
Fully convolutional networks for
segmentation of wearable sensor
data

Mihail Douhaniaris

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 30.9.2019

Supervisor

Assistant prof. Fabricio Oliveira

Advisor

Dr Vinay Prabhu

The document can be stored and made available to the public on
the open internet pages of Aalto University. All other rights are
reserved.

Copyright c⃝ 2019 Mihail Douhaniaris

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Mihail Douhaniaris
Title Fully convolutional networks for segmentation of wearable sensor data
Degree programme Mathematics and Operations Research
Major Systems and Operations Research Code of major SCI3055
Supervisor Assistant prof. Fabricio Oliveira
Advisor Dr Vinay Prabhu
Date 30.9.2019 Number of pages 39 Language English
Abstract
Wearable sensor-based activity recognition is an area of pattern recognition dealing
with detecting the actions and activities of a human agent using motion sensors worn
or incorporated on the agent’s body. Current state-of-the-art methods use a sliding
window approach to partition the sensor signals into smaller fixed size windows
which are then classified into activities by a deep neural network. However, this
arbitrary partitioning gives rise to the so-called multiclass window problem where
the partitioned window contains data from multiple activities which can result in
incorrect classifications and missed activities, particularly when trying to detect
sporadic activities which are irregularly occurring and short in duration.

In this work, we propose a novel approach for wearable sensor-based activity
recognition based on fully convolutional networks. Our model, which we coin Sen-
sorFCN, automatically segments a motion sensor signal stream of arbitrary length
into activities by dense samplewise classification. Because of this, our approach is
unaffected by the multiclass window problem and the model can precisely detect
sporadic activities. A public activity recognition dataset consisting of motion and
orientation sensor data originating from 67 subjects performing 11 different activ-
ities is used to train and validate the proposed model. A series of experiments is
performed in order to find the optimal model configuration which achieves an overall
sample accuracy of 96.6%. In addition, we perform occlusion sensitivity analysis in
order to qualitatively measure our model’s robustness to perturbations in the input
signals and to better understand the model’s predictions. Our work shows that fully
convolutional networks are a promising family of models for wearable sensor-based
activity recognition and are effective in overcoming the multiclass window problem.
Keywords fully convolutional networks, wearable sensors, activity recognition

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Diplomityön tiivistelmä

Tekijä Mihail Douhaniaris
Työn nimi Puettavien anturien datan osiointi täysikonvolutiivisten verkkojen avulla
Koulutusohjelma Mathematics and Operations Research
Pääaine Systems and Operations Research Pääaineen koodi SCI3055
Työn valvoja Apulaisprof. Fabricio Oliveira
Työn ohjaaja TkT Vinay Prabhu
Päivämäärä 30.9.2019 Sivumäärä 39 Kieli Englanti
Tiivistelmä
Puettaviin antureihin pohjautuva toimien tunnistus on hahmontunnistuksen osa-
alue, jonka tavoitteena on tunnistaa ihmisen toimia ihmiskehoon kiinnitettävien
liikeanturien avulla. Nykyiset menetelmät kirjallisuudessa hyödyntävät liukuvan ik-
kunan menetelmää pitkän anturisignaalin osioinnissa pienempiin kiinteän kokoisiin
ikkunoihin, jotka luokitellaan toimiin syvän neuroverkon avulla. Tämä mielivaltaisen
signaalin osiointi on kuitenkin ongelmallinen, sillä osioitu ikkuna voi sisältää useam-
masta kuin yhdestä toimesta peräisin olevia signaaleja. Tällöin nykyiset menetelmät
eivät pysty luokittelemaan oikein kaikkia ikkunan sisältämiä toimia, mikä voi joh-
taa vääriin luokitteluihin ja menetettyihin toimiin, erityisesti kun yritetään havaita
lyhyitä, epäsäännöllisiä toimia.

Tässä työssä esitellään uusi, täysikonvolutiivisiin verkkoihin pohjautuva me-
netelmä toimien tunnistamiseen. Esittelemämme malli osioi mielivaltaisen pitkän
anturisignaalin automaattisesti pienempiin eri toimia sisältäviin osiin, mikä mahdol-
listaa lyhyidenkin toimien tarkan tunnistuksen. Tämän ansiosta lähestymistapamme
ei kärsi moni-ikkunaongelmasta, ja mallilla voi havaita tarkasti myös epäsäännöl-
lisiä toimia. Käytämme mallin opettamiseen julkista, liike- ja suunta-antureista
koostuvaa tietuekokoelmaa, joka on kerätty 67:än koehenkilön suorittamista 11:sta
eri toimesta. Koesarjojen tuloksena olemme löytäneet 96,6 %:n mittaustarkkuuden
tuottavan optimaalisen mallikonfiguraation. Lisäksi olemme suorittaneet peiteherk-
kyysanalyysin mitataksemme mallin suoriutumista syötesignaalien häiriöistä sekä
ymmärtääksemme paremmin mallin ennustamia arvoja. Tämän työn tulokset osoitta-
vat täysikonvolutiivisiin verkkoihin pohjautuvien menetelmien pystyvän ohittamaan
muiden antureihin pohjautuvien liikkeentunnistusmallien pullonkaulana pidettä-
vän moni-ikkunaongelman, mikä on merkittävä edistysaskel antureihin pohjautuvan
liikkeentunnistuksen alalla.
Avainsanat täysikonvolutiivinen verkko, puettavat anturit, toimien tunnistaminen

5

Preface
This work was carried out as a research project during my time at UnifyID. This
thesis would not have been possible without the help and support of multiple people
whom I feel absolutely privileged to have met and be part of this journey. Firstly, I
would like to thank John and Kurt for allowing me to be part of such an exciting
startup, as well as all the other folks at UnifyID for making it such a fun and inspiring
place to work at. Secondly, I would like to thank my advisor Vinay for proposing
this project and for being so supportive from day one. I would also like to thank
the entire machine learning team at UnifyID for always being willing to discuss and
exchange ideas with me. Thirdly, I would like to thank Assistant Professor Fabricio
Oliveira for his supervision and for going out of his way to help me graduate on
time despite the tight timeline surrounding this project. Finally, I would like to
thank my family for always being there for me, and my girlfriend Michelle for all her
encouragement and patience during this endeavor.

San Francisco, 19.9.2019

Mihail Douhaniaris

6

Contents
Abstract 3

Abstract (in Finnish) 4

Preface 5

Contents 6

Symbols, operators and abbreviations 7

1 Introduction 8

2 Background 10
2.1 Artificial neural networks . 10
2.2 Fully convolutional networks . 14
2.3 Activity recognition using wearable sensors 15

3 Research material and methods 20
3.1 The MobiAct dataset . 20
3.2 Experimental procedure . 20

4 Results 25
4.1 SensorFCN architecture . 25
4.2 Generalization and explainability . 29

5 Summary 35

References 37

7

Symbols, operators and abbreviations

Symbols
f ∗ ground truth function
f artificial neural network
y ground truth target variable
ŷ predicted target variable
x data vector
θ parameter vector
h artificial neuron
w weight parameter vector
b bias parameter
p probability distribution
J cost function
L loss function
ϵ learning rate
κ kernel size
nfilter SensorFCN filter parameter
κsmooth SensorFCN smoothing kernel size parameter

Operators
⋆ cross-correlation
∇θ gradient with respect to parameter vector θ∑

i sum over index i
E expected value

Abbreviations
GPS Global Positioning System
GPU graphics processing unit
IoU intersection over union
RFID radio-frequency identification
ReLU rectified linear unit

1 Introduction
Activity recognition is an area of pattern recognition dealing with predicting a human
agent’s actions based on sensor data. The types of actions and used sensors differ
based on the underlying application. For example, in a fitness tracking application
motion and GPS sensors might be used to detect different exercises, such as running
or cycling, and in a smart hospital application environmental sensors, such as depth
cameras and RFID sensors, might be used to detect the movements and actions of
the hospital staff [1, 2]. The emergence of ubiquitous smart devices worn directly on
the body (e.g. smartwatches) or incorporated into clothing (e.g. a smartphone placed
in a pants’ pocket) has enabled a cost effective and non-obstructive way of activity
recognition, called wearable sensor-based activity recognition [3–5]. In this type of
activity recognition, data from motion and orientation sensors such as accelerometers,
gyroscopes and magnetometers is used to predict the activities and gestures of the
device’s user and the applications range from fitness tracking and assisted living to
human-computer interaction.

