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Abstract

The human brain consist of billions of brain cells and quadrillions of connection between them. This
complexity means that studying brain at cell level is often both impossible and unnecessary. The
brain can be roughly divided to cerebral cortex which has neural cell bodies and the interior which
has the connections between the cells. When doing brain research the cerebral cortex is usually di-
vided to areas and connections between these areas are studied.

Different kind of Magnetic Resonance Imaging (MRI) based methods are often used in brain re-
search. Their benefit is that the brain can be scanned in vivo. In this theses datasets collected with
two different kind of MRI methods are used. With Diffusion Tensor Imaging (DTI) it is possible to
study diffusion in the interior of brain and thus find how different areas of brain cortex are con-
nected. Functional MRI (fMRI) can detect which brain areas are activated at each moment.

For both DTI and fMRI data it is possible to form graphs where the nodes are brain areas and edges
are connections between them. In DTI-graphs an edge is strong if there are a lot of physical connec-
tions between the areas and in fMRI-graphs when the areas often activate at the same time. Net-
works can be created with different algorithms and using different parameters.

DTI- and fMRI-networks can be studied computationally with complex networks tools. There are
plenty of tools that can be used to get simple measures which help comparing different graphs or
datasets of graphs. In this theses two datasets were used. The first dataset includes DTT and fMRI
data for same patients. The second dataset includes only DTI data, but the data is considered to be
of really good quality.

First the DTI networks from the first datasets was analysed and compares to properties found in
other studies. The results were similar. Then the both DTI datasets were compared. In the second
dataset the graphs were much denser and similar to each other than in the first one. Finally the DTI
and fMRI networks in the first dataset were compared. There was only a little correspondence in
graphs gotten with different imaging methods. There might be many reasons for the differences both
inside and between the datasets. Data is collected with different devices, there are many ways to
create the graphs from imaging data and choosing parameters isn’t straightforward. More analysis
using different options should be done to find the reasons for these differences.
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1 Introduction

The human brain is an extremely complex system that consists of billions
of neurons and quadrillions of connections between them. The cell level
network is both impossible to obtain with existing technologies and contains
information which is irrelevant when considering the global organization of
the brain. By grouping thousands or millions of neurons to a node and
searching the connections between those areas the global properties of the
brain can be examined with graph analysis. [6]

The structure of the human brain has been studied a lot since the devel-
opment of diffusion MRI techniques. Diffusion based MRI methods enable
studying of the structural connectivity networks of the brain in vivo. An
interesting area in the field of brain research is to compare the structural
and functional networks of the brain.|6]

In this thesis a dataset of structural brain networks is studied. First the data
is validated inside the dataset and set against the results found in literature.
Then the data is compared to structural networks found in another study.
Finally structural and functional networks of the same subjects are compared.



2 Methods

The data used in this study was collected by using two kinds of Magnetic
Resonance Imaging (MRI) methods, Diffusion Tensor Imaging (DTI) and
functional MRI (fMRI). Diffusion tensor imaging is used to find structural
connections in the brain whereas fMRI is used to study how different brain
areas are activated. From imaging data it is possible to create networks that
represent connections between different brain areas. In this section brief
introductions to brain anatomy, DTI, fMRI, graph creation and relevant
graph analysis tools are given.

2.1 Magnetic Resonance Imaging

When using Magnetic Resonance Imaging (MRI) the tissue is held in a strong
magnetic field By which aligns the magnetic moments of the protons. In the
human body this mostly means hydrogen nuclei in water molecules. When a
radio magnetic (RM) pulse is applied to the tissue at the right frequency the
protons absorb energy and create a faint signal that can be detected by coils
in the MRI system. RM pulses can be added with different directions and
timings, and by mathematically manipulating the detected signals an MRI
image can be produced. [10]

2.2 Diffusion tensor imaging

Diffusion tensor imaging (DTT) is an MRI technique which was introduced in
the mid 1990’s and has been studied a lot since. With DTT it is possible to
detect an internal fibrous structure of the human brain in vivo by measuring
the diffusion of water. [8]

2.2.1 Brain anatomy and diffusion

The human brain can be divided into two main components, gray and white
matter. Gray matter is formed from cell bodies of neurons whereas white
matter is composed of the myelinated axons and glial cells. For example
the cereblar cortex consists of gray matter and white matter connects the
different parts of the cortex. In white matter axons often form bundles.



