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cuses on their computation. They are used in spatial decision analysis to compare decisions that 
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Tässä kandidaatintyössä esitellään kahden päätösmenetelmän, dominanssin ja potentiaalisen op-
timaalisuuden, laskenta tietokoneella. Päätösmenetelmiä hyödynnetään spatiaalisessa päätösana-
lyysissa, jossa vertaillaan päätösvaihtoehtoja ja tavoitteena on parhaan vaihtoehdon löytäminen 
päätöksentekijän tavoitteet huomioiden. Päätösvaihtoehtojen vertailuun vaikuttavat päätöksente-
kijän spatiaaliset preferenssit, jotka kuvaavat alueen sijaintien tärkeyttä painokertoimien avulla. 
Preferenssi-informaatiota kutsutaan epätäydelliseksi, jos saatavilla oleva informaatio ei riitä pai-
nokertoimien täsmälliseen ilmaisuun.  
 
Vaihtoehtojen vertailu pareittaisella dominanssilla ja potentiaalisella optimaalisuudella perustuu 
tässä työssä lineaaristen optimointitehtävien ratkaisemiseen. Päätöksentekijän preferenssi-
informaatio esitetään optimointitehtävän rajoituksina, ja ratkaisut kertovat vaihtoehtojen keski-
näisestä paremmuusjärjestyksestä. Saatua tietoa voidaan käyttää pääätöksenteon tukena. 
 
Tämä kandidaantintyö demonstroi menetelmien käyttöä ilmavalvontatutkien suunnitteluesimer-
killä, jossa päätöksentekijä valitsee sijainteja useille ilmavalvontatutkille. Päätösvaihehdot kuvaa-
vat simuloitujen tutkien yhteisvaikutuksen kykyä havaita ja seurata lentäviä kohteita. Menetel-
mien avulla vaihtoehtoja rajataan eliminoimalla huonompia päätöksentekijän epätäydellisten pre-
ferenssien perusteella.  
 
Ilmavalvontaesimerkissä dominanssin avulla päätösvaihtoehtojen määrää onnistutaan vähentä-
mään, mutta potentiaalinen optimaalisuus ei rajaa vaihtoehtojen määrää enempää. Tulokset ovat 
vahvasti sidoksissa preferenssi-informaatioon, ja lisäinformaation avulla voitaisiin rajata vaihto-
ehtoja entisestään. Toteutetut vertailumenetelmät ovat sovellettavissa myös muihin spatiaalisiin 
päätöksenteko-ongelmiin sellaisinaan. 
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1 Introduction

Decisions sometimes have consequences associated with spatial or geograph-
ical regions. For instance, in air surveillance planning, deciding where to
position radars affects the performance of the surveillance. Surveillance in
general has several measures, such as the ability to detect and identify tar-
gets and to follow their movement. The decision maker has to consider the
radar characteristics, such as the range and operational modes, in addition
to the positioning of other radars in order to evaluate the performance of
the surveillance. However, overall performance is not always enough, if the
objective areas are not covered well enough. When considering the spatial
preferences, the decision between possible radar position alternatives quickly
becomes too complex to consider thoroughly and more analytical tools are
required.

Similar multi-attribute decision problems appear in many other fields which
have lead to different mathematical approaches to provide decision support
(see, e.g., Keeney and Raiffa [1976]). Consequence value functions that value
the decision’s consequences are used to compare the decision alternatives
with the objective of finding the best alternative(s). More recent studies
have presented the decision analysis concepts in a spatial sense (see, e.g.,
Simon et al. [2013], Harju et al. [2019]).

The preference information in spatial decision analysis, provided by a deci-
sion maker (DM), is represented by weights associated with each attribute
and spatial locations. The DM’s preferences are elicited and converted into
weights (see, e.g., Öztürké et al. [2005]). However, the DM is not always
able to meaningfully provide complete information that could be represented
as exact weights (see, e.g., Ferretti and Montibeller [2016]). This possibil-
ity of incomplete preference information is taken into account in some of
the approaches (see, e.g., Kirkwood and Sarin [1985], Salo and Hämäläinen
[2010]). By presenting the DM’s preferences as weight constraints rather
than exact weights, the comparison between alternatives becomes a matter
of optimization (see, e.g., Punkka and Salo [2013]).

Harju et al. [2019] extend the spatial decision models by a thorough axiomati-
zation and combine them with incomplete preference information. Their pref-
erence model provides the necessary tools to compare alternatives through
pairwise dominance.

This thesis follows the Harju et al. [2019] preference model and applies it to
regions that contain discrete locations. This thesis provides a computational
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implementation of dominance and potential optimality which are demon-
strated using an air surveillance planning example in which the DM has to
decide between radar configuration alternatives. Different radar attributes
and surveillance objectives, such as detection and tracking, are considered
with the DM’s location and attribute specific spatial preferences to provide
decision support by reducing the alternatives.

