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Abstract
The VR Group’s long-term process for locomotive allocation produces week-long routes for multiple
locomotive types. The routes consist of various tasks, primarily driving trains and moving locomotives
between stations. The goal of the planning is to create a plan minimizes operating costs while ensuring
the availability of locomotives for all trains. This planning process is currently done manually, resulting
in incomplete or inefficient plans. To overcome this problem, this thesis develops an optimization
model for allocating locomotives in order to produce cost-efficient, robust and feasible solutions within
one hour.
The problem is modeled as a multicommodity flow problem, in which two model variants (one using
and another lacking driver costs) as well as three heuristic pre-processing algorithms were developed.
These all were evaluated in terms of cost efficiency and robustness using VR’s test data in order
to select the best combination of model and pre-processing algorithm, which were then successfully
implemented in VR’s planning process. Testing of six model-algorithm combinations revealed that the
model variant using driver costs performed better than that without driver costs. The most advanced
pre-processing algorithm was selected, as it can be modified to produce the same outcome as either of
the others.
The selected model-algorithm combination has successfully been implemented in VR’s planning process.
The model is able to produce cost-efficient, robust and feasible locomotive allocation plans in less than
15 minutes.
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Tiivistelmä
VR:n pitkän aikavälin veturienkäytön suunnittelussa laaditaan jokaiselle viikon mittaiselle suunnit-
telujaksolle reitit kaikille vetureille useilta eri veturisarjoilta. Veturien reitit koostuvat pääasiassa
junien ajamisesta sekä siirroista asemien välillä. Suunnittelun tavoitteena on luoda suunnitelma,
jossa varmistetaan kaikkiin juniin riittävä määrä vetureita ja minimioidaan operatiiviset kustannuk-
set. Suunnitteluprosessi on tällä hetkellä manuaalinen ja johtaa usein vaillinaisiin suunnitelmiin tai
epätehokkuuksiin veturien käytössä. Ratkaistakseen ongelman, työn tavoitteena on kehittää opti-
mointimalli VR:n suunnitteluongelmaan, joka tuottaa toteuttamiskelpoisia, kustannustehokkaita ja
robusteja uunnitelmia alle tunnissa.
Ongelma on mallinnettu monihyödykevirtausongelmana (Multicommodify flow). Saadaksemme ongel-
ma ratkeamaan kohtuullisessa ajassa kehitettin mallista kaksi versiota ja kolme heuristista esikä-
sittelyä. Näitä molempia testattiin VR:n antamalla aineistolla ja paras yhdistelma valittiin osaksi
VR:n veturien käytön suunnitteluprosessia. Testauksen myötä selvisi, että kuljettaja kustannusten
huomiointi on kriittistä onnistumiselle sekä suunnitelman kustannustehokkuuden, että robustisuuden
kannalta. Esikäsittely algorithmeistä valittiin edistynein, sillä se on mahdollista muokata tuottamaan
sama sama lopputulos kuin kahdesta muusta.
Valittu malli-algoritmi yhdistelmä otettiin onnistuneesti osaksi VR:n suunnitteluprosessia ja sen
avulla pystytään tuottamaan toteuttamiskelpoisia, kustannustehokkaita ja robusteja suunnitelmia
alle 15 minuutissa.

Avainsanat Kokonaislukuoptimointi, Veturienkäytön optimointi, Monihyödykeongelma
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1. Introduction

The railway industry is dependent on long-term planning due to limited

track capacity. In order for trains to operate, they require accurate plan-

ning of personnel and train schedules as well as allocation of wagons and

locomotives. Of these, a key planning problem is the planning of locomotive

usage because the size of locomotive fleet is the least flexible resource due

to the long acquisition time and capital-intensive nature which set bound-

aries for the growth. This locomotive allocation problem (LAP ) refers to

the planning of locomotive routes in order to operate all selected trains

cost efficiently. To achieve this, each locomotive obtains its own route for a

particular planning period. This route can involve driving trains, driving

the locomotive between locations and performing other tasks. These tasks

include train brake tests and activities for creating a pulling unit from

multiple locomotives. Each of these activities has its own requirements and

cannot be performed using every locomotive type. Moreover, locomotives

are constrained by how quickly they can move from one activity to another.

Additionally, the track capacity for driving a locomotive between stations

is often limited. This restricts the options available for transferring the

locomotive from its current location to the next. These multiple constraints

make LAP complex to solve.

The VR Group (VR), a Finnish state-owned railway company, weekly op-

erates roughly 3 000 trains, consisting of both freight and long-distance

passenger trains. Additionally, VR also operates commuter traffic , though

it does not need locomotives, as the trains are self-powered. Locomotive-

driven trains are operated using a fleet of 350 locomotives, which are

divided into six locomotive types, all of which have different attributes.

The locomotive types differ in terms of the size of the fleet, energy source

(diesel vs. electric), top speed and pulling power. These all affect the ability

of the locomotive to perform different activities.
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Introduction

There are many feasible solutions for VR’s LAP. They differ from each

other in terms of their operating costs and robustness. Of these two factors,

the costs are more significant, though the robustness of a plan is also

important. In this thesis, robustness is defined as the ability to tolerate

changes in train traffic with minimal alterations in locomotive planning.

Robustness is particularly important in the long-term planning phase

because there are likely to be many changes to traffic during the later

planning stages. Therefore, it is essential that the number of planning

decisions requiring other resources be kept as low as possible. the main

indicator for robustness is considered by VR to be the amount of light

travel. Light travel refers to driving only the locomotive from one location

to another without pulling a train. Such light-travel journeys are needed,

as they allow the same number of trains to be operated by a smaller

locomotive fleet, thus increasing the utilization of locomotives. On the

other hand, light travel is unwanted because both the locomotive and

driver are not in productive use during light travel, which generates extra

costs for the company. Moreover, the drivers are assigned shifts for light

travels, which cannot be easily changed afterwards. Locking the drivers

into unproductive shifts lowers the robustness of the plan and is avoided

in the long-term planning phase because there is often high demand for

extra traffic in later phases of the planning process.

Currently, the long-term planning phase is a time-consuming manual

process. Although the planning is made in cycles of three weeks. the traffic

typically varies between weeks, thus requiring that each week be planned

as an independent entity. However, planning every week separately causes

time pressure for locomotive planning. The tight time window limits the

options for reacting to large, sudden changes, as all trains and their related

tasks need to be planned manually. Both the tight time window and high

amount of manual work often result in inefficient decisions and underuse

of resources in the final long-term plan, thus lowering the robustness and

cost efficiency.

One approach for addressing this problem would be to develop an optimiza-

tion model in order to increase the effectiveness of locomotive planning

under a strict time window. Optimization is an excellent tool for finding

a good solution when there are many possible solutions. Although the

locomotive allocation problem has been studied in literature, none of these

optimization models are applicable as such to VR according to bachelor the-
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Introduction

sis by Eskola [2016]. The main reasons for this include the need to operate

both passenger and freight trains using the same locomotives, the inability

to rent locomotives between companies, and the sparse single-track rail

network.

To address VR’s long-term locomotive planning problem, this thesis devel-

ops an optimization model for producing cost efficient, feasible solutions in

a reasonable amount of time.

The rest of this thesis is divided into eight chapters. Chapter 2 introduces

VR’s planning problem. Chapter 3 presents a literature survey on LAP

optimization models. Chapter 4 formulates the problem into a mathemat-

ical form and constructs two alternative models. Chapter 5 constructs

the needed data pre-processing algorithms. Chapter 6 presents the perfor-

mance of different optimization models and data pre-processing algorithms

in different scenarios. Chapter 7 compares the performance of the two

models and the feasibility of utilizing the plans generated by these models.

Chapter 8 evaluates the use of the optimization model in VR’s planning

process. Chapter 9 concludes by suggesting directions for future research.

3



2. Introduction of the problem

This chapter presents the core features of the VR’s planning process and

locomotive allocation problem and turns them into requirements for the

model. The summary of the requirements is presented in Section 2.4.

Based on these requirements we can assess the models in literature or

develop a new model for the problem.

2.1 Background

Environment in which, VR operates is very isolated when comparing to

most other European railway companies, which is due to several factors.

First, Finland has very few railroad connections to other countries, as

the only rail track connections are to Russia, moreover the locomotives

do not cross the border between these two countries regularly. Secondly,

VR also had a monopoly position for a long time in both passenger and

freight train traffic, even though the freight traffic has been open for

competition for 10 years the other operators are multiple magnitudes

smaller. Furthermore, Finland has different track width than in Central

Europe, preventing the use of same locomotives in Finland and in Central

Europe. These three reasons cause that the fleet VR operates is fixed and

renting the locomotives between other companies is not an option. This

makes minimizing operational costs only viable option, when the other

option would be to minimize the number of locomotives needed in the plan.

VR operates weekly around 1 000 locomotive driven passenger trains and

2 000 freight trains. Both traffics types are operated using the same

locomotives to create synergies for locomotive and driver usage. The main

driving factor is that passenger traffic is focused to daytime and freight

traffic can be emphasized to night time. Dividing the train traffic this way
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Introduction of the problem

smooths the utilization rate of locomotives more equally through the day.

Using the same locomotives to operate both traffics aids to keep the fleet

smaller and raise the utilization of locomotives, thus lowering the fixed

costs.

To operate the train traffic VR owns locomotives of six locomotive types,half

are powered by diesel and the other half by electricity. Both diesel and

electrified fleets are roughly the same size, containing 150−200 locomotives.

Both electrified and diesel locomotives have one type allocated to specific

circulations, that cannot be changed during the planning. This leaves

165 electrified locomotives and 166 diesel locomotives to be planned in

long-term planning phase. The focus is on creating a plan for these 4

locomotive types in the thesis.

The driving using diesel locomotives is more expensive than with electrified

locomotives. Therefore, long distances are preferably planned to electrified

locomotives. Due to this difference in costs the diesel locomotives usually

remain the whole week in relatively small area and very rarely travel

across the Finland. On contrary to the electric locomotives can travel

across Finland multiple times during the week, this makes the maintaining

balance during the week most difficult task in the planning for electric

locomotives. However, there are rail tracks that are not electrified and

thus the trains there need to be always driven with diesel locomotives.

From the locomotive planning perspective, the passenger trains and the

freight trains have a few key differences regarding the needs towards the

locomotives. The two most critical factors are the maximum speed of a

train and the weight of a train. Many of the passenger trains have such

high maximum speed that they can only be pulled by one of VR’s locomotive

type and this covers already majority of the activities that this locomotive

type performs during the week. Most of the passenger trains would be

driven with electric locomotives solely based on the cost factor but the

speed limits completely the option to plan them to diesel locomotives out.

