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1 Introduction

This technical report presents part of the work achieved for tasks 2.1.2 and 2.2 of the FAIR-
CT96-1778 research project “Management of high seas fisheries”. A biological modelling
and parameter estimation of the Norwegian spring-spawning herring stock dynamics has
been completed by PATTERSON [7]. It constitutes the basis of this study, which aims at
implementing and analyzing this model.

The biological model has been coupled with a very simple economic model: fixed fish
price and basic cost function that will require further developments. However, it is used
as a preliminary version of the more sophisticated model. Although, in this report, some
work has been done for the simulation and the equilibrium study of the bioeconomic
model, the emphasis is on the risk analysis. We are interested in studying whether some
variables, e.g. the spawning stock biomass, will decrease under a certain critical value.
We want to assess this risk and study the risk distribution.

This report is organized in the following way: Section 2 is a presentation of the bioeco-
nomic model and Section 3 briefly describes the data available. Section 4 is dedicated to
the technical implementation of the bioeconomic model in MATLAB, simple simulations,
equilibrium study and risk analysis. Some results are then exposed in Section 5. Finally
conclusions are drawn and perspectives for further work are proposed.

2 Model

The biological modelling presented here stems from PATTERSON’s report [7]. Its main
features have been summarized in order to understand the MATLAB procedures described
in Section 4 and displayed in appendix B. The seasonal and spatial distributions that
are part of the initial model, have not been implemented and are only briefly exposed in
appendix A.

To ease the reading of the report, the first part of this section compiles most notations.
In addition, a table is attached to each of the following subsections describing the values
and units of the parameters. Subsections 2.2, 2.3 and 2.4 concern the biological model,
whereas subsection 2.5 introduces harvest and profit. Finally, a simplified and more
conventional model is exposed.

2.1 Notations

Table 1 summarizes the notations used in this report and hereunder are some general
remarks about the model.

e The population is distributed in 17 age classes, beginning with age class 0.

e The time step considered is 1 year, but the quarter variable actually introduces a
smaller time step of 1/4 year = 3 months. It allows seasonal effects to be taken into
account (cf. appendix A).

e To calculate the flow into the first age class (0), a classical stock-recruitment re-
lationship is used (either BEVERTON-HOLT or RICKER, cf. Section 2.4) linking
the number of recruits R to the spawning stock biomass SSB. It should rather be
considered as a spawning function, as all juvenile stages are included in the model.

Thus, the recruits are in fact eggs.
3



Subscripts  definition range

“ age {0,1,2,...,16} years
y time current year
q quarter, i.e. season current year quarter {1,2,3,4}
i EEZ zone number
ye reference year class year {1950, 1959, 1972, 1983}
Variables definition unit subscripts
N abundance numbers 0,0,
B biomass kg 0,0,
SSB spawning stock biomass kg y
R recruitment numbers y
Y yield, catch in weight kg Y
cw individual weight at age in the catch kg/numbers a0y
SW individual weight at age in the stock kg/numbers a0y
MO maturity ogive (rate) percentage ay
€ stochastic variable none y
F fishing mortality none Y
S selectivity none ai
Parameters  definition value & unit
m natural mortality cf. table 2
Wo, Weo, ko, @ stock weights at age parameters cf. table 3
wg, who, ki, o/ catch weights at age parameters cf. table 3
a,b, g stock-recruitment parameters cf. table /
Cayd maturity coefficients cf. table /
h fish price per kg cf. table 5
q1, G2 fixed and proportional costs cf. table 5
Pay.q,i spatial distribution rates cf. appendiz A
Taye,q,i spatial distribution reference rates cf. appendiz A

Table 1: Notations

2.2 Population dynamics

We consider a population dynamics model, known in the fisheries literature as the RICKER
model. It is a discrete time and age-structured model:

NO,y — Ry
Notigi1 = Noye ™55 Va e {0,1,...,15} (1)
Nyo known Va € {1,2,...,16}

The whole population is represented through 17 age classes, from age 0 to age 16.
Usually, only the harvested fraction of the population is considered, i.e. the stock (mainly
because most data available concern the stock). Especially, the juvenile stages are ex-
cluded since they are too small for harvesting.

The input in the stock is called the recruitment (R). It is defined as the number of
juveniles entering the exploitable phase. In this model, however, the recruitment hap-
pens in age class 0, so we should rather consider it as a spawning function, described in
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Section 2.4.

All age classes are submitted to natural mortality (constant rate m) and possibly to
harvest. The latter is introduced by the means of a fishing mortality term F,, related
to the effort applied to the stock each year, and a selectivity rate S,, that describes the
vulnerability of each age class; see the more thorough discussion in Section 2.5.

Parameter value unit
m 0.15 none

Table 2: Natural mortality parameter

2.3 Growth and biomass

In order to describe the population growth, we need to express the individual weights
at age. We could estimate these values by using historical data. But in this model, a
density-dependent growth function has been implemented, deriving from FORD’s equation
9] and assuming isometric growth. Further hypotheses are that the maximum length is
genetically determined, but that the growth rate depends on food availability, and hence
on the total population biomass.

This function is fitted separately to the stock and catch data. Therefore we obtain
two similar functions. The stock weights at age function is the following:

SWo,y = wy
Wonyer = (1= k™ 4 kST, 2) (2)
where: k, = ke~ @By/Bmax
whereas the catch weights at age function is given as:
CWo,y = wy
CWarryr = (1= Bl + K, OW,, ) 3

v
where: k!, = kje * Pu/Bmex

In both cases, Bpnax is the maximum observed stock size and is included for rescaling
purposes.

The SW and CW are slightly different because the samples used for their estimation
are not the same. CW is needed for the catch in weight defined in Section 2.5 and SW
enables to express the population biomass in year y:

a=16 a=16
B, = Z B,y = Z SWayNay- (4)
a=0 a=0

The growth parameters are given in table 3.



Parameters value unit
Biax 16218 10°kg

wo 0.203 kg
ko 0.703 none
« -0.299 none
Weoo 0.447 kg
w) 0217 kg
ky, 0.650 none
o -0.368 none
w', 0.430 kg

Table 3: Growth parameters

2.4 Recruitment

The growing and ageing of the population are described in the previous sections, but we
have not introduced any input of young individuals in the population yet. So to close the
loop in the dynamic model (1), it is necessary to link the recruits, i.e. the offspring, to
the spawners. Two diferent functions are used for this purpose: BEVERTON-HOLT’s and
RICKER’s stock-recruitment relationships, which are very classical in the fishery field [5,
217-224] [6, 255-261]. To take into account the variability of the recruitment, a stochastic
error term is added to these deterministic functions. First, however, the spawning stock
needs to be estimated.

2.4.1 Spawning stock biomass

It is assumed that the older part of the population (from age class 7) is fully mature,
whereas the younger one (until age class 3) does not spawn. The intermediate age classes
are partially mature. The maturity ogive, defined as the proportion of mature individuals
among an age class, characterizes the spawning level.

To assess the maturity ogives of the intermediate classes, it is possible to refer to
historical data. However, here we assume that they depend on the stock size and the
following function is used:

MO,, =0 ac{0,1,2,3)
1
MO, = ac{4,56
Y 1 + €—CQB4+’y*d { } (5)
MO,, =1 ac{7,... 16},

where By, , is the biomass of the mature age classes, i.e. age class 4 and older. Thus:

a=16

Byty = E :Ba,y
a=4

The spawning stock biomass is given by:

a=16
SSBy =Y MO,y SWayNay (6)
a=0
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2.4.2 Beverton—Holt

The first stock-recruitment function is BEVERTON-HOLT’s [3]. It assumes there is food
limitation and competition among the juveniles. Its shape is drawn in figure 1.

Recruitment R

Spawning stock biomass SSB

Figure 1: BEVERTON-HOLT’s stock-recruitment function

The corresponding equation, to which a log-normal error term is added, is the follow-
ing:

aSSB,

Ry=— 24—
Y 1+ S55B,/b

)

The error term is introduced to reflect the high variability in recruitment due to nu-
merous external factors (e.g. cod predation, environmental fluctuations). ¢, is a normally
distributed random variable, with mean 0 and variance o. If the parameter g is zero, the
error is uncorrelated. Otherwise there is first order autocorrelation.

2.4.3 Ricker

RICKER’s relationship [8] assumes cannibalism of the juveniles by the stock. This gives
another stock-recruitment shape, represented in figure 2.

Recruitment R

Spawning stock biomass SSB

Figure 2: RICKER’s stock-recruitment function

A log-normal error term, similar to the one described above for BEVERTON-HOLT’Ss
stock-recruitment function is added. The resulting equation is as follows:

R, = aSSB,e" Py ¢futorv— (8)



N.B.: Stock-recruitment relations are commonly used because they are practical
and synthetic. The two classical relations described above both derive from the
integration of an ordinary differential equation representing the dynamics of the
juveniles over a small time period. This process is described by CLARK [5, pp217—
218,229-230] and more briefly by HILBORN & WALTERS [6, pp257-261].

The comparison between these models and data however is often disappointing.
Therefore constant or purely stochastic exogenous recruitments are used assuming
a predominant influence of the environment [2]. The link between the spawning
stock and its offspring may then be hidden, which leads to the “stock-recruitment
paradox” [10] where no empiric relation is observed. Furthermore, stock-recruitment
functions are a static summary of the development of juveniles and therefore cannot
take into account the heterogeneity of the spawning stock [11].

The parameters of these four stock-recruitment relationships are shown in table 4.

Parameters value unit

Cy4 1.356 none

Cs 2.686 none

Co 3.977 none

d -0.2744  none
BEVERTON-HOLT, uncorrelated error:

a 32.459 kg~!

b 3044.867 10°kg

o 1.763 none

g 0 none
BEVERTON—HOLT, autocorrelated error:

a 31.637 kgt

b 3284.060 10°kg

o 1.666 none

g -0.2553  none
RICKER, uncorrelated error:

a 26.753 kg~!

b 1.2105 10 10kg !

o 1.802 none

g 0 none
RICKER, autocorrelated error:

a 25.760 kgt

b 1.094 10~ 0kgt

o 1.694 none

g -0.2655 none

Table 4: Stock-recruitment parameters



2.5 Catch and economic yield

2.5.1 Harvest

;From a given cohort (a cohort is constituted of the fish born the same year), if we
consider the fish that have disappeared during year y and take the proportion that died
of harvesting, we obtain the following catch in numbers:

S.F,

Ca =—>4 Na - Na
Y m_|_ SaFy( Y +17y+1)

Then, knowing the weights at age from equation (3), we only need to sum these catches
over all cohorts to obtain the total catch in weight, or yield. Combined with equation (1),
its expression is the following:

a=16 a=16

SoF
Y, = Z Yo, = Z CWayNayytot e (L= e 751) (9)

As mentioned in section 2.2, the harvest is the result of fishing mortality F, and
selectivity S, included in the population dynamics.

e The former is related to the effort applied by fishermen on the stock and is considered
as a control term. Referring to the data (cf. section 3), a realistic range for the fishing
mortality would be: F, € [0, 2], 0.35 being a mean value over the recent years.

e The latter depends on the interaction between fish and gear; all age classes are not
as vulnerable and each gear is more or less efficient towards the age classes. A simple
selection pattern would be to cut the age classes into two groups:

— age classes that are not yet harvested: S, =0 Va < ay;
— age classes that are harvested: S, =1 Va=a.
ay, the first fishing age, is generally 4.

Another possibility is to use historical data for assessing the selectivities S, (cf.
section 3).

Even with a more detailed selection pattern, the hypothesis of separation between
selectivity and fishing mortality may be too simple. For control purposes, it should be
possible to modify the selectivity to reflect a change in the fishing gear.

2.5.2 Profit

To the biological model described above, we add a very simple economic model. The price
per kilo A is assumed to be constant.