There is a lot of water in the brain and due to thermal motion the water
diffuses. If the matter is homogenous, diffusion is isotrophic which means it
is similar in all directions. In white matter diffusion is anisotrophic because
water can move more easily along the axonal bundles. [8]

2.2.2 Measuring diffusion

In the beginning of a DTI study all water molecules are in the same phase
and have the same frequency because the magnetic field By is homogenous.
When measuring diffusion with MRI linear gradient pulses are applied to the
By field. This has an effect on the frequency of the MR signal, w because the
magnetic field and frequency have a relation:

w = pbBy, (1)
where p is called the gyromagnetic ratio.

When the first (dephasing) gradient is applied the frequency of the water
molecules changes. After the gradient pulse ends water molecules again have
the same frequency but the phase is different depending on the location of
the molecule along the gradient axis.

The second (rephasing) gradient has the same length and strength as the first
pulse but its orientation is the opposite. If rephasing is perfect the phases
of all water molecules are the same after the second pulse ends. However,
because of the diffusion of water rephasing is imperfect. This leads to lower
signal intensity.

With this method diffusion is detected along the applied gradient. To find
out in which orientation diffusion is the highest gradients are applied from
multiple directions. The measurements are then fitted to a 3D ellipsoid,
which represents average diffusion distance in different orientations. The
longest eigenvector of the ellipsoid is interpreted as the direction of strongest

diffusion. [§]

2.2.3 Tractography

Tractography is a set of methods used determine how white matter tracks
are orientated in the brain based on diffusion ellipsoid data. In this thesis an
algorithm called fiber assignment by continuous tracking (FACT) was used.
The algorithm initializes tracts from many seedpoints and then propagates
these tracks along the longest eigenvector of the diffusion ellipsoid.



Information of diffusion ellipsoids can be reduced to the longest eigenvector
vy which can be assumed to be the local fiber orientation. When using the
FACT algorithm streamlines are propagated from multiple seed voxels. At
the edge of a voxel the new orientation is decided based on the v; in the new
voxel. Streamlines are terminated if the turning angle is too high or diffusion
is too isotropic. |9

2.3 Functional MRI

Blood flow in a brain area increases in activation to bring more oxygen and
glugose to the activated area. Deoxygenated hemoglobin (dHb) is more mag-
netic (paramagnetic) than oxygenated hemoglobin (Hb), which is virtually
nonmagnetic (diamagnetic). This change in the level of oxygen can be de-
tected because it increases MR signal. [5]

To make it most relevant to compare fMRI with DTI data, resting state
fMRI data was used. This means that fMRI images were taken without any
specific external stimulus.

2.4 Networks

For both DTT and fMRI, network analysis has three steps. First the cortex
is divided into Regions Of Interests (ROI) based on some atlas. ROIs be-
come nodes of the resulting graph. Then connections between these nodes
are defined from imaging data. Finally graphs are analyzed using complex
networks tools.

2.4.1 Atlases
Brain atlases are standardized mappings of the brain where different brain

areas and structures are put to the coordinate system. Atlases can be used
to divide the cortex to regions of interest.

2.4.2 DTI network construction

Graphs can be created from tractography data. The nodes of a graph are
the ROIs of the used atlas. The weight of an edge between two regions can



be extracted from tractography data by calculating how many tracts connect
the two regions.