The second large difference between passenger and freight trains is the

weight of the trains, on average the freight trains are heavier and require

often two or three locomotives to pull the train. Because of these two

factors the diesel locomotives work on average combined together by one

or two other locomotives, whereas the electric locomotives perform most

tasks as a single locomotive. The difference is due to the large proportion

of passenger traffic being operated by electric locomotives and secondly by
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Introduction of the problem

the fact that the pulling power of electric locomotives is much higher.

In addition to pulling the trains the locomotives are also used to perform

service operations. Service operation means that the locomotive is ordered

for a given railyard to organize the wagons to trains etc. Most of the

service operations are performed with diesel locomotives whereas most

of the trains are usually planned to electric locomotives. There are some

railyards that are electrified in which the service operations are performed

with electric locomotives.

The planning of locomotive allocation is made in three weeks cycles in the

long-term planning phase. This three-week cycle is because the driver

shifts must be published every three weeks and the personnel planning

needs the information about the locomotive type used to drive the train

and light travel routes, so they can be put to driver’s shifts. The locomotive

type is relevant for personnel planning because not all drivers have the

qualification to drive all different locomotives. The traffic is different every

week, mainly due to the track works and customers’ needs especially in

the raw wood freight. Thus, every week is planned separately. Each of the

three weeks planning phases lasts for three weeks and takes place 5− 7

weeks before the start of the three-week cycle. However, the time to plan

locomotive allocations using final data is only 6 days, as the three weeks

require planning also from freight, railyard and driver planners. The 6

days are not divided equally between the weeks needed to plan. The time

for planning of the first week is 4 days and the other two weeks must be

finalized in 2 days. This means that there is very limited time window to

analyze, plan and verify the final plan. The time window means that the

run time of the optimization model needs to be such that is can be run

multiple times in a day.

2.2 Problem constraints

The VR’s planning problem has multiple important requirements to be

considered in the long-term planning. Some of them are constraints from

the physical world and the other come from the planning process. This

section presents the key features the optimization must have to be utilized

as part of VR’s long-term planning process.

As stated VR has six different types of locomotives and four of them are
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Introduction of the problem

planned during the long-term planning phase. Which locomotive type is

assigned for each train is not known in advance, except for a few cases in

which there is only one locomotive type that can operate the train. Thus,

the different locomotive types cannot be planned separately, and all of them

must be planned together. This yields to Constraint [1] for supporting

multiple different locomotive types. Secondly, for all locomotive types there

is limited number that can be used in the planning. For this a constraint is

defined [2] for restricting the number of locomotives per type in planning.

The assigned locomotives must be suitable to operate the train. There

are three key aspects for this. First, some trains cannot be operated with

every locomotive type, clearest example from this is a train moving in

unelectrified track section and it can only operated by diesel locomotive.

Another example would be a high-speed passenger train that requires a

locomotive that can travel 200km/h, only 2 of VR’s 6 locomotive types can

reach this speed. The second aspect is that even when the locomotive type

can be used to pull the train, it might need more than single locomotive.

The most obvious reason for this is train weight but also the track elevation

angle, length of the slope and speed of the train affect the number of

required locomotives. For example, there might be a steep hill in the train’s

route and the pulling power of a single locomotive might not sufficient

to pull the train up the steep hill alone. The only reliable method to

test can certain consist, i.e. pulling unit, pull the train is to test it. VR

has performed test drives on almost all track segments to determine the

exact weight limits for all different consist. Therefore, as the number of

needed locomotives can be greater than one, is must be possible to set

a lower limit for assigned locomotives, this is our requirement [4]. The

third aspect is setting upper limit for each train. In some locomotive types

coupling one or more locomotives together raises the pulling capacity but

lowers the maximum speed the train can travel. For example, coupling two

electric locomotives together lowers their maximum speed from 200km/h

to 160km/h. If the train requires consist that can drive 200km/h allocating

single locomotives is possible whereas allocating two is not. There is also a

hard limit for each locomotive type on how many of them can physically be

combined to consists. The hard limit is usually between 2− 3. Therefore,

as there is always an upper limit on how many locomotives can be assigned

to train, it must be possible to set an upper limit for each train how

many locomotives can be assigned to it, this is our requirement [3]. The

requirements [4] and [3] also fulfill the need for restricting the locomotive

7



Introduction of the problem

types that can be used to drive the train. Therefore, it is not created as

separate requirement. For example, it can be stated that if locomotive type

x is used to pull the train it needs to have at least 1 locomotive, but at most

0, thus the locomotive type cannot be used to pull the train.

The planning of suitable locomotives for each train is not enough, it must

also be determined if there is a locomotive for the train. This can be broken

into two requirements. First, there must be enough time for the locomo-

tive(s) to travel from arriving train to departing train, this is Constraint

[5]. The minimum time is time locomotives need to travel from the arriving

train to the departing train minimum turntime. The minimum turntime

can vary greatly depending on the arriving and the departing activity

as well as about the location on which this is happening. At minimum

turntime is 0 minutes, this happens for example when the arriving train is

starting a service operation on the railyard and it’s first duty is to move the

wagons it is attached to. Also, if the arriving and departing trains are both

passenger trains and the same passenger wagons are used to operate both

trains the turntime is practically zero from the locomotive’s perspective.

The time between trains is only depend on the time that is needed for

passengers to get in and out of the train. On the other end the turntime

can be as long as 90 − 120 minutes, this can happen for example when

the arriving train is a passenger train that must be attached to power

post. In this case locomotive must first move the wagons to power post and

wait there when the wagons are attached to the power post (40 minutes).

The next activity could be to form a consists with second locomotive, then

the locomotive must be driven to locomotive yard to form the consist (30

minutes). After creating the consist the locomotives are driven to the

departing train wagons, which can be kilometers away (20 minutes). Then

the locomotives need to be connected to wagons and perform a brake test

(30 minutes) and only after that the train is ready to depart. Thus, the

total minimum turn time between this arriving train and departing train

is 2 hours in this case. The last example also brought the requirement for

consist busting [6] which means that the locomotives must be able to form

and deform a consist. This is relatively common activity in major railway

locations.

The second requirement is that there must also be a locomotive in the

railyard for the train. In other words, it must be ensured that each arriving

locomotive is assigned to exactly one departing task. Otherwise there

8
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might not be enough locomotives on a given time on a certain location.

For example, if there is a location with one passenger train arriving and

two departing freight trains, the arriving locomotive can only go to one

of the departing freight trains not both. Thus, there must be an extra

locomotive in the location before these events. Therefore, there is a need for

a constraint to require that for every arriving locomotive there is exactly

one departing allocation, this is Constraint [7]. In practice this means

that it must always be known, which is the number of locomotives in each

location per locomotive type and the number can never be negative to any

of the locomotive types. The other option is to plan for each locomotive

route that ensures that there is no double booking of locomotives. However,

this is not required, as the information to which train the locomotive will

go is not relevant at this stage of planning. Only that the railyard has

enough locomotives to operate the traffic.

To achieve the sufficient number of locomotives in a location at given time,

there is often a need to move just the locomotives between locations. Thus,

the model must support option for locomotives to move between locations

without a train, this is the requirement [8].

The planning process sets also two constraints. First one is for the com-

putation time because there is only 2 days’ time to finish the planning for

two separate weeks. Thus, the optimizer must be able to obtain a solution

quickly, as the plan needs to still be verified and most cases adjusted.

Therefore, a goal is set for the reasonable computation time be at most 1

hour, this is Constraint [9]. With this computation time there is enough

time to analyze the results and perform a second run if needed. The second

requirement from planning process is that the plans for each week are

assumed to be cyclic. In other words, this means that there should be as

many locomotives in the end of the week as there where at the start of the

week within each location and running train. This cyclicity of the plan is

the requirement [10].

2.3 Cost factors

The costs are the most important indicator for good locomotive allocation

plan. The most important cost factors come from locomotive energy con-

sumption, maintenance costs and driver costs in light travel journeys. All

of them are proportional to the distance travelled. The locomotive costs
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scale up with locomotive kilometers, but the driver costs scale up only to

light travel kilometers. An example of the cost factors is shown in Figure

2.1. The trains naturally need driver also, but it is not costs that comes

from locomotives allocation planning. The difference between locomotive

and driver cost generation is because trains or light travels that need two

or more locomotives generate costs for both locomotives. The train needs

however only one driver and thus the costs for them are related to only

train kilometers. This leads to two different objective function require-

ments: [11] for locomotive based costs and [12] for driver based costs. Both

are equally important aspects in the final costs structure.

Driver

Energy

Maintenance

Key cost
component

Train km

Locomotive
km

Locomotive
km

Basis for costs

Only light
travel

Trains and
light travel

Trains and
light travel

Must be
calculated for

Figure 2.1. The breakdown of costs factors for light travel journeys and trains.

In addition to these costs, there are other costs mainly for minor operations

that the locomotive performs or takes part of. They are however much

smaller in scale than the costs regarding driving the trains or light travel.

Two of the largest are consist busting and plugging the passenger trains

to power post. The consist busting operation are mostly performed in large

locations and there is usually local service driver who performs the consist

busting operations. However, if there are too many, some of the consist

busting operation must be planned to drivers, which leads to extra costs. In

minor locations the driver must do the operation always, which increases

working time and yields extra costs. The plugging of passenger wagons

to utility pole is also operation that is normally performed only in large

locations by the service driver. Thus, it does not usually lead to extra costs,
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but might if there are too many activities planned for the service driver.

Because the costs from these two activity groups are relatively small and

lead to extra costs rarely, thus they are not included as requirements to

the model.

2.4 Summary of the requirements

Below the requirements for the model are summarized:

[1] There are multiple locomotive types

[2] Number of locomotives in each locomotive type is limited

[3] Maximum number of locomotives for each train can be set

[4] Minimum number of traction for each train can be set

[5] Minimum turntime between trains can be set

[6] Consist busting is allowed

[7] The number of locomotives in each station and at all times must be

zero or greater

[8] Light travel is allowed

[9] Solution is found in a reasonable time

[10] The generated plan matches end of Sunday to start of Monday

[11] Costs of using locomotives are taken into account

[12] Light traveling is more expensive than balancing with excessive

traction on trains

With these 12 requirements literature can be reviewed to find are there

models sufficient to VR’s planning problem.
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3. Literature review

This chapter reviews literature to find most suitable optimization models

for VR’s LAP. To achieve this we review the optimization for LAPs, examine

whether there is a suitable model in other fields of research and compare

the most fitting models to the requirements presented in Section 2.4.

Finally we decide if some of the models is suitable to be implemented to

VR’s LAP.