The harvesting costs are composed of a fixed and a variable term. The fixed costs
¢1 represent long term investment, such as fishing vessels. The costs proportional to
the fishing mortality (coefficient ¢) include e.g. labour, and fuel The total costs are:
Qy = ¢ + @Iy,

Thus, the annual profit in year y is:

Py =0Y, — (1 + @2 Fy) (10)



Parameters value unit

¢ 1* 10"Norwegian kroner (NK)
g 5* 105NK
h 1.45* NK/kg

* Values chosen as a working hypothesis.
** 1995 mean value taken from Norges Sildesalgslag: Arsmelding, vol. 1989-1995.

Table 5: Economic parameters

2.6 Density-independent model

A simplification to the model presented above consists in replacing the density-dependent
functions by fixed values, estimated by using the available data (cf. section 3). These
functions are the maturity ogives in equation (5) as well as the stock (2) and catch (3)
weights at age. They can be replaced by simple age-dependent parameters: MO,, SW,
and CW,.

This simplified model will be noted as the DI model, as opposed to the DD (density-
dependent) model described in the previous sections.

3 Data

Some historical data concerning the herring population are available. They consist of age
and year specific values, sampled from 1950 to 1986, for each of the 17 age classes and for
the following variables:

e the abundances N, ,, used for computing the initial condition of equation (1);

e the maturity ogives MO, , as well as the the stock SW, , and catch CW,, weights
at age, used in the density-independent model presented in section 2.6;

e the “fishing mortalities” F, , (including the selectivity factor), that are used to define
historical selection patterns, more detailed than the one proposed in section 2.5.

The maturity ogives, stock and catch weights at age are conventional stock assessment
data estimated by ICES from commercial catch observation [1]; they can also be found
in appendix A of PATTERSON’s report [7]. The abundances and fishing mortalities have
been estimated using a Bayesian approach presented in appendix B; the resulting data
are shown in appendix C of the same report.

Selectivity data

To transform the fishing mortality data F, , into historical selection patterns, we need to
consider a reference fishing mortality F}.y,, for each data year. The selectivities are then:

Sa,y = Fa,y/Fref,y

10



The reference chosen in PATTERSON’s report is the mean mortality among age classes 5
to 12:

4 Implementation

Several MATLAB procedures have been created for the density-dependent (DD) model
described in section 2 and the density-independent (DI) model introduced in section 2.6.
They allow us to perform simulations of the models, an equilibrium study and some risk
analysis.

Each procedure requires the following input:

Data The data related to the historical abundances, maturity ogives, stock and catch
weights at age as well as selectivities are respectively stored in the following files:
n.dat, mo.dat, sw.dat, cw.dat, s.dat. File n.dat is used to estimate the initial
condition of equation (1); s.dat allows the calculation of the selection pattern;
for the DI model, mo.dat, sw.dat and cw.dat are used to calculate the maturity
parameters and weights at age.

Biological parameters They are given in tables 2, 3 and 4.

Harvesting and economic parameters The economic parameters are given in table 5,
but the costs are only working values. A further study would be needed to define
suitable and more realistic parameters.

The fishing mortality F} is considered as an open loop input, either constant along
time or fluctuating; its value needs to be chosen. There is also a choice to be made
concerning the selection pattern: data can be used (cf. section 3), otherwise the
simple scheme described in section 2.5 is implemented.

Simulation parameters They need to be chosen for each procedure. They always in-
clude the following parameters:

e y; and y, are the two boundary years of the simulation period [y, ys] (e.g.
[y1, y2] = [1997, 2027]).

e /C is the initial condition year(s) from which the data are taken; if IC is a
vector, the mean value is computed. For instance if /C' = (1993,...,1996),
the selectivities S, are the mean historical values over the years 1993 to 1996.

e The boolean variable SR defines which stock-recruitment relationship will
be used, RD whether this relation includes a stochastic error term and AC
whether this term has first order autocorrelation; this is summarized in the
table below.

0 1
SR BEVERTON—HOLT RICKER
RD no stochasticity stochasticity
AC no autocorrelation 1st order autocorrelation

11



NB: Any HER1x .M program refers to the DI model, whereas HER2* .M refers to the DD
model.

4.1 Basic simulation

Two models have been implemented: the complete density-dependent model HER2 .M de-
scribed in section 2 and the density-independent model HER1 .M, simplified by the assump-
tions made in section 2.6.

These two procedures allow the simulation of the population dynamics and give the
following output along the simulation years:

e population abundances N,

e biomasses B,

e catches in weight Y, ,,

e spawning stock biomasses SSB,,
e total costs @),

e profits P,.

Several plots may be of some interest. The ones implemented are the evolution of the
total biomass, the total yield and the profit along time; as well as the recruits (age class
0) as a function of the spawning stock and the cost function with respect to the catch.

4.2 Equilibrium study

The HER1EQ.M and HER2EQ.M procedures have been implemented to study the equilibrium
characteristics of the model. For this aim, the stochastic term of the stock-recruitment
relation is omitted (RD = 0) and a set of constant fishing mortalities F' needs to be
defined. A further requirement, in order to reach the steady state, is to have a “long
enough” simulation period: 60 years between the first simulation year y; and and the last
one Yy, is usually enough.

A stock dynamics simulation is performed for each fishing mortality. It produces two
output matrices, defined as functions of the simulation years and the fishing mortalities:

e the total biomass B, r, where B,, r can be considered as the equilibrium biomass;

e the total yield (catch in weight) Y, s, where Y}, p can be considered as the equilib-
rium yield.

The following plots are produced: the total equilibrium biomass and yield along the
fishing effort; several total biomass trajectories for low and large values of fishing effort.
The equilibrium yield plot against fishing mortality is of particular interest, because it
shows the Mazimum Sustainable Yield (MSY), a reference value in fishery management.
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4.3 Risk analysis

The risk analysis consists in determining what risk there is, for a certain yearly variable
X, to decrease under a critical value X,,;;. The risk variables implemented are:

e the total biomass: X, = B,,

e the spawning stock biomass: X, = SSB,,
e the yield: X, =Y,

e the profit: X, = P,.

For this study, a set of fixed fishing mortalities F' is also needed. For each fishing
mortality a number of simulations, STM, are performed over [y;,y.]. As we deal with
risk, there should be a stochastic term on the stock-recruitment relationship (RD = 1)
and the simulation period should be rather long.

Furthermore, the number of simulations (SIM) should be quite high, so as to approx-
imate, for each F', the risk probability with the number of “risky simulations”.

Risk definition A simulation is said to be risky, if there is at least one year over the
stmulation period, where the variable decreases under the threshold.

For each of the above mentioned risk variables, the following output is obtained:

e As functions of the fishing mortalities F" and the simulations si (si =1,...,SIM):

— the risk: Rp, = 1 for a risky simulation, 0 otherwise;
— the first year below the critical level: T1 ;;

— the number of years below the critical value: T'sp ;.

The mean value and standard deviation of these matrices over the STM simulations
are also estimated. The mean risk Rp approximates the risk probability of getting
below the specified threshold. For example, if there are 100 simulations and 5 of
them are risky in the sence specified above, then the mean risk is 5%.

e As functions of the fishing mortalities F' and the year:

— the mean value of the risk variable: Mpg;

— the mean risk distribution: Dp, = 1 if the corresponding mean value is below
the threshold, 0 otherwise.

The following 2D plots are produced: the mean values Rp, T1r and T'sp as functions
of the fishing mortalities F' (figures 13, 15, 17 and 19), as well as the following 3D plots:
the mean value Mp, and the mean risk Dy, as functions of the fishing effort F’ and year
y (figures 14, 16, 18 and 20).

The first 2D plot in each figure gives the mean risk explained above. The first 3D plot
of the figures visualizes the opportunities that the fisheries policymakers might have when
choosing the level of fishing mortality. It can be thought of as a terrain where one has
to travel by choosing the desired level of fishing mortality. The two lowest 2D plots are
related with the lower one of the 3D plots: all these three plots visualize the number of
years that the particular value stays under the threshold and furthermore, the first year

that the value falls below this critical level.
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5 Results

Considering the two main models (DD and DI) and the four different stock-recruitment
relationships, there are altogether 8 different models. Discussing all the features of these
models would not be very clear and synthetic, so we choose a simple reference model:
the simplified density-independent model with BEVERTON-HOLT’s stock-recruitment re-
lationship and no autocorrelation in its stochastic term. This particular model is used in
section 5.1 for some basic simulations and in section 5.3 for the risk analysis. Section 5.2
consists in a deterministic steady state approach, so it is possible there to compare the
different models.

5.1 Basic simulation

The basic simulation has been made using the “reference model” introduced above (SR =
0 and AC = 0). Following simulation parameters have been used:

e y; = 1997 and y, = 2117 for the simulation period;
e IC =(1993,...,1996) as initial condition years;

e a randomly fluctuating fishing mortality F: normal distribution with 0.35 as mean
value and 0.2 as standard deviation, except for figures 3 to 4 where we have a
constant fishing mortality 0.35;

e a simple selection pattern as described in section 2.5, a; = 3 being the first fishing
age.

Figures 5 to 9 display the resulting curves. In addition, figures 3 to 4 show the determin-
istic values for the herring stock and harvest. The stock level is shown to be 25 billion
kg.

The situation depicted in this simulation is rather satisfactory since figure 5 shows
that the biomass globally increases. The highly fluctuating harvest is also rather large
(cf. figure 6).

The costs shown in figure 9 are very low, so this explains why the profit in figure 8
is similar to the catch and remains positive. The economic parameters of table 5 are
probably not very appropriate here.

Figure 7 displays the number of recruits entering age class 0 with respect to the
spawning stock biomass. This is in fact the classical stock-recruitment curve, in this case
BEVERTON-HOLT’s relation (cf. figure 1). Because of the fluctuations however, it cannot
be recognised.

5.2 Equilibrium study

As the equilibrium analysis is a deterministic study, there are only four different models:
the density-dependent and density-independent models, with RICKER’s or BEVERTON—
Hort’s stock-recruitment relationship. In this Section, we compare the equilibrium prop-
erties of these models.

The parameters chosen for this study are:

e y; = 1997, 1y, = 2057 for the simulation period;
14
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Figure 7: Simulation of the recruitment with respect to the spawning stock biomass
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e /(' = 1996 as initial condition year;

e selectivities S, estimated from the IC data;

e a set of constant fishing mortalities F', which ranges from 0 to 2.

The initial condition N,, of equation 1 does not influence this study, for we are
interested in the steady state. However, the IC' variable is also used to determine the
parameters stemming from the data, as the selectivities S, and for the DI model, the
maturity ogives and the weights at age.

Results of this comparison are shown in figure 10. A few remarks arise.

1.

The rather unusual shape of the RICKER density-independent curve for small fishing
mortalities shouldn’t be taken into account. At this level of harvest, RICKER’s
recruitment induces oscillations that are not dampened yet, so the steady state has
not been reached.

. It is possible to identify a M SY for the four models. They occur for different fishing

mortality.

. The yield and biomass equilibrium values differ quite a lot from the DD models to

the DI models. The M SY values are much higher for the DI models.

. The stock-recruitment relationship has little effect on the equilibrium of the DD

models.

To the previous study, we add a further assumption (it appears also in PATTERSON’s
draft [7]): the natural mortality of the juveniles is higher, i.e, m, = 0.9 for a = 0,1, 2.
The new curves are shown in figure 11 and the following points are made:

1.

The high juvenile mortality dampens the oscillations observed previously for the
R1CcKER DI model. They can only be observed for high biomasses, when the global
mortality is not too important.

. The MSY is still identifiable for the four models and is much lower than in the

previous case. It occurs around the same fishing mortality for the four models:
between (.15 and 0.2, which is generally lower than previously. This shows that the
stock is much more vulnerable in this case.

. The difference in biomass and yield levels between the DD and DI models is reduced

with a high juvenile mortality.

The influence of the stock-recruitment relation on the DD model is slightly more
obvious here.

