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1 Introduction

This technical report presents part of the work achieved for tasks 2.1.2 and 2.2 of the FAIR-
CT96-1778 research project \Management of high seas �sheries". A biological modelling
and parameter estimation of the Norwegian spring-spawning herring stock dynamics has
been completed by Patterson [7]. It constitutes the basis of this study, which aims at
implementing and analyzing this model.

The biological model has been coupled with a very simple economic model: �xed �sh
price and basic cost function that will require further developments. However, it is used
as a preliminary version of the more sophisticated model. Although, in this report, some
work has been done for the simulation and the equilibrium study of the bioeconomic
model, the emphasis is on the risk analysis. We are interested in studying whether some
variables, e.g. the spawning stock biomass, will decrease under a certain critical value.
We want to assess this risk and study the risk distribution.

This report is organized in the following way: Section 2 is a presentation of the bioeco-
nomic model and Section 3 brie
y describes the data available. Section 4 is dedicated to
the technical implementation of the bioeconomic model in MATLAB, simple simulations,
equilibrium study and risk analysis. Some results are then exposed in Section 5. Finally
conclusions are drawn and perspectives for further work are proposed.

2 Model

The biological modelling presented here stems from Patterson's report [7]. Its main
features have been summarized in order to understand the MATLAB procedures described
in Section 4 and displayed in appendix B. The seasonal and spatial distributions that
are part of the initial model, have not been implemented and are only brie
y exposed in
appendix A.

To ease the reading of the report, the �rst part of this section compiles most notations.
In addition, a table is attached to each of the following subsections describing the values
and units of the parameters. Subsections 2.2, 2.3 and 2.4 concern the biological model,
whereas subsection 2.5 introduces harvest and pro�t. Finally, a simpli�ed and more
conventional model is exposed.

2.1 Notations

Table 1 summarizes the notations used in this report and hereunder are some general
remarks about the model.

� The population is distributed in 17 age classes, beginning with age class 0.

� The time step considered is 1 year, but the quarter variable actually introduces a
smaller time step of 1/4 year = 3 months. It allows seasonal e�ects to be taken into
account (cf. appendix A).

� To calculate the 
ow into the �rst age class (0), a classical stock-recruitment re-
lationship is used (either Beverton{Holt or Ricker, cf. Section 2.4) linking
the number of recruits R to the spawning stock biomass SSB. It should rather be
considered as a spawning function, as all juvenile stages are included in the model.
Thus, the recruits are in fact eggs.
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Subscripts de�nition range

a age f0; 1; 2; : : : ; 16g years

y time current year

q quarter, i.e. season current year quarter f1; 2; 3; 4g

i EEZ zone number

yc reference year class year f1950; 1959; 1972; 1983g

Variables de�nition unit subscripts
N abundance numbers a;y;q;i

B biomass kg a;y;q;i

SSB spawning stock biomass kg y

R recruitment numbers y

Y yield, catch in weight kg a;y;q;i

CW individual weight at age in the catch kg/numbers a;y

SW individual weight at age in the stock kg/numbers a;y

MO maturity ogive (rate) percentage a;y

" stochastic variable none y

F �shing mortality none y;q;i

S selectivity none a;i

Parameters de�nition value & unit
m natural mortality cf. table 2

w0; w1; k0; � stock weights at age parameters cf. table 3

w0

0; w
0

1
; k00; �

0 catch weights at age parameters cf. table 3

a; b; g stock-recruitment parameters cf. table 4

ca; d maturity coe�cients cf. table 4

h �sh price per kg cf. table 5

q1; q2 �xed and proportional costs cf. table 5

pa;y;q;i spatial distribution rates cf. appendix A

�a;yc;q;i spatial distribution reference rates cf. appendix A

Table 1: Notations

2.2 Population dynamics

We consider a population dynamics model, known in the �sheries literature as the Ricker
model. It is a discrete time and age-structured model:

N0;y = Ry

Na+1;y+1 = Na;ye
�m�SaFy 8a 2 f0; 1; : : : ; 15g

Na;0 known 8a 2 f1; 2; : : : ; 16g

(1)

The whole population is represented through 17 age classes, from age 0 to age 16.
Usually, only the harvested fraction of the population is considered, i.e. the stock (mainly
because most data available concern the stock). Especially, the juvenile stages are ex-
cluded since they are too small for harvesting.

The input in the stock is called the recruitment (R). It is de�ned as the number of
juveniles entering the exploitable phase. In this model, however, the recruitment hap-
pens in age class 0, so we should rather consider it as a spawning function, described in
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Section 2.4.

All age classes are submitted to natural mortality (constant rate m) and possibly to
harvest. The latter is introduced by the means of a �shing mortality term Fy, related
to the e�ort applied to the stock each year, and a selectivity rate Sa, that describes the
vulnerability of each age class; see the more thorough discussion in Section 2.5.

Parameter value unit
m 0.15 none

Table 2: Natural mortality parameter

2.3 Growth and biomass

In order to describe the population growth, we need to express the individual weights

at age. We could estimate these values by using historical data. But in this model, a
density-dependent growth function has been implemented, deriving from Ford's equation
[9] and assuming isometric growth. Further hypotheses are that the maximum length is
genetically determined, but that the growth rate depends on food availability, and hence
on the total population biomass.

This function is �tted separately to the stock and catch data. Therefore we obtain
two similar functions. The stock weights at age function is the following:

SW0;y = w0

SWa+1;y+1 =
�
(1� ky)w1

1=3 + kySWa;y
1=3
�3
;

where: ky = k0e
��By=Bmax

(2)

whereas the catch weights at age function is given as:

CW0;y = w0

0

CWa+1;y+1 =
�
(1� k0y)w

0

1

1=3
+ k0yCWa;y

1=3
�3
;

where: k0y = k00e
��0By=Bmax

(3)

In both cases, Bmax is the maximum observed stock size and is included for rescaling
purposes.