First, the most potential models are identified from the surveys performed

on the LAP-field and study if there are potential other fields close to LAP

that could be used. In the field of locomotive allocation problem there are

two surveys published in the recent years. The surveys are done by Piu

and Speranza [2014] and by Eskola [2016]. The bachelor thesis of Eskola is

focused to the VR’s planning problem and reviews in depth three potential

approach to the problem. The survey done by Piu and Speranza is focused

to the whole field and classification of models. In addition to these two,

there is also an older survey by Cordeau et al. [1998]. However, it is over

20 years old and most of the studies are part of the survey by Piu and

Speranza. Thus, the focus is in these two first surveys on the LAP-field.

There are fields that study similar problems. The closest of them is maybe

the AAP , aircraft allocation problem. In LAP locomotives are planned to

trains and in the AAP planes are planned to flights. The core in both prob-

lems is very similar. However, based on the survey of Marla et al. [2018]

the aircraft model lack some of the key features such as the consist busting

and light traveling. Additionally, the crew rostering is also optimized at

the same time. Based on the master thesis of Porokka [2017] the crew

rostering in the VR’s environment is by itself extremely difficult task. Thus,

the differences between AAP and LAP are too great for implementing the

model from different field directly. Because of this the focus is solely to the
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field of locomotive allocation problems.

Based on survey by Piu and Speranza the models are divided into six

categories. These are: solving type (optimization/heuristic), number of

locomotive types, traffic type, model type, objective function and planning

phase. These are also presented in Table 3.1. None of the models fit com-

pletely to our problems criteria, as the goal is to find an optimization model

that minimizes the operation costs while supporting multiple locomotive

types. Model also need to be developed for both passenger and freight

traffic at long term planning phase. The modeling type of problem is not a

limiting factor. If the attention is limited to those optimization models that

allow multiple locomotives types to be planned and allow operating at least

freight traffic while minimize the operating costs we end up with six candi-

dates: Noble et al. [2001], Baceler and Garcia [2006], Ziarati et al. [2001],

Powell and Bouzaiene-Ayari [2007], Ahuja et al. [2005], Vaidyanathan et al.

[2008a]. In addition to these there are studies that are not in the study

and match the criteria at least partly.

Table 3.1. The classification of LAPs in Piu et al. [2015]

Class
Solving type Optimization Heuristic
Nr. of locomotive types Single Multi
Traffic type Passenger Freight
Model type Commodity flow Allocation
Objective function Operational costs Nr. of locomotives Other
Planning phase Day of operation Operational Strategic

The studies outside this article are Teichmann et al. [2015] that was

studied in the bachelor thesis of Eskola, which is too simple and lacks

many key features as the multiple locomotive types and light traveling

and studies of Caprara et al. [2007] and Rouillon et al. [2006]. Both meet

many of the requirement but are only focusing on the passenger trains,

this is a large downside, as the passenger and freight traffic operate on

different rules regarding the turntimes and consist busting. Also one of the

key differences is that the passenger trains seldom need the light travel

and most cases it is not included into solving process and secondly there

is not an option to assign more than single locomotive to a train - simply

because passenger trains never need more than one, for freight trains it is

very common to have more than one locomotive. The model of Jaumard

et al. [2014] matches the most of the criteria. It is an optimization model

supporting multiple locomotive types and minimizing the costs. It was

also selected as two of the most promising candidates for VR’s planning
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problem in the Eskola. Additionally there is an article in the Handbook of

Operations Research Applications at Railroads the author Vaidyanathan

and Ahuja [2015]. The section of locomotive planning section however is

not tested with real data and thus not directly applicable. It is also based

heavily to authors previous models that would thus be better candidates

for further research.

Based on the analysis from the surveys and looking from the studies

outside the surveys and other fields, we take a further look to two studies

that look most promising based on our criteria. These will be the Jaumard

et al. [2014] and Ahuja et al. [2005]. From these we will evaluate the

compatibly to requirements in the previous section and present shortly the

background.

The model of Ahuja et al. [2005] was done in collaboration with Canadian

railways. The model does fit well with the requirements. The modeling

is done as multicommodity flow. We present multicommodity flow more

in depth at the next chapter. The requirement [1] for supporting multiple

locomotive types is in model. It is satisfied as multicommodity flow models

naturally support multiple locomotives types. The requirement [2] for

limiting the available number of locomotives is also supported. The number

of used locomotives is calculated at single moment and limited there. As

the model requires that the amount of locomotives is constant at all times,

this limits the number of locomotives in the plan. The requirement [3] for

limiting the maximum number of locomotives in a train is supported. This

is easy to limit for each arc separately. The same is true for requirement

[4] to set a boundary for minimum number of pulling locomotives in a train.

This is however done by calculating the pulling power of locomotives, which

cannot be the case in Finland, as different track sections have different

pulling power requirements. This is not impossible to model differently but

would require changes in the model. The requirement for [5] is supported

in the model quite well. The consist busting operations are not modelled

as such. Instead each arriving train has an arrival node, from which the

locomotives move to the actual location node. The minimum turn time and

consist busting times are taken into account between the arriving node and

actual location node. For example, if a train A would arrive at 11:00 o’clock

the arrival node is created to 11:00 o’clock. However, if there is a turntime

of 30 minutes and 15 minutes reservation for consist busting operation

the locomotives are freed to actual location node only after those at 11:45
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o’clock. If there would have been a train departing 11:35 o’clock. There

would have been an instant travel arc between the arrival node of train A

and departure train B. The model must then decide does it use the instant

travel arc or does it free the locomotives to the location. This complicates

the problem quite much and probably is the reason for computation time

issues. However, the requirement [6] for consist busting is supported in the

model. The requirement [7] for balance in each location is also supported.

The number of locomotives must be greater or equal to zero at all arcs at

all times. Secondly the number of arriving locomotives per type must equal

to the number of departing locomotives. This satisfies the requirement.

The requirement [8] for light travel is supported by adding a predefined

set of light travel arcs to the model. This does not allow free movement

of locomotives at all times, unless we add them to every minute, but is

definitely good enough. The requirement [9] for computation time is not

satisfied by the model. The model was not able to find an optimal solution

even in the 72 hours computation time. The requirement [10] for cyclicity is

satisfied. The model links the arcs back to the first nodes. The requirement

[11] for locomotive based costs is satisfied. The also makes a difference

between pulling locomotives and transported ones. The requirement [12]

for driver based costs is satisfied with the model. The use of light travel

arcs triggers an extra cost. Overall the model matches the requirements

well. The only non-satisfied is the computation time. However, that is the

most crucial as the tight time window of 2 days planning time does not

allow over 72 hours calculation time.

Regarding the performance, it is often difficult to estimate the actual

performance before testing it. In this case the test sets were however

quite close to the ones in Finland. The test sets contained roughly 3000

trains, that is quite the same as the number in Finland. The number of

locomotives was however also 3000, which is much more than the fleet size

in VRs possession. However, the number of arcs is more relevant because

it determines the size of the network and thus the number of constraints.

Also, the number of light travel arcs was much smaller roughly 100. In

VRs plan the number of planned light travel arcs is closer to 500 in a week

and the set of possible candidates even larger. That would indicate that

the problem could be even harder to solve, as the resulting network is

much larger. This puts even larger risks to computation time, which is the

greatest downside in this model.
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The authors discovered a way to overcome this weakness. They noticed

that over 90% of the trains were identical on each weekday. When they

changed the problem to single day, they were able to obtain a optimal

solution. From this single day solution, they expanded it to all seven days

with heuristics and maintained relatively good level of plan. Finland has

less than 80% of the trains the same on each weekday. This might not

seem much less but could be the critical difference.

As a summary the model of Ahuja et al. is a promising candidate. However,

the performance is not good enough to be trusted. The trick they used to

overcome this is not as well applicable to VR’s problem and the model itself

would require adjustments especially in the modeling of minimum and

maximum number of locomotives.

The other interesting model developed by Jaumard et al. [2014] was made

in collaboration with Canadian railway company. The model does fit well

with the requirements. The modeling is done as multicommodity flow as

with the model in the previous article. As such the requirement [1] for

supporting multiple locomotive types is supported. The requirement [2] for

limiting the available number of locomotives is also supported. However,

the model counts the number of locomotives arriving to sink nodes. This

is problem as the problem should be cyclic and converting the equations

to circular problem, would also require changes in this. This complicates

the adoption of model as this would need to be changed also if the problem

is modelled as a cyclic. The requirement [3] for limiting the maximum

number of locomotives in a train is supported. This is easy to limit for

each arc separately. The same is true for requirement [4] to set a boundary

for minimum number of pulling locomotives in a train. The requirement

[5] for minimum turntime is modelled in the model. This is done in two

stages and the first step they use a concept of train string. These mean

that set of trains are combined to be driven with single consist and checked

that the turntime is ok within them. This is practically the turntime

calculation outside of the optimization. These train strings are iterated

between the solutions to find a global minimum. For each train string

they add a turntime including time for consist busting to the end of the

string. This is rather efficient type of dealing with turntime. However, the

requirement [6] for consist busting is supported in the model. The model

goes even further and tries to minimize the amount of consist busting. The

requirement [7] for balance in each location is also supported. The number
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of locomotives must always be greater or equal to zero at all arcs. Secondly

the number of arriving locomotives per type must equal to the number of

departing locomotives. This satisfies the requirement. The requirement

[8] for light travel is not part of the study but is still supported by adding

a predefined set of light travel arcs to the model. This does always not

allow free movement of locomotives, unless we add them to every minute,

but is good enough. The requirement [9] for computation time is on verge

of satisfaction. The test sets were able to find a solution between 1 − 4

hours, which is tolerable limit. The requirement [10] for cyclicity is not

satisfied. The model uses source and sink nodes. The requirement [11] for

locomotive based costs is satisfied. The also makes a difference between

pulling locomotives and transported ones. The requirement [12] for driver

based costs are not satisfied with the model. The use of light travel arcs

does not trigger an extra cost. Overall the model matches the requirements

quite well. The largest downsides are the requirements [2], [5] and [12].

Partly also the requirements [9] and [10].

The researchers were able to obtain optimal solutions in reasonable com-

puting times. The test sets were quite similar in size compared to VR.

The number of trains was between 1000− 2000 and number of locomotives

around 1000 that is higher. The number of light travels also raises worries.

It can quickly raise the size of the network. The exact performance in

Finnish environment however remains a question mark, as in general the

problem size is only one factor affecting the computation times.

The model takes into account the maintenance interval. This is not needed

in the VR’s long term planning and thus complicates the problem unneces-

sarily. It might be possible to drop out the feature, but it might have other

affects to model.

To summarize this model, it is not suitable as such to VR’s problem. It

misses too many requirements and changing would require much work.