2.4.3 fMRI network construction

In fMRI graphs the nodes are also ROIs of the used atlas. The edges of fMRI
networks are created by calculating correlations between different areas from
the fMRI timeseries. If some areas activate often at the same time, they have
high correlation which is then interpreted as an edge with high weight in the
graph. Because all the areas have some kind of correlation a threshold must
be defined to decide which of the connections to use in the graphs. There is
no exact threshold but it can be varied.

2.4.4 Network analysis

The graphs can be analyzed with different kinds of complex networks tools,
only some of which were used in this thesis. For each data set edges that
were common to all graphs were defined and for each graph a percentage
of those was calculated. For the complete graphs the number of nodes and
edges, the clustering coefficient, transitivity and shortest path lengths were
calculated.

For each node some properties, like degree and clustering coefficient were
calculated. Also averages over the graphs were calculated. These properties
were plotted so that for each node x-axis included property for the specific
graph and y-axis the average value. For those plots Pearson correlation
coefficients were calculated. One example of a this kind of graph can be
found from figure 2.4.4. If the coefficients are high (close to one) the node
properties of a single graph correspond to the average properties. This is one
way to find out how similar different graphs are on the node level.



Figure 1: Clustering coefficient plotted for each node. Value for a subject is
at x-axis and the average over the graphs is at y-axis. If all the graphs were
the same the Pearson correlation coefficient would be one
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3 Used datasets

3.1 Atlas

The used brain cortex atlas was made with Automated Anatomical Labeling
(AAL) [11]. It includes 116 regions.

3.2 Emotions project

The data set used for DTT and fMRI networks was collected for the Decoding
Emotions project of Aalto University’s Brain and Mind laboratory. The
experiments were performed in the Advanced Magnetic Imaging -center on a
3 T MAGNETOM Skyra whole-body scanner (Siemens Healthcare, Erlangen,
Germany), using a standard 20-channel head-neck coil.

3.2.1 DTI networks

DTT networks were made from dicom files with FSL and the Matlab based
toolbox Pipeline for Analysing braiN Diffusion imAges (PANDA). Networks
were made using the FACT algorithm.

At first the graphs were made using the AAL atlas which had 116 ROIs.
After this a new set of graphs was made by removing the nodes which don’t
belong also to the atlas used in Leemans dataset to make comparison between
datasets possible.

3.2.2 fMRI networks

fMRI networks were created from nifti-files with a matlab script written by
Hanna Halme.

3.3 Alexander Leemans DTI networks

Some ready-made DTI networks were received from Alexander Leemans
(Associate Professor Image Sciences Institute, University Medical Center
Utrecht, The Netherlands). The networks were made of 56 subjects, both
male and female, ages 22-57.



Leemans’ networks were also made with AAL atlas but the atlas included
only 90 nodes because cerebellar hemispheres and cerebellar vermis were
excluded [2|. From these graphs a subset of eight graphs was randomly
selected to make the number of graphs match with the set of DTI graphs
from the Emotions project.



Table 1: Some average graph properties for different datasets

Dataset | Nodes Edges Common Clustering Transitivity Shortest Path Shortest Path

edges (%) coefficient length length unweighted
Emotions DTI, 90 ROIs 86 375.62 44 0.489 0.419 0.820 2.786
Random graphs 86 376 0 0.104 2.261
AL 8 DTT graphs, 90 ROIs 90 2011.38 53.4 0.657 0.627 0.493 1.525
Emotions DTI, 116 ROIs | 111.23  523.25 43 0.491 0.412 0.809 2.891
Random graphs | 111 523 0 0.085 2.330
Emotions fMRI, 116 ROIs | 116 523.25 21 0.486 0.5315 2.65 3.17

Table 2: Average Pearson correlation coefficients calculated for some properties in different data sets
Dataset | Degree Clustering coefficient Betweenness centrality Eigenvector centrality Closeness centrality