Wearable sensor-based activity recognition has been an area of active research for
over a decade and it falls under the broader category of time series classification [6].
Earlier approaches were mostly based on manual extraction of features from the sensor
signals using signal processing methods which were then classified into activities
using statistical and classical machine learning methods, such as logistic regression,
decision trees and support vector machines [6–8]. A significant drawback to this
approach is that manual feature extraction is a laborious task, requiring domain
expertise both in signal processing and in the application domain, and that the
engineered features are usually specific to the application domain and the used
sensor modalities. More recently, advances in deep learning and GPU computing
frameworks have sparked the interest of activity recognition researchers [9–14]. Deep
learning models automatically learn powerful features from the raw signals based
on example activity data, therefore completely circumventing the need for manual
feature extraction. Additionally, deep learning based activity recognition methods
have been shown to consistently outperform traditional activity recognition methods,
making them an attractive alternative to their predecessor methods [4, 5]. Most
deep learning based activity recognition methods found in literature utilize a sliding
window preprocessing step where the raw sensor signals are divided into smaller
subsequences of fixed length, called windows, which are then classified into a single
activity. This preprocessing step, however, is prone to the so-called multiclass window
problem where a single window contains data from more than one activity, which can
result in misclassifications and missed activities. In particular, sporadic activities
which are usually short in duration and randomly occurring in the motion sensor
signals are especially prone to this type of error.

A promising alternative to sliding window based deep learning models are semantic
segmentation models which automatically detect segments of the input data belonging
to each class [15]. Originally developed for computer vision, this family of models
has not been fully explored for wearable sensor-based activity recognition. In this
work, we propose a novel segmentation model for wearable sensor data based on fully

9

convolutional networks which we coin SensorFCN. Our proposed model can process a
sensor data stream of arbitrary length and outputs a dense activity segmentation map
where each input data sample is mapped to an activity. Because of this, the proposed
model is not affected by the multiclass window problem and can precisely detect
sporadic activities. In the experimental part of this thesis, we use a public activity
recognition dataset to train SensorFCN models with varying model parameters in
order to assess the effect of the parameters on activity recognition performance
and to find the best performing parameter values. After finding the optimal model
configuration, the generalization performance of the model is evaluated on unseen
agents using two inference approaches, one using presegmented signal windows of
fixed length and one using the full sensor signals of each data collection session.
Finally, occlusion sensitivity experiments are carried out for different activities in
order to evaluate the robustness of the model to perturbations in the signal inputs
and to help better explain the model predictions.

In the following chapter, we give a brief introduction to artificial neural networks,
explain what fully convolutional networks are and provide a more detailed overview
of activity recognition. In the third chapter, we present the used dataset and the
developed SensorFCN model architecture, as well as explain our experimentation
procedure. The fourth chapter contains the experiment results and in the final
chapter we summarize and discuss this thesis and its main results.

10

2 Background

2.1 Artificial neural networks
An artificial neural network is a parametric model used to computationally approxi-
mate a function f ∗ that is usually highly nonlinear in nature [16]. For example, in a
classification setting where the task is to assign a categorical variable (class) y to a
vector x (e.g. a time series or an image) the function of interest would be y = f ∗(x).
An artificial neural network defines the mapping y = f(x; θ) with respect to some
parameters θ that are learned from data.

The basic building block of an artificial neural network is a computational unit
called the artificial neuron [17]. An artificial neuron h takes a vector input x and
outputs a scalar value h(x) = wT x + b = w1x1 + · · ·+ wnxn + b, where w and b are
the neuron weight and bias parameters and w, x ∈ Rn. An artificial neuron h that
takes a 5-dimensional input vector x is depicted in Figure 1.

w1 w5
x1 x2 x3 x4 x5

h

b

Figure 1: An artificial neuron.

Artificial neural networks are organized in a hierarchically layered structure so
that layer outputs are propagated as inputs to deeper layers. This is called the
forward pass and it is the principle used to obtain predictions for an input vector
x [16]. For example, f(x) = f (3)(f (2)(f (1)(x))) represents a network f of depth 3
where f (1), f (2) and f (3) are the first, second and third network layers, respectively.
The layer that directly processes the input data is called the input layer, the layer
that produces the predictions is called the output layer and all intermediate layers
are called the hidden layers of the network. In the aforementioned example, f (1) is
the input layer, f (2) the hidden layer and f (3) the output layer. Each layer consists of
a set of artificial neurons that process prior layer outputs in parallel. Figure 2 shows
a fully connected layer that consists of three units h1, h2 and h3, each one with its
own set of parameters {w1, b1}, {w2, b2} and {w3, b3}, respectively. This layer type
is called fully connected because each neuron in the layer is path connected via inner
product to the full output of its parent layer [16].

w1,1 w3,5
x1 x2 x3 x4 x5

h1 h2 h3

b1 b2 b3

Figure 2: A fully connected layer with three units.

11

Artificial neural networks constructed purely from fully connected layers are
called multilayer perceptrons and are the quintessential deep learning models [16].
Multilayer perceptrons have been responsible for many successes in deep learning
research and they form the basis for all modern deep learning models. However,
multilayer perceptrons have several shortcomings that hinder their performance in
many real world problems. Firstly, fully connected layers always expect a fixed
input size and are not invariant to input transformations, such as translation or
rotation [17]. For example, in an image classification setting the class prediction
should not change when the objects in the image are shifted or rotated. Secondly, the
number of learnable parameters in a multilayer perceptron becomes extremely large
with large inputs and deep networks which makes training these networks statistically
inefficient and computationally expensive.

Convolutional networks are specialized artificial neural networks that exploit the
topology of the input data to encode data properties directly to the network [16].
Convolutional networks address the many shortcomings of multilayer perceptrons and
have been widely successful in many deep learning tasks, such as image classification,
semantic segmentation and speech recognition [17]. While multilayer perceptrons
connect a layer’s units to every unit of it’s parent layer, convolutional networks utilize
sparse local connections that only connect units to their topologically close input
region. Additionally, in contrast to multilayer perceptrons where each hidden unit
posesses its own set of parameters, convolutional networks utilize parameter sharing
which refers to using the same weight and bias parameters across a convolutional layer.
These two properties, namely sparse local connections and parameter sharing, greatly
reduce the number of learnable parameters in the network which results in reduced
memory consumption, as well as increased statistical and computational efficiency.
Parameter sharing also achieves translation invariance making convolutional networks
robust to transformed inputs. Figure 3 shows a convolutional layer with three hidden
units h1, h2 and h3 that all share the weight and bias parameters, w and b. In the
context of convolutional networks, the weight parameter is often called the kernel, the
number of local connections the kernel size and the input region that is path connected
to a hidden unit is called the unit’s receptive field. Hidden units in a convolutional
layer can be formulated as hi = (w ⋆ x)i + b, where (w ⋆ x)t = ∑κ−1

k=0 wk+1xt+k and κ
is the kernel size. It is important to note that as the network depth increases the
effective receptive field becomes progressively larger, as shown in Figure 4 [16].

w1 w3
x1 x2 x3 x4 x5

h1 h2 h3

b b b

Figure 3: A convolutional layer with a kernel size of 3 units.

In practice, when designing convolutional networks the number of units in a
convolutional layer is implicitly determined from the layer kernel size, stride and
padding amount. Convolutional layers can be thought of as performing inner products

12

between the kernel w and slices of the input xi:i+κ in a sliding window fashion using
a step size of s, called the stride. The hidden units can then be formulated as
hi = (w ⋆ x)s

i + b, where (w ⋆ x)s
t = ∑κ−1

k=0 wk+1xs(t−1)+1+k. In general, applying
convolutions results in fewer output units than input units. To offset this effect and
increase the number of output units the input can be padded with zeros at its edges.
The effect of the kernel size, stride and padding amount on the number output units
in a convolutional layer is shown in Figure 5 [17].

x1 x2 x3 x4 x5

1h1
1h2

1h3

1b 1b 1b

2h1
2h2

2b 2b

Figure 4: Two convolutional layers with kernel sizes of 3 and 2 units. While the
units in the first layer 1h are directly connected to three input elements, the units in
the second layer 2h are indirectly connected to four input elements through the first
hidden layer connections.

a)

x1 x2 x3 x4 x5

h1 h2 h3 b)

x1 x2 x3 x4 x5

h1 h2

c)

x1 x2 x3 x4 x5

h1 h2 d)

x1 x2 x3 x4 x50 0

h1 h2 h3 h4 h5

Figure 5: The choice of kernel size, stride and padding amount determine the number
of units in a convolutional layer. (a) kernel size: 3, stride: 1, padding: 0. (b) kernel
size: 4, stride: 1, padding: 0. (c) kernel size: 3, stride: 2, padding: 0. (d) kernel size:
3, stride: 1, padding: 2.