The SW and CW are slightly di�erent because the samples used for their estimation
are not the same. CW is needed for the catch in weight de�ned in Section 2.5 and SW
enables to express the population biomass in year y:

By =
a=16X
a=0

Ba;y =
a=16X
a=0

SWa;yNa;y: (4)

The growth parameters are given in table 3.
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Parameters value unit
Bmax 16218 106kg
w0 0.203 kg
k0 0.703 none
� -0.299 none
w1 0.447 kg
w0

0 0.217 kg
k00 0.650 none
�0 -0.368 none
w0

1
0.430 kg

Table 3: Growth parameters

2.4 Recruitment

The growing and ageing of the population are described in the previous sections, but we
have not introduced any input of young individuals in the population yet. So to close the
loop in the dynamic model (1), it is necessary to link the recruits, i.e. the o�spring, to
the spawners. Two diferent functions are used for this purpose: Beverton{Holt's and
Ricker's stock-recruitment relationships, which are very classical in the �shery �eld [5,
217-224] [6, 255-261]. To take into account the variability of the recruitment, a stochastic
error term is added to these deterministic functions. First, however, the spawning stock
needs to be estimated.

2.4.1 Spawning stock biomass

It is assumed that the older part of the population (from age class 7) is fully mature,
whereas the younger one (until age class 3) does not spawn. The intermediate age classes
are partially mature. The maturity ogive, de�ned as the proportion of mature individuals
among an age class, characterizes the spawning level.

To assess the maturity ogives of the intermediate classes, it is possible to refer to
historical data. However, here we assume that they depend on the stock size and the
following function is used:

MOa;y = 0 a 2 f0; 1; 2; 3g

MOa;y =
1

1 + e�caB4+;y
�d

a 2 f4; 5; 6g

MOa;y = 1 a 2 f7; : : : ; 16g;

(5)

where B4+;y is the biomass of the mature age classes, i.e. age class 4 and older. Thus:

B4+;y =
a=16X
a=4

Ba;y

The spawning stock biomass is given by:

SSBy =
a=16X
a=0

MOa;ySWa;yNa;y (6)
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2.4.2 Beverton{Holt

The �rst stock-recruitment function is Beverton{Holt's [3]. It assumes there is food
limitation and competition among the juveniles. Its shape is drawn in �gure 1.

0 Spawning stock biomass SSB

Recruitment R

Figure 1: Beverton{Holt's stock-recruitment function

The corresponding equation, to which a log-normal error term is added, is the follow-
ing:

Ry =
aSSBy

1 + SSBy=b
e"y+g"y�1 (7)

The error term is introduced to re
ect the high variability in recruitment due to nu-
merous external factors (e.g. cod predation, environmental 
uctuations). "y is a normally
distributed random variable, with mean 0 and variance �. If the parameter g is zero, the
error is uncorrelated. Otherwise there is �rst order autocorrelation.

2.4.3 Ricker

Ricker's relationship [8] assumes cannibalism of the juveniles by the stock. This gives
another stock-recruitment shape, represented in �gure 2.

Spawning stock biomass SSB
0

Recruitment R

0

Figure 2: Ricker's stock-recruitment function

A log-normal error term, similar to the one described above for Beverton{Holt's
stock-recruitment function is added. The resulting equation is as follows:

Ry = aSSBye
bSSBy e"y+g"y�1 (8)
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N.B.: Stock-recruitment relations are commonly used because they are practical
and synthetic. The two classical relations described above both derive from the
integration of an ordinary di�erential equation representing the dynamics of the
juveniles over a small time period. This process is described by Clark [5, pp217{
218,229{230] and more brie
y by Hilborn & Walters [6, pp257{261].

The comparison between these models and data however is often disappointing.

Therefore constant or purely stochastic exogenous recruitments are used assuming

a predominant in
uence of the environment [2]. The link between the spawning

stock and its o�spring may then be hidden, which leads to the \stock-recruitment

paradox" [10] where no empiric relation is observed. Furthermore, stock-recruitment

functions are a static summary of the development of juveniles and therefore cannot

take into account the heterogeneity of the spawning stock [11].

The parameters of these four stock-recruitment relationships are shown in table 4.

Parameters value unit
c4 1.356 none
c5 2.686 none
c6 3.977 none
d -0.2744 none

Beverton{Holt, uncorrelated error:
a 32.459 kg�1

b 3044.867 106kg
� 1.763 none
g 0 none

Beverton{Holt, autocorrelated error:
a 31.637 kg�1

b 3284.060 106kg
� 1.666 none
g -0.2553 none

Ricker, uncorrelated error:
a 26.753 kg�1

b 1.2105 10�10kg�1

� 1.802 none
g 0 none

Ricker, autocorrelated error:
a 25.760 kg�1

b 1.094 10�10kg�1

� 1.694 none
g -0.2655 none

Table 4: Stock-recruitment parameters
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2.5 Catch and economic yield

2.5.1 Harvest

>From a given cohort (a cohort is constituted of the �sh born the same year), if we
consider the �sh that have disappeared during year y and take the proportion that died
of harvesting, we obtain the following catch in numbers:

Ca;y =
SaFy

m + SaFy

(Na;y �Na+1;y+1)

Then, knowing the weights at age from equation (3), we only need to sum these catches
over all cohorts to obtain the total catch in weight, or yield. Combined with equation (1),
its expression is the following:

Yy =
a=16X
a=0

Ya;y =
a=16X
a=0

CWa;yNa;y
SaFy

m+ SaFy

�
1� e�m�SaFy

�
(9)

As mentioned in section 2.2, the harvest is the result of �shing mortality Fy and
selectivity Sa included in the population dynamics.