Emotions DTI, 90 ROIs | 0.894 0.671 0.832 0.874 0.890
AL | 0.893 0.784 0.847 0.903 0.890
Emotions fMRI | 0.811 0.529 0.666 0.723 0.756

Emotions fMRI vs DTI 0.39 0.05 0.03 0.26 0.25
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4 Results

4.1 Properties of Emotions DTI dataset

The first analysis was carried through with networks done with an atlas that
had 116 ROIs. There are 225 edges in common in all the networks. On
average 43 percent of the edges of one graph belong also to all the other
graphs. Then analysis was done with an atlas that had 90 ROIs. There are
165 edges common in all the networks. On average 44 percent of the edges
of one graph belong also to all the other graphs. Some calculated average
properties for the graphs can be found in table 1.

To check if the networks are similar to each other node properties were plotted
with the value from one network in x-axis and the average value in the y-
axis. If the networks were really similar the Pearson correlation coefficients
calculated from the plots would be close to one. The results can be found in
table 2.

According to [3] brain networks are a small world. This means that they
have comparable average shortest path length but much higher clustering
coefficient than random networks. To analyze this, one hundred random
graphs were created with same number of nodes and edges as the original
DTI dataset had on average. Average node properties were calculated and
they can be found in table 1. From the results can be seen that indeed the
unweighted average shortest path length is of the same magnitude but the
clustering coefficient is much smaller in the random networks. This is some
evidence that graphs created from the Emotions DT dataset are similar to
graphs found in other studies.

4.2 Cross validation between DTI datasets

In the subset of the eight Leemans’ graphs there are 1072 edges common in
all the graphs and on average 53.4 % of the edges of one graph belong also to
all the other graphs. This proportion is higher than in the Emotions dataset.
Leemans graphs also have a lot more edges because the average number of
edges in Leemans dataset is over five times as high as in the Emotions dataset.

Some calculated average properties for the graphs can be found in table 1. It
can be seen that Leemans’ graphs have much more edges, higher clustering
and transitivity and shorter path lengths. A lot of this is due to the higher
number of edges.
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Pearson correlation coefficient calculated for node properties can be found in
table 2. For Leemans’ networks correlation coefficients are higher than for
Emotions networks. This means that Leemans networks are more similar to
each other than the networks in the other dataset. Anyhow, the difference is
relatively small.

4.3 fMRI data

Original fMRI networks had edges between every node. To do the analysis
a weight threshold was chosen to filter edges so that only those with highest
weights were taken into account. There is no exact threshold to be chosen
and networks were constructed with different thresholds. For further anal-
ysis a threshold was chosen so that fMRI networks had as many edges as
corresponding DTI networks.

There are 109 edges common in all the graphs. On average 21 percent of
the edges of one graph belong also to all the other graphs. Results are in
table 1. None of the fMRI graphs are connected but they consist of multiple
subgraphs. Average shortest path lengths given in the table are the results
for the largest connected components of the graphs.

Pearson correlation coefficients calculated for node properties can be found
in table 2. Coefficients are lower than the coefficients for DTI networks so the
fMRI networks aren’t as similar to each other as DTI networks are. There
is, however, some correlation so the networks are similar to some extent to
each other when considering node properties.

4.4 Comparison between DTI and fMRI

FMRI graphs were made with an atlas that has 116 ROIs so the comparison
between functional and structural networks is done with DTT networks of
116 ROIs. As there is no connection between the weight in DTT and fMRI
networks analysis was done for unweighted graphs.