We are also interested in observing the influence of the selection pattern on the equi-
librium. We therefore use the simple selection pattern presented in section 2.5 and we
modify the first fishing age a;. Results are exposed in figure 12.

We notice that raising the first fishing age a; increases the M SY and then makes it
disappear. From a; = 7, the yield does not decrease for fishing mortalities but increases
slowly, probably towards a bounded value. At this point, the population survives through
its younger classes, of which some are spawning, whereas the bigger fish are heavily
harvested.
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10 Equilibrium study (IC: 96-96, a1=0)

x 10
2 T T T T T T T T T
E— BH-DI
------ BH-DD 7
=) - - - Ri-DI
é .
s 1/ 7Ny e - Ri-DD _
2
>_
g7 . ' R N
0 | | | | = e ] >~ | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Fishing mortality
T T T T T
Em— BH-DI N
N BH-DD
e‘o: - — = Ri-DI _
a | N e - Ri-DD
S _
9o
s}
O ___I._._.._.I_..._,_I._.__'__._ L — | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2

Fishing mortality

Figure 10: Comparison of the equilibrium properties for the different stock dynamics
models

20



9 Equilibrium study (IC: 96-96, a1=0)
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18 x 10° Equilibrium study (IC: 1996, a1=0:10)
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Figure 12: Influence of the selection pattern on the equilibrium properties of the density-
independent model with BEVERTON-HOLT ’s stock-recruitment relationship
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5.3

Risk analysis

The risk analysis has been made on the “reference model”, the density-independent model
with a BEVERTON-HOLT recruitment and no autocorrelation (SR = 0 and AC = 0).
Following parameters have moreover been used:

vy = 1997 and y, = 2097 for the simulation period; SIM = 100 simulations for each
fishing mortality;

IC = (1993, ...,1996) as initial condition years;
a set of constant fishing mortalities F', that ranges from 0 to 2;

a simple selection pattern as described in section 2.5, a; = 3 being the first fishing
age;
B = 510%g, SSB,,; = 2.510%g, Y,.;; = 0.5 10°%kg and P,.; = 0 NK.

The value SSB..; was recommended in [4] and a zero profit assumption is quite
natural. The other values are reasonable with respect to SSB.,;.

The discussion is organised around two topics: the biological risk concerning the total
biomass and the spawning stock biomass, and the economic risk concerning the yield and
the profit.

Biological risk The first plots of figures 13 and 15 show that there is no risk for the

stock and spawning stock to decrease below their critical value before the fishing
mortality reaches the 0.4 value. Then the risk increases rapidly for the vulnerable
spawning stock and a little smoother for the total biomass.

However, the mean number of years spent under the threshold becomes significant
for higher fishing mortalities, starting from the 0.6 value. For lower rates, the
trespassing of the critical value is more punctual and rather appears in the early
years. This is obvious in the lower plot of figure 16 concerning the spawning stock
risk distribution and less in figure 14 concerning the total biomass, because the
transition between no risk and 100% risk is not as sharp. Thus we can identify three
fishing zones: the safe zone, for fishing mortalities between 0 and 0.4, the totally
unsafe zone, for mortalities higher than 0.6 and the intermediate zone, where there
is a risk of falling below the threshold, but it can be reversed.

For high fishing mortalities, the total biomass and the spawning stock biomass are
instantaneously driven beyond their critical value and remain below this level.

Economic risk Figures 17 and 19 show the mean risk, first year and the number of

years under the catch and profit criteria. These figures are quite similar. They
differ from the previous curves on three points:

e The risk probability for very low fishing mortalities is 1. This is reasonable,
for the catch is then negligeable.

e When the fishing mortality increases, the same transition as previously, from
no risk to 100% risk is observed, but it occurs at much higher levels: 0.8 for
the catch and 1 for the profit.
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Biomass risk distribution
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Beverton—Holt — 100 simulations (101 years), SSBcrit=0.25E 10 kg
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e The punctual trespassing of the threshold is not noticeable here, and the mean
number of years spent below this level never reaches the whole period. It can
be easily observed from the risk distribution, in the lower plots of figures 18
and 20: the catch and profit are also always satisfactory during the first years.

Among other things, these remarks show that the critical value of the catch Y,.;
might be a bit low and that the proportional costs (g2 F') might have been underes-
timated.

6 Conclusions and perspectives

We have presented some studies made on a biological model of the Norwegian spring-
spawning herring stock dynamics, coupled with a preliminary and very simple economic
model. They consisted of basic simulation, equilibrium study and risk analysis. The aim
of this technical report was rather to present some methods than any in-depth analysis.

However, some interesting results have been shown, especially for the risk analysis.
It has also been demonstrated that the model may be very sensitive to some parameter
changes. Increasing the juvenile natural mortality for instance, produces significant alter-
ations on the equilibrium properties. This consideration should therefore be kept in mind
in any further development of the model.

Following developments would be necessary for the economic part of the model: a more
realistic cost function would considerably improve the actual model. Another perspective
would be to implement the spatial and seasonal distribution of the fish and the fleets.
It would be very interesting to try to manage this fishery by applying some well chosen
fishing mortalities on the stock (control or game theory methods).
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Beverton—Holt — 100 simulations (101 years), Pcrit=0E10 kg
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A Spatial and seasonal distributions

We offer here a very brief presentation of the spatial and seasonal distribution of the fish
and the fishing fleets. It is more detailed in PATTERSON’s report [7].

The seasonal effect is introduced by the means of a quarter subscript ¢. One year is
divided in 4 quarters, corresponding the seasons. It’s a time subdivision, so there are two
time variables: the year y and the season or quarter q.

The i subscript represents the EEZ! and adds a spatial dimension to the model. Each
EEZ, more or less corresponding to a fleet, is among the following zones: Faroes, Iceland,
Norway, Jan Mayen, Russia, Int.Bar. Int.Nor. Spitsberg and EU.

The repartition of the fish and fishing mortality in the different zones is introduced in
the following way:

N,

a0 = Pay,a,iNay.q

Fayqi = Sailyq
Equation 1 of the previous model becomes:

Noy,q+1,i = Pay,g+1,iVay,g+1
_ . =M fA=Fy y 4./
= Pay,q+1,i E :Na,y,q,ze
i

and the catch, formerly equation 9:

a=16

Foyqi o 4
y 01 — Z OW ay a,y,q,% m+ ,]3{7!1 (1 —e m/4 Fa,y,q,z/‘l)
a,y,q,t

The major problem is of course the definition of the spatial parameters p, ;. Some
historical data are available on the spatial and seasonal repartition of the fish. From these
data, four reference year classes yc have been chosen: 1950, 1959, 1972 and 1983. The
historical distribution rates of the fish in the zones, by age and season, are noted: 7, yc
(percentages).

The first and rougher approach to estimate the spatial parameters is to take the mean
value:

Pay.qi = Dagi = Zwa,q,l,yc with: ye € {1950, 1959, 1972, 1983}

yc

The stock in the early 70’ was particularly low and the fish were all situated in the
Norwegian coastal zone. So the previous estimate can be improved in the following way:
when the spawning stock biomass is below some critical level B.,;;, the 1972 year class data
are used (coastal régime); otherwise, the mean value of the remaining data is computed.
Equations follow:

Ta,q,i,1950 T Ta,g,4,1959 + Ta,q,i,1983 .
paay7Q7i = 3 ZfSSB(y) > BCTit

Payy.qi = Ta,q,i,1972 otherwise

!Exclusive Economic Zone. The Law of the Sea Convention from 1982 provides the coastal states with
full property rights to all marine resources within 200 nautical miles from their coastlines.
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A further development consists in smoothing the transition by introducing two critical
levels: By;gn, and Byg,. If the spawning stock biomass is below By, 1972 year class data
are used; if it is above By;g,, the mean values of 1950, 1959 and 1983 data are used; in
between, a linear interpolation is used. Equations are the following:

_ Ta,q,i,1950 T Ta,q,i,1959 T Ta,q,i,1983

Ta,q,i + Ta,q,i + Ta,q, .
Pagqi = ¢ a,4,i,1950 a,q§,1959 a,q,4,1983 + (1 . ¢)7ra,q,i,1972 if Blow < SS'B(y) < th‘gh
Pa,y.qi = Ta,q,i,1972 ZfSSB(y) < Bjow
SSB(y) — Biow
with: ¢ = W) l
Bhigh - Blow

The spatial and seasonal year class data 7,4, are available in PATTERSON’s report
[7], appendix E. The other parameters are presented in table 6.

Parameter value unit
B it 500 10%kg
B 360 10%kg
Bhigh 000 106kg

Table 6: Spatial distribution parameters
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B MATLAB M-files

%*****************************************

% NSS HERRING POPULATION DYNAMICS (HER1.M)
Y e sk ks ke ke o o sk sk Kk ko ok sk sk ok ok ok s ok ok ok sk Kok ko o ok ok ok ok kK

% DENSITY-INDEPENDENT BIOECONOMIC MODEL

hAge-structured model, discrete time, one year time step.
hStock-recruitement: Beverton-Holt (SR=0) or Ricker (SR=1)

yA determinitic (RD=0) or + noise (RD=1)

h with (AC=1) or without (AC=0) autocorrelation.
%Natural mortality: constant (along time) and age-dependent.

%Fishing mortality: constant or fluctuating and age-independent.
%Selectivity: constant and age-dependent.

%Economic yield: constant price/kg, fixed and proportionnal harvesting costs.
%Maturity rates (MO), stock/catch weights-at-age (SW/CW), selectivities (S)
%and initial abundances (NO) are estimated as the mean values of the data
%hcorresponding to the initial condition years (IC).

%DATA = x.dat : 1st row=years, 1st year=1950

% 1st column=age classes, 1st class=0

%-> OUTPUT: N = abundance (age and year)

% B = biomass (age and year)

yA Y = yield, i.e. catch in weight (age and year)
% SSB = spawning stock biomass (year)

b Q = costs (year)

b P = profit (year)

%NB: column->year, row->age class
b Weights at age in kg/unit

% Numbers in units
yA Biomasses in kg
% Prices, Costs in Norwegian kroner (/kg)

%References (number) correspond to equation numbers in the report.

% SIMULATION PARAMETERS

y1=1997; y2=2017;
IC=[1993:1996];
SR=0;

RD=1;

AC=0;

amin=0;

amax=16;

% ECONOMIC PARAMETERS
%f=ones(1,y2-y1+1)*0.35;
f=abs(.2*randn(1,y2-y1+1)+.35);
al=3;

ql=1E7;

#Simulation period [yl y2]

%Initial condition years (vector)
%Stock-recruitment (SR): 0=B-H, 1=Ricker
% 1=stochastic error, O=none

% 1=autocorrelation, O=none

hAges: minimum

h maximum

#Fishing mortality: constant

b fluctuating
hlst fishing age for simple selectivities
) al<0 => data selectivities

%Costs: fixed
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q2=5E6; % proportional
h=1.45; hAverage price [1995, Norges Sildesalgslag, rsmeldinger)

% BIOLOGICAL PARAMETERS
m=ones (amax—amin+1,1)*0.15; #Natural mortality
%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)
arec=0; J#Recruitment age
if SR==0 & AC==0 %SR parameters:

a=32.459;

b=3044867E3;

sigma=1.763; % variance of the SR fitting

g=0; % mno autocorrelation
elseif SR==0 & AC==

a=31.637;

b=3284060E3;

sigma=1.666;

g=-0.2553; % 1st order autocorrelation in SR
elseif SR==1 & AC==0

a=26.753;

b=1.2105E-10;

sigma=1.802;

g=0;
elseif SR==1 & AC==

a=25.760;

b=1.094E-10;

sigma=1.694;

g=-0.2655;
end

% DATA LOADING & INITIAL CONDITION

if a1l<0 %Data selectivities
load(’s.dat’);
S = s(2:amax+2-amin,IC-1950+2);
if length(IC)>1