Another important practical consideration in the design of convolutional layers is
the number of input and output channels. Convolutional layers usually have multiple
input channels, originating either from the source data (e.g. a multichannel time
series or the color channels in an image) or from the multichannel output of a previous
convolutional layer. In these cases, each input channel is convolved with its own
kernel w and the results are summed in the output units. To increase the capacity of
a convolutional layer, additional output channels are usually incorporated, each with
their own set of kernels w and biases b [16, 17]. A convolutional layer with multiple
input and output channels is shown in Figure 6. Here, the output of channel k can
be formulated as hk = [hk

1 hk
2 hk

3]T , where hk
i = ∑Cin

c (wc,k ⋆ xc)i + bk and Cin is the

13

number of input channels. The output of the convolutional layer is called a feature
map and can be expressed as H = [h1 h2 . . . hCout], where Cout is the number of
output channels in the convolutional layer.

w1,Cout

1

wCin,Cout

1

w1,Cout

5

wCin,Cout

5

x1
1 x1

2 x1
3 x1

4 x1
5

xCin
1 xCin

2 xCin
3 xCin

4 xCin
5

h1
1 h1

2 h1
3

b1 b1 b1

hCout
1 hCout

2 hCout
3

bCout bCout bCout

...

...

Figure 6: A convolutional layer with C in input and Cout output channels.

In the above examples, the hidden units are linear having only inner product and
addition operations, h(x) = wT x + b. However, neural networks consisting of strictly
linear units can only approximate linear functions. In order to model nonlinear
tasks, nonlinear transformations are incorporated in the network units such that
h(x) = g(wT x + b), where g is a nonlinear function called the activation function.
The universal approximation theorem states that nonlinear units enable artificial
neural networks to act as universal approximators and represent any sufficiently
continuous function. There exists a wide range of activation functions the choice
of which depends on the unit type, as well as the task the network is trained to
perform. The exact design of artificial neural network units is a very active area of
research and no strict theoretical guidelines have been developed yet. Among the
most common types of hidden units is the rectified linear unit (ReLU) which uses
the piecewise linear activation function g(z) = max{0, z} [16, 17].

An artificial neural network defines the distribution pmodel(y|x; θ). The goal is
to find the optimal set of network parameters θ∗ so that the model distribution
pmodel(y|x) is as close as possible to the true conditional distribution of the data
pdata(y|x). This is done by minimizing a cost function J(θ) that is usually the ex-
pected negative log-likelihood of the model distribution over the empirical distribution
of the data

J(θ) = −E(x,y)∼p̂data
log pmodel(y|x)

= 1
m

m∑
i=0

L(ŷ(i), y(i)),

14

where {(x(1), y(1)), . . . , (x(m), y(m))} is the training data, ŷ(i) is the model prediction
for (x(i), y(i)) and L is the loss function defined by the model distribution. Artificial
neural networks are most commonly trained with stochastic gradient descent using
smaller, uniformly sampled subsets of the training data, called minibatches. The
training is iterated multiple times over the entire training dataset and each such
iteration is referred to as a training epoch. The training procedure for each minibatch
of size m′ follows four basic steps:

1. Forward pass: ŷ(i) = f(x(i); θ) ∀ x(i) ∈ {(x(1), y(1)), . . . , (x(m′), y(m′))}

2. Loss computation: J(θ) = 1
m′

∑m′

i=0 L(ŷ(i), y(i))

3. Gradient computation: ∇θJ(θ)

4. Parameter update: θ ← θ − ϵ∇θJ(θ),

where ϵ is a training parameter called the learning rate. The partial derivatives with
respect to each parameter are computed using the chain rule of calculus starting
from the output layer and propagating backwards towards the lower layers. This is
called backpropagation and it is the most computationally expensive part of both
training and inference [16,18]. A widely employed modification to stochastic gradient
descent which has been shown to improve model training convergence is stochastic
gradient descent with momentum where the update is a linear combination of the
gradient and the previous parameter update. In this variant of stochastic gradient
descent, the parameter update step becomes θ ← θ − ϵ∇θJ(θ) + α∆θ, where ∆θ is
the parameter update in the previous step and α is the momentum parameter.

2.2 Fully convolutional networks
Convolutional networks are powerful models in many settings where the task is to
approximate a nonlinear function that maps a vector x to a categorical class variable
y. Typically, convolutional networks consist of several convolutional layers with a few
fully connected layers at the top of the network. Conceptually, these convolutional
layers extract deep local features and the fully connected layers map those features to
the target classes with the final fully connected layer having one unit for each target
class [16]. An example convolutional network used for a three class classification
problem is shown in Figure 7.

. . .

Figure 7: A convolutional network used for classification.

15

While convolutional networks work extremely well for classifying whole inputs
they are not directly applicable for semantic segmentation where the task is to
assign a class to every element of an arbitrary-sized input. Even with fixed input
sizes, the top fully connected layers would have to be extremely large which would
make training such networks computationally intractable. Long et al. were the
first to introduce fully convolutional networks for semantic segmentation addressing
the problems of prior approaches based on convolutional networks and achieving
state-of-the-art results for multiple image segmentation datasets [15]. In their work,
Long et al. first introduce the notion of transposed convolution by reversing the
forward and backward passes of convolution as shown in Figure 8. They reinterpret
fully connected layers as convolutional layers with kernels that span their entire
input region, and rearchitecture existing image classification convolutional networks
by removing the top fully connected layers and replacing them with transposed
convolutional layers to produce dense pixelwise image segmentation maps. Instead
of learning a nonlinear function, networks consisting of strictly convolutional layers
learn nonlinear filters, which Long et al. call deep filters or fully convolutional
networks. Fully convolutional networks can operate on arbitrary-sized inputs and
have efficient learning and inference. Figure 9 shows a fully convolutional network
where the fully connected layer of the network shown in Figure 7 is replaced by a
transposed convolution to produce outputs of the same size as the input.

w1 w31h1
1h2

1h3

2h1
2h2

2h3
2h4

2h5

2b 2b 2b 2b 2b

Figure 8: A transposed convolutional layer with a kernel size of 3 units. A transposed
convolutional layer reverses the operation of a convolutional layer changing it from
many-to-one to one-to-many.

. . .

. . .

Figure 9: A fully convolutional network used for segmentation.

2.3 Activity recognition using wearable sensors
Activity recognition refers to the problem of predicting a human agent’s actions
based on sensor data. The target actions can either be lower level actions or activities,

16

such as simple gestures or bodily movements, or higher level activity descriptions
which provide some additional context related to the agent or their environment.
Low-level activity examples include “walking”, “standing” and “sitting” whereas
examples of high-level activities include “working at desk”, “exercising” and “cooking”.
Activity recognition has gathered increasing research interest due to the recent
emergence of ubiquitous sensor networks and advances in data mining and machine
learning [7–14,19–23]. Application areas range from fitness tracking and interactive
games to assisted living, human behavior analysis and video surveillance [3–6].

Activity recognition methods can be divided into three main categories based on
the utilized sensor modalities: wearable, ambient and hybrid sensor-based activity
recognition [3, 5]. Wearable sensor-based activity recognition is used to predict
low-level gestures and activities by utilizing sensor data from devices incorporated on
the agent’s body, such as mobile phones, smartwatches and fitness trackers [3,5]. The
most commonly used sensors in this category of activity recognition are the sensors in
inertial measurement units, namely accelerometers, gyroscopes and magnetometers.
The widespread availability of these sensors in many consumer devices has enabled
wearable sensor-based activity recognition to become the most prominent and easiest
to adopt activity recognition method [4]. Ambient sensor-based activity recognition
methods use data from fixed sensors placed in the acting agent’s environment (e.g.
homes or workplaces), and they are typically used to predict high-level activities. The
used sensors are either mounted cameras that directly capture the agent’s actions
or lower level sensor devices, such as proximity and pressure sensors, RFID tags, as
well as Bluetooth and Wi-Fi devices, that capture the agent’s interactions with the
environment and enable inferring the agent’s actions indirectly. Although ambient
sensors are less obstructive than wearable sensors, they usually come with higher
deployment costs and the set of activities that can be recognized is more limited [4].
Additionally, in contrast to wearable sensor-based activity recognition systems, such
systems only work in the spatially fixed environment where the sensors are deployed.
Hybrid activity recognition methods combine wearable and ambient sensors and
although they generally improve activity recognition performance, they suffer the
same drawbacks as ambient sensor-based systems [3].

There has been extensive research of wearable sensor-based activity recognition
methods over the last decade, as shown in Figure 10. However, studies vary greatly
in their characteristics, such as the target activities, the on-body locations of the
used sensors and the recognition methods. The target activities can generally be
categorized into three types: 1) periodic activities which are prolonged activities
with a natural period or cycle, such as “walking”, “running” or “cycling”, 2) static
activities which are prolonged activities that involve little or no movement, such as
“sitting”, “standing” and “lying” and 3) sporadic activities which are short in duration
and often interspersed with other activities. Examples of the latter include transitions
between activities like “sitting-to-standing” and “standing-to-sitting” and one-off
activities and gestures like “jumping”, “falling” or “taking-phone-out-of-pocket” [6].