As DTI and fMRI networks are from the same subject with the same atlas
different nodes should represent the same areas of the brain. Some node
properties were calculated for all of the nodes and then plotted to graphs so
that the value gotten from DTT network was at x-axis and value gotten from
fMRI network was at y-axis. One example can be found from figure 4.4.
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Figure 2: Comparing DTI- and fMRI graphs for one subject. For each node
the degree in the DTI network is at x-axis and in the fMRI network is at
y-axis
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Average Pearson correlation coefficients calculated for different properties can
be found from table 2. If fMRI and DTI networks were similar, correlation
should be close to one because then for example nodes which had a high
degree in the DTT network would have a high degree also in the fMRI network.
In this case only one property (degree) has relatively high correlation, all the
others being almost uncorrelated. According to [6] functional and structural
networks from same subjects should be similar. In this study fMRI networks
seem to be different to the DTI networks.
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5 Conclusions

There are multiple options as to how to create networks from DTT and fMRI
data. Different software and parameters probably give out different kinds
of networks. When comparing different datasets, the differences in graph
creation should also be taken into account. It seems that DTI networks
of the Emotions project are small world as literature suggests. Different
networks are somewhat similar to each other, but less so than in Leemans
data.

Networks from different datasets differ both on the global and node level.
There might be many reasons for this. The number of subjects is quite low,
which might cause random effects to change the results. Data is probably
collected with different hardware or imaging parameters, which might have an
effect on the data. The graphs might also be created with different algorithms
or parameters, which of course has an effect on the created graphs.

More research would be needed to find out the cause for the differences. It
would be easiest to find out the technical details Leeemans used and compare
them with the Emotions project. In addition more results from different ways
to create graphs could be tried to find out what is the effect of the algorithms
and parameters used. Leemans’ networks could also be reduced to have the
same number of edges as the networks from the Emotions project to check
how big an effect the difference in the number of edges has on the results.

Creating networks from fMRI data is not straightforward. It is difficult to
know the correct threshold for edge weights, and changing the threshold
even slightly has a huge effect on the results. In this study only a slight
correspondence was found between DTI and fMRI networks. More research
should be done on the topic and different ways to create fMRI networks
should especially be tried.
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A Terminology

A cluster is formed if the nearest neighbors of a node are also connected to
each other. [4] Clustering coefficient for weighted graphs is calculated by
taking the geometric average of edge weight for the subgraph. 1]

The degree of a node tells how many connections there are that link the
node to other nodes in the graph. Degree distribution includes degrees
from all the nodes in a graph. [4]

A graph is a set of nodes connected by edges. [4]

A neuron is a brain cell which consists of a cell body and axons which
connect the cell to other neurons. (8]

In random networks each pair of nodes has equal probability to be con-
nected. Random networks are often used in graph theory as a reference to
check if some networks properties are higher or lower than in random net-
works.

The degree distribution of a scale-free network is in the form of power-law.
4]

Shortest path length is the shortest distant between two nodes. [4]
Graphs that are small-world have two main properties compared to random
graphs that have the same number of edges and nodes. They have much
greater clustering coefficient and comparable average shortest path length.
[7] This means that though small-world graphs have quite a low degree and

they are mostly connected within cliques, the average shortest path length
is low. Many networks from in nature are small-world [4].

Transitivity is the fraction of triangles present in the graph [1].
In unweighted graphs all edges have a weight of 1.

Voxel is a pixel in 3D.



,’ Aalto-yliopisto Aalto-yliopisto, PL 11000, 00076 AALTO
Perustieteiden www.aalto fi