S=mean(S’)’;
end
else %#Simple selectivities:
S=ones (amax+1-amin,1); % 1 for the stock
S(1:al-amin)=zeros(al-amin,1); % 0 before recruitment
end
load mo.dat;load sw.dat; %#Data loading:
load cw.dat;load n.dat;
MO=mo (2:amax+2-amin,IC-1950+2) ; % maturity ogives
SW=sw(2:amax+2-amin,IC-1950+2); % stock weights at age
CW=cw(2:amax+2-amin,IC-1950+2); % catch weights at age
NO= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)
if length(IC)>1
MO=mean(M0’)’ ;SW=mean (SW’) ’; %Mean data over IC:
CW=mean (CW?’)’ ;NO=mean (NO’) ’;
end
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N=zeros (amax-amin+1,length(yl:y2));
B=zeros(size(N));

Y=zeros(size(N));
SSB=zeros(size(yl:y2));

N(:,1)=NO*1E6; %#Initial abundances in units
B(:,1)=SW.*NO*1E6; % biomasses
SSB(1)=M0’*B(:,1); A spawning stock biomass
El=sqrt(sigma)*randn*RD; %SR autocorrelation initialization

% POPULATION DYNAMICS SIMULATION
for t=2:y2-yi1+1
E=sqrt (sigma)*randn*RD; #SR error generation
for i=arec+2-amin:amax+l-amin
N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f(t-1)*S(i-1)); %Population ageing (1)

end
SSB(t)=MO’*(SW.*N(:,t)); %SSB (6)
if SR==0 %SR: Beverton-Holt (7)
N(arec+1l-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(g*E1+E);
else %SR: Ricker (8)
N(arec+1l-amin,t)=a*SSB(t)*exp(-b*SSB(t)) *exp (g*E1+E) ;
end
B(:,t)=SW.*N(:,t); /#Biomasses at age (4)
E1=E; %SR error autocorrelation
end
% YIELD
for t=1:y2-yi+1
z=m+f (t) *S; #Total mortality at time t
Y(:,t)=CW.*(1l-exp(~2z)) . *x(£(t)*S./z) .*N(:,t); hYield at age
end
TY=sum(Y) ; %hTotal yield (9)
Q=ql+q2.x*f; %Costs
P=h.*TY-Q; %Profit (10)
% PLOTS
figure
plot(yl:y2,sum(B(arec+1l-amin:amax+1l-amin,:))) sStock biomass along time

xlabel(’Time (year)’);
ylabel(’Stock biomass (kg)’);
title(’Population dynamics’);

figure

plot(yl:y2,TY) %Yield along time
xlabel (’Time (year)’);

ylabel(’Yield (kg)’);

title(’Harvest’);

figure
plot(SSB,N(1,:),’0?) SR
x1label(’SSB (kg)’);
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ylabel(’Number of recruits (age class 0)’);
title(’Stock-recruitment’);

figure

plot(yl:y2,P) #Profit along time
xlabel (’Time (year)’);

ylabel(’Profit (kroner)’);

title(’Economic yield’);

figure

plot(TY,Q,’0”) %Cost function
xlabel(’Yield (kg)’);

ylabel(’Costs (kroner)’);

title(’Cost function’);

%*******************************************

% NSS HERRING POPULATION DYNAMICS (HER1EQ.M)
%*******************************************

b

% DENSITY-INDEPENDENT BIOECONOMIC MODEL:

% EQUILIBRIUM STUDY

b

%Cf HER1, but constant fishing mortality along time.

%-> OUTPUT: L = total biomass (fishing mortality and year)
% Z = total yield (fishing mortality and year)
%NB: column->year, row->fishing mortality (among F)

% SIMULATION PARAMETERS

y1=1997; y2=2097; %Simulation period [yl y2]
IC=[1993:1996]; %Initial condition years (vector)

SR=0; %Stock-recruitment (SR): 0=B-H, 1=Ricker
PLO=1; hl=plot equilibrium curves, 2=all
amin=0; hAges: minimum

amax=16; % maximum

% HARVESTING PARAMETERS

F=[0:.05:1]; #Fishing mortalities
al=3; hlst fishing age for simple selectivities
h al<0 => data selectivities

% BIOLOGICAL PARAMETERS

m=ones (amax—amin+1,1)*0.15; #Natural mortality
%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)
arec=0; J#Recruitment age
if SR==0 %SR parameters:

a=32.459;

b=3044867E3;

sigma=1.763; % bias of the SR fitting
elseif SR==
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a=26.753;

b=1.2105E-10;

sigma=1.802;
end

% DATA LOADING & INITIAL CONDITION
if al<o0

load(’s.dat’);

S = s(2:amax+2-amin,IC-1950+2);

if length(IC)>1

S=mean(S’)’;

end
else

S=ones (amax+1-amin,1);

S(1:al-amin)=zeros(al-amin,1);
end
load mo.dat;load sw.dat;
load cw.dat;load n.dat;
MO=mo (2:amax+2-amin,IC-1950+2) ;
SW=sw(2:amax+2-amin,IC-1950+2);
CW=cw(2:amax+2-amin,IC-1950+2);
NO= n(2:amax+2-amin,IC-1950+2);
if length(IC)>1

MO=mean(M0’)’ ;SW=mean (SW’) ’;

CW=mean (CW’) ’ ; NO=mean (NO’) ’;
end
N=zeros (amax+1,length(yl:y2));
B=zeros(size(N));
Y=zeros(size(N));
SSB=zeros(size(yl:y2));
Z=zeros(length(F) ,length(yl:y2));
L=zeros(length(F),length(yl:y2));
N(:,1)=NO*1E6;
B(:,1)=SW.*NO*1E6;
SSB(1)=M0’*B(:,1);

% POPULATION DYNAMICS SIMULATION

%Data selectivities

%#Simple selectivities:

h
b

1 for the stock
0 before recruitment

#Data loading:

b
h
h
b

maturity ogives

stock weights at age

catch weights at age

initial abundances (in millions)

%Mean data over IC:

%Initializations

%Initial abundances (in units)

h
b

biomasses
spawning stock biomass

i=1;

for f=F
z=m+f*S; %Total mortality for f
Y(:,1)=CW.*x(1-exp(-z)) .x(£*S./z) .*N(:,1); %Initial yield at age

for t=2:y2-yi+1

for i=arec+2-amin:amax+1l-amin

N(i,t)=N(i-1,t-1)*exp(-m(i-1)-£*S(i-1));%Population ageing (1)

end
SSB(t)=M0O’*(SW.*N(:,t));
if SR==0

%Spawning stock biomass (6)
%SR: Beverton-Holt (7)

N(arec+l-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(sigma/2);

else

%SR: Ricker (8)

N(arec+l-amin,t)=a*SSB(t)*exp (-b*SSB(t))*exp(sigma/2) ;
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end

B(:,t)=SW.*N(:,t); %Biomasses at age (4)
Y(:,t)=CW.x(1-exp(-z)) .x(£xS./z) .*xN(:,t); %Yield at age (9)
end
L(j,:)=sum(B); %Biomasses at f
Z(j,:)=sum(Y); %Yields at f
J=j+1;
end
% PLOTS
if PLO==1 | PLO==2
figure #Equilibrium biomass & yield
clf reset

plot(F,Z(:,y2-y1+1) ,F,L(:,y2-y1+1)/10,’--)
xlabel (’Fishing mortality’);
ylabel(’Biomass/10 (dashed) and Yield (kg)’);
if SR==0
title(’Equilibrium (DI - Beverton-Holt recruitment)’);
elseif SR==1
title(’Equilibrium (DI - Ricker recruitment)’);

end

if PLO==2

figure /#Biomasses along time for small f
clf reset

plot(yl:y2,L(1:5,:))
xlabel(’Time (year)’);
ylabel(’Biomass (kg)’);
if SR==0
title([’Fishing mortality=’,mat2str(F(1:5)),’ (Beverton-Holt)’]);
elseif SR==
title([’Fishing mortality=’,mat2str(F(1:5)),’ (Ricker)’]);
end

figure /#Biomasses along time for large f

clf reset

plot(yl:y2,L(length(F)-4:1length(F),:))

xlabel(’Time (year)’);

ylabel(’Biomass (kg)’);

if SR==0
title([’Fishing mortality=’,mat2str(F(length(F)-4:1length(F))),...
> (Beverton-Holt)’]);

elseif SR==1
title([’Fishing mortality=’,mat2str(F(length(F)-4:1length(F))),...
> (Ricker)’1);

end

end

end
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%*******************************************
% NSS HERRING POPULATION DYNAMICS (HER1DI.M)
%*******************************************
yA

% DENSITY-INDEPENDENT BIOECONOMIC MODEL:

% RISK ANALYSIS & RISK DISTRIBUTION

yA

%Cf HER1, HER1RI.

%-> OUTPUT: Rx

Risk (F fishing mortalities and SIM simulations)

yA Tix = First year beyond the critical level (F and SIM)
% TN* = Number of years beyond the critical level (F and SIM)
yA column SIM+1 : mean value (probability for R)

yA column SIM+2 : standard deviation

% M* = Mean value (F and year)

% D* = Risk distribution (F and year)

% *=B : for the total biomass

yA *=3 : for the spawning stock biomass

% *=Y : for the yield (catch in weight)

% *=P : for the profit

A Results file: hdi"SR""AC""period".mat

%NB: row->fishing mortality (among F)

yA column->simulation (SIM)

% SIMULATION PARAMETERS

SIM=100; %Simulations number

Bcrit=0.5E10; %Critical biomass
SSBcrit=0.25E10; A SSB

Ycrit=0.05E10; h yield

Pcrit=0; h profit

y1=1997; y2=2097; %Simulation period [yl y2]
IC=[1993:1996]; %Initial condition years (vector)
SR=0; %Stock-recruitment (SR): 0=B-H, 1=Ricker
RD=1; % 1=stochastic error, O=none
AC=0; % 1=autocorrelation, O=none
PLO=1; hl=plot the curves

PRI=1; %l=save results in mat-file
amin=0; hAges: minimum

amax=16; % maximum

% ECONOMIC PARAMETERS

F=[0:.05:1.3,1.4:.1:2]; #Fishing mortalities

al=3; hlst fishing age for simple selectivities
h al<0 => data selectivities

ql=1ET7; #Costs: fixed

q2=5E6; % proportional

h=1.45; hAverage price [1995, Norges Sildesalgslag, rsmeldinger)

% BIOLOGICAL PARAMETERS
m=ones (amax—amin+1,1)*0.15; #Natural mortality
%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)
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arec=0; J#Recruitment age
if SR==0 & AC==0 %SR parameters:
a=32.459;
b=3044867E3;
sigma=1.763; % variance of the SR fitting
g=0; % no autocorrelation
elseif SR==0 & AC==
a=31.637;
b=3284060E3;
sigma=1.666;
g=-0.2553; % 1st order autocorrelation in SR
elseif SR==1 & AC==0
a=26.753;
b=1.2105E-10;
sigma=1.802;
g=0;
elseif SR==1 & AC==
a=25.760;
b=1.094E-10;
sigma=1.694;
g=-0.2655;
end

% DATA LOADING & INITIAL CONDITION

if a1l<0 %Data selectivities
load(’s.dat’);
S = s(2:amax+2-amin,IC-1950+2);
if length(IC)>1

S=mean(S’)’;
end
else %Simple selectivities:
S=ones (amax+1-amin,1); % 1 for the stock
S(1:al-amin)=zeros(al-amin,1); % 0 before recruitment
end
load mo.dat;load sw.dat; #Data loading:
load cw.dat;load n.dat;
MO=mo (2:amax+2-amin,IC-1950+2) ; % maturity ogives
SW=sw(2:amax+2-amin,IC-1950+2); % stock weights-at-age
CW=cw(2:amax+2-amin,IC-1950+2); % catch weights-at-age
NO= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)
if length(IC)>1
MO=mean (M0’) ’ ; SW=mean (SW’) ’; %Mean data over IC:
CW=mean (CW’)’ ;NO=mean(NO’) ’;
end
N=zeros (amax-amin+1,length(yl:y2)); sInitializations