Another important characteristic of a wearable sensor-based activity recognition
system is the location and number of the on-body sensors. The sensor placement
depends on the intended application and the types of activities the system is aiming

17

2005 2007 2009 2011 2013 2015 2017

Year

200

400

600

800

N
u
m
b
er

of
p
u
b
li
ca
ti
on

s

Figure 10: Number of publications returned by the ScienceDirect query using the
keywords “wearable sensors activity recognition”.

to predict [3]. For example, some body locations might be better fitted for predicting
periodic activities than static or sporadic activities. Common locations in literature
include the thigh, wrist, arm and foot. Utilizing multiple sensors in different body
positions generally increases activity recognition performance and the amount of
activities that can be recognized [3]. However, incorporating multiple sensor devices
increases deployment costs and introduces complexity related to sensor fusion.

Recognition methods have three main defining characteristics related to their
generalization, how the recognition is carried out and whether the method explicitly
models the states of the agent or the world. Firstly, recognition models can be
classified to either agent-specific or agent-agnostic [6]. Agent-specific models are
trained for a specific agent using data provided by the agent during an “enrollment”
period whereas agent-agnostic models are trained with data originating from multiple
agents and try to generalize predictions to unseen agents. Usually agent-specific
models exhibit better performance than agent-agnostic models but have higher
deployment costs and introduce friction by requiring the agent to explicitly provide
enrollment data [6]. Siirtola et al. propose a novel method of personalizing agent-
agnostic models by using limited agent-specific data. Their study shows promising
but relatively modest improvements in prediction performance compared to the
agent-agnostic model, and the authors suggest that with more research and testing
the method could yield even higher improvements in recognition performance [23].
Secondly, activity recognition can either be carried out continuously or in segments.
Continuous recognition models use the sensor signals directly and automatically
detect the activities in the data stream whereas segmented (sometimes also referred
to as windowed) recognition models assume that the activities are split into smaller
activity segments by an independent oracle and the model classifies the segments
into one of the activity classes. Finally, wearable sensor-based activity recognition

18

models can be stateful, meaning that the state of the agent or their environment
is explicitly incorporated in the model, or stateless, meaning that the predictions
are based explicitly on the signals of the sensors without modeling the state of the
world [6]. Stateless models are the dominant approach to wearable sensor-based
activity recognition as models of this family require less domain knowledge and result
in simpler recognition systems.

Generally, building activity recognition models entails four basic steps: 1) pre-
processing the data of the deployed sensors, 2) extracting meaningful features from
the collected data, 3) training the activity recognition models and 4) testing the
models on new data [3]. Preprocessing usually includes signal filtering, data nor-
malization, partitioning (also referred to as segmenting) and resampling. Signal
filtering is applied to the raw sensor signals with the aim of reducing signal noise
and other artifacts. Several filtering techniques have been used in prior works, such
as low-pass and high-pass Butterworth filters, median filters and moving average
filters. Data normalization is performed to help with model training convergence
and increase performance, and common approaches include standard normalization
to zero mean and unit variance as well as Min-Max scaling. Partitioning entails
dividing the raw signal to smaller sections to be processed by the recognition model
later down the pipeline. Partitioning a continuous sensor stream is a difficult task
and plays an important role in recognition performance, particularly for sporadic
activities [6]. Partitioning approaches include energy-based partitioning, rest-position
partitioning and partitioning using external context sources, but the method that
is most commonly used is sliding window based partitioning where the sensor data
is divided into time windows, ranging from under 1 s to 10 s and over [3]. Inertial
sensors such as accelerometers, gyroscopes and magnetometers don’t typically sample
perfectly uniformly so often resampling is performed to produce uniformly sampled
signals in order to analyze signals in the frequency domain with techniques such
as Fast Fourier transform. Generally, higher sampling rates yield higher prediction
accuracy but come with higher energy requirements.

Earlier activity recognition works utilized hand-crafted features derived from
partitioned signal windows to predict the activities of interest [6–8]. These features
include either time-domain features, such as signal magnitude area, standard devia-
tion, median, skewness and autoregressive coefficients, or frequency-domain features,
such as spectral energy, entropy and dominant frequency, which are obtained from
transforming the partitioned windows using methods such as Fast Fourier transform
or discrete wavelet transform. These features are then fed into classification algo-
rithms like decision trees, support vector machines, k-nearest neighbors and naive
Bayes. However, developing good representative features by hand is a laborious task
and often such features result in unsatisfactory prediction performance and don’t
generalize well to unseen users and new sensor modalities [4].

More recently, advances in GPU computing frameworks and deep learning have
sparked interest among activity recognition researchers and practitioners. Deep learn-
ing based activity recognition models usually follow the same basic steps described
above with the exception that deep learning models do not require hand-crafted
features. Instead, deep learning models jointly perform feature extraction and activity

19

recognition by automatically learning powerful and robust features from the data.
Deep learning based activity recognition models have been shown to consistently out-
perform conventional machine learning methods using hand-crafted features [8–13]. A
common approach for deep learning based activity recognition is to use convolutional
networks for labeled sliding windows of sensor data. Hammerla et al. explored deep
convolutional and recurrent network architectures with different model configurations
and showed that convolutional neural networks perform well for periodic activities,
such as “walking” or “running”, whereas recurrent neural networks are better for
sporadic activities [12]. Ordóñez et al. propose a deep learning based framework
for activity recognition using a hybrid network structure utilizing convolutional and
LSTM recurrent units. Their system uses convolutional layers to automatically
extract features from windowed segments of multichannel motion sensor data from
multiple body locations which then get fed into the recurrent layers that model
the temporal dependencies of the extracted features. They show that their system
outperforms activity recognition systems based solely on convolutional networks
using similarly windowed signals [11].

While deep learning based models using sliding windows have shown promising
results, particularly for periodic and static activities, their prediction performance
depends on the arbitrary temporal partitioning of the sensor data which is particularly
problematic for sporadic activities [11]. Additionally, sliding window segmentation
gives rise to the so-called multiclass window problem where a window contains data
from multiple classes. In these cases, both data labeling as well as predictions are
ill-defined. Fully convolutional networks are relatively unexplored in the context of
wearable sensor-based activity recognition. However, fully convolutional networks
offer a straightforward way for continuous activity recognition and automatic activity
segmentation by dense samplewise prediction of an arbitrary-sized sensor data stream.
Zhang et al. readapted a biomedical image segmentation model based on fully
convolutional networks [21]. In their work, sliding windows of triaxial accelerometer
signals are first mapped into a multichannel images with a single pixel column which
are then fed into the image segmentation model for training and activity recognition.
Their study shows promising results but mostly focuses on the adaptation of an
existing image segmentation model to the activity recognition task. In addition, they
used a random train/validation/test split of windows, meaning that the sets contain
data originating from the same set of subjects. In this work, we develop a novel
segmentation model specifically for wearable sensor-based activity recognition which
utilizes one-dimensional convolutions and thus no extra steps are required to convert
the sensor signals into image-like objects. We perform model training experiments in
order to find the best performing model architecture parameters and evaluate the
difference between windowed and continuous activity recognition on an independent
set of test subjects in order to quantify the agent-agnostic performance of the model.
Finally, we perform occlusion sensitivity experiments for different activities to assess
our model’s robustness to perturbations in the input signals and to help explain the
model predictions.

20

3 Research material and methods

3.1 The MobiAct dataset
The MobiAct dataset is a publicly available dataset for wearable sensor-based activity
recognition and fall detection [24]. The dataset consists of three distinct parts and
contains data collected from 67 subjects with more than 3200 trials. The first part
contains segments of activities of daily living where subjects perform a single activity
per trial, the second part contains longer segments of scenarios of daily living where
subjects perform multiple activities sequentially in each trial, and the third part
contains short segments of various types of falls. This study uses the first and second
parts of the MobiAct dataset which contain the low-level activities shown in Table 1.

Activity Label Type Subjects Duration
Standing STD Static 60 300 min
Walking WAL Periodic 61 305 min
Jogging JOG Periodic 61 91 min
Jumping JUM Periodic 61 91 min
Stairs up STU Periodic 61 72 min
Stairs down STN Periodic 61 73 min
Stand-to-Sit SCH Sporadic 61 36 min
Sitting SIT Static 19 19 min
Sit-to-Stand CHU Sporadic 19 11 min
Car step-in CSI Sporadic 60 35 min
Car step-out CSO Sporadic 60 36 min

Table 1: Table of activities used in this study.

The data in each trial is collected using a commercial Android smartphone placed
in either one of the subjects’ front trouser pockets, in any orientation freely chosen
by the subject. The data consists of the recordings of two hardware motion sensors,
the accelerometer and the gyroscope, as well as one additional software orientation
sensor which is derived from the aforementioned two hardware sensors. All three
sensors are triaxial and independently measure the device’s motion or orientation
with respect to each Android coordinate axis, as shown in Figure 11 and Table 2.