Korkealkouln Tekniikan kandidaatinty6n yhteenveto

Tekija Milja Asikainen

Tyon nimi Anatomical connectivity networks of the human brain

Koulutusohjelma Teknillinen fysiikka ja matematiikka

Paaaine Systeemitieteet Paaaineen koodi F3010

Vastuuopettaja Harri Ehtamo

Tyon ohjaaja(t) Raj Kumar Pan, Jari Saramaki

Paivamaara 20.09.2015 Sivumaara 14+1 Kieli Suomi

Suomenkielinen yhteenveto

IThmisaivot on 4arimmaisen monimutkainen kokonaisuus, joka koostuu miljar-
deista aivosoluista ja viela useammasta yhteydesta niiden valilla. Karkeasti ai-
vot voidaan jakaa kuorikerroksen harmaaseen seka sisdosien valkeaan ainee-
seen. Harmaa aine sisaltaa aivosolujen solukeskuksia kun taas valkea aine
koostuu aivosolujen valisista haaraisista yhteyksista. Valkeassa aineessa yksit-
taiset hermosaikeet usein niputtuvat suuremmiksi, aivoalueelta toiselle kulke-
viksi kimpuiksi. Thmisaivojen laajuisten verkkojen havainnointi solutasolla
olisi mahdotonta sekd useimmissa tapauksissa myos tarpeettoman yksityis-
kohtaista. Ryhmittelemalla kuorikerroksen aivosoluja suuremmiksi kokonai-
suuksiksi on mahdollista tutkia eri aivoalueiden valisia yhteyksia.

Elavia aivoja voidaan tutkia esimerkiksi erilaisilla magneettikuvausmenetel-
milla. Magneettikuvaus perustuu vahvaan magneettikenttaan, joka kaantaa
protonien spinit samansuuntaisiksi. Thmisaivoissa tama tarkoittaa etenkin ve-
simolekyylien protoneita. Kun kudokseen kohdistetaan pulssi sopivalla radio-
taajuudella, protonit imevat itseensa energiaa ja lahettavat havaittavissa ole-
van signaalin. Muuntelemalla pulssien taajuutta, suuntaa ja ajoitusta, voidaan
muodostaa kuva aivoista. Tassa tyossa on kaytetty kahdenlaisilla MRI-mene-
telmilla saatua aivokuvaa.

Diffuusiotensorikuvantaminen on magneettikuvausmenetelma, jolla voidaan
havaita valkoisen aineen kimppujen suuntia. Se perustuu siihen, etta veden
lampoliike on voimakkaampaa kimppujen suuntaisesti kuin kohtisuoraan niita
vastaan. Diffuusiotensorikuvantamisessa kudokseen kohdistetaan kaksi radio-
taajuista gradienttipulssia. Naistd ensimmainen muuttaa protonien taajuutta.
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Pulssin jalkeen taajuus palaa entiselleen, mutta vaihe vaihtelee protonin pai-
kan mukaan. Toisen pulssin pituus ja voimakkuus ovat taysin samat kuin en-
simmaisella, mutta sen suunta on vastakkainen. Jos uudelleenvaiheistus on-
nistuisi taysin, kaikkien vesimolekyylien vaiheet olisivat samat kuin ennen gra-
dienttipulsseja. Veden lampoliikkeen takia nain ei kuitenkaan tapahdu, mika
voidaan mitata heikompana signaalina.

Diffuusiotensorikuvantamisella voidaan havaita gradienttipulssin suuntaisen
lampoliikkeen voimakkuus. Lahettamalla gradientti useammasta suunnasta ja
mittaamalla lampoliikkeen voimakkuutta mittaustuloksiin voidaan sovittaa
kolmiulotteinen ellipsoidi. Ellipsoidi kuvaa keskimaaraista lampoliikkeen voi-
makkuutta karteesisessa koordinaatistossa ja sen suurin ominaisvektori tulki-
taan voimakkaimman lampoliikkeen suunnaksi.

Ellipsoideista voidaan maarittaa valkoisen aineen kimppujen kulkusuunnat
useilla menetelmilla. Tassa tyossa kaytetyssa FACT-menetelmassa juosteet
alustetaan useissa siemenpisteissa. Aina kolmiulotteisen kuvapisteen rajalla
juosteen kulma kaannetdan ellipsoidin suurimman ominaisvektorin mu-
kaiseksi. Juosteen pituutta kasvatetaan, kunnes kiannoksen kulma olisi liian
suuri tai paadytaan kuvapisteeseen, jossa lampoliike on satunnaista.