B=zeros(size(N));
Y=zeros(size(N));
RB=zeros(length(F) ,2+SIM); T1B=zeros(size(RB)); TNB=zeros(size(RB));
RS=zeros(size(RB)); T1S=zeros(size(RB)); TNS=zeros(size(RB));
RY=zeros(size(RB)); TiY=zeros(size(RB)); TNY=zeros(size(RB));
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RP=zeros(

MS=zeros(
MY=zeros(
MP=zeros (
SSB=zeros
N(:,1)=NO
B(:,1)=SW
SSB(1)=M0
El=sqrt(s
fis=1;

% POPULAT

size(RB)); T1P=zeros(size(RB)); TNP=zeros(size(RB));
MB=zeros(length(F),length(yl:y2)); DB=zeros(size(MB));

size(MB));
size(MB));
size(MB));
(size(yl:y2));
*1E6;

.*NO*1E6;
’xB(:,1);

igma) *randn*RD;

ION DYNAMICS SIMULATIONS

DS=zeros(size(MB));
DY=zeros(size(MB));
DP=zeros(size(MB));

%Initial abundances in units

% biomasses

h spawning stock biomass
%SR autocorrelation initialization

for f=F #F fishing mortalities
z=m+f*S; hTotal mortality for f
Y(:,1)=CW.*x(1-exp(-z)) .x(£xS./z) .*#N(:,1); %Initial yield at age (9)
for j=1:SIM %SIM simulations
for t=2:y2-yi+1
E=sqrt (sigma)*randn*RD; #SR error generation
for i=arec+2-amin:amax+l-amin
N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f*S(i-1));%Population ageing (1)
end
SSB(t)=MO’*(SW.*N(:,t)); %SSB (6)
if SR==0 %SR: Beverton-Holt (7)
N(arec+1l-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp (g*E1+E);
else %SR: Ricker (8)
N(arec+1l-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp(g*E1+E) ;
end
B(:,t)=SW.xN(:,t); /#Biomasses at age (4)
Y(:,t)=CW.*x(1l-exp(-2)).*(£xS./2) .#N(:,t); 'Yield at age (9)
E1=E; %SR error autocorrelation
end
P=h*sum(Y)-(ql+q2%f); WProfit (10)

% MEAN VALUES (fishing mort. & year)
MB(fis,:)=MB(fis,:)+sum(B)/SIM; %Mean biomass
MS(fis,:)=MS(fis,:)+SSB/SIM; A SSB

MY (fis, :)=MY(fis,:)+sum(Y)/SIM; % yield
MP(fis,:)=MP(fis,:)+P/SIM; Y profit

% RISK (fishing mort. & simulation)
if min(sum(B))<Bcrit

end

RB(fis,j)=1;

ind=find (sum(B)<Bcrit) ;
T1B(fis, j)=min(ind)+y1l-1;
TNB(fis, j)=length(ind);

if min(SSB)<SSBcrit

RS(fis,j)=1;

ind=find (SSB<SSBcrit) ;
T1S(fis, j)=min(ind)+yl-1;
TNS(fis, j)=length(ind);

%BIOMASS risk

#First year < Bcrit
J#Number of years < Bcrit
%SSB risk

#First year < SSBcrit
#Nb of years < SSBcrit
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end
if min(sum(Y))<Ycrit
RY(fis,j)=1 ;
ind=find (sum(Y)<Ycrit);
T1Y(fis, j)=min(ind)+yl-1;
TNY(fis, j)=length(ind);
end
if min(P)<Pcrit
RP(fis,j)=1;
ind=find (P<Pcrit);
T1P(fis, j)=min(ind)+y1-1;
TNP(fis, j)=length(ind);
end
end
fis=fis+1;
end

% RISK ANALYSIS (fishing mort.)
ind=find (MB<Bcrit);
DB(ind)=ones(size(ind));
RB(:,SIM+1)=mean(RB(:,1:SIM)’)’;
RB(:,SIM+2)=std(RB(:,1:SIM)’)’;
f1b=find (RB(:,SIM+1));
for i=[f1b]’
si=find (T1B(i,1:SIM));
T1B(i,SIM+1)=mean(T1B(i,si));
T1B(i,SIM+2)=std(T1B(i,si));
end
TNB(:,SIM+1)=mean(TNB(:,1:SIM)’)’;
TNB(:,SIM+2)=std(TNB(:,1:SIM)’)’;
yA
ind=find (MS<SSBcrit);
DS(ind)=ones(size(ind));
RS(:,SIM+1)=mean(RS(:,1:SIM)’)’;
RS(:,SIM+2)=std(RS(:,1:SIM)’)’;
f1s=find (RS(:,SIM+1));
for i=[f1s]’
si=find (T1S(i,1:SIM));
T1S(i,SIM+1)=mean(T1S(i,si));
T1S(i,SIM+2)=std(T1S(i,si));
end
TNS(:,SIM+1)=mean(TNS(:,1:SIM)’)’;
TNS(:,SIM+2)=std(TNS(:,1:SIM)*)’;
b
ind=find (MY<Ycrit);
DY(ind)=ones(size(ind));
RY(:,SIM+1)=mean(RY(:,1:SIM)’)’;
RY(:,SIM+2)=std(RY(:,1:SIM)’)’;
fly=find (RY(:,SIM+1));
for i=[f1y]’
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WYIELD risk

WFirst year < Ycrit
#Number of years < Ycrit

%PROFIT risk

#First year < Pcrit
J#Number of years < Pcrit

%BIOMASS:

#Risk distribution (year)
JRisk probability

% standard deviation

#Mean first year < Bcrit
% standard deviation

%Mean nb of years < Bcrit
% standard deviation

%SSB:

#Risk distribution (year)
%Risk probability

% standard deviation

#Mean first year < SSBcrit
% standard deviation

%Mean nb of years < SSBcrit
% standard deviation

HYIELD:

#Risk distribution (year)
JRisk probability

% standard deviation



si=find (T1Y(i,1:SIM));

T1Y(i,SIM+1)=mean(T1Y(i,si));

T1Y(i,SIM+2)=std(T1Y(i,si));
end
TNY(:,SIM+1)=mean(TNY(:,1:SIM)’)’;
TNY(:,SIM+2)=std(TNY(:,1:SIM)’)’;
h
ind=find (MP<Pcrit);
DP(ind)=ones(size(ind));
RP(:,SIM+1)=mean(RP(:,1:SIM)’)’;
RP(:,SIM+2)=std(RP(:,1:SIM)’)’;
flp=find(RP(:,SIM+1));
for i=[fip]’

si=find (T1P(i,1:SIM));

T1P(i,SIM+1)=mean(T1P(i,si));

T1P(i,SIM+2)=std(T1P(i,si));
end
TNP(:,SIM+1)=mean(TNP(:,1:SIM)’)’;
TNP(:,SIM+2)=std(TNP(:,1:SIM)’)’;

% RISK PLOTS

if PLO==

YA

figure

clf reset

subplot(3,1,1)

plot (F,RB(:,SIM+1),’mo:’)
if SR==0 & AC==0

#Mean first year < Ycrit
% standard deviation

%Mean nb of years < Ycrit
% standard deviation

%PROFIT:
#Risk distribution (year)

JRisk probability
% standard deviation

#Mean first year < Pcrit
% standard deviation

%Mean nb of years < Pcrit
% standard deviation

%TOTAL BIOMASS:

%Risk probability / F

title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);

elseif SR==0 & AC==

title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);

elseif SR==1 & AC==0

title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);

elseif SR==1 & AC==

title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);

end
xlabel (’Fishing mortality’);

ylabel(’Risk probability for biomass’);

subplot(3,1,2)

plot (F(f1b),T1B(f1b,SIM+1),’mo:’)
xlabel (’Fishing mortality’);
ylabel(’First year beyond Bcrit’);
subplot(3,1,3)
plot(F,TNB(:,SIM+1),’mo:’)

xlabel (’Fishing mortality’);

ylabel(’Number of years beyond Bcrit’);

%First year < Bcrit / F

%Number of years < Bcrit / F



yA
figure %Biomass risk distribution
clf reset
subplot(2,1,1)
mesh(yl:y2,F,MB);
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Bcrit=’,num2str(Bcrit/1e10),’E10 kg’]1);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);
end
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel (’Mean total biomass’);
subplot(2,1,2)
mesh(yl:y2,F,DB);
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’Biomass risk distribution’);

figure %SPAWNING STOCK BIOMASS:
clf reset
subplot(3,1,1)
plot (F,RS(:,SIM+1),’mo:’) %Risk probability / F
if SR==0 & AC==0

title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...

int2str(y2-y1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), SSBcrit=’,num2str(SSBcrit/1el10),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), SSBcrit=’,num2str(SSBcrit/1el10),’E10 kg’]);
end
xlabel (’Fishing mortality’);
ylabel(’Risk probability for SSB’);
subplot(3,1,2)
plot(F(f1s) ,T1S(f1s,SIM+1), ’mo:’) %First year < SSBcrit / F
xlabel (’Fishing mortality’);
ylabel(’First year beyond SSBcrit’);
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subplot(3,1,3)
plot(F,TNS(:,SIM+1),’mo:’) %Number of years < SSBcrit / F
xlabel (’Fishing mortality’);
ylabel(’Number of years beyond SSBcrit’);
yA
figure %SSB risk distribution
clf reset
subplot(2,1,1)
mesh(yl:y2,F,MS);
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), SSBcrit=’,num2str(SSBcrit/1el10),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
end
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel (’Mean SSB’);
subplot(2,1,2)
mesh(yl:y2,F,DS);
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’SSB risk distribution’);

figure WYIELD:
clf reset
subplot(3,1,1)
plot(F,RY(:,SIM+1),’mo:’) %Risk probability / F
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...

int2str(y2-y1+1),’ years), Ycrit=’,num2str(Ycrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Ycrit=’,num2str(Ycrit/1el0),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Ycrit=’,num2str(Ycrit/1el0),’E10 kg’]);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Ycrit=’,num2str(Ycrit/1e10),’E10 kg’]1);
end
xlabel (’Fishing mortality’);
ylabel(’Risk probability for yield’);
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subplot(3,1,2)
plot(F(f1y) ,T1Y(f1y,SIM+1), ’mo:’) %First year < Ycrit / F
xlabel (’Fishing mortality’);
ylabel(’First year beyond Ycrit’);
subplot(3,1,3)
plot(F,TNY(:,SIM+1),’mo:’) %Number of years < Ycrit / F
xlabel (’Fishing mortality’);
ylabel(’Number of years beyond Ycrit’);
yA
figure %Yield risk distribution
clf reset
subplot(2,1,1)
mesh(yl:y2,F,MY);
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Ycrit=’,num2str(Ycrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Ycrit=’,num2str(Ycrit/1el0),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ?,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Ycrit=’,num2str(Ycrit/1el0),’E10 kg’]);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Ycrit=’,num2str(Ycrit/1e10),’E10 kg’]1);
end
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’Mean yield’);
subplot(2,1,2)
mesh(yl:y2,F,DY);
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’Yield risk distribution’);

figure %PROFIT:
clf reset
subplot(3,1,1)
plot(F,RP(:,SIM+1),’mo:’) %Risk probability / F
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...

int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==

title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...

int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit/1e10),’E10 kg’]1);
elseif SR==1 & AC==0

title([’Ricker - ?,int2str(SIM),’ simulations (’,...