3.2 Experimental procedure
All sensor data is interpolated to a sampling rate of 50 Hz using first order splines
and the trials are then split into non-overlapping windows of 3 s, resulting in windows
of 150 individually labeled samples. Finally, each sensor channel is normalized as

x′ = −1 + 2 x−min(x)
max(x)−min(x) ,

where x is the sensor channel data, and min(x) and max(x) are the minimum and
maximum ranges of the sensor channel, as shown in Table 2.

21

Figure 11: The Android motion sensor coordinate system.

Sensor Channel Description Units Data range
Accelerometer x Acceleration along the x-axis. m/s2 [-20, 20]

y Acceleration along the y-axis. m/s2 [-20, 20]
z Acceleration along the z-axis. m/s2 [-20, 20]

Gyroscope x Rate of rotation around the x-axis. rad/s [-10, 10]
y Rate of rotation around the y-axis. rad/s [-10, 10]
z Rate of rotation around the z-axis. rad/s [-10, 10]

Orientation Azimuth Angle around the z-axis. degrees [0, 360]
Pitch Angle around the x-axis. degrees [-180, 180]
Roll Angle around the y-axis. degrees [-90, 90]

Table 2: The Android motion and orientation sensors used in the MobiAct dataset.

In this work, we propose a novel fully convolutional network for wearable sensor-
based activity recognition which we coin SensorFCN. Our model can process a
sensor signal of arbitrary length and produces dense samplewise activity predictions,
thus automatically segmenting the sensor signals into sections of activities. The
SensorFCN architecture consists of three components, namely the encoding, the
decoding and the scoring component, shown in Figure 12. The encoding component
consists of three convolutional layers followed by ReLU activations. These layers
downsample their inputs by applying one dimensional non-padded convolutions
and encode high-level information about the sensor signals. The first convolutional
layer convolves each input sensor channel with kernels of size κ and produces an
output feature map with nfilter dimensions. The second and third convolutional
layer subsequently double the dimensionality of the feature map using kernels of
sizes 5 and 3, respectively. The decoding network component consists of a single
transposed convolution layer with kernel size κ + 6, chosen such that the produced
layer outputs are upsampled back to the original length of the input sensor signals.

22

In addition, the decoding component maps the high dimensional (4× nfilter) feature
map produced by the encoding component to a lower dimension (nfilter). Finally,
the scoring layer consists of a convolutional layer that applies a unit convolution to
the decoding component output feature map and maps it to nclass channels where
each channel corresponds to a target activity. The final activity segmentation map
consists of samplewise activity predictions which are obtained by the arg max of the
channel dimension of the scoring component output. The SensorFCN models and the
experiments discussed below are implemented with PyTorch, an open source deep
learning framework for the Python programming language, and all computations are
performed using a Tesla K80 GPU.

All SensorFCN models in this work are trained with stochastic gradient descent
against a samplewise categorical cross-entropy loss. The loss is weighted with class
weights that are inversely proportional to the total activity durations shown in Table
1 in order to correct the activity class imbalance in the source dataset. Training is
performed for 50 epochs in minibatches of 32 windows using a momentum of 0.9 and
an initial learning rate of 0.001 which is reduced by a factor of 0.9 every 5 epochs.
The subjects are randomly split into separate sets for model training, validation
and testing containing 53, 7 and 7 subjects, respectively. The train, validation and
test sets then consist of the windows belonging to the corresponding subjects. The
generalization to new agents is evaluated by the validation and test performances
using four common semantic segmentation metrics: sample accuracy, mean accuracy,
mean IoU and frequency weighted IoU [15]. Let nij be a sample of class i predicted
to belong to class j, nclass be the number of classes and ti = ∑

j nij be the total
number of samples of class i. The reported metrics can then be formulated as

• Sample accuracy: ∑
i nii/

∑
i ti

• Mean accuracy: (1/ncl)
∑

i nii/ti

• Mean IoU: (1/ncl)
∑

i nii/(ti + ∑
j nji − nii)

• Frequency weighted IoU: (∑
k tk)−1 ∑

i tinii/(ti + ∑
j nji − nii).

The experimental part of this work consists of a series of experiments aiming to
quantify the effects of the SensorFCN network architecture parameters on the activity
recognition and segmentation performance. In each experiment, a single network
parameter is varied and the four performance metrics are evaluated on the validation
set. The model is then iteratively refined by selecting the best performing parameter
value for the next set of experiments. Firstly, the input kernel size κ is varied and a
SensorFCN model is trained ∀ κ ∈ {5, 15, 25, . . . , 135}. All three Android sensors
are used and the network filter parameter nfilter is set to 16. Secondly, the effect
of the choice of the input sensors is quantified by training a SensorFCN model for
each sensor combination while keeping the network filter parameter at 16. All three
channels of a chosen sensor are used, meaning that the number of input channels
in the network is always 3, 6 or 9, depending on whether the number of chosen
sensors is 1, 2 or 3, respectively. The third experiment investigates the effect of the
network filter parameter nfilter on the model performance by training a SensorFCN

23

model ∀ nfilter ∈ {16, 32, 64, 128}. In the fourth experiment, we introduce a new
network component at the end of the network which we call the smoothing component.
Intuitively, the samplewise predictions produced by the network should not change
too frequently as the time difference between two subsequent samples is only 0.02 s.
This new component is appended to the network after the scoring component and
intends to reduce the prediction variability and smooth out the produced activity
labels. The smoothing component consists of a convolutional layer with nclass filters
and a kernel size of κsmooth. In order to maintain the correct output size, this layer
pads the scoring component output with κsmooth/2 zeros. The effect of the smoothing
kernel size on the model performance is evaluated by training a SensorFCN model ∀
κsmooth ∈ {5, 15, 25, . . . , 135}.

After finding the best parameter values for the SensorFCN model, the generaliza-
tion performance to unseen agents is evaluated by computing the sample accuracy on
the test set using two different approaches. The first approach performs inference on
the fixed length activity windows, which is analogous to a windowed activity recogni-
tion system where the input sensor signals are first partitioned into smaller windows
which are then passed on to the recognition pipeline. The second approach performs
inference on a trial level, which is analogous to a continuous activity recognition
system where the activity recognition is performed on the input signal in its entirety.

Finally, we perform occlusion sensitivity analysis on segments of different activities
where parts of the input sensor signals are occluded and the changes to the model’s
output are monitored. Originally proposed by Zeiler and Fergus, these methods are
widely used in literature to quantify the robustness of deep learning models with
respect to changes in their input space, as well as to help explain which parts of
the input contribute most to the model predictions [25]. In our occlusion sensitivity
experiments, a segment of input sensor data representing a specific activity is first
forward propagated in the network and then the output of the smoothing layer is
passed on to a softmax normalizer in order to obtain the normalized unoccluded
prediction scores for the input segment. The softmax normalization is performed
along the output channel dimension so that all channels sum up to 1. The softmax
normalized can be expressed as

Softmax(xi) = exp(xi)∑
j exp(xj)

,

where x is a vector containing the nclass output channels. Then, we slide an occlusion
kernel of κocclusion zeros with a stride of 1 and pass the smoothing layer’s output to
the softmax normalizer to obtain the normalized scores of the occluded input signals.
The occlusion sensitivity is then defined as 1− soccluded/soriginal, where soccluded and
soriginal are the softmax normalized scores of the activity for the occluded and the
unoccluded input sensor signals, respectively. The final occlusion sensitivity for the
input segment is obtained by averaging the occlusion sensitivities across all occlusion
positions.

24

nfilter

2×nfilter

4×nfilter

nfilter

nclass

Segmentation

nclass

Smoothing

Scoring

Decoding

Encoding

Input

Sensor data

Conv1d

Conv1d

TransposeConv1d

Segmentation map

Conv1d

ReLU

Conv1d

ReLU

Conv1d

ReLU

32×150×nchannel

(nfilter, κ, 1, 0)

(2×nfilter, 5, 1, 0)

(4×nfilter, 3, 1, 0)

(nfilter, κ+6, 1, 0)

(nclass, 1, 1, 0)

(nclass, κsmooth, 1, κsmooth/2)

32×150

Figure 12: The SensorFCN network architecture. (Left) Each block represents a
feature map produced by a single layer within a network component. The widths
and depths of the blocks represent the temporal length and the dimensionality of the
feature maps, respectively. The feature map lengths first decrease as one dimensional
non-padded convolutions are applied in the network and then increase back to the
original length of the input signal via a transposed convolution operation. (Right)
The network layer types and parameters. The input sensor data is processed in tensors
of shape (minibatch size × window length × number of input sensor channels) and
the produced output contains the samplewise activity predictions for each window in
the minibatch. The convolutional layer parameters are shown in tuples of 4 elements
containing the number of filters, the kernel size, the stride and the amount of zero
padding.