This thesis covers the basic principles of spatial decision analysis in sec-
tion 2 and presents two key decision support concepts, namely dominance
and potential optimality. In section 3, the DM’s preference information is
formalized as constraints and computational solutions to dominance and po-
tential optimality are formulated. The concepts are demonstrated using an
air surveillance planning example in section 4 in which the results and the
computational properties of the methods used are discussed. Finally, section
5 concludes the thesis.

2 Introduction to spatial decision analysis

2.1 Prerequisites

In this thesis, decision alternatives are considered with respect to a spa-
tial region denoted by S, which consists of the individual locations s ∈ S.
The subsets S ′ ∈ S of the region are referred to as subregions. The region
can represent for example a two-dimensional geographical map or a three-
dimensional airspace. Decision alternatives, denoted by Z : S → C, assign
a consequence c ∈ C, where C is the set of possible consequences, to each
location s ∈ S.

For instance, consider deciding the positions of fire stations in a city, as
presented in Honkasaari [2016]. The decision alternatives z of the fire station
positions would assign each location s in the city a time value corresponding
to the response time of the fire fighters. Suppose that a possible alternative
z corresponds to building the fire station at coordinates (x, y). The response
time would then be z(s) = c

√
(x− sx)2 + (y − sy)2+b, where c is a constant

describing the average driving speed of the fire truck and b represents the
constant alert time it takes to get moving. In this example, z(s) ∈ C = [0,∞[
represents the response time but the consequences could as well be discrete
descriptions of the damages caused by the fire, e.g., C = { “No damage”,
“Some damage”, “Severe damage” }.
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The DM’s preference between decision alternatives is represented by the pref-
erence relation

z � z′. (1)

The notation indicates weak preference which means that the alternative z is
at least as preferable as z′ to the DM (see, e.g., French [1986]). Other useful
relations are defined as follows:

z ∼ z′ ⇔ z � z′ and z′ � z, (2)
z � z′ ⇔ z � z′ and not z′ � z. (3)

The relation ∼ describes that the DM is indifferent between alternatives z
and z′, that is, she would be equally satisfied with either of the alternatives.
Strict preference � implies that the DM would always choose z over z′.

2.2 Spatial value function

The preference relation � provides a pairwise comparison between alter-
natives, which may be sufficient when the number of alternatives is small.
However, if one were to solve a complete ranking for n alternatives, an or-
der of n2 comparisons would be needed. Value functions that assign scalar
values to decision alternatives (see, e.g. Keeney and Raiffa [1976], French
[1986]) provide a more convenient way of comparison. They also contribute
to the credibility and transparency of the decision making process giving a
mathematical form of comparison.

In this thesis, the value function is assumed to be

V (z) =

∫
S

v(z(s))dα(s), (4)

consisting of v : C → IR, a consequence value function that assigns a value
v(c) to each consequence c ∈ C, and α : 2S → [0,∞[ where 2S is the set of
all possible subsets of S, a spatial weighting function that gives the spatial
weight α(S ′) for each subregion S ′ ⊆ S [Harju et al., 2019]. The spatial
weights are interpreted to describe the importance of the subregions to the
DM. However, the value function is only used for ordering the alternatives,
rather than interpreting the exact values.

The weights are assumed to be non-negative and specified to be between 0
and 1 such that α(S) = 1, i.e., the integral over the weights is equal to one.
The spatial weighting function α is finitely additive, that is, the weight of
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the union of two non-overlapping areas S ′ and S ′′ is equal to the sum of their
weights,

α(S ′ ∪ S ′′) = α(S ′) + α(S ′′), for all S ′, S ′′ ∈ S, s.t. S ′ ∩ S ′′ = ∅. (5)

The consequence function values v(z) are scaled similarly such that v(c) ∈
[0, 1] for all c ∈ C. Harju et al. [2019] provides an axiomatization for the
spatial value function, but require that S consists of an infinite number of
locations.

In this thesis, the scope is limited to finite S ignoring the underlying prefer-
ence assumptions. With finite S consisting of n locations, the locations are re-
ferred to using si where i ∈ I = {1, 2, ..., n}. Denote ai = α({si}), the weight
of the location si. The weight of a subregion S ′ is α(S ′) =

∑
s∈S′ α({s}).

Similarly to (4), ai ∈ [0, 1] for all i ∈ I and
∑n

i ai = 1. The spatial value
function is

V (z) =
n∑
i=1

aiv(z(si)), (6)

similarly as in Simon et al. [2013]. This is extended to multiple attributes
by defining a spatial value function for each attribute j ∈ J = {1, 2, ...,m}
(see, e.g., Keisler and Sundell [1997]). The multi-attribute value function is
defined as a weighted sum over the attribute-specific values, given by

V (z) =
m∑
j=1

bjVj(zj) =
m∑
j=1

bj

n∑
i=1

aijvj(zj(si)), (7)

where bj is the attribute weight, defined similarly to ai in (6), such that
bj ∈ [0, 1] for all j ∈ J and

∑m
j bj = 1. The spatial weight aij is dependent

on the attribute j in addition to the location i and thus the spatial weights
can be defined for each attribute separately. From now on, V (z) is referred
to as the multi-attribute version.