The computation time however might not be an issue, as the maintenance

feature could be dropped off and thus simplifying the model. The exact

performance is still unknown because too many requirements were missing.

From performance point of view the key open question would be the adding

of driver costs.

As a summary from the whole literature review. There are no models that

could be used as such to VR’s planning problem. None of the models satisfy

all requirements. The model of Ahuja et al. [2005] satisfied all but the
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computation time requirement. But it is too critical to be passed, as the

planning process sets tight time window. However, all the requirements

for model were included in some of the models. This helps the development

of own model, which we do in the next chapter.
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4. Formal definition to VR’s planning
problem

In previous chapter we concluded that there none of the models in litera-

ture can be applied directly for VR’s planning problem. Thus we develop

our own in this chapter. As we know little about the performance and

based on literature review it is the largest risk, we develop two model

variants. This chapter formulates the problem into mathematical format

and develops the two model variants for the problem.

Before starting the development, we take a look on what information we

need for the model. In the VR’s locomotive allocation problem all trains

have 8 attributes:

1. Departing time.

2. Departing location.

3. Arriving time.

4. Arriving location.

5. Distance of the train travel.

6. Possible locomotive types that can pull the train.

7. Minimum number of locomotives to pull the train per locomotive

type.

8. Maximum number of locomotives that can be assigned to train per

locomotive type.
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4.1 Suitability of allocation and multicommodity flow models to
VR’s LAP

In literature there are two major ways to approach this problem. The first

approach is the modeling the problem as a commodity flow problem and

the second is modeling the problem as an allocation problem. The key

difference between these two types is how the next activity for a locomotive

is modelled. In the allocation method, each train will get the number of

locomotives assigned to it. The next activity is linked directly to the activity

and thus all locomotives are planned to the same next allocation. On the

contrary, in the multicommodity flow problem the trains are modelled as

arcs and each arc gets the number of assigned locomotives as in allocation

method. However, after arriving to a location the locomotives are freed to

a stock of that location, from which they can be freely distributed to the

next task.

The allocation method has an advantage on the turntime calculation. It is

a natural part of the pre-processing as the turntime can be easily checked

because the next activity is exactly specified. However, this method is not

very well suited to modeling of consist busting operations. It is mostly used

in passenger traffic modeling in which each train only has one locomotive.

The multicommodity flow problem is the more used approach. Compared

to the allocation method, it is better suited for taking care of light traveling

and consist busting. The turntime calculations can be taken into account

in the multicommodity flow problem, but based on the Ahuja et al. [2005]

and Vaidyanathan et al. [2008b], they might be a computational risk.

Furthermore, the minimum and maximum number of locomotives per

train is easily supported by this method.

We select the multicommodity flow as it offers better support for more key

requirements than the allocation method. The ability to perform consist

busting and light travel, as well as the ease of defining minimum and

maximum traction for multiple locomotive types outweights the potential

ease of turntime modeling of the allocation method.
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4.2 Construction of the multicommodity network

Now we start constructing the multicommodity flow network. It consists

from two things: nodes and arcs. In the LAP, each time locomotive is

moving either in time or "space", there needs to be an arc. Each point in

which three (not two) or more arcs meet, there needs to be a node. The

nodes have two attributes: location and time.

We model each train as an arc. Each arc has the attributes that the train

possess, and each arc is connected to two nodes. One that is the departure

of the corresponding train and the other that is the arrival of the train. In

addition to train arcs, we have also two other types of arcs. The second

type of arcs are the light travel arcs. They are similar to trains in all

other ways, but they are not needed to be driven. Thus, using them is

optional and but generates more costs, as they require a driver in addition

to locomotive based costs. The third type of arcs is parking arcs that

represent the railyard. These differ from train and light travel arcs in few

ways. First of all, they only move through time, not "space". The trains and

light travel arcs move through both time and space. The parking arcs are

always between two consecutive nodes in the same location and contain

the number of locomotives that are in the railyard during the duration of

the arc. Similarly to the train and light travel arcs, the parking arcs also

have the start and end nodes.

Figure 4.1. Example of commodity flow network in Finland. There are three locations,
inside which the parking arcs connect the nodes to next one within location.
The arcs crossing from location to location are the trains that need to be driven.
Number above the arcs represent the number of locomotives in the arc.

These three types of arcs and the nodes form the space time network to

which we construct our model. A visual example of the network is found in

Figure 4.1. These types of problems are multicommodity flows and more

information about them is available in the books of Bazaraa et al. [1990],

Assad [1978] and Ahuja et al. [1993] that address the multicommodity
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flows.

Now we form a formal definition. We denote the nodes with a set of N , in

which each node u has the attributes time t(u) and location l(u). There

are no subsets in this set The arcs create a set A, which consists of three

subsets. The subset AT consists of all the trains arcs, the subset AL consists

of all the light travel arcs, and the subset AP consists of the parking arcs.

Additionally there is a subset AM that contains all arcs that wrap from the

end of the week to start of the week. Each arc has a departure node and

an arrival node. Additionally, each arc has a distance and three vectors

of length k, where k ∈ K is the amount of different locomotive types. The

vector element k in first vector is denoted by Possiblek, which is a binary

number that represents whether the locomotive type k can be used for

driving the train. The second vector has elements Minimumk that tells

the number of locomotives of type k that are needed to drive the train. The

third vector has elements Maximumk that tell the maximum number of

locomotives of type k that can be assigned to the train. The list of attributes

for both arcs and nodes is represented in Table 4.1. These two sets of A

and N form the network G(N,A).

Table 4.1. The attributes of nodes and arcs in the optimization model.

Node Type Arc Type
Location String Departure node Node
Time Number Arrival node Node

Distance Number
Possiblek Vector, Binary
Minimumk Vector, Number
Maximumk Vector, Number

Additionally, we have the costs. For each locomotive type k, we have own

kilometre-based cost ck that contains the variable costs. The driver costs

are denoted by cDriver that defines the cost of a driver. This cost applies

only to light travel arcs, where there is need for additional driver resource.

For each train, we can assume there is already a driver and thus it has not

an impact to the result.

There are no arcs going backwards in time, except those crossing the

midnight between the Sunday and the Monday. Here, for each location, the

last node in time is connected to the first one in time of the same location,

in order to make the problem circular. In practice this means that each

location must have the same number of locomotives at the start than at

the end of the week. Trains crossing the midnight between the Sunday
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and Monday are connected like the next Monday would be the first. In

practice this means that we subtract 7 days from the arriving time of all

arcs crossing the midnight.

For each train, we must decide the driving locomotive type and the number

of assigned locomotives. Thus, we define for variables that each a ∈ AT ∪AL

has a binary variable vector x, where a(xk) ∈ 0, 1 states whether the

locomotive type k is used as the pulling locomotive type. Additionally,

define a vector y, where yk ≥ 0 gives the number of assigned locomotives of

type k for the arc.

4.3 Defining the model variant using driver costs

This section shows the construction of the model variant using driver

(V ariant D) costs based on the requirements in Section 2.4.

We use the notation of (u,w) to denote an arc from node u to node w. This

is used because some constraints demand to be precise about whether the

arrival and departure nodes are the same with one or more arcs in the

constraint.

We start the construction of model from the requirement [7]. The require-

ment stated that the number of locomotives must be always non-negative

in each location and each arriving locomotive must be assigned to exactly

one departing task. In terms of multicommodity flow, this means that no

commodities can appear or disappear. Each locomotive type is it’s own

commodity in the model. This is a fundamental part of all commodity flows,

with a small exception of sink or source nodes. In our case, the problem is

however circular and thus there are no sink or source nodes. This means

that everything that arrives to a node in the network must also depart

from it. In other words, this means that the number of arriving locomotives

of type k either from train arcs, light travel arcs or parking arcs must equal

to the number of departing locomotives of type k. This must hold for every

node in the network and therefore, we get

∑
(u,w)∈A

yk(u,w) =
∑

(u,w)∈A

yk(w, v) ∀w ∈ N ∧ k ∈ K, (4.1)

where u and v are any possible nodes. In this formula (u,w) represents all

arcs arriving to the node w and The (w, v) represents all arcs departing
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from the node w. This satisfies the requirement [7], as each arriving

locomotive is immediately assigned to a departing arc.

As a second constraint, we define a constraint that was not explicitly

stated in the requirements but rises from the variables we selected. This

is that all trains can have only one locomotive type assigned as pulling. In

addition, they must have at least one pulling locomotive type. This means

that there must always be 1 locomotive type assigned as pulling for all arcs

in AT . This yields the following

∑
k

xk(u, v) = 1 ∀(u, v) ∈ AT . (4.2)

This constraint comes from the way we defined the variables and is not

part of the original requirements it is more a real-world constraint that

comes from the properties of VR’s locomotive types. In some cases, in

real-world, there can be multiple different types of locomotives pulling a

train, but this is not considered in this model.

In addition to the previous constraint, we must ensure that the selected

locomotive type is also a possible one. For example, we cannot assign an

electric locomotive type to unelectrified tracks or a locomotive that has top

speed of 120 km/h for a train that travels 200 km/h. Thus, the selected

locomotive type must be a possible one for the given arc. This must be true

for all arcs and thus we get following constraint,

xk(u, v) ≤ Possiblek(u, v) ∀(u, v) ∈ A. (4.3)

Then we can start going through the rest of the requirements. The re-

quirement [1] is to support multiple locomotive types. We have defined the

model to support k different locomotive types and thus this requirement is

satisfied. The next requirement [2] is that the number of each locomotive

type is limited. To limit the number of locomotives available in the plan,

we count them in the arcs crossing the midnight between Sunday and

Monday and add a restriction there for each locomotive type. Thus, we get

an constraint

∑
(u,w)∈AM

yk(u, v) = Typek ∀k ∈ K, (4.4)
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where AM ∈ A is the set of all arcs crossing the midnight between Sunday

and Monday, and Typek is the number of locomotives of locomotive types k.

This constraint satisfies the requirement [1], as the number of locomotives

that can be used is limited per locomotive type.

The requirement [3] is that each train has a maximum number of loco-

motives that can be assigned to the train. To satisfy this we define an

constraint,

yk(u, v) ≤ Maximumk(u, v) ∀(u, v) ∈ AT ∧ k ∈ K. (4.5)

The requirement [4] states that each train must have enough locomotives

to pull the train. As we have defined that the pulling locomotive types is

stated in the variable x, we can define an constraint

yk(u, v) ≥ xk(u, v) ·Minimumk(u, v) ∀(u, v) ∈ AT ∧ k ∈ K. (4.6)

If the locomotive type k is assigned as pulling, the constraint simplifies to

a format that the number of locomotives assigned to the train must be at

least the minimum number of locomotives of type k to pull the train. On

the other hand, if the locomotive type k is not selected, the right-hand side

is 0 and the constraint is always satisfied.

