159
pr76 Roulette EX 3-opt 70 70 8 108803 17.2 108347

kroA100 Ranked OX 3-opt 70 70 5 22391 24.23 21970
kroA100 Ranked OX 2-opt 70 70 5 21398 42.66 21285
kroA100 Roulette OX 2-opt 70 70 5 21494 49.59 21356
kroA100 Roulette EX 3-opt 70 70 5 21436 35.18 21285

lin105 Ranked OX 3-opt 70 70 5 14629 74.53 14518
lin105 Ranked EX 2-opt 70 70 5 14458 76.44 14420
lin105 Roulette OX 2-opt 70 70 5 14506 59.66 14406
lin105 Roulette EX 3-opt 70 70 5 14442 64.14 14428

pr124 Ranked EX 3-opt 70 70 5 61199 44.18 61992
pr124 Ranked EX 2-opt 70 70 5 59616 102.01 59519
pr124 Roulette OX 2-opt 70 70 5 59527 124.25 59030
pr124 Roulette OX 3-opt 70 70 5 59302 82.98 59074

rat99 Ranked EX 3-opt 70 70 6 1273 36.59 1259
rat99 Ranked OX 2-opt 70 70 6 1255 40.46 1234
rat99 Roulette OX 2-opt 70 70 6 1237 49.34 1234
rat99 Roulette EX 3-opt 70 70 6 1240 49.56 1223

st70 Ranked OX 3-opt 70 60 8 704 15.39 685
st70 Ranked EX 2-opt 70 60 8 690 31.26304 679
st70 Roulette OX 2-opt 70 60 8 678 14.66 677
st70 Roulette EX 3-opt 70 60 8 684 19.7072 682
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C Using the simulation software

C.1 Getting Started

Simply clone the repository at https://github.com/hakosaj/KandiTSP to a direc-
tory, compile and we are good to go!

C.2 Prerequisites

• SFML, at least version 2.5.1.

C.3 Using the software

Get the software from Github and simply make in the folder.

Then just run the file, the software tells you what to do! If using Unix systems,
simply type ’make’.

In order to use further instances, those can be downloaded here for example: https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/

Just save the instances in the Data-folder and voilá.

Make sure to format them to csv, same format as the other files!
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