� The former is related to the e�ort applied by �shermen on the stock and is considered
as a control term. Referring to the data (cf. section 3), a realistic range for the �shing
mortality would be: Fy 2 [0; 2], 0:35 being a mean value over the recent years.

� The latter depends on the interaction between �sh and gear; all age classes are not
as vulnerable and each gear is more or less e�cient towards the age classes. A simple
selection pattern would be to cut the age classes into two groups:

{ age classes that are not yet harvested: Sa = 0 8a < a1;
{ age classes that are harvested: Sa = 1 8a > a1.

a1, the �rst �shing age, is generally 4.

Another possibility is to use historical data for assessing the selectivities Sa (cf.
section 3).

Even with a more detailed selection pattern, the hypothesis of separation between
selectivity and �shing mortality may be too simple. For control purposes, it should be
possible to modify the selectivity to re
ect a change in the �shing gear.

2.5.2 Pro�t

To the biological model described above, we add a very simple economic model. The price
per kilo h is assumed to be constant.

The harvesting costs are composed of a �xed and a variable term. The �xed costs
q1 represent long term investment, such as �shing vessels. The costs proportional to
the �shing mortality (coe�cient q2) include e.g. labour, and fuel The total costs are:
Qy = q1 + q2Fy.

Thus, the annual pro�t in year y is:

Py = hYy � (q1 + q2Fy) (10)
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Parameters value unit
q1 1� 107Norwegian kroner (NK)
q2 5� 106NK
h 1.45�� NK/kg

� Values chosen as a working hypothesis.
�� 1995 mean value taken from Norges Sildesalgslag: �Arsmelding, vol. 1989-1995.

Table 5: Economic parameters

2.6 Density-independent model

A simpli�cation to the model presented above consists in replacing the density-dependent
functions by �xed values, estimated by using the available data (cf. section 3). These
functions are the maturity ogives in equation (5) as well as the stock (2) and catch (3)
weights at age. They can be replaced by simple age-dependent parameters: MOa, SWa

and CWa.

This simpli�ed model will be noted as the DI model, as opposed to the DD (density-
dependent) model described in the previous sections.

3 Data

Some historical data concerning the herring population are available. They consist of age
and year speci�c values, sampled from 1950 to 1986, for each of the 17 age classes and for
the following variables:

� the abundances Na;y, used for computing the initial condition of equation (1);

� the maturity ogives MOa;y as well as the the stock SWa;y and catch CWa;y weights
at age, used in the density-independent model presented in section 2.6;

� the \�shing mortalities" Fa;y (including the selectivity factor), that are used to de�ne
historical selection patterns, more detailed than the one proposed in section 2.5.

The maturity ogives, stock and catch weights at age are conventional stock assessment
data estimated by ICES from commercial catch observation [1]; they can also be found
in appendix A of Patterson's report [7]. The abundances and �shing mortalities have
been estimated using a Bayesian approach presented in appendix B; the resulting data
are shown in appendix C of the same report.

Selectivity data

To transform the �shing mortality data Fa;y into historical selection patterns, we need to
consider a reference �shing mortality Fref;y, for each data year. The selectivities are then:

Sa;y = Fa;y=Fref;y
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The reference chosen in Patterson's report is the mean mortality among age classes 5
to 12:

Fref;y =
1

8

X
a=5;::: ;12

Fa;y

4 Implementation

Several MATLAB procedures have been created for the density-dependent (DD) model
described in section 2 and the density-independent (DI) model introduced in section 2.6.
They allow us to perform simulations of the models, an equilibrium study and some risk
analysis.

Each procedure requires the following input:

Data The data related to the historical abundances, maturity ogives, stock and catch
weights at age as well as selectivities are respectively stored in the following �les:
n.dat, mo.dat, sw.dat, cw.dat, s.dat. File n.dat is used to estimate the initial
condition of equation (1); s.dat allows the calculation of the selection pattern;
for the DI model, mo.dat, sw.dat and cw.dat are used to calculate the maturity
parameters and weights at age.

Biological parameters They are given in tables 2, 3 and 4.

Harvesting and economic parameters The economic parameters are given in table 5,
but the costs are only working values. A further study would be needed to de�ne
suitable and more realistic parameters.

The �shing mortality Fy is considered as an open loop input, either constant along
time or 
uctuating; its value needs to be chosen. There is also a choice to be made
concerning the selection pattern: data can be used (cf. section 3), otherwise the
simple scheme described in section 2.5 is implemented.

Simulation parameters They need to be chosen for each procedure. They always in-
clude the following parameters:

� y1 and y2 are the two boundary years of the simulation period [y1; y2] (e.g.
[y1; y2] = [1997; 2027]).

� IC is the initial condition year(s) from which the data are taken; if IC is a
vector, the mean value is computed. For instance if IC = (1993; : : : ; 1996),
the selectivities Sa are the mean historical values over the years 1993 to 1996.

� The boolean variable SR de�nes which stock-recruitment relationship will
be used, RD whether this relation includes a stochastic error term and AC
whether this term has �rst order autocorrelation; this is summarized in the
table below.

0 1
SR Beverton{Holt Ricker

RD no stochasticity stochasticity
AC no autocorrelation 1st order autocorrelation

11



NB: Any HER1*.M program refers to the DI model, whereas HER2*.M refers to the DD
model.

4.1 Basic simulation

Two models have been implemented: the complete density-dependent model HER2.M de-
scribed in section 2 and the density-independent model HER1.M, simpli�ed by the assump-
tions made in section 2.6.

These two procedures allow the simulation of the population dynamics and give the
following output along the simulation years:

� population abundances Na;y,

� biomasses Ba;y,

� catches in weight Ya;y,

� spawning stock biomasses SSBy,

� total costs Qy,

� pro�ts Py.

Several plots may be of some interest. The ones implemented are the evolution of the
total biomass, the total yield and the pro�t along time; as well as the recruits (age class
0) as a function of the spawning stock and the cost function with respect to the catch.