int2str(y2-yl1+1),’ years), Pcrit=’,nXSum2str(Pcrit/1e10),’E10 kg’]);
elseif SR==1 & AC==

title([’Ricker AC - ’,int2str(SxsIM),’ simulations (°,...
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int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit/1e10),’E10 kg’]1);
end
xlabel (’Fishing mortality’);
ylabel(’Risk probability for profit’);
subplot(3,1,2)
plot(F(f1p) ,T1P(f1p,SIM+1), ’mo:’) %First year < Pcrit / F
xlabel (’Fishing mortality’);
ylabel(’First year beyond Pcrit’);
subplot(3,1,3)
plot (F,TNP(:,SIM+1),’mo:’) %Number of years < Pcrit / F
xlabel (’Fishing mortality’);
ylabel(’Number of years beyond Pcrit’);
b
figure #Profit risk distribution
clf reset
subplot(2,1,1)
mesh(yl:y2,F,MP);
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit),’ kg’l);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit),’ kg’l);
elseif SR==1 & AC==0
title([’Ricker - ?,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Pcrit=’,num2str(Pcrit),’ kg’l);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit),’ kg’l);
end
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’Mean profit’);
subplot(2,1,2)
mesh(yl:y2,F,DP);
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel (’Profit risk distribution’);
end

if PRI==
file=[’hdi’,int2str(SR),int2str(AC),int2str(y2-y1+1)];
save(file,’AC’,’Bcrit’,’CW’,’Ycrit’,’DB’,’DY’,’DS’,’MB’,’MY’,’MS’, ...
’F?,’1C’,’MO’,’NO’,’RB’,’RY’,’RD’,’RS’,’SIM’,’SR’,’SSBcrit’, ...
’SW’>,’T1B’,’TNB’,’T1Y’,’TNY’,’T1S’,’TNS’,’al’,’amax’,’amin’, ...
’arec’,’b’,’g’,’f1b’,’fl1y’,’f1s’,’m’,’S’,’sigma’,’yl1’,’°y2’, ...
'DP’,’Pcrit’,’MP’,’RP’,’T1P’,’TNP’,’f1p’)
end
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%*****************************************

% NSS HERRING POPULATION DYNAMICS (HER2.M)
%*****************************************

b

% DENSITY-DEPENDENT BIOECONOMIC MODEL

b

%Age-structured model, discrete time, one year time step.
%Stock-recruitement: Beverton-Holt (SR=0) or Ricker (SR=1)

pA determinitic (RD=0) or + noise (RD=1)

yA with (AC=1) or without (AC=0) autocorrelation.
%Natural mortality: constant (along time) and age-dependent.

%Fishing mortality: constant or fluctuating and age-independent.
%Selectivity: constant and age-dependent.

%Economic yield: constant price/kg, fixed and proportionnal harvesting costs.
%Density-dependent maturity ogive (MO), stock/catch weight at age (SW/CW)
%functions.
%Selectivities (S) and initial abundances (NO) are estimated as the mean
%values of the data corresponding to the initial condition years (IC).
%DATA = x.dat : 1st row=years, 1st year=1950

% 1st column=age classes, 1st class=0

%—> OUTPUT: N = abundance (age and year)

yA B = biomass (age and year)

% Y = yield, i.e. catch in weight (age and year)
% SSB = spawning stock biomass (year)

b Q = costs (year)

b P = profit (year)

%NB: column->year, row->age class (1st class = 0)
yA Weights at age in kg/unit

% Numbers in units
yA Biomasses in kg
% Prices, Costs in Norwegian kroner (/kg)

%References (number) correspond to equation numbers in the report.

% SIMULATION PARAMETERS

y1=1997; y2=2100;
IC=[1993:1996];
SR=0;

RD=1;

AC=0;

amin=0;

amax=16;

% ECONOMIC PARAMETERS
f=ones(1,y2-y1+1)*0.35;
%f=abs(.2*randn(1,y2-y1+1)+.5);
al=3;

ql=1E7;
q2=5E6;

%sSimulation period [yl y2]
%Initial condition years (vector)
%Stock-recruitment (SR): 0=B-H, 1=Ricker

% 1=stochastic error, O=none
% 1=autocorrelation, O=none
hAges: minimum
h maximum

#Fishing mortality: constant
#Fishing mortality: fluctuating
hlst fishing age for simple selectivities

h al<0 => data selectivities
%Costs: fixed
b proportional
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h=1.45; hAverage price

% BIOLOGICAL PARAMETERS

m=ones (amax-amin+1,1)*0.15;

%m(1:3)=ones(3,1)*0.9;

c=[0.006759;1.356;2.686;3.977];

d=-0.2744;

alpha=-0.299;

Bmax=16218E6;

w0=0.203;

k0=0.703;

winf=0.447;

alphal=-0.368;

w01=0.217;

k01=0.650;

winf1=0.430;

arec=0;

if SR==0 & AC==0
a=32.459;
b=3044867E3;
sigma=1.763;
g=0;

elseif SR==0 & AC==
a=31.637;
b=3284060E3;
sigma=1.666;
g=-0.2553;

elseif SR==1 & AC==0
a=26.753;
b=1.2105E-10;
sigma=1.802;
g=0;

elseif SR==1 & AC==
a=25.760;
b=1.094E-10;
sigma=1.694;
g=-0.2655;

end

[1995, Norges Sildesalgslag, rsmeldinger]

JNatural mortality
%(high juvenile mortality)
iMaturity parameters

hStock weights at age parameters

hCatch weights at age parameters

J#Recruitment age
%SR parameters:

h
b

variance of the SR fitting
no autocorrelation

% 1st order autocorrelation in SR

% DATA LOADING & INITIAL CONDITION

if al<o0
load(’s.dat’);
S s(2:amax+2-amin,IC-1950+2)
if length(IC)>1
S=mean(S’)’;
end
else
S=ones (amax+1-amin,1);
S(1:al-amin)=zeros(al-amin,1);
end

%Data selectivities

3

%Simple selectivities:
% 1 for the stock
% 0 before recruitment

53



load(’n.dat’); %#Data loading:

NO= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)
if length(IC)>1

NO=mean(NO’)’; %Mean data over IC
end

N=zeros (amax+1l-amin,length(yl:y2));
B=zeros(size(N));

Y=zeros(size(N));

SW=zeros (size(N));

CW=zeros (size(N));
MO=zeros(size(N));

MO(8-amin:amax+1l-amin, :)=ones(size (MO(8:amax+1,:))); #Fully mature ages
SSB=zeros(size(yl:y2));

N(:,1)=NO*1E6; %Initial abundances (in units)
SW(:,1)=ones(size(SW(:,1)))*w0; % stock weights at age (2)
CW(:,1)=ones(size(CW(:,1)))*w01; % catch weights at age (3)
B(:,1) =SW(:,1).%NO*1E6; % biomasses
B4=sum(B(5-amin:amax+1-amin,1))*1E-3; % stock biomass (in tonnes)
MO (4-amin:7-amin,1)=1./(1+exp(-c)*B4~(-d)) ;% maturity ogives (5)
SSB(1) =MO(:,1)’*B(:,1); A spawning stock biomass
El=sqrt(sigma)*randnx*RD; %»SR autocorrelation initialization

% POPULATION DYNAMICS SIMULATION
for t=2:y2-yi1+1
E=sqrt (sigma)*randn*RD; #SR error generation
for i=arec+2-amin:amax+l-amin
N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f(t-1)*S(i-1)); %Population ageing (1)

k=kOx*exp(-alpha*sum(B(:,t-1))/Bmax) ; hStock weights at age (2)

SW(i,t)=abs((1-k)*winf~(1/3)+k*SW(i-1,t-1)"(1/3))"3;

k1=kO1*exp(-alphal*sum(B(:,t-1))/Bmax) ; sCatch weights at age (3)

CW(i,t)=abs((1-k1)*winfl1~ (1/3)+k1*CW(i-1,t-1)"(1/3))"3;
end
B4=SW(5-amin:amax+l-amin,t)’*N(5-amin:amax+l-amin,t); %Maturity ogives:

MO (4-amin:7-amin,t)=1./abs(l1+exp(-c)*B4~(-d)); ‘partially mature ages (5)

SSB(t)=SW(:,t)’*(MO(:,t).*N(:,t)); %SSB (6)
if SR==0 %SR: Beverton-Holt (7)
N(arec+l-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(g*E1+E) ;
else %SR: Ricker (8)
N(arec+l-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp (g*E1+E) ;
end
B(:,t)=SW(:,t).*xN(:,t); /#Biomasses at age (4)
E1=E; %SR error autocorrelation
end
% YIELD

for t=1:y2-yi1+1

z=m+f (t) *S; hTotal mortality at time t

Y(:,t)=CW(:,t).*x(1-exp(-2)) . .*(£(t)*S./2) .*N(:,t);%Yield at age
end
TY=sum(Y) ; hTotal yield (9)
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Q=ql+q2.x*f;
P=h.*TY-Q;

% PLOTS

figure
plot(yl:y2,sum(B(arec+1l-amin:amax+l-amin,:)))
xlabel(’Time (year)’);

ylabel(’Stock biomass (kg)’);
title(’Population dynamics’);

figure

plot(yl:y2,TY)

xlabel (’Time (year)’);
ylabel(’Yield (kg)’);
title(’Harvest’);

figure

clf reset

plot(SSB,N(1,:),’07%)

xlabel(’SSB (kg)’);

ylabel(’Number of recruits (age class 0)’);
title(’Stock-recruitment’);

figure

plot(yl:y2,P)
xlabel(’Time (year)’);
ylabel(’Profit (kroner)’);
title(’Economic yield’);

figure

plot(TY,Q,’07)
xlabel(’Yield (kg)’);
ylabel(’Costs (kroner)’);
title(’Cost function’);

Y ek sk ok ke o ok sk sk ok ko o ok sk ok K ok ok s ok ok ok sk ok sk ko ke ok ok ok ok ok kK k ok
% NSS HERRING POPULATION DYNAMICS (HER2EQ.M)
Y e sk sk ok ke o ok sk sk ok ke o ok ok sk ok ko o ok ok sk sk Kk ke k ok ok ok ok ok ok ok
b

% DENSITY-DEPENDENT BIOECONOMIC MODEL:

% EQUILIBRIUM STUDY

b

%Cf HER2, but constant fishing mortality along time.

total biomass (fishing mortality and year)
total yield (fishing mortality and year)
%NB: column->year, row->fishing mortality (among F)

%-> OUTPUT: L
% Z

% SIMULATION PARAMETERS

%Costs
%Profit (10)

%Stock biomass along time

hYield along time

%SR

#Profit along time

%Cost function

y1=1997; y2=2057; %Simulation period [yl y2]
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IC=[1993:1996];
SR=0;

PLO=1;

amin=0;
amax=16;

% HARVESTING PARAMETERS
F=[0:.05:1];
al=3;

% BIOLOGICAL PARAMETERS
m=ones (amax-amin+1,1)*0.15;
%m(1:3)=ones(3,1)*0.9;
c=[0.006759;1.356;2.686;3.977];
d=-0.2744;
alpha=-0.299;
Bmax=16218E6;
w0=0.203;
k0=0.703;
winf=0.447;
alphal=-0.368;
w01=0.217;
k01=0.650;
winf1=0.430;
arec=0;
if SR==0
a=32.459;
b=3044867E3;
sigma=1.763;
elseif SR==
a=26.753;
b=1.2105E-10;
sigma=1.802;
end

%Initial condition years (vector)
%Stock-recruitment (SR): 0=B-H, 1=Ricker
%1l=plot equilibrium curves, 2=all

hAges: minimum

b maximum

#Fishing mortalities
hlst fishing age for simple selectivities
b al<0 => data selectivities

JNatural mortality
%(high juvenile mortality)
iMaturity parameters

hStock weights at age parameters

hCatch weights at age parameters

J#Recruitment age
%SR parameters:

% bias of the SR fitting

% DATA LOADING & INITIAL CONDITION

if al<o0
load(’s.dat’);
g =
if length(IC)>1

S=mean(S’)’;

end

else
S=ones (amax+1-amin,1);

S(1:al-amin)=zeros(al-amin,1);

end

load(’n.dat’);

NO= n(2:amax+2-amin,IC-1950+2);
if length(IC)>1

%Data selectivities

s(2:amax+2-amin,IC-1950+2) ;