The requirement [5] for minimum turntime between trains is handled

in the next chapter. The requirement [6] for allowing consist busting is

satisfied by the model. The locomotives are handled as separate entities

and only the number of them is tracked. This allows the model to freely

create consists and dismantle them. The requirement [7] for having the

number of locomotives in each location to be always greater than zero. In

this model, the number of locomotives in a location is stored in the parking

arcs. For them, we have defined the variable y that is always non-negative.

Together with Constraint (4.1) this satisfies the requirement [7] because

the number of locomotives is always at least 0. The requirement [8] for

light travel is also taken into account with the model, as they have their

own subgroup AL.

The requirement [9] for reasonable computation time is tested in the later

chapters. The model also satisfies the requirement [10] for continuity from

Sunday to Monday because the model is cyclic, which means that the arcs

from the end of the week are connected to corresponding ones in the start
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of the week.

Before going to last two requirements we need to complete the model

variant with two extra requirement that are not in the original list. If

not denied, the model allows planning of locomotive transports. Transport

means that the locomotive is attached to a train as a wagon and is not

used to pull the train. This can be done as an operational decision, but

transports are not planned in the long-term planning phase for trains and

thus must be denied. The constraint for transport denial is

yk(u, v) ≤ Maximumk(u, v) · xk(u, v) ∀(u, v) ∈ AT ∪AL. (4.7)

This means that if the locomotive type k is not selected as pulling, the

number of locomotives can be at most 0. If the locomotive type k is se-

lected as pulling, the number of locomotives that can be assigned is the

Maximumk(u, v)

The second extra requirement is that if a light travel arc has assigned

locomotives, it needs to have a pulling locomotive type assigned to the

arc. This is separately needed for light travel arcs as Constraint (4.2) is

only defined for train arcs. Without this extra requirement the objective

function would not work properly. However, the previous constraint takes

care of this as well. If a light travel arc (u, v) has a locomotive of type k

assigned to it, Constraint (4.7) is not true, unless the type k is defined as

pulling type. This allows the light travel arcs to have multiple pulling

locomotive types. However, this is not a problem as the light travel arcs do

not have timetables yet and their exact times are to be defined later. In

this planning phase the timetable can be requested for each locomotive

type separately and we can take into account the driver cost for each of

these separate light travel arcs in the model.

Now we can construct the objective function to minimize the costs. There

are two requirements for this part. First is the requirement [11] that states

that the locomotive based costs must be taken into account. These mainly

consist of energy and maintenance costs. The energy consumption is

roughly linear to the distance travelled. The same is true for maintenance,

as the maintenance intervals are based on the kilometer limits. Thus, we

can define constraint
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TrainCosts =
∑

(u,w)∈AT∪AL

∑
k∈K

yk(u, v) ·Distance(u, v) · ck,

where TrainCosts is the sum of locomotive kilometers travelled multiplied

by the locomotive type specific cost factor ck.

The second requirement [12] is that the light traveling must be more

expensive than using existing trains. This is modelled with the driver costs

that is assigned for each new light travel arc per locomotive type. Recall

that we allowed more than one locomotive type be marked as pulling type

for light travel arcs. Thus, we get

Driver =
∑

(u,w)∈AL

∑
k∈K

xk(u, v) · CDriver,

where DriverCosts is the sum of all new light travel arc kilometers per

locomotive types. The driver costs are actually much more complicated to

calculate, as the drivers are paid the basic salary in any case. However,

the billing is done based on driver kilometers and thus modeling them as

kilometer-based is good enough way of modeling the costs.

The total costs are the sum of these two, which is minimized during the

optimization.

Minimize(TrainCosts+DriverCosts).

Now our Variant D is ready. The model itself satisfies all the requirements,

except the requirement [5] that is addressed in the next chapter and

requirement [9] that can be only tested with real planning data.

4.4 Defining the model variant without driver cost

Because of the requirement [9] for computation time, we create an another

model variant (V ariant N ) that is easier to solve. The calculation of driver

costs independently from the locomotive-based kilometer costs complicates

the problem, as there are more variables that affect the total costs. This

model variant does not take driver costs into account, but makes the light

traveling simply twice as expensive as the train kilometers. In practice it

might give good enough solutions.
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Formal definition to VR’s planning problem

In this case, the constraints are equal to the previous one and the only

difference comes in the objective function.

As for the objective function the part for TrainCosts stays identical. Thus

the first requirement [11] is satisfied as in the first model.

The other requirement [12] is that the light traveling must be more ex-

pensive than using existing trains. This is modelled by making the light

travel kilometers twice as expensive. Thus our driver costs are the sum of

locomotive kilometers travelled in the light travel arcs multiplied by the

locomotive type specific cost factor.

LightTravelCost =
∑

(u,w)∈AL

∑
k∈K

yk(u, v) ·Distance(u, v) · ck.

The total costs are the sum of these two, which is minimized during the

optimization.

Minimize(TrainCosts+ LightTravelCost).

Thus, our Variant N is ready. The model itself satisfies all the requirements,

except the requirement [5] that is done in the next chapter, and partly

the requirement [12] that is modelled not by train kilometers in the light

travel arcs, but with locomotive kilometers.
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5. Development of data pre-processing
algorithms

As we left the requirement [5] out of the scope of the model variants we

need a pre-processing algorithm to satisfy the requirement. Additionally,

we need to define procedure for adding the light travel arcs and parking

arcs to the data. This chapter constructs three different pre-processing

algorithm versions to ensure that the the requirements are met, as we do

not know the best way to take the requirement into account while still

achieving results in reasonable time.

5.1 Development of minimal pre-processing

The lightest form of pre-processing consists of adding a set of light travel

arcs, adding standard turntimes to each train, and creating the parking

arcs to each location.

As stated before, the light travel arcs are created to ensure both the

feasibility and the efficiency of the plan, otherwise the locomotive fleet

might not be sufficient in numbers to operate the given set of trains. The

locomotives need to be able to move between locations quite freely, so the

number of light travel arcs are going to be quite high, even though only a

small partition of them will be used in the plan.

We create the light travel arcs in two phases. The first phase consists of

creating arcs related to the minor locations and the second phase consists

of creation of light travel arcs between the major locations. In the first

phase, we generate two lists, one containing all the arcs that end to a

minor location and an another that contains all the arcs that start from

a minor location. For those arcs that depart from a minor location light

travel arcs are generated before each departing train. The time reserved

between a train and a light travel arc is defined by a parameter (usually

29



Development of data pre-processing algorithms

10− 20 minutes). Each minor location has also predefined options to which

locations the light travel arcs are created, how long the travel time is, how

long the driving distance is, and what are the possible locomotive types

that can use the light travel arc. The same process is applied to the train

arcs that arrive to a minor location. In the second phase, we generate

the light travel arcs between the major locations based on a time interval

parameter (usually 2 hours). This means that after every 2 hours we add

a new set of light travel arcs from each major location to the neighboring

major locations. As in the first phase, for each major station the possible

light travel route destinations are listed and contain the same information

about the travel time, distance and the possible locomotive types. After

these two phases we have created all needed light travel arcs.

The turntime is added to end of each arc based on a standard turntime.

Additionally, we have separate a turntime that is added only for the light

travel arcs. In the beginning of each train there is a time reservation for

the train related activities such as a brake testing etc. These activities we

receive from VR and do not need a logic for adding them before trains.

In the final phase of the pre-processing we add the parking arcs. For each

location all events that involve locomotive (=each end and start of an arc)

are sorted by the time of the event and between two consecutive events we

create a parking arc. After this we have done all phases that are required

for minimal pre-processing.

5.2 Development of passenger pre-processing

The minimal pre-processing has only one standard turntime for every train

to train connection. However, there are many passenger to passenger

train connections, in which the turntime is significantly shorter and the

locomotives are wanted to be kept attached to the passenger wagons. To

tackle these cases, we define new phase to the pre-processing algorithm,

before the creation of the light travel arcs.

The passenger pre-processing is based on the passenger wagon circulation.

We assume that if the duration between two passenger trains that operate

on the same wagons is less than the time required to perform all operations

related in the switching of the locomotive to an another one, the train to

train connection is worth of connecting to single arc. Making this choice
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leads us to combine most trains using the MVO-class wagons, as they

have relatively high time requirement for switching the locomotive. The

MVO-class means that the locomotive can be used for both pulling and

pushing the train and thus never needs to be moved to the other end of the

train. Even if there is a possibility to switch the locomotive that is done

very rarely because the wagons need to be always kept electrified either

via locomotive or via power post. Thus switching the locomotives generates

much extra work for personnel that is wanted to be kept at minimum.

To link the trains with the wagon circulation we have a table that defines

the wagon circulation and a parameter for each location and wagon class

that tells the maximum time the trains can have in between in order to

be combined to a single arc. The combining process is done by traversing

through the wagon circulation train by train and after each train the time

between the arriving and the departing train is checked and if it is shorter

than the specific parameter the arcs are combined. In this phase, we also

check the possible traction of both arcs and if necessary change them to

such that all locomotive requirements are met.

5.3 Development of LiFo pre-processing

In addition to passenger train turntimes there are few similar cases for

freight trains in smaller locations in which the standard turntime does

not properly hold. These are cases in which the locomotive starts service

operation immediately after arriving to the minor location and then departs

immediately after service operation has ended. Combining these into single

arcs prevents also the possibility of making a consists busting operation

that is difficult to execute in minor locations, as they need to be done by

driver alone. Secondly, this simplifies the problem and thus could lead to a

better performance. However, this can also limit the options that optimizer

has in moving locomotives between major locations.

The process is repeated for all minor locations and performed after the

added passenger pre-processing phase. We define this pre-processing

algorithm as following:

1. Select a set of arcs arriving to minor locations and sort them based

on the end time

2. Start with the arc that has the earliest end time
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3. Search the first departing arc after the arrival of the selected arc in

the arrival location.

4. Check that the found arc has at least one same possible pulling

locomotive type and range for possible number of locomotives than

the arc selected in step 1. If this is not satisfied, then find a next

departing arc after the current and repeat until suitable arc is found

or end of the arcs list is reached.

5. Check if the found arc is within the location’s specific maximum gap.

If it is, then combine the arcs. Otherwise select the next arriving arc

and go back to 2.