25

4 Results

4.1 SensorFCN architecture
In this section, we present the results of the SensorFCN model training experiments
where a single network architecture parameter is varied with the aim of finding
the best performing network parameter values on the MobiAct dataset. The first
experiment entailed training SensorFCN models and varying the input kernel size
κ such that κ ∈ {5, 15, 25, . . . , 135}. In this experiment, the trained models use
all three Android sensors included in the MobiAct dataset: the accelerometer, the
gyroscope and the orientation sensor. The filter parameter nfilter was set to 16 and
the models do not utilize the SensorFCN smoothing component. The training and
validation sample accuracy, mean accuracy, mean IoU and frequency weighted IoU
are shown as a function of the input kernel size in Figure 13. All four metrics follow
the same pattern of first increasing as the input kernel size is increased and then
decreasing when the input kernel size is increased further. The input kernel size
achieving the best performance on the validation set across all four metrics is κ = 55
which corresponds to a temporal window of slightly over a second on the resampled
MobiAct data at 50 Hz. The resulting validation sample accuracy for κ = 55 is 0.873,
the mean accuracy is 0.745, the mean IoU is 0.656 and the frequency weighted IoU
is 0.813.

0 50 100
0.80

0.85

0.90

0.95

S
am

p
le

ac
cu

ra
cy

0 50 100

0.6

0.7

0.8

M
ea

n
ac

cu
ra

cy

0 50 100

Input kernel size

0.5

0.6

0.7

M
ea

n
Io

U

0 50 100

Input kernel size

0.75

0.80

0.85

0.90

F
re

q
u

en
cy

w
ei

gh
te

d
Io

U

Training Validation

Figure 13: The training and validation metrics as a function of the input kernel size.

26

Figure 14 shows the validation sample accuracy as a function of the input kernel
size broken down for each activity type. The figure reveals that larger input kernel
sizes are particularly helpful in the recognition of periodic and sporadic activities.
Smaller kernel sizes are preferable for static activity recognition because a smaller
receptive field is sufficient to capture the full information of the static signal whereas
larger receptive fields are more robust to small changes and thus require more samples
to detect a change in the signal state.

In the next experiment, a SensorFCN model was trained for each of the seven
different combinations of the Android sensors as the model inputs. The trained models
do not utilize the smoothing component of the SensorFCN network architecture
and the filter parameter and input kernel size were set to nfilters = 16 and κ = 55,
respectively. The training and validation sample accuracy, mean accuracy, mean IoU
and frequency weighted IoU for all seven Android sensor combinations are shown in
Figure 15. The SensorFCN model utilizing the accelerometer is the best performing
out of the models utilizing only one Android sensor and including the gyroscope or
the orientation sensor brings a small increase in recognition performance. The best
performing model is the one utilizing the accelerometer and the gyroscope resulting
in a validation sample accuracy of 0.881, a mean accuracy of 0.754, a mean IoU
of 0.667 and a frequency weighted IoU of 0.827 which is an improvement over the
previous best model utilizing all three Android sensors.

0 25 50 75 100 125

Input kernel size

0.4

0.6

0.8

1.0

S
am

p
le

ac
cu

ra
cy

Static Periodic Sporadic

Figure 14: The training and validation sample accuracy for each activity type as a
function of the input kernel size.

The third experiment entailed training SensorFCN models with varying filter pa-
rameters nfilter. Four SensorFCN models were trained with nfilter ∈ {16, 32, 64, 128}
using the accelerometer and gyroscope Android sensors as the model inputs. The
input kernel size was kept at κ = 55 and the models do not utilize the SensorFCN
smoothing component. The sample accuracy, mean accuracy, mean IoU and frequency
weighted IoU for the trained models are shown in Table 3. The table shows that

27

o ag ao ago g go a
0.00

0.25

0.50

0.75

S
am

p
le

ac
cu

ra
cy

o ag ao ago g go a
0.00

0.25

0.50

0.75

M
ea

n
ac

cu
ra

cy

o ag ao ago g go a

Sensors

0.0

0.2

0.4

0.6

M
ea

n
Io

U

o ag ao ago g go a

Sensors

0.00

0.25

0.50

0.75

F
re

q
u

en
cy

w
ei

gh
te

d
Io

U

Training Validation

Figure 15: The training and validation metrics for the models trained with all different
combinations of the Android sensors as the model inputs.

increasing the filter parameter of the SensorFCN network architecture tends to result
in increased activity recognition performance. However, higher nfilter parameter
values result in larger models in terms of the number of trainable model parameters,
as shown in the last column of the table, which increases model training and inference
times. Table 4 shows the break down of the validation sample accuracy for each
activity type for all nfilter parameter values used in this experiment. The table shows
that sporadic activity recognition benefits the most from increasing the SensorFCN
filter parameter. The filter parameter value resulting in the best performance is 128
which brings the validation metrics up to 0.895 for the sample accuracy, 0.793 for the
mean accuracy, 0.704 for the mean IoU and 0.846 for the frequency weighted IoU.

nfilter Sample acc. Mean acc. Mean IoU F.W. IoU Parameters
16 0.874 0.738 0.65 0.818 76763
32 0.884 0.769 0.679 0.831 295851
64 0.891 0.778 0.69 0.841 1161035
128 0.895 0.793 0.704 0.846 4599435

Table 3: The validation metrics for the models with different filter parameters.

The fourth and final of the SensorFCN model training experiments involved intro-
ducing the smoothing component to the SensorFCN architecture and training models
with varying smoothing kernel sizes κsmooth such that κsmooth ∈ {5, 15, 25, . . . , 135}.

28

nfilter Static Periodic Sporadic
16 0.939 0.858 0.533
32 0.95 0.86 0.602
64 0.94 0.88 0.594
128 0.94 0.886 0.627

Table 4: Validation sample accuracy of the trained models with different filter
parameter values broken down for each activity type.

The trained models used the Android accelerometer and the gyroscope as inputs
with a kernel size of κ = 55 and a filter parameter of nfilter = 128. The training and
validation sample accuracy, mean accuracy, mean IoU and frequency weighted IoU
are shown in Figure 16 as a function of the smoothing kernel size κsmooth. The figure
shows that including the smoothing component boosts model performance and the
best performing smoothing kernel size is κsmooth = 115, achieving a 0.909 sample
accuracy, 0.832 mean accuracy, 0.744 mean IoU and 0.865 frequency weighted IoU on
the validation set. Figure 17 shows the validation sample accuracy for each activity
type as a function of the smoothing kernel size. The figure shows that adding the
smoothing component to the SensorFCN model results in a significant increase in
the recognition performance of sporadic activities.

0 50 100

0.90

0.95

S
am

p
le

ac
cu

ra
cy

0 50 100

0.80

0.85

0.90

0.95

M
ea

n
ac

cu
ra

cy

0 50 100

Smoothing kernel size

0.7

0.8

M
ea

n
Io

U

0 50 100

Smoothing kernel size

0.85

0.90

0.95

F
re

q
u

en
cy

w
ei

gh
te

d
Io

U

Training Validation

Figure 16: The training and validation metrics as a function of the smoothing kernel
size.

29

0 25 50 75 100 125

Smoothing kernel size

0.7

0.8

0.9

S
am

p
le

ac
cu

ra
cy

Static Periodic Sporadic

Figure 17: The validation sample accuracy for each activity type as a function of the
smoothing kernel size.

4.2 Generalization and explainability
In this section, we evaluate the generalization performance of the SensorFCN model
using the best performing network parameter values determined in the model training
experiments of the previous section. The used model is the SensorFCN model using
an input kernel size of κ = 55, a filter parameter value of nfilter = 128 and the
accelerometer and gyroscope data as the model inputs. In addition, the evaluated
model utilizes the smoothing component with a smoothing kernel size of κsmooth = 115.
The generalization of the model is tested using two inference methods using a separate
test set consisting of the activity data of the agents that were not included in the
model training and validation phase. The first inference method involves performing
forward passes on a window level, similar to how a windowed activity recognition
system processes the output of an independent oracle that presegments the activity
data. The second inference method performs the forward pass on a trial level, similar
to how a continuous activity recognition system processes the full sensor data stream
and automatically finds the activities within the data. The test sample accuracy on
an activity type level for both the windowed and continuous inference approaches
are shown in Table 5. The table shows that performing inference on the full trial
data is better than on a window level, yielding a 0.966 test sample accuracy on the
trial level and 0.951 on a window level. Additionally, trial level inference results in
much higher sample accuracy for sporadic activities than window level inference.