2.3 Incomplete preference information

Comparing alternatives using the spatial value function is convenient when
the spatial weights are known exactly. However, this is often not the case.
Describing one’s spatial preferences in an exact manner is a difficult task
especially when the number of locations is high. For instance, the DM may
not be completely aware of every detail of the application, she may not be
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confident enough to weight the locations exactly, or there may be too many
locations for her to consider.

Preference information is said to be incomplete when the information avail-
able is not sufficient to express the weights explicitly. Instead, decision alter-
natives are compared based on a set of feasible weights [Salo and Hämäläinen,
1992]. The true weights that represent the DM’s exact preferences are an
element of this set. The comparability of the decision alternatives is more
limited. A complete order is not always obtained, but the preference in-
formation can narrow the set of interesting alternatives through pairwise
dominance and potential optimality.

The weights are divided into two sets, ones considering the relation between
attributes and others considering the spatial region. Attribute weights bj
are collected into a vector b ∈ [0, 1]m and are considered separately from the
spatial weights. The set of all possible attribute weights is

B0 = { b ∈ [0, 1]m |
m∑
j=1

bj = 1 }. (8)

The set B0 serves as the base set for the attribute weights. The set of feasible
attribute weights that satisfy the preference information available is a subset
of B0, denoted by B ⊆ B0.

Similar definitions are made for the spatial weights aij which form a matrix
a. For any given attribute j, the base set that contains all of the possible
spatial weighting vectors a·j, i.e., the j:th column of a is

A0 = { a·j ∈ [0, 1]n |
n∑
i=1

aij = 1}. (9)

The set of feasible spatial weights that satisfy the preference information
available with respect to attribute j is denoted by Aj ⊆ A0. It is worth
noting that the base set A0 is the same for all attributes j.

The value of each alternative V (z) is not uniquely defined since it depends on
the weights aij and b. Thus, a different approach in comparing alternatives is
required. The alternatives can be analysed using the concept of dominance
(see e.g., Keeney and Raiffa [1976]) and classified as dominated and non-
dominated alternatives. The previous are then excluded from further analysis
as the latter are considered better in light of the preference information.



6

Decision alternative z dominates z′, denoted by zDz′, if{
V (z) ≥ V (z′), for all a·1 ∈ A1, ..., a·m ∈ Am, b ∈ B
V (z) > V (z′), for some a·1 ∈ A1, ..., a·m ∈ Am, b ∈ B

. (10)

Intuitively, dominance means that the dominating alternative obtains at least
equally good values for all feasible weights but strictly better value(s) for at
least some feasible weights. Due to the transitivity of the preference relation
in (1), dominance in (10) is transitive as well. Obviously, the requirement of
strict inequality for some weights implies asymmetry, that is, zDz′ simulta-
neously with z′Dz is not possible.

However, depending on the alternatives, comparing the alternatives using
pairwise dominance may not be sufficient to provide reasonable decision sup-
port. The set of non-dominated alternatives can be too large or even include
every alternative. Potential optimality can be used to narrow down the al-
ternatives further. An alternative z′ is considered potentially optimal in the
spatial weights given by the set A, if

V (z′) ≥ V (z), for all z ∈ Z for some a1 ∈ A1, ..., am ∈ Am, b ∈ B. (11)

Potential optimal alternatives, i.e., those satisfying (11), achieve the highest
value for some feasible weights. Potential optimality is a stronger condition
than dominance but it is computationally more challenging for larger num-
bers of locations. However, potential optimal alternatives are normally also
non-dominated and as a result, computing potential optimality for already
non-dominated alternatives may save resources.

Using the definitions in 10 and 11, the decision alternatives can be compared
without the requirement of exact preference information. The DM can state
her spatial preferences as rankings rather than precise numbers. She can
for instance rank the subregions based on their priority considering a given
attribute. Such preference statements are more intuitive and credible to
express, even for a DM that is not an expert in mathematics. There are
different methods of preference elicitation (see, e.g., Salo and Hämäläinen
[1992]) that transform the preferences in a mathematically usable form. The
weights satisfying the DM’s statements form the feasible sets A and B.
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3 Computation of dominance and potential op-
timality

This section presents a computational approach to analyze the decision al-
ternatives using dominance and potential optimality. The computations are
formulated as linear programming problems (see, e.g., Athanassopoulos and
Podinovski [1997]) that can be solved using various algorithms and software.
Appendix A provides the problems in standard form that can be solved as
is.