4.2 Equilibrium study

The HER1EQ.M and HER2EQ.M procedures have been implemented to study the equilibrium
characteristics of the model. For this aim, the stochastic term of the stock-recruitment
relation is omitted (RD = 0) and a set of constant �shing mortalities F needs to be
de�ned. A further requirement, in order to reach the steady state, is to have a \long
enough" simulation period: 60 years between the �rst simulation year y1 and and the last
one y2 is usually enough.

A stock dynamics simulation is performed for each �shing mortality. It produces two
output matrices, de�ned as functions of the simulation years and the �shing mortalities:

� the total biomass By;F , where By2;F can be considered as the equilibrium biomass;

� the total yield (catch in weight) Yy;F , where Yy2;F can be considered as the equilib-
rium yield.

The following plots are produced: the total equilibrium biomass and yield along the
�shing e�ort; several total biomass trajectories for low and large values of �shing e�ort.
The equilibrium yield plot against �shing mortality is of particular interest, because it
shows the Maximum Sustainable Yield (MSY), a reference value in �shery management.
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4.3 Risk analysis

The risk analysis consists in determining what risk there is, for a certain yearly variable
Xy to decrease under a critical value Xcrit. The risk variables implemented are:

� the total biomass: Xy = By,

� the spawning stock biomass: Xy = SSBy,

� the yield: Xy = Yy,

� the pro�t: Xy = Py.

For this study, a set of �xed �shing mortalities F is also needed. For each �shing
mortality a number of simulations, SIM , are performed over [y1; y2]. As we deal with
risk, there should be a stochastic term on the stock-recruitment relationship (RD = 1)
and the simulation period should be rather long.

Furthermore, the number of simulations (SIM) should be quite high, so as to approx-
imate, for each F , the risk probability with the number of \risky simulations".

Risk de�nition A simulation is said to be risky, if there is at least one year over the

simulation period, where the variable decreases under the threshold.

For each of the above mentioned risk variables, the following output is obtained:

� As functions of the �shing mortalities F and the simulations si (si = 1; : : : ; SIM):

{ the risk: RF;si = 1 for a risky simulation, 0 otherwise;

{ the �rst year below the critical level: T1F;si;

{ the number of years below the critical value: TsF;si.

The mean value and standard deviation of these matrices over the SIM simulations
are also estimated. The mean risk RF approximates the risk probability of getting
below the speci�ed threshold. For example, if there are 100 simulations and 5 of
them are risky in the sence speci�ed above, then the mean risk is 5%.

� As functions of the �shing mortalities F and the year:

{ the mean value of the risk variable: MF;y;

{ the mean risk distribution: DF;y = 1 if the corresponding mean value is below
the threshold, 0 otherwise.

The following 2D plots are produced: the mean values RF , T1F and TsF as functions
of the �shing mortalities F (�gures 13, 15, 17 and 19), as well as the following 3D plots:
the mean value MF;y and the mean risk DF;y as functions of the �shing e�ort F and year
y (�gures 14, 16, 18 and 20).

The �rst 2D plot in each �gure gives the mean risk explained above. The �rst 3D plot
of the �gures visualizes the opportunities that the �sheries policymakers might have when
choosing the level of �shing mortality. It can be thought of as a terrain where one has
to travel by choosing the desired level of �shing mortality. The two lowest 2D plots are
related with the lower one of the 3D plots: all these three plots visualize the number of
years that the particular value stays under the threshold and furthermore, the �rst year
that the value falls below this critical level.
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5 Results

Considering the two main models (DD and DI) and the four di�erent stock-recruitment
relationships, there are altogether 8 di�erent models. Discussing all the features of these
models would not be very clear and synthetic, so we choose a simple reference model :
the simpli�ed density-independent model with Beverton{Holt's stock-recruitment re-
lationship and no autocorrelation in its stochastic term. This particular model is used in
section 5.1 for some basic simulations and in section 5.3 for the risk analysis. Section 5.2
consists in a deterministic steady state approach, so it is possible there to compare the
di�erent models.

5.1 Basic simulation

The basic simulation has been made using the \reference model" introduced above (SR =
0 and AC = 0). Following simulation parameters have been used:

� y1 = 1997 and y2 = 2117 for the simulation period;

� IC = (1993; : : : ; 1996) as initial condition years;

� a randomly 
uctuating �shing mortality F : normal distribution with 0.35 as mean
value and 0.2 as standard deviation, except for �gures 3 to 4 where we have a
constant �shing mortality 0.35;

� a simple selection pattern as described in section 2.5, a1 = 3 being the �rst �shing
age.

Figures 5 to 9 display the resulting curves. In addition, �gures 3 to 4 show the determin-
istic values for the herring stock and harvest. The stock level is shown to be 25 billion
kg.

The situation depicted in this simulation is rather satisfactory since �gure 5 shows
that the biomass globally increases. The highly 
uctuating harvest is also rather large
(cf. �gure 6).

The costs shown in �gure 9 are very low, so this explains why the pro�t in �gure 8
is similar to the catch and remains positive. The economic parameters of table 5 are
probably not very appropriate here.

Figure 7 displays the number of recruits entering age class 0 with respect to the
spawning stock biomass. This is in fact the classical stock-recruitment curve, in this case
Beverton{Holt's relation (cf. �gure 1). Because of the 
uctuations however, it cannot
be recognised.

5.2 Equilibrium study

As the equilibrium analysis is a deterministic study, there are only four di�erent models:
the density-dependent and density-independent models, with Ricker's or Beverton{
Holt's stock-recruitment relationship. In this Section, we compare the equilibrium prop-
erties of these models.