The sample confusion matrix for each activity evaluated on the test trials is shown
in Figure 18. Overall most activities show high sample accuracies with the periodic
activities of walking (WAL) and jogging (JOG) having the highest sample accuracy
of 0.99 and the sporadic activities of transitioning from standing to sitting (SCH)
and stepping into a car (CSI) having the lowest sample accuracy of 0.79 and 0.81,

30

Windowed Continuous
Static 0.958 0.959
Periodic 0.964 0.979
Sporadic 0.77 0.851
Overall 0.951 0.966

Table 5: Sample accuracy on the test set performing inference on the activity window
level (windowed) and on the activity trial level (continuous).

respectively. Some of the activity recognition confusion occurs between activities
that share similar motion characteristics. For example, walking up the stairs (STU)
is often confused with walking on a flat surface (WAL), both of which involve taking
steps. Similarly, taking the stairs down (STN) gets confused with jogging (JOG)
which both involve taking steps with higher impacts and acceleration values. However,
a significant portion of the misclassifications of sporadic activities seem to stem from
the somewhat ambiguous ground truth transition points between activities. For
example, the transition from standing to sitting (SCH) is often confused with sitting
(SIT). This is not because these two activities are similar per se but rather because
the predicted transition moment between the two activities is either too early or
too late with respect to the ground truth which brings the sample accuracy down,
especially considering the sporadic activities are short in length.

Figure 19 shows an example 50 second long segment of a test trial where the
agent first walks up to their car, steps in and sits there for a few seconds, and finally
steps out of the car. The Android accelerometer and gyroscope are used as the
model inputs and the ground truth and predicted activities are shown in the bottom
part of the figure with a blue and orange line, respectively. The used model was
the SensorFCN model with input kernel size κ = 55, filter parameter nfilter = 128
and smoothing kernel size κsmooth = 115. We see that the model produces dense
samplewise activity predictions and the alignment between the ground truth and the
predicted labels is generally within 1 s of the correct one.

Occlusion sensitivity analysis with an occlusion kernel size κocclusion = 50 was
performed on three sections of the example trial covering three different activities:
walking, standing and sitting. Figure 20 shows the occlusion sensitivity of each
input sensor channel on a 7 s segment of walking and we see that the accelerometer
y-axis is the most sensitive input to occlusion with an average occlusion sensitivity
of 0.26. Figure 21 shows a zoomed-in occlusion sensitivity plot for the accelerometer
y-axis which highlights the parts of the walk that are more sensitive to occlusion and
which the model more strongly associates with walking. Figure 22 shows the input
occlusion sensitivity for two segments of sitting and walking. The figure shows that
the accelerometer y-axis is the most important model input for recognizing standing
with an average occlusion sensitivity of 0.12 and the accelerometer z-axis is the most
important for sitting with an average occlusion sensitivity of 0.05. These axes are
the ones parallel to the gravitational acceleration vector during the two activities
with the phone in the agent’s pocket, as shown in Figure 11.

31

ST
D

W
A
L

JO
G

JU
M

ST
U

ST
N

SC
H

SI
T

C
H
U

C
SI

C
SO

Predicted label

STD

WAL

JOG

JUM

STU

STN

SCH

SIT

CHU

CSI

CSO

T
ru

e
la

b
el

0.96 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01

0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.03 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.06 0.00 0.00 0.93 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.02 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00

0.02 0.01 0.00 0.00 0.00 0.00 0.79 0.14 0.00 0.04 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.01 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.94 0.00 0.00

0.06 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.00 0.81 0.01

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.05 0.00 0.00 0.92

0.0

0.2

0.4

0.6

0.8

Figure 18: Sample confusion matrix for the test agents evaluated on a trial level.

32

−1.0

−0.5

0.0

0.5

1.0

A
cc

el
er

om
et

er

x y z

0 10 20 30 40 50

−1.0

−0.5

0.0

0.5

1.0

G
y
ro

sc
op

e

0 10 20 30 40 50

Time (s)

0 10 20 30 40 50

0 10 20 30 40 50

Time (s)

STD

WAL

JOG

JUM

STU

STN

SCH

SIT

CHU

CSI

CSO

Figure 19: (Top) Android accelerometer and gyroscope data of an agent walking up
to their car, getting in and then getting out again. (Bottom) Ground truth (blue)
and predicted (orange) activity labels.

33

−1.0

−0.5

0.0

0.5

1.0

A
cc

el
er

om
et

er

x y z

0 1 2 3 4 5 6 7

−1.0

−0.5

0.0

0.5

1.0

G
y
ro

sc
op

e

0 1 2 3 4 5 6 7

Time (s)

0 1 2 3 4 5 6 7

0.000

0.027

0.054

0.081

0.108

0.135

0.162

0.189

0.216

0.243

O
cc

lu
si

on
se

n
si

ti
ci

ty

Figure 20: Occlusion sensitivity for a segment of sensor data of walking.

0 1 2 3 4 5 6 7

Time (s)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

A
cc

el
er

om
et

er
(y

-a
x
is

)

0.1210

0.1325

0.1440

0.1555

0.1670

0.1785

0.1900

0.2015

0.2130

0.2245
O

cc
lu

si
on

se
n

si
ti

ci
ty

Figure 21: A zoomed-in version of the accelerometer y-axis in Figure 20. The sections
with higher occlusion sensitivity are the parts of the gait cycle associated with the
heel strikes which the model associates with walking.

34

−1.0

−0.5

0.0

0.5

1.0

A
cc

el
er

om
et

er

x y z

0 1 2 3 4 5 6 7

−1.0

−0.5

0.0

0.5

1.0

G
y
ro

sc
op

e

0 1 2 3 4 5 6 7

Time (s)

0 1 2 3 4 5 6 7

0.000

0.026

0.052

0.078

0.104

0.130

0.156

0.182

0.208

0.234

O
cc

lu
si

on
se

n
si

ti
ci

ty

−1.0

−0.5

0.0

0.5

1.0

A
cc

el
er

om
et

er

x y z

0 1 2 3 4 5 6 7

−1.0

−0.5

0.0

0.5

1.0

G
y
ro

sc
op

e

0 1 2 3 4 5 6 7

Time (s)

0 1 2 3 4 5 6 7

0.000

0.026

0.052

0.078

0.104

0.130

0.156

0.182

0.208

0.234

O
cc

lu
si

on
se

n
si

ti
ci

ty

Figure 22: Occlusion sensitivity for a motion sensor data segment of standing (top)
and sitting (bottom).

35

5 Summary
Wearable sensor-based activity recognition is an area of pattern recognition with
the aim of predicting the actions of a human agent based on data obtained from
sensors worn or incorporated on the agent’s body with applications ranging from
fitness tracking and assisted living to human-computer interaction [1, 2]. The state-
of-the-art methods found in literature utilize sliding windows to partition the sensor
signal streams into smaller fixed size windows which are then classified into activities
by a deep neural network [9–14]. However, this approach can result in instances
where a signal window contains multiple activities, in which case these methods fail
to correctly classify the activities in the window and potentially result in missed
activities. This so-called multiclass window problem is especially problematic when
trying to detect short-lived and irregularly occurring sporadic activities. In this
work, we proposed a novel approach to wearable sensor-based activity recognition
using fully convolutional networks. Our model, which we coin SensorFCN, can
process a stream of motion sensor data of arbitrary length and outputs a samplewise
activity segmentation map. Because of this, the proposed model is not affected by
the multiclass window problem and can precisely detect sporadic activities. The
MobiAct dataset consisting of 67 subjects performing 11 different activities was used
to train and validate the proposed model. The data is collected using a commercial
Android smartphone placed in the subjects’ pants’ pockets and contains the readings
of three sensors: the accelerometer, the gyroscope and the orientation sensor.

The first set of experiments included training and validating SensorFCN models
with different model parameters using mutually exclusive sets of subjects for model
training and validation in order to assess the parameters’ effect on the activity
recognition performance and to find the best performing model parameters. We found
that varying the input kernel size of the model has a noticeable impact on activity
recognition performance, particularly for sporadic activities. The trained models
utilizing an input kernel size in the range of 35 – 85 samples, which corresponds to an
input kernel spanning roughly 1 s on the resampled data, had similar performance to
each other. Additionally, we found that the accelerometer is the most important input
sensor and that the model utilizing both the accelerometer and the gyroscope showed
the best activity recognition performance out of all the models using the different
sensor combinations. The proposed SensorFCN architecture performs reasonably well
even with a relatively small number of parameters. However, increasing the number
of filters in the model increases recognition performance, particularly for sporadic
activities. Finally, we introduced a smoothing component to the proposed SensorFCN
network architecture. This component consists of a convolutional layer at the end of
the network, after the decoding and the scoring network components, which improved
activity recognition performance significantly. We found that larger smoothing kernel
sizes increase sporadic activity recognition performance while leaving static and
periodic activity recognition performance relatively unaffected.

The second part of the experiments included performing inference on a test set
which consisted of motion sensor data from a set of subjects that were held out during
the model training and validation experiments. Two different inference approaches

36

were evaluated, one using presegmented windows of sensor signals and the other one
using the full signals of each data collection session. We showed that performing
inference on longer segments results in increased activity recognition performance
which resulted in a 96.6% sample accuracy on the test set. In addition, we performed
occlusion sensitivity experiments where parts of the input motion sensor signals were
occluded in order to measure the model’s robustness to changes in the input data and
to better understand which input signals contribute most to the model predictions
for different activities. The occlusion sensitivity experiments showed again that
the accelerometer is the most important model input. In particular, occluding the
accelerometer axis that is parallel to the gravitational acceleration seems to affect
recognition performance most, which is explained by the fact that this axis contains
the phone orientation information with respect to the ground. Occlusion sensitivity
seems to be slightly higher for periodic activities than for static activities but in
general, the occlusion sensitivity scores are relatively low even when a large occlusion
kernel was used, showing that the trained models are robust to perturbations in the
input motion sensor signals.