3.1 Set of feasible weights

The feasible weights are defined by preference statements given by the DM
separately for attribute and spatial weights. The statements are formalized
as linear constraints related to the weights which specify the feasible set of
weights (see, e.g., Salo and Hämäläinen [1992]). Finally, the constraints are
combined together into a more convenient form considering the computation
of the optimization problems.

3.1.1 Attribute weights

When the DM has not given any preference information and there are no
weight restrictions, the set of feasible attribute weights B is equal to the
base set B0. The preference information can be elicited from the DM using
different methods. The preference statements of the form “attribute j1 is at
least k times more important than attribute j2” is transformed into a linear
constraint of the form

m∑
j=1

qjbj ≤ 0, (12)

where qj are the corresponding real-valued coefficients. The coefficients form
a vector q, for instance, q =

[
−2 1 0 . . . 0

]
corresponds to the inequality

2b1 ≥ b2, indicating that attribute 2 is at most twice as important as attribute
1 to the DM.

Multiple preference statements are collected into a t × j matrix, where t is
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the number of the statements, such that

Q =

q
1

...
qt

 , (13)

where q1, ..., qt are coefficient vectors respective to each statement. The feasi-
ble set of attribute weights B is now defined explicitly. It is the set of weights
that satisfy all the preference statements in (13), i.e.,

B = { b ∈ B0 |Qb ≤ 0 }. (14)

3.1.2 Spatial weights

The DM’s spatial preference statements correspond to spatial weight inequal-
ities for a given attribute j ∈ J . The spatial weight of a subregion is the sum
of the location weights,

αj(S
′) =

∑
i∈I | si∈S′

aij. (15)

Consider that the DM states that she finds subregion S ′ at least ` times as
important as S ′′ regarding the j:th attribute. The statement corresponds to
the inequality αj(S

′) ≥ `αj(S
′′), i.e.,

∑
i∈I | si∈S′ aij ≥ `

∑
i∈I | si∈S′′ aij The

spatial constraints are defined similarly to (12), by

n∑
i=1

pjiaij ≤ 0, (16)

where pji are the real-valued spatial coefficients concerning attribute j.

The spatial preference statements and the corresponding coefficients are col-
lected into a rj × n matrix P j for attribute j, where rj is the number of
statements regarding the attribute, similarly to the attribute coefficient ma-
trix Q.

As in (14), the feasible set of spatial weights with respect to the j:th attribute
is given by

Aj = { a ∈ A0 |P ja ≤ 0 }. (17)
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3.1.3 Combining the weights

In order to greatly simplify the upcoming computation of dominance and
potential optimality, an auxiliary weight combining the attribute and spatial
weights, such that wij = bjaij, is introduced. Notation for the weights wij
is analogous to aij. The matrix containing wij is referred to as w. The
multi-attribute spatial value function (7) in terms of wij is

V (z) =
m∑
j=1

bj

n∑
i=1

aijvj(zj(si))

=
m∑
j=1

n∑
i=1

bjaijvj(zj(si))

=
m∑
j=1

n∑
i=1

wijvj(zj(si)).

(18)

As seen in (18), the value function V (z) is now linear in terms of the weights
wij. Since the sum of the spatial weights is equal to 1 for each attribute j,
the attribute weights bj are obtained as the sum of the auxiliary weights over
the region

n∑
i=1

wij =
n∑
i=1

bjaij = bj

n∑
i=1

aij = bj. (19)

Using this definition, the spatial weights are calculated by normalizing with
bj, such that aij = wij/bj when bj 6= 0. The case bj = 0 is trivial, as the total
weight

∑
i∈I wij = 0. It follows that the auxiliary weights wij sum to 1. The

set of possible weights W 0 is defined similarly to A0 and B0, such that

W 0 = {w ∈ [0, 1]n×m |
n∑
i=0

m∑
j=0

wij = 1 } (20)

The preference statements considering both attributes and locations are pre-
sented in terms of wij. The attribute preference statements φ ∈ {1, 2, ..., t}
in (12) are now of form

m∑
j=1

qφjbj =
m∑
j=1

qφj

n∑
i=1

wij =
n∑
i=1

m∑
j=1

qφjwij ≤ 0 (21)
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Similarly, the spatial preference statements π ∈ {1, 2, ..., rj} considering at-
tribute j are of form

n∑
i=1

P j
πiaij =

n∑
i=1

P j
πi

wij
bj

=
n∑
i=1

P j
πiwij ≤ 0. (22)

Since the original constraints derived from the spatial and attribute spe-
cific statements are unchanged, the feasible weights satisfy every constraint.
Considering that the auxiliary weights sum to 1 it follows that the spatial
weights aij and attribute weights bj obtained from the weights wij also sum
to 1, respectively.

3.2 Dominance

In this thesis, the dominance between alternatives is determined by posing the
dominance condition in (10) as an optimization problem with the preference
information applied as constraints.