The parameters chosen for this study are:

� y1 = 1997; y2 = 2057 for the simulation period;
14



1980 2000 2020 2040 2060 2080 2100 2120
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

10

Time (year)

S
to

ck
 b

io
m

as
s 

(k
g)

Population dynamics

Figure 3: Deterministic Simulation of the total biomass
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� IC = 1996 as initial condition year;

� selectivities Sa estimated from the IC data;

� a set of constant �shing mortalities F , which ranges from 0 to 2.

The initial condition Na;y1 of equation 1 does not in
uence this study, for we are
interested in the steady state. However, the IC variable is also used to determine the
parameters stemming from the data, as the selectivities Sa and for the DI model, the
maturity ogives and the weights at age.

Results of this comparison are shown in �gure 10. A few remarks arise.

1. The rather unusual shape of the Ricker density-independent curve for small �shing
mortalities shouldn't be taken into account. At this level of harvest, Ricker's
recruitment induces oscillations that are not dampened yet, so the steady state has
not been reached.

2. It is possible to identify aMSY for the four models. They occur for di�erent �shing
mortality.

3. The yield and biomass equilibrium values di�er quite a lot from the DD models to
the DI models. The MSY values are much higher for the DI models.

4. The stock-recruitment relationship has little e�ect on the equilibrium of the DD
models.

To the previous study, we add a further assumption (it appears also in Patterson's
draft [7]): the natural mortality of the juveniles is higher, i.e, ma = 0:9 for a = 0; 1; 2.
The new curves are shown in �gure 11 and the following points are made:

1. The high juvenile mortality dampens the oscillations observed previously for the
Ricker DI model. They can only be observed for high biomasses, when the global
mortality is not too important.

2. The MSY is still identi�able for the four models and is much lower than in the
previous case. It occurs around the same �shing mortality for the four models:
between 0.15 and 0.2, which is generally lower than previously. This shows that the
stock is much more vulnerable in this case.

3. The di�erence in biomass and yield levels between the DD and DI models is reduced
with a high juvenile mortality.

4. The in
uence of the stock-recruitment relation on the DD model is slightly more
obvious here.

We are also interested in observing the in
uence of the selection pattern on the equi-
librium. We therefore use the simple selection pattern presented in section 2.5 and we
modify the �rst �shing age a1. Results are exposed in �gure 12.

We notice that raising the �rst �shing age a1 increases the MSY and then makes it
disappear. From a1 = 7, the yield does not decrease for �shing mortalities but increases
slowly, probably towards a bounded value. At this point, the population survives through
its younger classes, of which some are spawning, whereas the bigger �sh are heavily
harvested.
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5.3 Risk analysis

The risk analysis has been made on the \reference model", the density-independent model
with a Beverton{Holt recruitment and no autocorrelation (SR = 0 and AC = 0).
Following parameters have moreover been used:

� y1 = 1997 and y2 = 2097 for the simulation period; SIM = 100 simulations for each
�shing mortality;

� IC = (1993; : : : ; 1996) as initial condition years;

� a set of constant �shing mortalities F , that ranges from 0 to 2;

� a simple selection pattern as described in section 2.5, a1 = 3 being the �rst �shing
age;

� Bcrit = 5 109kg, SSBcrit = 2:5 109kg, Ycrit = 0:5 109kg and Pcrit = 0 NK.

The value SSBcrit was recommended in [4] and a zero pro�t assumption is quite
natural. The other values are reasonable with respect to SSBcrit.

The discussion is organised around two topics: the biological risk concerning the total
biomass and the spawning stock biomass, and the economic risk concerning the yield and
the pro�t.

Biological risk The �rst plots of �gures 13 and 15 show that there is no risk for the
stock and spawning stock to decrease below their critical value before the �shing
mortality reaches the 0.4 value. Then the risk increases rapidly for the vulnerable
spawning stock and a little smoother for the total biomass.

However, the mean number of years spent under the threshold becomes signi�cant
for higher �shing mortalities, starting from the 0.6 value. For lower rates, the
trespassing of the critical value is more punctual and rather appears in the early
years. This is obvious in the lower plot of �gure 16 concerning the spawning stock
risk distribution and less in �gure 14 concerning the total biomass, because the
transition between no risk and 100% risk is not as sharp. Thus we can identify three
�shing zones: the safe zone, for �shing mortalities between 0 and 0.4, the totally
unsafe zone, for mortalities higher than 0.6 and the intermediate zone, where there
is a risk of falling below the threshold, but it can be reversed.

For high �shing mortalities, the total biomass and the spawning stock biomass are
instantaneously driven beyond their critical value and remain below this level.

Economic risk Figures 17 and 19 show the mean risk, �rst year and the number of
years under the catch and pro�t criteria. These �gures are quite similar. They
di�er from the previous curves on three points:

� The risk probability for very low �shing mortalities is 1. This is reasonable,
for the catch is then negligeable.

� When the �shing mortality increases, the same transition as previously, from
no risk to 100% risk is observed, but it occurs at much higher levels: 0.8 for
the catch and 1 for the pro�t.

23



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1
Beverton−Holt − 100 simulations (101 years),  Bcrit=0.5E10 kg

B
io

m
as

s 
ris

k 
pr

ob
ab

ili
ty

0.5 1 1.5 2
1990

2000

2010

2020

1s
t y

ea
r 

be
lo

w
 B

cr
it

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

Fishing mortality

Y
ea

rs
 b

el
ow

 B
cr

it

Figure 13: Risk probability for the total biomass
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Figure 15: Risk probability for the spawning stock biomass
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� The punctual trespassing of the threshold is not noticeable here, and the mean
number of years spent below this level never reaches the whole period. It can
be easily observed from the risk distribution, in the lower plots of �gures 18
and 20: the catch and pro�t are also always satisfactory during the �rst years.

Among other things, these remarks show that the critical value of the catch Ycrit
might be a bit low and that the proportional costs (q2F ) might have been underes-
timated.