Wearable sensor-based activity recognition is a promising way of detecting human
activities based on the motion sensor signals found in many every day smart devices
such as smartwatches and smartphones. Our proposed SensorFCN model is able
to overcome the multiclass window problem persistent in many of the state-of-the-
art approaches found in literature which enables accurate detection of short-lived
and randomly occurring sporadic activities. The accurate and reliable detection
of such actions is useful not only in traditional activity recognition applications,
but also in developing new ways of human-computer interaction based on motion
gestures. Our study focused on exploring the feasibility of fully convolutional network
architectures for wearable sensor-based activity recognition and while we achieved
good generalization performance on the MobiAct dataset the resulting optimal model
parameters might not be the universally best performing ones. In order to get a more
robust understanding of how the model parameters affect the activity recognition
performance and which parameter values result in the best performance, a k-fold
cross-validation strategy could be employed where the model training experiments
are repeated for different splits of training and validation subjects and the results
are then averaged across the different splits. Additionally, the model could be tested
using more public activity recognition datasets [26–28]. Although these experiments
would result in more robust optimal model parameter values, such methodology is
more expensive in terms of GPU time and beyond the scope of this study. Future
research topics could include exploring the importance of network depth by increasing
the number of convolutional layers in the encoding component of the network and
observing the change in activity recognition performance. Another future research
direction could be assessing the on-device inference performance of the SensorFCN
model and exploring different model pruning strategies to further reduce model size.

37

References
[1] Alejandro Galán-Mercant, Andrés Ortiz, Enrique Herrera-Viedma, Maria Teresa

Tomas, Beatriz Fernandes, and Jose A. Moral-Munoz. Assessing physical activity
and functional fitness level using convolutional neural networks. Knowledge-
Based Systems, page 104939, August 2019.

[2] Albert Haque, Michelle Guo, Alexandre Alahi, Serena Yeung, Zelun Luo, Al-
isha Rege, Jeffrey Jopling, Lance Downing, William Beninati, Amit Singh,
Terry Platchek, Arnold Milstein, and Li Fei-Fei. Towards Vision-Based Smart
Hospitals: A System for Tracking and Monitoring Hand Hygiene Compliance.
arXiv:1708.00163 [cs], August 2017. arXiv: 1708.00163.

[3] Yan Wang, Shuang Cang, and Hongnian Yu. A survey on wearable sensor
modality centred human activity recognition in health care. Expert Systems
with Applications, 137:167–190, December 2019.

[4] Henry Friday Nweke, Ying Wah Teh, Mohammed Ali Al-garadi, and Uzoma Rita
Alo. Deep learning algorithms for human activity recognition using mobile
and wearable sensor networks: State of the art and research challenges. Expert
Systems with Applications, 105:233–261, September 2018.

[5] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep
learning for sensor-based activity recognition: A survey. Pattern Recognition
Letters, 119:3–11, March 2019.

[6] Andreas Bulling, Ulf Blanke, and Bernt Schiele. A Tutorial on Human Activity
Recognition Using Body-worn Inertial Sensors. ACM Comput. Surv., 46(3):33:1–
33:33, January 2014.

[7] Ferhat Attal, Samer Mohammed, Mariam Dedabrishvili, Faicel Chamroukhi,
Latifa Oukhellou, and Yacine Amirat. Physical Human Activity Recognition
Using Wearable Sensors. Sensors, 15(12):31314–31338, December 2015.

[8] Jorge-L. Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide
Anguita. Transition-Aware Human Activity Recognition Using Smartphones.
Neurocomputing, 171:754–767, January 2016.

[9] Wenchao Jiang and Zhaozheng Yin. Human Activity Recognition Using Wear-
able Sensors by Deep Convolutional Neural Networks. In Proceedings of the
23rd ACM International Conference on Multimedia, MM ’15, pages 1307–1310,
New York, NY, USA, 2015. ACM. event-place: Brisbane, Australia.

[10] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali
Krishnaswamy. Deep Convolutional Neural Networks on Multichannel Time
Series for Human Activity Recognition. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, June 2015.

38

[11] Francisco Javier Ordóñez and Daniel Roggen. Deep Convolutional and LSTM
Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
Sensors, 16(1):115, January 2016.

[12] Nils Y. Hammerla, Shane Halloran, and Thomas Ploetz. Deep, Convolutional,
and Recurrent Models for Human Activity Recognition using Wearables. April
2016.

[13] Charissa Ann Ronao and Sung-Bae Cho. Human activity recognition with
smartphone sensors using deep learning neural networks. Expert Systems with
Applications, 59:235–244, October 2016.

[14] Andrey Ignatov. Real-time human activity recognition from accelerometer data
using Convolutional Neural Networks. Applied Soft Computing, 62:915–922,
January 2018.

[15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional
Networks for Semantic Segmentation. arXiv:1411.4038 [cs], November 2014.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[17] Jorma Laaksonen. CS-E4890 Deep Learning: Deep feedforward neural networks,
October 2017.

[18] Antti Keurulainen. CS-E4890 Deep Learning: Optimization, November 2017.

[19] Ye Liu, Liqiang Nie, Li Liu, and David S. Rosenblum. From action to activity:
Sensor-based activity recognition. Neurocomputing, 181:108–115, March 2016.

[20] Rubén San-Segundo, Henrik Blunck, José Moreno-Pimentel, Allan Stisen, and
Manuel Gil-Martín. Robust Human Activity Recognition using smartwatches
and smartphones. Engineering Applications of Artificial Intelligence, 72:190–202,
June 2018.

[21] Yong Zhang, Yu Zhang, Zhao Zhang, Jie Bao, and Yunpeng Song. Human
activity recognition based on time series analysis using U-Net. arXiv:1809.08113
[cs, stat], September 2018. arXiv: 1809.08113.

[22] Pekka Siirtola, Ella Peltonen, Heli Koskimäki, Henna Mönttinen, Juha Röning,
and Susanna Pirttikangas. Wrist-worn Wearable Sensors to Understand Insides
of the Human Body: Data Quality and Quantity. In The 5th ACM Workshop on
Wearable Systems and Applications - WearSys ’19, pages 17–21, Seoul, Republic
of Korea, 2019. ACM Press.

[23] Pekka Siirtola, Heli Koskimäki, and Juha Röning. From User-independent
to Personal Human Activity Recognition Models Exploiting the Sensors of a
Smartphone. arXiv:1905.12285 [cs], May 2019. arXiv: 1905.12285.

39

[24] Charikleia Chatzaki, Matthew Pediaditis, George Vavoulas, and Manolis Tsik-
nakis. Human Daily Activity and Fall Recognition Using a Smartphone’s
Acceleration Sensor. In Carsten Röcker, John O’Donoghue, Martina Ziefle,
Markus Helfert, and William Molloy, editors, Information and Communication
Technologies for Ageing Well and e-Health, Communications in Computer and
Information Science, pages 100–118. Springer International Publishing, 2017.

[25] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolu-
tional Networks. arXiv:1311.2901 [cs], November 2013. arXiv: 1311.2901.

[26] Daniela Micucci, Marco Mobilio, and Paolo Napoletano. UniMiB SHAR: a new
dataset for human activity recognition using acceleration data from smartphones.
arXiv:1611.07688 [cs], November 2016. arXiv: 1611.07688.

[27] Ricardo Chavarriaga, Hesam Sagha, Alberto Calatroni, Sundara Tejaswi Digu-
marti, Gerhard Tröster, José del R. Millán, and Daniel Roggen. The Opportunity
challenge: A benchmark database for on-body sensor-based activity recognition.
Pattern Recognition Letters, 34(15):2033–2042, November 2013.

[28] Mi Zhang and Alexander A. Sawchuk. USC-HAD: A Daily Activity Dataset for
Ubiquitous Activity Recognition Using Wearable Sensors. In Proceedings of the
2012 ACM Conference on Ubiquitous Computing, UbiComp ’12, pages 1036–1043,
New York, NY, USA, 2012. ACM. event-place: Pittsburgh, Pennsylvania.

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Symbols, operators and abbreviations
	1 Introduction
	2 Background
	2.1 Artificial neural networks
	2.2 Fully convolutional networks
	2.3 Activity recognition using wearable sensors

	3 Research material and methods
	3.1 The MobiAct dataset
	3.2 Experimental procedure

	4 Results
	4.1 SensorFCN architecture
	4.2 Generalization and explainability

	5 Summary
	References