Specifically, the dominance between alternatives z and z′ is defined using the
following definitions (23)-(28).

min
w∈IRn×m

n∑
i=1

m∑
j=1

wij(vj(zj(si))− vj(z′j(si))) (23)

max
w∈IRn×m

n∑
i=1

m∑
j=1

wij(vj(zj(si))− vj(z′j(si))) (24)

s.t.
n∑
i=1

m∑
j=1

qφiwij ≤ 0, for all φ ∈ { 1, 2, ..., t } (25)

n∑
i=1

P j
πiwij ≤ 0, for all π ∈ { 1, 2, ..., rj }, for all j ∈ J (26)

n∑
i=1

m∑
j=1

wij = 1 (27)

wij ≥ 0 (28)

If a non-negative solution is found to minimization in (23) and a positive
solution is found to maximization in (24), z dominates z′. The constraints in
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(25)-(28) are used in both problems. Constraints (25) and (26) correspond
to the preference statements, (27) provides that the weights w sum to 1 and
(28) assures that the weights are positive as defined. An important note
is that both of the objective functions and the constraints are linear with
respect to the weights wij. Without the auxiliary weights the problem would
be non-linear and the solution would be considerably more difficult to find.

The number of variables grows fast if more locations are presented resulting
in a potentially challenging problem to solve computationally. However, if
the DM’s spatial preferences are stated in terms of subregions S ′ consist-
ing of several locations, the variables respective to these locations are re-
stricted identically. The minimum and maximum values are obtained when
the spatial weight of the subregion is concentrated in a single location [Harju
et al., 2019]. For example for a single attribute j, assume that the sum
of the weights wij in a subregion S ′ is a constant

∑
i∈I∗ wij = c, where

I∗ = { i ∈ I | si ∈ S ′ }. Denoting W ∗ = {w ∈ W |
∑

i∈I∗ wij = c } and using
the linearity of the problem, it follows that

min
w∈W ∗

∑
i∈I∗

wijVj(zj(si))− Vj(zj(si))

=c min
i∈I∗

Vj(zj(si))− Vj(zj(si)).
(29)

As a result, the variables wij representing the locations in S ′ reduced to a
single variable.

Provided the locations can be divided into a smaller amount of subregions,
the optimization problem reduces drastically in complexity making the com-
putation significantly faster. As a result, increasing the amount of locations
in a subregion, e.g., increasing the resolution of a map, has little effect on
the computational complexity of determining the non-dominated alterna-
tives. However, the complexity is highly dependent on the number of the
alternatives as the amount of pairwise comparisons grows quadratically with
respect to the number of alternatives.

3.3 Potential optimality

Potential optimality requires an alternative to achieve a value at least as
good as that of all of the other alternatives. As a result, the condition can be
formulated as constraints as the difference between the alternative in question
and every other alternative.



12

The alternative z′ is potentially optimal, if a solution to

min
w∈IRn×m

k (30)

s.t.
n∑
i=1

m∑
j=1

wij(vj(zj(si))− vj(z′j(si))) ≤ 0, for all z ∈ Z (31)

n∑
i=1

m∑
j=1

qφiwij ≤ 0, for all φ ∈ { 1, 2, ..., t } (32)

n∑
i=1

P j
πiwij ≤ 0, for all π ∈ { 1, 2, ..., rj }, for all j ∈ J (33)

n∑
i=1

m∑
j=1

wij = 1 (34)

wij ≥ 0 (35)

exists. The objective function k is a constant as any feasible solution suffices.
The condition in (31) states that the alternative z′ achieves at least as good
values V (z) as every other alternative. Conditions (32)-(35) contain the DM’s
preference information and the weight requirements, defined similarly as in
the case of dominance in (23)-(28).

Provided that the alternative’s concequences are defined continuously and
are not constant within a subregion, the linear programming problem con-
sists of nm variables that cannot be concentrated. This is often the case if the
concequences depend, say, on the distance of a location from a fixed point,
e.g., a radar. In this case, the complexity of the problem is highly dependent
on the number of locations and attributes. However, if there are equal conce-
quences within a subregion, e.g., concequences are defined discretely, similar
simplifications can be used as in the case of dominance.

4 Air surveillance application

This section demonstrates the use of dominance and potential optimality
in decision support. The section presents an air surveillance example with
the goal of providing recommendations for radar positions from a group of
possible locations. Planning the positions plays a key role, e.g., in civilian
air traffic control and military applications. The decisions are faced, for
instance, in planning air surveillance networks that consist of the complete
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system of radars, tracking software and human operators with the goal of
providing accurate information to aid the DMs in traffic control and defence.

The radar characteristics are simulated using a specifically designed tool that
outputs the consequences, that is, the radar performance, in each location.
The values and the previously posed optimization problems are solved in
MATLAB.

4.1 Scenario

The air force of a fictional country is planning the positions of their air
surveillance equipment in order to maximize coverage and surveillance quality
in their airspace. The planner in charge (DM) has preselected a group of
positions that fulfill the necessary geographical requirements for a radar.