6 Conclusions and perspectives

We have presented some studies made on a biological model of the Norwegian spring-
spawning herring stock dynamics, coupled with a preliminary and very simple economic
model. They consisted of basic simulation, equilibrium study and risk analysis. The aim
of this technical report was rather to present some methods than any in-depth analysis.

However, some interesting results have been shown, especially for the risk analysis.
It has also been demonstrated that the model may be very sensitive to some parameter
changes. Increasing the juvenile natural mortality for instance, produces signi�cant alter-
ations on the equilibrium properties. This consideration should therefore be kept in mind
in any further development of the model.

Following developments would be necessary for the economic part of the model: a more
realistic cost function would considerably improve the actual model. Another perspective
would be to implement the spatial and seasonal distribution of the �sh and the 
eets.
It would be very interesting to try to manage this �shery by applying some well chosen
�shing mortalities on the stock (control or game theory methods).
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Figure 17: Risk probability for the yield (total catch in weight)
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Figure 19: Risk probability for the pro�t
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A Spatial and seasonal distributions

We o�er here a very brief presentation of the spatial and seasonal distribution of the �sh
and the �shing 
eets. It is more detailed in Patterson's report [7].

The seasonal e�ect is introduced by the means of a quarter subscript q. One year is
divided in 4 quarters, corresponding the seasons. It's a time subdivision, so there are two
time variables: the year y and the season or quarter q.

The i subscript represents the EEZ1 and adds a spatial dimension to the model. Each
EEZ, more or less corresponding to a 
eet, is among the following zones: Faroes, Iceland,
Norway, Jan Mayen, Russia, Int.Bar. Int.Nor. Spitsberg and EU.

The repartition of the �sh and �shing mortality in the di�erent zones is introduced in
the following way:

Na;y;q;i = pa;y;q;iNa;y;q

Fa;y;q;i = Sa;iFy;q;i

Equation 1 of the previous model becomes:

Na;y;q+1;i = pa;y;q+1;iNa;y;q+1

= pa;y;q+1;i
X
i

Na;y;q;ie
�m=4�Fa;y;q;i=4

and the catch, formerly equation 9:

Yy;q;i =
a=16X
a=0

CWa;yNa;y;q;i
Fa;y;q;i

m + Fa;y;q;i

�
1� e�m=4�Fa;y;q;i=4

�

The major problem is of course the de�nition of the spatial parameters pa;y;q;i. Some
historical data are available on the spatial and seasonal repartition of the �sh. From these
data, four reference year classes yc have been chosen: 1950, 1959, 1972 and 1983. The
historical distribution rates of the �sh in the zones, by age and season, are noted: �a;q;i;yc
(percentages).

The �rst and rougher approach to estimate the spatial parameters is to take the mean
value:

pa;y;q;i = pa;q;i =
1

4

X
yc

�a;q;i;yc with: yc 2 f1950; 1959; 1972; 1983g

The stock in the early 70' was particularly low and the �sh were all situated in the
Norwegian coastal zone. So the previous estimate can be improved in the following way:
when the spawning stock biomass is below some critical level Bcrit, the 1972 year class data
are used (coastal r�egime); otherwise, the mean value of the remaining data is computed.
Equations follow:

pa;y;q;i =
�a;q;i;1950 + �a;q;i;1959 + �a;q;i;1983

3
ifSSB(y) > Bcrit

pa;y;q;i = �a;q;i;1972 otherwise

1Exclusive Economic Zone. The Law of the Sea Convention from 1982 provides the coastal states with
full property rights to all marine resources within 200 nautical miles from their coastlines.
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A further development consists in smoothing the transition by introducing two critical
levels: Bhigh and Blow. If the spawning stock biomass is below Blow, 1972 year class data
are used; if it is above Bhigh, the mean values of 1950, 1959 and 1983 data are used; in
between, a linear interpolation is used. Equations are the following:

pa;y;q;i =
�a;q;i;1950 + �a;q;i;1959 + �a;q;i;1983

3
if SSB(y) > Bhigh

pa;y;q;i = �
�a;q;i;1950 + �a;q;i;1959 + �a;q;i;1983

3
+ (1� �)�a;q;i;1972 if Blow 6 SSB(y) 6 Bhigh

pa;y;q;i = �a;q;i;1972 ifSSB(y) < Blow

with: � =
SSB(y)� Blow

Bhigh � Blow

The spatial and seasonal year class data �a;q;i;yc are available in Patterson's report
[7], appendix E. The other parameters are presented in table 6.

Parameter value unit
Bcrit 500 106kg
Blow 360 106kg
Bhigh 500 106kg

Table 6: Spatial distribution parameters
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B MATLAB M-�les

%*****************************************

% NSS HERRING POPULATION DYNAMICS (HER1.M)

%*****************************************

%

% DENSITY-INDEPENDENT BIOECONOMIC MODEL

%

%Age-structured model, discrete time, one year time step.

%Stock-recruitement: Beverton-Holt (SR=0) or Ricker (SR=1)

% determinitic (RD=0) or + noise (RD=1)

% with (AC=1) or without (AC=0) autocorrelation.

%Natural mortality: constant (along time) and age-dependent.

%Fishing mortality: constant or fluctuating and age-independent.

%Selectivity: constant and age-dependent.

%Economic yield: constant price/kg, fixed and proportionnal harvesting costs.

%Maturity rates (MO), stock/catch weights-at-age (SW/CW), selectivities (S)

%and initial abundances (N0) are estimated as the mean values of the data

%corresponding to the initial condition years (IC).

%DATA = *.dat : 1st row=years, 1st year=1950

% 1st column=age classes, 1st class=0

%-> OUTPUT: N = abundance (age and year)

% B = biomass (age and year)

% Y = yield, i.e. catch in weight (age and year)

% SSB = spawning stock biomass (year)

% Q = costs (year)

% P = profit (year)

%NB: column->year, row->age class

% Weights at age in kg/unit

% Numbers in units

% Biomasses in kg

% Prices, Costs in Norwegian kroner(/kg)

%

%References (number) correspond to equation numbers in the report.