%#Simple selectivities:
% 1 for the stock
% 0 before recruitment

/#Data loading:
% initial abundances (in millions)
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NO=mean (NO’) ’; %Mean data over IC
end
N=zeros (amax+1,length(yl:y2)); sInitializations
B=zeros(size(N));
Y=zeros(size(N));
SW=zeros(size(N));
CW=zeros(size(N));
MO=zeros(size(N));
MO (8-amin:amax+l-amin, :)=ones(size(MO(8:amax+1,:))); %Fully mature ages
Z=zeros(length(F) ,length(yl:y2));
L=zeros(length(F),length(yl:y2));
SSB=zeros(size(yl:y2));

N(:,1)=NO*1E6; %Initial abundances (in units)
SW(:,1)=ones(size(SW(:,1)))*w0; yA stock weights at age (2)
CW(:,1)=ones(size(CW(:,1)))*w01; % catch weights at age (3)
B(:,1)=SW(:,1).*NO*1E6; % biomasses
B4=sum(B(5-amin:amax+1-amin,1))*1E-3; % stock biomass (in tonnes)
MO(4-amin:7-amin,1)=1./(1+exp(-c)*B4~(-d)) ;% maturity ogives (5)
SSB(1) =MOC(:,1)’*B(:,1); % spawning stock biomass

% POPULATION DYNAMICS SIMULATION

j=1;

for f=F
z=m+f*S; hTotal mortality for f
Y(:,1)=CW(:,1) .*x(1-exp(-2z)).*(£*S./2) .*N(:,1); %Initial yield at age

for t=2:y2-yi1+1

for i=arec+2-amin:amax+l-amin
N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f*S(i-1)); #Population ageing (1)
k=kO*exp(-alpha*sum(B(:,t-1))/Bmax) ; %Stock weights at age (2)
SW(i,t)=abs((1-k)*winf~ (1/3)+k*SW(i-1,t-1)"(1/3))"3;
k1=kO1*exp(-alphal*sum(B(:,t-1))/Bmax); %Catch weights at age (3)
CW(i,t)=abs((1-k1)*winfl~(1/3)+k1*CW(i-1,t-1)"(1/3))"3;

end

B4=SW(5-amin:amax+1-amin,t) ’>*N(5-amin:amax+1-amin,t);

MO(4-amin:7-amin,t)=1./abs(1+exp(-c)*B4~(-d)); %Maturity ogives (5)

SSB(t)=MOC(:,t)’*(SW(:,t).*N(:,t)); %SSB (6)
if SR==0 %SR: Beverton-Holt (7)
N(arec+l-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(sigma/2);
else %SR: Ricker (8)
N(arec+l-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp(sigma/2) ;
end
B(:,t)=SW(:,t).*N(:,t); /#Biomasses at age (4)
Y(:,t)=CW(:,t).x(1-exp(-2)).*x(£*S./2) .#N(:,t); %Yield at age (9)
end
L(j,:)=sum(B); %Biomasses at f
Z(j,:)=sum(Y); %Yields at f
j=j+1;
end
% PLOTS
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if PLO==1 | PLO==2
figure #Equilibrium biomass & yield
clf reset
plot (F,Z(:,y2-y1+1) ,F,L(:,y2-y1+1)/10,7-=")
xlabel (’Fishing mortality’);
ylabel(’Biomass/10 (dashed) and Yield (kg)’);
if SR==0
title(’Equilibrium (DD - Beverton-Holt recruitment)’);
elseif SR==
title(’Equilibrium (DD - Ricker recruitment)’);

end

if PLO==2

figure #Biomasses along time for small f
clf reset

plot(yl:y2,L(1:5,:))
xlabel(’Time (year)’);
ylabel(’Biomass (kg)’);
if SR==0
title([’Fishing mortality=’,mat2str(F(1:5)),’ (Beverton-Holt)’]);
elseif SR==
title([’Fishing mortality=’,mat2str(F(1:5)),’ (Ricker)’]);
end

figure /#Biomasses along time for large f

clf reset

plot(yl:y2,L(length(F)-4:1length(F),:))

xlabel (’Time (year)’);

ylabel(’Biomass (kg)’);

if SR==0
title([’Fishing mortality=’,mat2str(F(length(F)-4:length(F))),...
> (Beverton-Holt)’]);

elseif SR==1
title([’Fishing mortality=’,mat2str(F(length(F)-4:1length(F))),...
> (Ricker)’1);

end

end

end

%*******************************************

% NSS HERRING POPULATION DYNAMICS (HER2DI.M)

%*******************************************

b

% DENSITY-DEPENDENT BIOECONOMIC MODEL:

% RISK ANALYSTIS & RISK DISTRIBUTION

b

%Cf HER2, but constant fishing mortality along time..

%-> OUTPUT: R* = Risk (F fishing mortalities and SIM simulations)

yA Tix = First year beyond the critical level (F and SIM)
28



yA TN* = Number of years beyond the critical level (F and SIM)
% column SIM+1 : mean value (probability for R)
yA column SIM+2 : standard deviation

% M* = Mean value (F and year)

% D* = Risk distribution (F and year)

h *=B : for the total biomass

% *=3 : for the spawning stock biomass

h *=Y : for the yield (catch in weight)

% *=P : for the profit

A Results file: hdd"SR""AC"'"period".mat

%NB: row->fishing mortality (among F)

yA column->simulation (SIM)

% SIMULATION PARAMETERS

SIM=100;
Bcrit=0.5E10;
SSBcrit=0.25E10;
Ycrit=0.10E10;
Pcrit=0;
y1=1997; y2=2097;
IC=[1993:1996];
SR=0;

RD=1;

AC=0;

PL0O=1;

PRI=0;

amin=0;

amax=16;

% ECONOMIC PARAMETERS
F=[0:.05:.8,.9:.1:2];

%Simulations number
%Critical biomass

b SSB
b yield
b profit

%Simulation period [yl y2]

%Initial condition years (vector)
%Stock-recruitment (SR): 0=B-H, 1=Ricker
% 1=stochastic error, O=none

% 1l=autocorrelation, O=none

%1l=plot the curves

%l=save results in mat-file

hAges: minimum

b maximum

4Fishing mortalities

al=3; hlst fishing age for simple selectivities
h al<0 => data selectivities

ql=1E7; %#Costs: fixed

q2=5E6; h proportional

h=1.45; hAverage price [1995, Norges Sildesalgslag, rsmeldinger)

% BIOLOGICAL PARAMETERS

m=ones (amax-amin+1,1)*0.15; #Natural mortality

%m(1:3)=ones(3,1)*0.9;

%(high juvenile mortality)

c=[0.006759;1.356;2.686;3.977]; JMaturity parameters

d=-0.2744;
alpha=-0.299;
Bmax=16218E6;
w0=0.203;
k0=0.703;
winf=0.447;
alphal=-0.368;
w01=0.217;
k01=0.650;

hStock weights at age parameters

hCatch weights at age parameters
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winf1=0.430;
arec=0;
if SR==0 & AC==0
a=32.459;
b=3044867E3;
sigma=1.763; h
g=0; %
elseif SR==0 & AC==
a=31.637;
b=3284060E3;
sigma=1.666;
g=-0.2553; b
elseif SR==1 & AC==0
a=26.753;
b=1.2105E-10;
sigma=1.802;
g=0;
elseif SR==1 & AC==
a=25.760;
b=1.094E-10;
sigma=1.694;
g=-0.2655;
end

% DATA LOADING & INITIAL CONDITION
if al<o0
load(’s.dat’);
S = s(2:amax+2-amin,IC-1950+2);
if length(IC)>1
S=mean(S’)’;
end
else
S=ones (amax+1-amin,1);
S(1:al-amin)=zeros(al-amin,1);
end
load(’n.dat’);
NO= n(2:amax+2-amin,IC-1950+2);
if length(IC)>1
NO=mean(NO’)’;
end
N=zeros (amax-amin+1,length(yl:y2));
B=zeros(size(N));
Y=zeros(size(N));

J#Recruitment age
%SR parameters:

variance of the SR fitting
no autocorrelation

1st order autocorrelation in SR

%Data selectivities

%Simple selectivities:
% 1 for the stock
% 0 before recruitment

#Data loading:
% initial abundances (in millions)

%Mean data over IC

%Initializations

RB=zeros(length(F) ,2+SIM); T1B=zeros(size(RB)); TNB=zeros(size(RB));

RS=zeros(size(RB));
RY=zeros(size(RB));
RP=zeros(size(RB));

T1S=zeros(size(RB)); TNS=zeros(size(RB));
TiY=zeros(size(RB)); TNY=zeros(size(RB));
TiP=zeros(size(RB)); TNP=zeros(size(RB));

MB=zeros(length(F),length(yl:y2)); DB=zeros(size(MB));

MS=zeros(size (MB));
MY=zeros(size(MB));

DS=zeros(size(MB));
DY=zeros(size(MB));
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MP=zeros(size(MB)); DP=zeros(size(MB));
SW=zeros(size(N));

CW=zeros(size(N));

MO=zeros(size(N));

MO (8-amin:amax+l-amin, :)=ones(size(MO(8:amax+1,:))); %Fully mature ages
SSB=zeros(size(yl:y2));

N(:,1)=NO*1E6; %#Initial abundances in units
SW(:,1)=ones(size(SW(:,1)))*w0; % stock weight at age (2)
CW(:,1)=ones(size(CW(:,1)))*w01; b catch weight at age (3)
B(:,1)=SW(:,1).*NO*1E6; A biomasses
B4=sum(B(5-amin:amax+1-amin,1))*1E-3; Y% stock biomass in tonnes
MO(4-amin:7-amin,1)=1./(1+exp(-c)*B4~(-d)) ;% maturity ogives (5)
SSB(1)=MOC(:,1)’*B(:,1); % spawning stock biomass
El=sqrt(sigma)*randnx*RD; %SR autocorrelation initialization
fis=1;

% POPULATION DYNAMICS SIMULATIONS

for f=F 4F fishing mortalities
z=m+f*S; hTotal mortality for f
Y(:,1)=CW(:,1).*x(1-exp(~-2z)) . x(£*S5./z) .*N(:,1); %Initial yield at age (9)
for j=1:SIM %SIM simulations
for t=2:y2-yi1+1
E=sqrt (sigma)*randn*RD; #SR error generation

for i=arec+2-amin:amax+l-amin
N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f*S(i-1));%Population ageing (1)
k=kOx*exp(-alpha*sum(B(:,t-1))/Bmax) ; hStock weights at age (2)
SW(i,t)=abs((1-k)*winf~(1/3)+k*SW(i-1,t-1)"(1/3))"3;
k1=kO1*exp(-alphal*sum(B(:,t-1))/Bmax); %Catch weights at age (3)
CW(i,t)=abs((1-k1)*winf1~(1/3)+k1*CW(i-1,t-1)"(1/3))"3;

end

B4=SW(5-amin:amax+1-amin,t) >*N(5-amin:amax+1-amin,t);

MO(4-amin:7-amin,t)=1./abs(1+exp(-c)*B4~(-d)); %Maturity ogives (5)

SSB(t)=SW(:,t)’*(MO(:,t).*N(:,t)); %SSB (6)
if SR==0 %SR: Beverton-Holt (7)
N(arec+l-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp (g*E1+E) ;
else %SR: Ricker (8)
N(arec+l-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp (g*E1+E) ;
end
B(:,t)=SW(:,t).*xN(:,t); /#Biomasses at age (4)
Y(:,t)=CW(:,t) . x(1-exp(-z)) .*(£*xS./2) .*N(:,t); %Yield at age (9)
E1=E; %SR error autocorrelation
end
P=h*sum(Y)-(ql+q2#f); WProfit (10)
% MEAN VALUES (fishing mort. & year)
MB(fis,:)=MB(fis,:)+sum(B)/SIM; %Mean biomass
MS(fis,:)=MS(fis,:)+SSB/SIM; % SSB
MY (fis, :)=MY(fis, :)+sum(Y)/SIM; % yield
MP(fis,:)=MP(fis,:)+P/SIM; % profit