Figure 1: The map of the country. Distances are in kilometers. Position
candidates for short range radars are represented with circles, medium range
radar with squares and long range radar with diamonds.

The country has three different radar types in use and each of them has their
own positional requirements and thus different position candidates presented
in Fig. 1. The country has three short range radars available and the DM has
selected six position candidates for the short range radars. There are four
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position candidates and two units available for the medium range radars.
The country has only one long range radar and the DM has pointed out
three different position candidates for it.

4.2 Decision alternatives

The performance of the radars is simulated using a computational tool that
represents realistic radar models. The tool takes into account the radar prop-
erties, operational modes and stochastic elements encountered in reality. The
main radar properties in this thesis are the effective range and the rotation
time which describe the distance and the frequency of the observations the
radar provides. The properties are presented in Table 1.

Table 1: Radar properties

Radar range Effective range (km) Rotation time (s) Units available
Short 100 4 3
Medium 300 8 2
Long 500 8 1

Short range radars turn faster and thus detect targets more frequently. The
medium and long range radars have greater effective ranges but rotate slower.
The different operational modes contribute to the differences between radars,
but are not discussed here. Since the units available and the position candi-
dates are different for each radar type, the decision alternatives correspond
to the combinations of positions. The number of alternatives in the scenario
is
(
6
3

)
·
(
4
2

)
·
(
3
1

)
= 360. The radar configurations, that is, alternatives, are

referred to according to the labels used in Fig. 1. For example, configuration
Aab123 has a long range radar at A, medium range radars at a and b, and
short range radars at 1, 2 and 3.

4.3 Attributes

The radar performance is measured in two attributes, detection rate zd(s) and
tracking capability zt(s) at a given location. The performance is considered in
three dimensions, but in this thesis the scope is limited to a specific altitude
reducing the region to two dimensions.
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The visibility of a target is dependent of its flight altitude as the ground
curvature limits the minimum visible altitude. In this example, each of the
radar types is installed to 15m height and the surrounding areas provide
clear line of sight to every direction which corresponds to a radar horizon of
approximately 14km in ground distance. The minimum altitude beyond the
radar horizon grows quickly in terms of distance. Potential enemy aircraft
are assumed to fly at an altitude of 4km (13100ft) to which the line of sight
is clear up a distance of 240km. The computational tool takes diffraction
into account resulting in slight improvements in detection beyond the direct
visibility, but decreases rapidly to zero.

Each radar assigns a probability of detection to each location s ∈ S that is
obtained using the computational tool. The detection rate zd(s) for a single
radar is obtained by dividing the probability of detection by the time it takes
to rotate. The detection rate zd(s) describes the number of detections per
second and is independent of the other radars, that is, the detection rate
cumulates when more radars are added.

Tracking accuracy zt(s) is represented by three-dimensional accuracy of the
observations consisting of horizontal and vertical accuracy obtained for each
s ∈ S using the computational tool. The three-dimensional accuracy is
calculated as a weighted geometrical mean of the two components. The
zt(s) values of the tool range from 0 to around 10000 with smaller values
representing better tracking ability. In this thesis, the highest value is limited
to 2000, as anything beyond that is considered as no tracking capability at
all.

The attributes of alternative Aab123 are represented in Figures 2 and 3.
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Figure 2: Detection rate of Aab123.

Figure 3: Tracking accuracy of Aab123.
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4.4 Consequence value function

Both attributes, detection rate zd(s) and tracking zt(s), are valued using
additive value functions vd(z) and vt(z), respectively. The change in vd(s)
from higher detection rates is not linear. A small detection rate is consid-
ered better than no detections at all in terms of coverage. Similarly, a high
detection rate is not greatly better than a little lower rate. The consequence
value function for detections is given by vd(z) = 1 − e−4zd(s). Improvements
in detection rate beyond 1 per second are considered to be marginal and thus
the exponential coefficient 4. The function vd(z) is represented in Fig. 4.

Figure 4: vd(z) in terms of detection rate zd(s).

Tracking accuracy is valued using a piecewise linear function that represent
the DM’s assessment on tracking importance. The slope of vt(s) is steeper
the lower the zt(s) values are. Opposite to vd(s), the gains in vt(s) grow as
the tracking accuracy improves, seen in Fig. 5.
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Figure 5: vt(z) in terms of tracking accuracy zt(s).

4.5 Preference information

The DM presents her spatial preferences considering geographical areas. The
preference statements of form (16) rank the areas in question by their impor-
tance. The country is divided into six areas, namely Border, East, Inland,
South, West and North areas. The areas numbered from 1 to 6 in the previ-
ous order are presented in Fig. 6 along with four main cities named A, B, C
and D.
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Figure 6: Map division into 6 areas with the largest cities A to D.