% SIMULATION PARAMETERS

y1=1997; y2=2017; %Simulation period [y1 y2]

IC=[1993:1996]; %Initial condition years (vector)

SR=0; %Stock-recruitment (SR): 0=B-H, 1=Ricker

RD=1; % 1=stochastic error, 0=none

AC=0; % 1=autocorrelation, 0=none

amin=0; %Ages: minimum

amax=16; % maximum

% ECONOMIC PARAMETERS

%f=ones(1,y2-y1+1)*0.35; %Fishing mortality: constant

f=abs(.2*randn(1,y2-y1+1)+.35); % fluctuating

a1=3; %1st fishing age for simple selectivities

% a1<0 => data selectivities

q1=1E7; %Costs: fixed
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q2=5E6; % proportional

h=1.45; %Average price [1995, Norges Sildesalgslag, rsmeldinger)

% BIOLOGICAL PARAMETERS

m=ones(amax-amin+1,1)*0.15; %Natural mortality

%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)

arec=0; %Recruitment age

if SR==0 & AC==0 %SR parameters:

a=32.459;

b=3044867E3;

sigma=1.763; % variance of the SR fitting

g=0; % no autocorrelation

elseif SR==0 & AC==1

a=31.637;

b=3284060E3;

sigma=1.666;

g=-0.2553; % 1st order autocorrelation in SR

elseif SR==1 & AC==0

a=26.753;

b=1.2105E-10;

sigma=1.802;

g=0;

elseif SR==1 & AC==1

a=25.760;

b=1.094E-10;

sigma=1.694;

g=-0.2655;

end

% DATA LOADING & INITIAL CONDITION

if a1<0 %Data selectivities

load('s.dat');

S = s(2:amax+2-amin,IC-1950+2);

if length(IC)>1

S=mean(S')';

end

else %Simple selectivities:

S=ones(amax+1-amin,1); % 1 for the stock

S(1:a1-amin)=zeros(a1-amin,1); % 0 before recruitment

end

load mo.dat;load sw.dat; %Data loading:

load cw.dat;load n.dat;

MO=mo(2:amax+2-amin,IC-1950+2); % maturity ogives

SW=sw(2:amax+2-amin,IC-1950+2); % stock weights at age

CW=cw(2:amax+2-amin,IC-1950+2); % catch weights at age

N0= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)

if length(IC)>1

MO=mean(MO')';SW=mean(SW')'; %Mean data over IC:

CW=mean(CW')';N0=mean(N0')';

end
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N=zeros(amax-amin+1,length(y1:y2));

B=zeros(size(N));

Y=zeros(size(N));

SSB=zeros(size(y1:y2));

N(:,1)=N0*1E6; %Initial abundances in units

B(:,1)=SW.*N0*1E6; % biomasses

SSB(1)=MO'*B(:,1); % spawning stock biomass

E1=sqrt(sigma)*randn*RD; %SR autocorrelation initialization

% POPULATION DYNAMICS SIMULATION

for t=2:y2-y1+1

E=sqrt(sigma)*randn*RD; %SR error generation

for i=arec+2-amin:amax+1-amin

N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f(t-1)*S(i-1)); %Population ageing (1)

end

SSB(t)=MO'*(SW.*N(:,t)); %SSB (6)

if SR==0 %SR: Beverton-Holt (7)

N(arec+1-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(g*E1+E);

else %SR: Ricker (8)

N(arec+1-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp(g*E1+E);

end

B(:,t)=SW.*N(:,t); %Biomasses at age (4)

E1=E; %SR error autocorrelation

end

% YIELD

for t=1:y2-y1+1

z=m+f(t)*S; %Total mortality at time t

Y(:,t)=CW.*(1-exp(-z)).*(f(t)*S./z).*N(:,t); %Yield at age

end

TY=sum(Y); %Total yield (9)

Q=q1+q2.*f; %Costs

P=h.*TY-Q; %Profit (10)

% PLOTS

figure

plot(y1:y2,sum(B(arec+1-amin:amax+1-amin,:))) %Stock biomass along time

xlabel('Time (year)');

ylabel('Stock biomass (kg)');

title('Population dynamics');

figure

plot(y1:y2,TY) %Yield along time

xlabel('Time (year)');

ylabel('Yield (kg)');

title('Harvest');

figure

plot(SSB,N(1,:),'o') %SR

xlabel('SSB (kg)');
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ylabel('Number of recruits (age class 0)');

title('Stock-recruitment');

figure

plot(y1:y2,P) %Profit along time

xlabel('Time (year)');

ylabel('Profit (kroner)');

title('Economic yield');

figure

plot(TY,Q,'o') %Cost function

xlabel('Yield (kg)');

ylabel('Costs (kroner)');

title('Cost function');

%*******************************************

% NSS HERRING POPULATION DYNAMICS (HER1EQ.M)

%*******************************************

%

% DENSITY-INDEPENDENT BIOECONOMIC MODEL:

% EQUILIBRIUM STUDY

%

%Cf HER1, but constant fishing mortality along time.