The result should be that we have very few arcs ending or starting in minor

locations after this phase. Note that there is no need to perform this for

departing arcs, as all possible pairs are found in this phase. For those

few arcs that are not combined in this phase, the normal pre-processing

creates needed light travel arcs.
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6. Testing of model variants and
pre-processing algorithms in
different scenarios

In this chapter, we create the test scenarios, apply different pre-processing

algorithms to them, optimize the test sets with both model variants, and

report the obtained results. This is done to find out the most suitable

model-algorithm combination in the next chapter. In this chapter, we

focus on comparing the differences in produced plans between each model-

algorithm combination within each test scenario, not yet comparing the

overall performance of the combinations across the scenarios. The test

scenarios that are based on a real set of activities that were planned for

one week during Autumn of 2018 in the long-term planning phase. In the

results we report the total costs of the plan, run time of optimization, small

breakdown of the cost factors and discuss the other aspects of robustness.

The main interest is in the amount of light travel, as it is the most impor-

tant cost factor during this phase of the planning and a key component for

the robustness.

The optimization models are solved using CPLEX that is run on a basic

laptop that has Intel Core i7-6600 CPU using two 2.60 GHz cores and 8Gt

of RAM memory. The CPLEX version that is used is 12.8. on Windows 10

operating system. During the tests we do not use any other programs in

the computer.

6.1 Creation of the test sets

We generate multiple test sets from the data provided by VR. The main

things we want to investigate are the differences in performance, cost

efficiency, and robustness between the plans produced by the two model

variants and the three pre-processing algorithms. To investigate the per-

formance, we divide the sets into two main categories, the ones that are
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one day-long and to the others that are week-long. In order to test other

aspects, we create multiple different test scenarios, which each contain the

6 different test sets, as we have three different preprocessing algorithms

for both week-long and day-long categories.

Naturally one test scenario is the planning of all four locomotive types

at once. However, to examine the effects of different pre-processing al-

gorithms and model variants have to the plan in different situations, we

create three other test scenarios. First, we create a test scenario using

only a single electric locomotive type, this allows us to examine the effects

to light traveling and consist busting in more detail because they have

highest light travel rate and highest consist busting rate of the electric

locomotive type. As for second scenario we select only the two electric loco-

motive types, this allows us to examine especially the effect of passenger

pre-prepossessing and tight turns, as most of the passenger trains are

operated using these locomotives. As the last scenario we select both diesel

locomotive types, this allows us to examine especially the effects of LiFo

pre-processing because most of the minor location service operations are

done using the diesel locomotives. The test layout is presented in Figure

6.1.

For brevity, we refer on these two chapters the different pre-processing

algorithms in the tables as pure, pax, and LiFo respectively meaning mini-

mal pre-processing, passenger pre-processing, and LiFo pre-processing.

We use the number of nodes as the most representative for the size of

the problem because the heaviest calculation is maintaining the balance

within each node. Thus, it is better approximation for size than the number

of arcs, as there is always at least three arcs connected to a node.

The first test scenario contains the sets for single electric locomotive type,

this is the most common plan case according to VR. The details are shown

in Table 6.1. The passenger pre-processing decreases the number of nodes

by 4−5% in this scenario and the LiFo pre-processing decreases the number

of nodes by 29 − 31% from the original size. For every set we add set of

light travel arcs that is 2-3 times the size of the number of the train arcs.

The second test scenario contains the sets for two electric locomotive types,

this is a planning case relative seldom according to VR. The details are

shown in Table 6.2. The passenger pre-processing decreases the number of

nodes by 18− 19% in this scenario and the LiFo pre-processing decreases
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Figure 6.1. The test layout of test scenarios and sets.

Table 6.1. Information on test sets containing planning data for single electric locomotive
type test scenario

Day-long set
. Pure Pax Full

Trains 224 224 224
Arcs 224 209 163
Lt-arcs 594 568 434
Nodes 1 303 1 236 931
Compression 100 % 95 % 71 %

Week-long set
Pure Pax Full

1 432 1 432 1 432
1 432 1 342 997
3 827 3 745 2 677
8 347 8 050 5 692
100 % 96 % 68 %

the number of nodes by 41− 47% from the original size. For every set we

add set of light travel arcs that is roughly 2 times the size of the number

of the train arcs.

Table 6.2. Information on test sets containing planning data for two diesel locomotive
types test scenario

Day-long set
. Pure Pax Full

Trains 431 431 431
Arcs 431 335 260
Lt-arcs 822 689 486
Nodes 2 055 1 675 1 204
Compression 100 % 82 % 59 %

Week-long set
Pure Pax Full

2 824 2 824 2 824
2 824 2 167 1 587
5 418 4 528 2 874
13 462 10 882 7 133
100 % 81 % 53 %
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The third test scenario contains the sets for two diesel locomotive types,

this is the second most common planning case according to VR. The details

are shown in Table 6.3. The passenger pre-processing does nothing in

this set, as there are only a few passenger trains in the set. The LiFo pre-

processing decreases the number of nodes by 30− 31% from the original

size. For every set we add set of light travel arcs that is 2-3 times the size

of the number of the train arcs.

Table 6.3. Information on test sets containing planning data for two electric locomotive
types test scenario

Day-long set
. Pure Pax Full

Trains 204 204 204
Arcs 204 204 138
Lt-arcs 666 666 488
Nodes 1 399 1 399 974
Compression 100 % 100 % 70 %

Week-long set
Pure Pax Full

1 117 1 117 1 117
1 117 1 117 726
3 962 3 962 2 921
8 008 8 008 5 522
100 % 100 % 69 %

The last test scenario contains the sets for all four locomotive types, this

the quite common planning case according to VR. The details are shown in

Table 6.4. The passenger pre-processing decreases the number of nodes

by 12 − 14% in this scenario and the LiFo pre-processing decreases the

number of nodes by 43− 48% from the original size. For every set we add

set of light travel arcs that is almost twice the size of the number of the

train arcs.

Table 6.4. Information on test sets containing planning data for all four locomotive types
test scenario

Day-long set
. Pure Pax Full

Trains 635 635 635
Arcs 635 539 392
Lt-arcs 1 200 1 067 662
Nodes 3 050 2 675 1 738
Compression 100 % 88 % 57 %

Week-long set
Pure Pax Full

3 941 3 941 3 941
3 941 3 284 2 297
7 379 6 479 3 707
18 641 16 093 9 776
100 % 86 % 52 %

Now we have all test sets created and presented and we can move to testing

the developed model variants and compare the effects of the different pre-

processing algorithms to the results.

36



Testing of model variants and pre-processing algorithms in different scenarios

6.2 Optimization of the test sets

In this section we report results from the produced plans in different test

scenarios. For Variant N, we report the costs calculated with the driver

costs to make the results comparable to the other optimization model. The

objective function of Variant D is selected, as it better represents the real

costs that we aim to minimize.

For each test set we report the run time of the model, the costs, number

of train kilometers, number of locomotive kilometers and total distance of

used light travel arcs as well the total distance for locomotives that used

the light travel arcs. These are reported for each pre-processing algorithm

separately. Additionally we discuss the other aspects of robustness for

the selected scenarios. The number of tight turns is evaluated in major

locations when the locomotive count turns to zero. The consist busting

operations are examined mainly in the minor locations when there are at

least two locomotives at the same time present in the location.

Because we are interested in obtaining a solution in reasonable time, we

limit the calculation time to 1 hour if the model does not seem to reach the

optimal solution otherwise. If the optimizer has found solution by then

it might still be an optimal, but the optimality is not proven. However,

the lack of optimality is not a problem if the produced plan is still a cost

efficient plan.

6.2.1 Single electric locomotive type

The test scenario for single locomotive type proved to be the second easiest

problem to solve. The exact results are shown in Table 6.5. All the test

sets generated based on this scenario are solvable within reasonable time

by both model variants. For both model variants the LiFo pre-possessed

test set is the fastest to solve and the one using minimal pre-processing is

the slowest.

In terms of costs, the LiFo pre-possessed achieved the worst result with

both model variants. Compared to the minimal pre-processing the passen-

ger pre-processing diminished the costs in Variant N and in the week-long

set for the Variant D. The explanation for this is that the passenger pre-

processing allows some turntimes that are less than the standard turntime.

Otherwise the explanation for the rise in costs comes is the increase in the
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light traveling kilometers.

This scenario was crafted to evaluate the performance on the consist

busting aspect. In terms of that there are differences between models and

pre-processing algorithms. Variant D produces a plan with significantly

lower amount of consist busting operations in the minor locations. On the

algorithm side the LiFo pre-processing generates the least consist busting

operations, whereas the minimal and passenger pre-processing end up in

stalemate on this category.
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Table 6.5. The results of single locomotive type dataset. The Lt* means Light travel and
represent the kilometer count of light travel that needs a driver. The Loc Lt*
km is larger than this because there can be more than one locomotive traveling
at the same time.

Variant N
Day-long Pure Pax Full Pax Full

Time 9 8 7 -13 % -22 %
Arcs 1 303 1 236 931 -5 % -29 %
Cost 156 050 155 578 165 216 0 % 6 %
Train km 36 922 36 922 36 922 0 % 0 %
Lt* km 3 152 2 968 4 488 -6 % 42 %
Loc km 47 814 47 902 49 088 0 % 3 %
Loc Lt*km 3 674 3 914 5 578 7 % 52 %

Week-long Pure Pax Full Pax Full

Time 88 80 63 -9 % -29 %
Arcs 8 347 8 050 5 692 -4 % -32 %
Cost 854 384 852 985 903 318 0 % 6 %
Train km 233 161 233 161 233 161 0 % 0 %
Lt* km 4 220 3 982 9 966 -6 % 136 %
Loc km 279 168 279 019 287 818 0 % 3 %
Loc Lt*km 4 932 4 672 13 308 -5 % 170 %

Variant D
Day-long Pure Pax Full Pax Full

Time 13 10 8 -19 % -35 %
Arcs 1 303 1 236 931 -5 % -29 %
Cost 152 851 154 086 161 730 1 % 6 %
Train km 36 922 36 922 36 922 0 % 0 %
Lt* km 2 284 2 316 2 832 1 % 24 %
Loc km 47 905 48 274 50 134 1 % 5 %
Loc Lt*km 3 380 3 262 4 104 -3 % 21 %

Week-long Pure Pax Full Pax Full

Time 146 131 80 -10 % -45 %
Arcs 8 347 8 050 5 692 -4 % -32 %
Cost 851 579 850 452 897 338 0 % 5 %
Train km 233 161 233 161 233 161 0 % 0 %
Lt* km 3 128 2 946 8 204 -6 % 162 %
Loc km 279 689 279 556 288 174 0 % 3 %
Loc Lt*km 4 302 4 280 12 472 -1 % 190 %

6.2.2 Two electric locomotive types

The test scenario for two electric locomotive types proved to be the second

hardest problem to solve. The exact results are shown in Table 6.6. Every

of the day-long test sets in this scenario is solvable within reasonable time

by both model variants. However, the week-long test set is only solvable
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by Variant N, but Variant D produces still a better plan within the one

hour calculation time. For both model variants the LiFo pre-possessed test

set is the fastest to solve and the one using minimal pre-processing is the

slowest. Thus, we tested if the LiFo pre-processed test set could be solved

in longer calculation time but we terminated the calculation after 6 hours.