The country neighbored by two other countries, neighbors 1 and 2. Neighbor
1 is located in the East and it shares some land border in the region 1.
Neighbor 1 is a powerful country with large land areas continuing across
the sea. The relations between this country have been controversial and is
considered a more likely threat. The other one, neighbor 2, is located mainly
in the west, with whom the DM’s country shares substantial share of the
land border, is considered an ally.

The DM states that detection capability is preferred near borders, Eastern
border and sea especially, and the preference gradually decreases towards
inland. She ranks the areas by importance, such that α(S1) ≥ α(S2) ≥
α(S6) ≥ α(S4) ≥ α(S5) ≥ α(S3). Specifically,

xα(Si+1) ≥ α(Si) ≥ yα(Si+1), (36)

where i corresponds to the indices of the previous ranking and x = 3 and
y = 2. For instance, the border area is 2 to 3 times as important as the East
area. The cities ABCD are considered to be a part of their respective areas.

Spatial preferences of tracking are ranked in a similar manner using (36). The
DM states that the cities are considered separately, α(SABCD) = α(SA∪SB∪
SC ∪ SD). The order is α(S6) ≥ α(SABCD) ≥ α(S1) ≥ α(S3) ≥ α(S4) ≥
α(S2) ≥ α(S5), with x = 3 and y = 2. The spatial preferences are collected
in Table 2.
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Table 2: DM’s spatial preferences. The order of importance is presented by
attribute and the exact statements are of the form (36), where i corresponds
to the indices of the given order. Area ABCD represents the combined loca-
tions of the cities A, B, C and D.

Attribute Area order
Detection 1, 2, 6, 4, 5, 3
Tracking 6, ABCD, 1, 3, 4, 2, 5

The DM divides the areas into Fig. 6 to 20 subregions to provide more
detailed preference information, presented in Fig. 7.

Figure 7: Regions divided into 20 subregions. Note that subregion 17 is
disjoint containing all of the islands in regions 18 and 19. The subregion 20
consisting of the areas outside of the country is considered to be the least
important for both attributes.

The subregions are ordered by their importance within the region they are
in. The DM has assessed the subregions in a similar fashion using (36), with
coefficients x = 2 and y = 1.5. The ranking is presented on Tables 3 and 4
for detection and tracking, respectively.



21

Table 3: DM’s spatial preferences concerning detection in the subregions.

Area Subregion ranking
1 11, 12
2 18, 19, 17, 15
3 13, 14, 16
4 1, 2, 3, 4
5 5, 7, 6
6 10, 9, 8

Table 4: DM’s spatial preferences concerning tracking in the subregions.

Area Subregion ranking
ABCD A, B, C, D
1 11, 12
2 15, 17, 18, 19
3 13, 14, 16
4 2, 1, 3, 4
5 6, 5, 7
6 10, 9, 8

Spatial information taken into account, the DM also states that detection is
considered the more important attribute, such that it has 60%− 75% of the
total weight. Consequently, tracking is assessed to be between 25%− 40% of
the total weight.

Since the subregions are rather coarse compared to the coverage of the radar
configurations, seen for example in Fig. 4 and 5, the DM is asked to fur-
ther specify the regions. She divides the subregions into two to six districts
by their local importance, i.e., population and infrastructure of the area,
presented in Fig. 8.
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Figure 8: Subregions divided to local districts. The islands in the Southern
sea area are considered together. The other two are considered separately.
The total number of areas is 70.

4.6 Results

Computing the pairwise dominance for each decision alternative with the
other alternatives results in 67 non-dominated (ND) alternatives, presented
in Table 5 and Fig. 9.
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Table 5: Occurrances of each radar position candidate in the ND alternatives.

Position Occurrances
A 4
B 3
C 60
a 20
b 24
c 24
d 67
1 34
2 32
3 32
4 33
5 33
6 37

Figure 9: Occurrances of radar position candidates.

The medium-range radar location d is included in every ND alternative. As
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a result of the strict inequality in (10), a medium-range radar should be
placed there in every case. The other locations can not be confirmed using
this result even though some candidates occur more often than others. For
instance, location C occurs in most ND alternatives, but since the dominance
does not provide information of the mutual ordering of the ND alternatives,
the alternatives with locations A and B are considered equally good.

Potential optimality calculated for the ND alternatives result in 67 poten-
tially optimal (PO) alternatives that are exactly the same as the ND alter-
natives, presented in Table 5 and Fig. 9.

Using dominance to compare the possible radar position alternatives success-
fully eliminated 293 out of 360 alternatives. However, the remaining alter-
natives have to be assessed by the DM for which 67 alternatives are many to
consider. The short-range radars occur in the ND alternatives more evenly
distributed than the other radar types. Considering the rather coarse area
division in Fig. 8 in comparison with the short-range radar effective range of
100 km, the radars cover relatively small number of regions. This suggests
that differences between these radars are less likely occur. The radars are
also scattered around the map while the DM’s preferences focus on fewer ar-
eas, especially near the Eastern border. That said, only short-range position
candidates near these more important areas are 5 and 6, the latter of which
occurs the most in the ND alternatives.