Toinen tyossa kaytetty magneettikuvausmenetelma on toiminallinen magneet-
tikuvaus. Aivoalueen aktivoitumisen seurauksena veren virtaus kyseisella alu-
eella voimistuu, mika kohottaa happipitoisuutta. Tama suurentaa magneetti-
kuvauksen synnyttamaa signaalia mitattavasti, joten kullakin hetkella aktiivi-
set aivoalueet voidaan havaita.

Mitatuista aivokuvista voidaan tehda verkkoja jakamalla aivokuori alueisiin,
jotka ovat verkkojen solmuja. Diffuusiotensorikuvista muodostettavissa ver-
koissa solmujen vilisten sirmien paino maaritetaan alueiden valilla kulkevista
valkoisten aineen kimpuista. Mita enemman kimppuja on, sitd painavampi on
myos sairma. Toiminnallisista magneettikuvista tehtavissa verkoissa taas sar-
mien painot saadaan laskemalla eri alueiden aktivoitumisen aikakorrelaatio.
Sarma on vahva, jos alueet aktivoituvat usein samanaikaisesti.

Tassa tyossa kaytettiin kahdesta eri lahteesta saatuja aivokuvia tai jo valmiita
aivoverkkoja. Ensimmainen aineisto oli keratty Aalto-yliopiston Decoding
Emotions- projektissa ja se sisilsi diffuusiotensorikuvia seki toiminnallisia
magneettikuvia samoilta koehenkiloilta. Tyossa naista kuvista muodostettiin
verkkoja eri menetelmilla.
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Toisena aineistona kaytettiin hollantilaisen Alexander Leemansin diffuusio-
tensorikuvista muodostamia verkkoja. Leemansin tutkimusta ja tuloksia pidet-
tiin yleisesti onnistuneina. Eri aineistojen verkkoja analysoitiin ja vertailtiin
monilla laskennallisilla analysointimenetelmilla.

Ensimmaisen aineiston diffuusiotensorikuvista muodostettuja verkkoja ver-
rattiin satunnaistetusti luotuihin. Diffuusiotensorikuvista muodostetuilla oli
korkeampi klusteroitumiskerroin, mutta suunnilleen sama keskimaarinen ly-
himman polun pituus. Samanlaisia tuloksia on saatu aiemmissa tutkimuksissa.

Seuraavaksi tyossa muodostettuja verkkoja verrattiin toisen aineiston vastaa-
viin. Toisessa aineistossa verkoissa oli paljon enemman sarmia, lyhyemmat po-
lun pituudet seka korkeampi klusteroitumiskerroin. Lisdksi toisen aineiston
verkot muistuttivat toisiaan huomattavasti enemman.

Ensimmaisen aineiston diffusiotensorikuvista ja toiminnallisista magneettiku-
vista muodostettuja verkkoja vertailtiin myos keskeniaan. Samoilta koehenki-
l6ilta oli kuvattu aivot kummallakin menetelmalla, joten verkkojen olisi oletet-
tavasti pitanyt muistuttaa toisiaan. Tallaisia tuloksia on saatu myos aiemmissa
tutkimuksissa. Tyon tutkimuksessa kuitenkin vain yksi tutkituista ominaisuuk-
sista, solmujen aste, korreloi merkitsevasti eri menetelmalla kerattyjen verk-
kojen valilla. Vaikuttaakin silta, etta rakenteelliset ja toiminnalliset verkot ovat
erilaisia.

Seka aineiston sisiisiin etta aineistojen valisiin eroihin voi olla monta syyta.
Aivojen kuvaamisessa on saatettu kayttaa eri laitteistoja ja erilaisia paramet-
reja. Lisaksi verkkoja voi muodostaa monenlaisilla menetelmilla ja kayttamalla
erilaisia parametreja. Aihetta tulisikin tutkia lisaa, jotta verkkojen eroavai-
suuksien syista voitaisiin olla varmoja.

Avainsanat Ihmisaivot, Diffuusiotensorikuvaus, Funktionaalinen magneet-
tikuvaus, Verkkoanalyysi
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