In terms of costs, the LiFo pre-possessed achieved the worst result with

both model variants. Compared to the minimal pre-processing the passen-

ger pre-processing increased the costs in all sets except in the week-long

set with driver costs, where the produced solutions were equal in terms of

cost efficiency. The largest explanation for the rise in costs comes is the

increase in the light traveling kilometers. However, in this scenario the

utilization rate of cheaper locomotive type also plays a minor role, but this

only explains 10% of the cost increase between the LiFo and the minimal

pre-processing, which means the effect is 0, 4% at the most in this scenario.

This scenario was crafted to evaluate the performance on the tight turns as-

pect. In terms of that there are no differences between models, nevertheless

between pre-processing algorithms there are. The minimal pre-processing

produces the plan containing the largest number of tight turns. This is

estimated by searching the moments, in which the number of locomotive

type turns to zero in a major location and examining these bottle necks

more closely. The other two pre-processing algorithms perform better but

there is no significant difference between them in terms of number of tight

turns.
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Table 6.6. The results of two electric locomotive types dataset. The Lt* means Light travel
and represent the kilometer count of light travel that needs a driver. The Loc
Lt* km is larger than this because there can be more than one locomotive
traveling at the same time.

Variant N
Day-long Pure Pax Full Pax Full

Time 12 10 10 -18 % -18 %
Arcs 2 055 1 675 1 204 -18 % -41 %
Cost 267 911 268 132 277 938 0 % 4 %
Train km 79 855 79 855 79 855 0 % 0 %
Lt* km 3 416 3 314 4 406 -3 % 29 %
Loc km 93 038 93 079 94 401 0 % 1 %
Loc Lt*km 4 266 4 176 5 508 -2 % 29 %

Week-long Pure Pax Full Pax Full

Time 436 343 131 -21 % -70 %
Arcs 13 462 10 882 7 133 -19 % -47 %
Cost 1 685 627 1 690 462 1 756 798 0 % 4 %
Train km 527 000 527 000 527 000 0 % 0 %
Lt* km 13 428 13 902 20 292 4 % 51 %
Loc km 596 858 597 234 609 777 0 % 2 %
Loc Lt*km 15 006 15 770 24 740 5 % 65 %

Variant D
Day-long Pure Pax Full Pax Full

Time 18 17 9 -9 % -50 %
Arcs 2 055 1 675 1 204 -18 % -41 %
Cost 262 365 263 894 273 882 1 % 4 %
Train km 79 855 79 855 79 855 0 % 0 %
Lt* km 1 800 1 840 2 504 2 % 39 %
Loc km 92 501 92 668 95 029 0 % 3 %
Loc Lt*km 2 898 2 972 3 788 3 % 31 %

Week-long Pure Pax Full Pax Full

Time 3 720 3 720 3 720 0 % 0 %
Arcs 13 462 10 882 7 133 -19 % -47 %
Cost 1 671 809 1 671 809 1 734 573 0 % 4 %
Train km 527 000 527 000 527 000 0 % 0 %
Lt* km 6 996 7 120 13 012 2 % 86 %
Loc km 597 622 598 053 609 929 0 % 2 %
Loc Lt*km 10 456 11 110 21 000 6 % 101 %

6.2.3 Two diesel locomotive types

The test scenario for two diesel locomotive types proved to be the easiest

problem to solve. The exact results are shown in Table 6.7. Both model

variant can solve every test set in this scenario within reasonable time. The

LiFo pre-possessed test set is the fastest to solve for both model variants
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but this time the passenger pre-processed test set was the slowest in most

cases. This is rather surprising, as the passenger pre-processing perform

no arc combinations in this test scenario. For the week-long test sets the

effect to calculation time is over 400% when it is optimized by Variant D.

This explanation for this effect is unknown this is the only test scenario in

which this occurred.

In terms of costs, the LiFo pre-possessed achieved the worst result with

both model variants. As the passenger pre-processing does not perform any

combinations in this scenario, the results between minimal and passenger

pre-processed sets are identical. Apart from a small difference in day-long

test set, which is explained by that there is a difference with single light

travel arc that could have been chosen either way and Variant N sees no

difference between these two options. Between LiFo and minimal pre-

processed sets the largest explanation for the rise in costs comes from the

increase in the light traveling kilometers. However, in this scenario the

LiFo preprocessing also rises the amount of locomotive kilometers, which

is caused by the combination of arcs in the minor locations.

This scenario was crafted to evaluate the performance on the tight turns

and consist busting aspects. In terms of these, there are differences be-

tween both model variants and pre-processing algorithms. Variant D

performs less consist busting operations than the other variant but be-

tween the number of tight turns there is no difference in this test scenario.

Regarding the pre-processing algorithms, the minimal and passenger pre-

processing end up in a stalemate in this test scenario. Nevertheless, LiFo

pre-processing produces the plan with the least consist busting operations

and performs equally in terms of number of tight turns compared to the

other two algorithms.
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Table 6.7. The results of two diesel locomotive types. The Lt* means Light travel and
represent the kilometer count of light travel that needs a driver. The Loc Lt*
km is larger than this because there can be more than one locomotive traveling
at the same time.

Variant N
Day-long Pure Pax Full Pax Full

Time 8 12 6 52 % -23 %
Arcs 1 399 1 399 974 0 % -30 %
Cost 283 680 284 056 303 186 0 % 7 %
Train km 25 622 25 622 25 622 0 % 0 %
Lt* km 1 042 1 136 1 892 9 % 82 %
Loc km 36 864 36 864 39 158 0 % 6 %
Loc Lt*km 1 530 1 530 2 824 0 % 85 %

Week-long Pure Pax Full Pax Full

Time 128 118 54 -8 % -58 %
Arcs 8 008 8 008 5 522 0 % -31 %
Cost 1 135 941 1 135 701 1 255 323 0 % 11 %
Train km 99 316 99 316 99 316 0 % 0 %
Lt* km 1 536 1 476 7 576 -4 % 393 %
Loc km 146 607 146 607 160 693 0 % 10 %
Loc Lt*km 2 324 2 324 9 392 0 % 304 %

Variant D
Day-long Pure Pax Full Pax Full

Time 8 9 7 12 % -10 %
Arcs 1 399 1 399 974 0 % -30 %
Cost 283 680 283 680 303 186 0 % 7 %
Train km 25 622 25 622 25 622 0 % 0 %
Lt* km 1 042 1 042 1 892 0 % 82 %
Loc km 36 864 36 864 39 158 0 % 6 %
Loc Lt*km 1 530 1 530 2 824 0 % 85 %

Week-long Pure Pax Full Pax Full

Time 892 4 479 164 402 % -82 %
Arcs 8 008 8 008 5 522 0 % -31 %
Cost 1 135 450 1 135 450 1 251 344 0 % 10 %
Train km 99 316 99 316 99 316 0 % 0 %
Lt* km 1 250 1 250 6 286 0 % 403 %
Loc km 147 098 147 098 161 788 0 % 10 %
Loc Lt*km 1 986 1 986 8 708 0 % 338 %

6.2.4 Four locomotive types

The test scenario for all four locomotive types proved to be the hardest

problem to solve. The exact results are shown in Table 6.8. Both model

variant can solve every one of the day-long test sets within reasonable time.

However, the week-long test set are not solvable optimally by neither of
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the model variants but both variants produce a plan within the one-hour

calculation time. The LiFo pre-possessed test set is the fastest to solve

for both variants, whereas the slowest set to be solved is the one using

minimal pre-processing.

In terms of costs, the LiFo pre-possessed achieved the worst result with

both model variants. The passenger pre-processing increased the costs

in both sets optimized by Variant D when compared to the minimal pre-

processing, however when the sets were optimized by Variant N, the costs

passenger pre-processing achieved lower costs. The largest explanation for

the rise in costs comes from the increase in the light traveling kilometers.

However, in this scenario the utilization rate of cheaper locomotive type

also plays a minor role but this effect only explains 5 − 10% of the cost

differences between the LiFo and the minimal pre-processing, which means

the effect is 0, 3− 0.6% at the most in this set.
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Table 6.8. The results of four locomotive types dataset. The Lt* means Light travel and
represent the kilometer count of light travel that needs a driver. The Loc Lt*
km is larger than this because there can be more than one locomotive traveling
at the same time.

Variant N
Day-long Pure Pax Full Pax Full

Time 58 27 11 -53 % -81 %
Arcs 3 050 2 675 1 738 -12 % -43 %
Cost 546 738 546 241 577 330 0 % 6 %
Train km 105 477 105 477 105 477 0 % 0 %
Lt* km 4 146 3 876 5 708 -7 % 38 %
Loc km 129 424 129 202 133 635 0 % 3 %
Loc Lt*km 5 226 4 896 7 848 -6 % 50 %

Week-long Pure Pax Full Pax Full

Time 3 720 3 720 3 720 0 % 0 %
Arcs 18 640 16 092 9 775 -14 % -48 %
Cost 2 824 643 2 819 463 2 998 859 0 % 6 %
Train km 626 316 626 316 626 316 0 % 0 %
Lt* km 16 030 15 408 27 738 -4 % 73 %
Loc km 745 677 743 889 770 437 0 % 3 %
Loc Lt*km 19 110 18 414 33 348 -4 % 75 %

Variant D
Day-long Pure Pax Full Pax Full

Time 120 96 37 -20 % -69 %
Arcs 3 050 2 675 1 738 -12 % -43 %
Cost 540 942 542 550 574 083 0 % 6 %
Train km 105 477 105 477 105 477 0 % 0 %
Lt* km 2 332 2 584 4 372 11 % 87 %
Loc km 128 990 129 072 133 786 0 % 4 %
Loc Lt*km 3 818 4 082 6 564 7 % 72 %

Week-long Pure Pax Full Pax Full

Time 3 720 3 720 3 720 0 % 0 %
Arcs 18 640 16 092 9 775 -14 % -48 %
Cost 2 799 420 2 811 084 2 976 503 0 % 6 %
Train km 626 316 626 316 626 316 0 % 0 %
Lt* km 7 736 8 668 18 226 12 % 136 %
Loc km 743 641 744 603 769 979 0 % 4 %
Loc Lt*km 11 902 12 808 27 798 8 % 134 %

45



7. Comparison of the optimization
model variants and pre-processing
algorithms

Chapter 6 used four test scenarios to compare the two model variants and

pre-processing algorithms in terms of cost-efficiency and robustness. The

third criterion of computational performance was found to be satisfactory,

as it was able to produce a plan within the one-hour time limit, and there-

fore need not be considered. In order to determine the best combination

of model variant and pre-processing algorithm, this chapter first selects

the most suitable model variant and then a pre-processing algorithm is

identified for the selected model.