The concequences of the considered attributes, detection rate and tracking
accuracy, change suddenly as seen in Fig. 2 and Fig. 3. When the effective
range is reached, or the minimum flight altitude becomes too high due the
radar horizon, both attribute values drop drastically. The circle radii are
visible in both figures. The rather coarse area division considered, the values
achieved within a single area can differ from very good to very bad. Since
the computation of the pairwise dominance is closely related to the value
differences within the areas, quickly changing consequences may contribute
to the relatively high number of ND alternatives.

The computation of the ND alternatives in this example took 560 seconds
on a desktop computer. The computation depends heavily on the preference
information given by the DM, since dominated alternatives are eliminated as
they are found lowering the remaining pairwise comparisons. Computation of
the PO alternatives took 260 seconds. However, the complexity of potential
optimality depends heavily on the total number of alternatives and here it
was only computed for already ND alternatives.



25

5 Conclusion

This thesis provided a computational implementation of dominance and po-
tential optimality for comparing decision alternatives in spatial problems
while taking the decision maker’s possibly incomplete preferences into ac-
count. Comparison between alternatives is based on dominance and poten-
tial optimality which are determined using linear optimization. The feasible
region is constrained by the DM’s preferences which are assumed to be linear.
Finally, this thesis demonstrated the computational implementation to pro-
vide decision support in an example deciding the positions of air surveillance
radars.

The resulting number of non-dominated alternatives depends heavily on the
preference information. The preference information used in the example con-
sidered subregions divided hierarchically in three layers. As a result, domi-
nance narrowed down the number of alternatives to one-sixth of the original
number while potential optimality provided no useful information in this
case. One position turned out to occur in every non-dominated alternative
suggesting it should be selected. Even though some information is provided,
the DM is left with many alternatives to consider.

The implementation is generic and can be applied to various spatial decision
problems with various types of preference information. In order for the opti-
mization to be linear, the constraints were assumed to also be linear. Since
dominance and potential optimality are general comparisons of the alterna-
tive’s values, linearity is not strictly enforced. However, the optimization can
become significantly more challenging with more complex constraints. Fur-
thermore, as the constraints represent the DM’s preferences, more complex
preferences might not be natural for humans to express.

The air surveillance example considered two measures of performance, detec-
tion rate and tracking capability of aircraft in the airspace. In the example
it is assumed that all aircraft to fly at a same altitude which resulted in a
two-dimensional region. This assumption is rather unrealistic but simplifies
the computation greatly, since otherwise different altitudes would have to be
considered in every location. Multiple altitudes could be taken into account,
for example, by considering attributes at two-dimensional regions for each
altitude. This approach essentially doubles the number of the attributes.
The DM would have to assess the mutual importance of altitudes but the
spatial preferences could be different at each altitude. A few well chosen
altitudes could end up with more accurate results without costing too much
computationally.
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A Appendix A

The matrix w is rearranged as a vector g, such that g(i + (j − 1)n) = wij.
The set of possible weights is denoted here by G0,

G0 = { g ∈ [0, 1]nm |
∑

j∈J, i∈I

g(i+ (j − 1)n) = 1 }. (37)

The attribute-specific spatial constraints Pj are combined diagonally to a
matrix

P ∗ =

P1 0
. . .

0 Pm

 . (38)

The attribute constraints are joined into a t×nm matrix Q∗. By indexing the
attribute statements using φ ∈ {1, ..., t}, each matrix Pj in P ∗ correspond to a
vector of n attribute weights given by the preference statement φ. Explicitly,

Q∗(φ,m(j − 1) + k) = Q(φ, j), k = {1, ..., n}. (39)

Both nm wide matrices are stacked together into the final constraint matrix

X =

[
P ∗

Q∗

]
. (40)

The set of feasible weights w is given as a subset of the set of all feasible
weights G0, such that

G = { g ∈ G0 |Xg ≤ 0 }. (41)

Assuming the value functions are known and the consequence values can be
calculated, the consequences’ values are arranged into vectors

fj = [vj(s1) . . . vj(sn)] (42)

and the vectors Fj into a vector

F z = [f1 . . . fm], (43)

that represents the values of the alternative z ∈ Z.
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Now, dominance between two alternatives z and z′ is determined by solving

min
g∈G0

(F z − F z′)g (44)

max
g∈G0

(F z − F z′)g (45)

s.t. Xg ≤ 0. (46)∑
g = 1, (47)

where I is an identity matrix of the appropriate size.

Finally, the constraints in potential optimality are given by

Y =


F z − F z1

...
F z − F z`

X

 , (48)

where z1, ..., z` represent the decision alternatives.

Potential optimality is determined by solving

min
g∈G0

k (49)

s.t. Y g ≤ 0 (50)∑
g = 1. (51)
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