% RISK (fishing mort. & simulation)
if min(sum(B))<Bcrit
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end

RB(fis,j)=1;

ind=find (sum(B)<Bcrit) ;
TiB(fis, j)=min(ind)+yl-1;
TNB(fis, j)=length(ind);

if min(SSB)<SSBcrit

end

RS(fis,j)=1;

ind=find (SSB<SSBcrit);
T1S(fis, j)=min(ind)+yl-1;
TNS(fis,j)=length(ind) ;

if min(sum(Y))<Ycrit

end

RY(fis,j)=1 ;

ind=find (sum(Y)<Ycrit);
T1Y(fis, j)=min(ind)+y1l-1;
TNY(fis,j)=length(ind);

if min(P)<Pcrit

end
end
fis=fi
end

%RISK ANA
ind=find(
DB (ind)=0
RB(:,SIM+
RB(:,SIM+
f1b=find(
f1b=find(
for i=[f1

RP(fis,j)=1;

ind=find (P<Pcrit);
TiP(fis, j)=min(ind)+y1-1;
TNP(fis, j)=length(ind);

s+1;

LYSIS (fishing mort.)
MB<Bcrit);
nes(size(ind));
1)=mean(RB(:,1:SIM)’)’;
2)=std(RB(:,1:SIM)’)’;
RB(:,SIM+1));
RB(:,SIM+1));

b]’

si=find (T1B(i,1:SIM));

TiB(4,
TiB(4,
end

SIM+1)=mean(T1B(i,si));
SIM+2)=std(T1B(i,si));

TNB(:,SIM+1)=mean(TNB(:,1:SIM)’)’;
TNB(:,SIM+2)=std (TNB(:,1:8IM)’)’;

yA

ind=find(
DS(ind)=0
RS(:,SIM+
RS(:,SIM+
fi1s=find(
for i=[f1

MS<SSBcrit) ;
nes(size(ind));
1)=mean(RS(:,1:SIM)’)’;
2)=std(RS(:,1:SIM)’)’;
RS(:,SIM+1));

s]’

si=find(T1S(i,1:SIM));

Tis(4,

SIM+1)=mean(T1S(i,si));
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%BIOMASS risk

#First year < Bcrit
J#Number of years < Bcrit

%SSB risk

#First year < SSBcrit
%Nb of years < SSBcrit

%YIELD risk

#First year < Ycrit
J#Number of years < Ycrit

%PROFIT risk

#First year < Pcrit
%Nb of years < Pcrit

%BIOMASS:

#Risk distribution (year)
JRisk probability

% standard deviation

#Mean first year < Bcrit
% standard deviation

%Mean nb of years < Bcrit
% standard deviation

%SSB:

#Risk distribution (year)
JRisk probability

% standard deviation

#Mean first year < SSBcrit



T1S(i,SIM+2)=std(T1S(i,si));
end
TNS(:,SIM+1)=mean(TNS(:,1:SIM)’)’;
TNS(:,SIM+2)=std(TNS(:,1:SIM)’)’;
h
ind=find (MY<Ycrit);
DY(ind)=ones(size(ind));
RY(:,SIM+1)=mean(RY(:,1:SIM)’)’;
RY(:,SIM+2)=std(RY(:,1:SIM)’)’;
fly=find (RY(:,SIM+1));
for i=[f1y]’

si=find (T1Y(i,1:SIM));

T1Y(i,SIM+1)=mean(T1Y(i,si));

T1Y(i,SIM+2)=std(T1Y(i,si));
end
TNY(:,SIM+1)=mean(TNY(:,1:SIM)’)’;
TNY(:,SIM+2)=std(TNY(:,1:SIM)’)’;
h
ind=find (MP<Pcrit);
DP(ind)=ones(size(ind));
RP(:,SIM+1)=mean(RP(:,1:SIM)’)’;
RP(:,SIM+2)=std(RP(:,1:SIM)’)’;
fip=find(RP(:,SIM+1));
for i=[fip]’

si=find (T1P(i,1:SIM));

T1P(i,SIM+1)=mean(T1P(i,si));

T1P(i,SIM+2)=std(T1P(i,si));
end
TNP(:,SIM+1)=mean(TNP(:,1:SIM)’)’;
TNP(:,SIM+2)=std(TNP(:,1:SIM)’)’;

% RISK PLOTS

if PLO==

YA

figure

clf reset

subplot(3,1,1)
plot(F,RB(:,SIM+1),’mo:’)
if SR==0 & AC==0

% standard deviation

%Mean nb of years < SSBcrit
% standard deviation

%YIELD:

#Risk distribution (year)
#Risk probability

% standard deviation

#Mean first year < Ycrit
% standard deviation

%Mean nb of years < Ycrit
% standard deviation

%PROFIT:
#Risk distribution (year)

JRisk probability
% standard deviation

#Mean first year < Pcrit
% standard deviation

%Mean nb of years < Pcrit
% standard deviation

%TOTAL BIOMASS:

#Risk probability / F

title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);

elseif SR==0 & AC==

title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);

elseif SR==1 & AC==0

title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Bcrit=’,num2str(Bcrit/1e10),’E10 kg’]);

elseif SR==1 & AC==

title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);



end
xlabel (’Fishing mortality’);
ylabel(’Risk probability for biomass’);
subplot(3,1,2)
plot (F(£1b) ,T1B(£f1b,SIM+1), ’mo:’) #First year < Bcrit / F
xlabel (’Fishing mortality’);
ylabel(’First year beyond Bcrit’);
subplot(3,1,3)
plot (F,TNB(:,SIM+1), ’mo:’) #Number of years < Bcrit / F
xlabel (’Fishing mortality’);
ylabel(’Number of years beyond Bcrit’);
yA
figure %Biomass risk distribution
clf reset
subplot(2,1,1)
mesh(yl:y2,F,MB);
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Bcrit=’,num2str(Bcrit/1e10),’E10 kg’]1);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Bcrit=’,num2str(Bcrit/1el0),’E10 kg’]);
end
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’Mean total biomass’);
subplot(2,1,2)
mesh(yl:y2,F,DB);
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel (’Biomass risk distribution’);

figure %SPAWNING STOCK BIOMASS:
clf reset
subplot(3,1,1)
plot (F,RS(:,SIM+1),’mo:’) #Risk probability / F
if SR==0 & AC==0

title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...

int2str(y2-y1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==

title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...

int2str(y2-yl+1),’ years), SSBcrit=’,num2str(SSBcrit/1el10),’E10 kg’]);
elseif SR==1 & AC==0

title([’Ricker - ’,int2str(SIM),’ simulations (’,...
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int2str(y2-y1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), SSBcrit=’,num2str(SSBcrit/1el10),’E10 kg’]);
end
xlabel (’Fishing mortality’);
ylabel (’Risk probability for SSB’);
subplot(3,1,2)
plot (F(£f1s) ,T1S(£f1s,SIM+1), ’mo:’) %First year < SSBcrit / F
xlabel (’Fishing mortality’);
ylabel(’First year beyond SSBcrit’);
subplot(3,1,3)
plot(F,TNS(:,SIM+1),’mo:’) %Number of years < SSBcrit / F
xlabel (’Fishing mortality’);
ylabel(’Number of years beyond SSBcrit’);
yA
figure %SSB risk distribution
clf reset
subplot(2,1,1)
mesh(yl:y2,F,MS);
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), SSBcrit=’,num2str(SSBcrit/1el10),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), SSBcrit=’,num2str(SSBcrit/1e10),’E10 kg’]1);
end
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel (’Mean SSB’);
subplot(2,1,2)
mesh(yl:y2,F,DS);
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’SSB risk distribution’);

figure ®YIELD:
clf reset
subplot(3,1,1)
plot(F,RY(:,SIM+1),’mo:’) %Risk probability / F
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...

int2str(y2-y1+1),’ years), Ycrit=’,num2str(Ycrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==

65



title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Ycrit=’,num2str(Ycrit/1el0),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Ycrit=’,num2str(Ycrit/1e10),’E10 kg’]1);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Ycrit=’,num2str(Ycrit/1el0),’E10 kg’]);
end
xlabel (’Fishing mortality’);
ylabel(’Risk probability for yield’);
subplot(3,1,2)
plot(F(f1y) ,T1Y(£f1y,SIM+1), ’mo:’) %First year < Ycrit / F
xlabel (’Fishing mortality’);
ylabel(’First year beyond Ycrit’);
subplot(3,1,3)
plot(F,TNY(:,SIM+1),’mo:’) %Number of years < Ycrit / F
xlabel (’Fishing mortality’);
ylabel(’Number of years beyond Ycrit’);
yA
figure %Yield risk distribution
clf reset
subplot(2,1,1)
mesh(yl:y2,F,MY);
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Ycrit=’,num2str(Ycrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Ycrit=’,num2str(Ycrit/1el0),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ?,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Ycrit=’,num2str(Ycrit/1el0),’E10 kg’]);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Ycrit=’,num2str(Ycrit/1e10),’E10 kg’]1);
end
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’Mean yield’);
subplot(2,1,2)
mesh(yl:y2,F,DY);
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’Yield risk distribution’);

figure %PROFIT:

clf reset

subplot(3,1,1)

plot(F,RP(:,SIM+1),’mo:’) %Risk probability / F
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if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit/1e10),’E10 kg’]1);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Pcrit=’,num2str(Pcrit/1el0),’E10 kg’]);
elseif SR==1 & AC==0
title([’Ricker - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Pcrit=’,nXSum2str(Pcrit/1e10),’E10 kg’]);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SxsIM),’ simulations (°,...
int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit/1e10),’E10 kg’]1);
end
xlabel (’Fishing mortality’);
ylabel(’Risk probability for profit’);
subplot(3,1,2)
plot(F(f1p) ,T1P(f1p,SIM+1), ’mo:’) %First year < Pcrit / F
xlabel (’Fishing mortality’);
ylabel(’First year beyond Pcrit’);
subplot(3,1,3)
plot (F,TNP(:,SIM+1),’mo:’) %Number of years < Pcrit / F
xlabel (’Fishing mortality’);
ylabel(’Number of years beyond Pcrit’);
yA
figure #Profit risk distribution
clf reset
subplot(2,1,1)
mesh(yl:y2,F,MP);
if SR==0 & AC==0
title([’Beverton-Holt - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit),’ kg’l);
elseif SR==0 & AC==
title([’Beverton-Holt AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit),’ kg’l);
elseif SR==1 & AC==0
title([’Ricker - ?,int2str(SIM),’ simulations (’,...
int2str(y2-yl+1),’ years), Pcrit=’,num2str(Pcrit),’ kg’]l);
elseif SR==1 & AC==
title([’Ricker AC - ’,int2str(SIM),’ simulations (’,...
int2str(y2-y1+1),’ years), Pcrit=’,num2str(Pcrit),’ kg’l);
end
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel(’Mean profit’);
subplot(2,1,2)
mesh(yl:y2,F,DP);
xlabel(’Year’);
ylabel (’Fishing mortality’);
zlabel (’Profit risk distribution’);
end
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if PRI==
file=[’hdd’,int2str(SR),int2str(AC) ,int2str(y2-y1+1)];
save(file,’AC’,’Bcrit’,’CW’,’Ycrit’,’DB’,’DY’,’DS’,’MB’,’MY’,’MS’, ...
’F?,’IC’,’MO’,’NO’,’RB’,’RY’,’RD’,’RS’,’SIM’,’SR’,’SSBcrit’, ...
’Sw’,’T1iB’ ,’TNB’,’T1Y’,’TNY’,’T1S’,’TNS’,’al’,’amax’,’amin’, ...
’arec’,’b’,’g’,’f1b’,’f1y’,’f1s’,’m’,’s’,’sigma’,’yl’,’y2’,...
’DP’,’Pcrit’,’MP’ ,’RP’,’T1P’,’TNP’,’f1p’))
end
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