7.1 Comparison between the two model variants

The differences in the costs efficiency of the two model variants are pre-

sented in Figure 7.1. The figure shows that in each of the test sets, Variant

D performs better or at least as well as Variant N. The smallest difference

(0% and 0.3%)was observed in the diesel test scenario, while the largest

difference (1.1% to 2.9%) was found in the test scenario for two electric lo-

comotive types. Thus, Variant D performs better in terms of cost-efficiency,

as it always produces better or at least as good a solution as the variant

without driver costs.

The second criterion is the robustness of the plan, which consists of three

factors: the number of light traveling kilometers, consist busting operations

(especially in minor locations), and tight turns. The amount of light travel

is the easiest criterion to compare and is significantly lower in Variant D.

The results of this comparison are shown in Figure 7.2. The difference (0%-

22%)is the smallest in the diesel test scenario, with the largest difference

(76% − 110%) being observed in the scenario for two electric locomotives

types. Thus, Variant D performs better or at least as well as the other
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Figure 7.1. The comparison of costs differences between the optimization models. The
black box shows the relative change range of costs in different scenarios. The
results are reported as an increase from the model variant using drivers costs.

variant in every test scenario and therefore is better in terms of the amount

of light travel.

The amount of consist busting was examined in the test scenarios for

the single electric locomotive type and for two diesel locomotive types.

Based on the findings presented in Sections 6.2.1 and 6.2.3, the Variant

D performs consistently better or at least as well in every test set. The

difference is lowest when using the LiFo pre-processing, as the number

of consist busting operations is small for all test sets in the evaluated

minor locations. However, when using other pre-processing algorithms,

the difference tends to favor Variant D.

The number of tight turns was examined in the test scenarios for both

two electric locomotive types and two diesel locomotive types. In the

test scenario for two electric locomotive types in Section 6.2.2, the focus

was on the tight turns occurring at major locations, in which no large

differences were observed between the two model variants regardless of

the pre-processing algorithm used. Likewise, in the diesel test scenario in

Section 6.2.3 no clear difference was seen in the number of tight turns at

minor locations. Therefore, it can be concluded that both models perform

equally well in this aspect.

At this point, it is relevant to discuss the possible effect of changing the
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Figure 7.2. The comparison of amount of used light travel arc km differences between
the model variants. The black box shows the relative change range of costs in
different scenarios. The results are reported as an increase from the model
variant using drivers costs.

size of the penalty parameter for light travel in Variant N. In the tests, the

parameter was 1 but could have been any other value as well. However,

changing the penalty parameter would not change the outcome of the above

comparisons. The reason for this is that the largest difference was found

between the results produced by the model variants for light traveling in

terms of both costs and robustness. In general, the difference between the

light travel kilometers for locomotives is less than 5%, while the difference

in the amount of light travel arc kilometers used was over 20%. Adjusting

the penalty parameter would have no effect on the comparison results.

This can be best seen in the case when two locomotives arrive at a location

and both continue from there via light travel arc or arcs. Variant N easily

directs them into two separate directions, whereas the other variant directs

them into the same direction, thus saving driver costs. An example of this

is presented in Figure 7.3. In this example, changing the cost parameter for

light travel penalty does not affect the solution produced by model variants.

The number of locomotive light travel kilometers is somewhat higher in

Option B; however, when adding the driver cost, it becomes the cheaper

one. The same example explains the reason for the higher consist busting

rate in Variant N. Thus, changing the value of the penalty parameter has

no effect on these results.
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Figure 7.3. The example of model variants producing different result. The a is the penalty
parameter for light travel.

To summarize, Variant D is clearly better suited for production use because

it produces a plan with lower costs and outperforms the other model variant

in terms of robustness. The amount of light travel and consist busting is

smaller in the plans produced by the selected model variant, while the

number of tight turns is roughly the same for both model variants.
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7.2 Comparison between the three pre-processing algorithms

In this section, the plans produced by the selected model variant are used

to compare the pre-processing algorithms in terms of cost-efficiency and

robustness. Comparison of the three algorithms based on cost-efficiency is

presented in Figure 7.4. The figure shows that the minimal pre-processing

algorithm produces the best results, whereas the LiFo pre-processing

algorithm produces the worst results of the three.

-1,0 %

0,0 %

1,0 %

2,0 %

3,0 %

4,0 %

5,0 %

6,0 %

7,0 %

8,0 %

Passenger LiFo

Figure 7.4. The comparison of costs differences between the pre-processings algorithms.
The change is shown as a relative change to the of minimal pre-processing.
The black box shows the range of change in all sets optimized using the model
variant that containded the driver costs.

As in Section 7.1, The same indicators are used for robustness. The results

for light travel comparison are shown in Figure 7.5. For this criterion,

both minimal pre-processing and passenger pre-processing algorithms

can produce the best results, depending on the test scenario, whereas the

LiFo pre-processing is found to be the worst algorithm in all scenarios.

Therefore, two algorithms can be chosen as the best candidate for this

criterion.

The amount of consist busting was examined in the test scenarios of single

electric locomotive type and the scenario for two diesel locomotive types.

The findings in Sections 6.2.1 and 6.2.3 demonstrate that the LiFo pre-

processing algorithm performs significantly better in both test scenarios

than the other two algorithms. The passenger pre-processing and minimal
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Figure 7.5. The comparison of amount in used light travel arc km between the pre-
processing algorithms. The change is shown as a relative change to the of
minimal pre-processing. The black box shows the range of change in all sets
optimized using the model variant that contained the driver costs.

pre-processing algorithms differ little regarding this aspect. Thus, the

LiFo-preprocessing algorithm offers superior performance in terms of the

number of consist busting operations.

The number of tight turns was examined in both the test scenarios for the

two electric locomotive types and the two diesel locomotive types. Based

on the findings in Sections 6.2.2 and 6.2.3, the minimal pre-processing

performs significantly worse in both test scenarios than the other two

algorithms. For the remaining two algorithms, little difference was found.

Thus, the two best algorithms according to this criterion are LiFo and

passenger pre-processing algorithms.

It is impossible to select the best pre-processing algorithm in terms of

robustness, as all algorithms differ in their strengths and weaknesses.

Nevertheless, as the minimal pre-processing is actually a particular case

of passenger pre-processing, and the passenger pre-preprocessing is a par-

ticular case of the LiFo pre-processing, any of the algorithms can be easily

implemented, thus eliminating the need to select a single pre-processing

algorithm.
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7.3 Conclusion

In summary, Variant D is selected, as it performs better in terms of both

cost efficiency and robustness. Unfortunately, it is not possible to select

one pre-processing algorithm over the others, as they all excel and at the

same time show weaknesses in at least one aspect of the selection criteria.

This is not problematic, as the minimal and passenger pre-processing

algorithms are just particular cases of the LiFo pre-processing algorithm.

This allows the planners the freedom to adjust the parameters and select

the best algorithm for a given situation.
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8. Practical experiences

This chapter discuss the success of selected model-algorithm combina-

tion in VR’s planning process. The selected optimization model and pre-

processing algorithm were taken in VR’s planning process with success.

In addition to adjustment of the pre-processing parameters, the number

of available locomotives was limited to less than the real fleet size. The

long-term planning is made usually using an assumption that roughly 10

percent of the locomotives are reserved for maintenance and depending

on locomotive type, 2− 20% for extra traffic not known at the time of the

long-term planning. The adjustment of available locomotives proved to

speed up the calculation significantly. Every set VR’s planned during the

first six weeks was solved in less than 15 minutes. The most common

planning set of single electric locomotive type was solved in 2− 5 minutes

for each week in the three-week test period.

The model was able to satisfy all the set requirements. The plan was

feasible, cost efficient, robust and generated in a reasonable time. After

the model variants and pre-processings algorithms were developed, the

largest uncertainties were with the light travel and turntimes but planners

deemed both to be working fine in VR’s planning process. The light travels

produced pleased the planners in most cases. However, there were a few

times when the light travel was needed to redirect to some other direction,

but these cases were caused by the home location of a driver. If the driver

could have driven the suggested light travel route, the plan would have

been fine. The greatest proof for success is that the developed model was

taken as part of the planning process.

The model was also suitable for strategic planning as the model makes

it easy to create a viable locomotive allocation plan for different train

traffic sets. Additionally, it was found out that the model fits quite well to
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Practical experiences

empty wagon planning problem as such, thus creating even more potential

benefits. These were additional benefits that were not an objective of this

thesis.
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9. Conclusion

The aim of this thesis was to develop an optimization model for addressing

VR’s long-term locomotive allocation planning problem. To reach the goal,

the thesis defined VR’s planning problem, reviewed literature, developed

an optimization model and tested it using VR’s planning data. As there

was uncertainty concerning the performance of the optimization model, two

optimization model variants and three different pre-processing algorithms

were developed to reach the goal. The different candidates were tested

using VR’s planning data in multiple test scenarios to determine the best

combination in terms of performance, feasibility and cost efficiency. The

best combination was chosen to be implemented into VR’s planning process

to further verify model.

The results of the practical experiences confirm that the optimization

model produced efficient and feasible solutions within 2-15 minutes. This

gives the planners more time to finalize the plan and enables them to

react to large, sudden changes in train traffic. Most significantly, the

optimization model shortened the time it would take to make a new plan

from scratch. The time for this operation was reduced from several days to

a few hours. The capability of quickly obtaining good solutions also affected

the strategic analysis, as the model makes it easier and much faster than

previously to analyze the effects of different train traffic scenarios.

The most important factors for success were found to be the proper model-

ing of different turn times between trains using the pre-processing algo-

rithm and adding the driver cost for light travel arcs. These two compo-

nents heavily influenced not only the cost efficiency but also the feasibility

and robustness of the plan. Additionally, it was found during the testing

that the sorting of data before starting the optimization has a huge impact

on computation time. This was most evident in the optimization of diesel
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locomotives, where the change in sorting order increased the solving time

from 15 minutes to 75 minutes. This effect should be investigated further.

Even though the results proved to be excellent, the model could still be

improved. Although all the defined requirements were met, new aspects

arose during the thesis. The most important one would be to create an

activity for consist busting, the activity of combining locomotives together

or taking them apart. this addition would make it possible to define both

time and cost for the operation, as well as to limit the time and place

where they can be performed and the number of simultaneous activities.

Modeling of maintenance and fueling cycles would come as the next priority

after that for further studies.
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