%-> OUTPUT: L = total biomass (fishing mortality and year)

% Z = total yield (fishing mortality and year)

%NB: column->year, row->fishing mortality (among F)

% SIMULATION PARAMETERS

y1=1997; y2=2097; %Simulation period [y1 y2]

IC=[1993:1996]; %Initial condition years (vector)

SR=0; %Stock-recruitment (SR): 0=B-H, 1=Ricker

PLO=1; %1=plot equilibrium curves, 2=all

amin=0; %Ages: minimum

amax=16; % maximum

% HARVESTING PARAMETERS

F=[0:.05:1]; %Fishing mortalities

a1=3; %1st fishing age for simple selectivities

% a1<0 => data selectivities

% BIOLOGICAL PARAMETERS

m=ones(amax-amin+1,1)*0.15; %Natural mortality

%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)

arec=0; %Recruitment age

if SR==0 %SR parameters:

a=32.459;

b=3044867E3;

sigma=1.763; % bias of the SR fitting

elseif SR==1
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a=26.753;

b=1.2105E-10;

sigma=1.802;

end

% DATA LOADING & INITIAL CONDITION

if a1<0 %Data selectivities

load('s.dat');

S = s(2:amax+2-amin,IC-1950+2);

if length(IC)>1

S=mean(S')';

end

else %Simple selectivities:

S=ones(amax+1-amin,1); % 1 for the stock

S(1:a1-amin)=zeros(a1-amin,1); % 0 before recruitment

end

load mo.dat;load sw.dat; %Data loading:

load cw.dat;load n.dat;

MO=mo(2:amax+2-amin,IC-1950+2); % maturity ogives

SW=sw(2:amax+2-amin,IC-1950+2); % stock weights at age

CW=cw(2:amax+2-amin,IC-1950+2); % catch weights at age

N0= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)

if length(IC)>1

MO=mean(MO')';SW=mean(SW')'; %Mean data over IC:

CW=mean(CW')';N0=mean(N0')';

end

N=zeros(amax+1,length(y1:y2)); %Initializations

B=zeros(size(N));

Y=zeros(size(N));

SSB=zeros(size(y1:y2));

Z=zeros(length(F),length(y1:y2));

L=zeros(length(F),length(y1:y2));

N(:,1)=N0*1E6; %Initial abundances (in units)

B(:,1)=SW.*N0*1E6; % biomasses

SSB(1)=MO'*B(:,1); % spawning stock biomass

% POPULATION DYNAMICS SIMULATION

j=1;

for f=F

z=m+f*S; %Total mortality for f

Y(:,1)=CW.*(1-exp(-z)).*(f*S./z).*N(:,1); %Initial yield at age

for t=2:y2-y1+1

for i=arec+2-amin:amax+1-amin

N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f*S(i-1));%Population ageing (1)

end

SSB(t)=MO'*(SW.*N(:,t)); %Spawning stock biomass (6)

if SR==0 %SR: Beverton-Holt (7)

N(arec+1-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(sigma/2);

else %SR: Ricker (8)

N(arec+1-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp(sigma/2);
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end

B(:,t)=SW.*N(:,t); %Biomasses at age (4)

Y(:,t)=CW.*(1-exp(-z)).*(f*S./z).*N(:,t); %Yield at age (9)

end

L(j,:)=sum(B); %Biomasses at f

Z(j,:)=sum(Y); %Yields at f

j=j+1;

end

% PLOTS

if PLO==1 | PLO==2

figure %Equilibrium biomass & yield

clf reset

plot(F,Z(:,y2-y1+1),F,L(:,y2-y1+1)/10,'--')

xlabel('Fishing mortality');

ylabel('Biomass/10 (dashed) and Yield (kg)');

if SR==0

title('Equilibrium (DI - Beverton-Holt recruitment)');

elseif SR==1

title('Equilibrium (DI - Ricker recruitment)');

end

if PLO==2

figure %Biomasses along time for small f

clf reset

plot(y1:y2,L(1:5,:))

xlabel('Time (year)');

ylabel('Biomass (kg)');

if SR==0

title(['Fishing mortality=',mat2str(F(1:5)),' (Beverton-Holt)']);

elseif SR==1

title(['Fishing mortality=',mat2str(F(1:5)),' (Ricker)']);

end

figure %Biomasses along time for large f

clf reset

plot(y1:y2,L(length(F)-4:length(F),:))

xlabel('Time (year)');

ylabel('Biomass (kg)');

if SR==0

title(['Fishing mortality=',mat2str(F(length(F)-4:length(F))),...

' (Beverton-Holt)']);

elseif SR==1

title(['Fishing mortality=',mat2str(F(length(F)-4:length(F))),...

' (Ricker)']);

end

end

end
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%*******************************************

% NSS HERRING POPULATION DYNAMICS (HER1DI.M)

%*******************************************

%

% DENSITY-INDEPENDENT BIOECONOMIC MODEL:

% RISK ANALYSIS & RISK DISTRIBUTION

%

%Cf HER1, HER1RI.

%-> OUTPUT: R* = Risk (F fishing mortalities and SIM simulations)

% T1* = First year beyond the critical level (F and SIM)

% TN* = Number of years beyond the critical level (F and SIM)

% column SIM+1 : mean value (probability for R)

% column SIM+2 : standard deviation

% M* = Mean value (F and year)

% D* = Risk distribution (F and year)

% *=B : for the total biomass

% *=S : for the spawning stock biomass

% *=Y : for the yield (catch in weight)

% *=P : for the profit

% Results file: hdi"SR""AC""period".mat

%NB: row->fishing mortality (among F)

% column->simulation (SIM)

% SIMULATION PARAMETERS

SIM=100; %Simulations number

Bcrit=0.5E10; %Critical biomass

SSBcrit=0.25E10; % SSB

Ycrit=0.05E10; % yield

Pcrit=0; % profit

y1=1997; y2=2097; %Simulation period [y1 y2]

IC=[1993:1996]; %Initial condition years (vector)

SR=0; %Stock-recruitment (SR): 0=B-H, 1=Ricker

RD=1; % 1=stochastic error, 0=none

AC=0; % 1=autocorrelation, 0=none

PLO=1; %1=plot the curves

PRI=1; %1=save results in mat-file

amin=0; %Ages: minimum

amax=16; % maximum

% ECONOMIC PARAMETERS

F=[0:.05:1.3,1.4:.1:2]; %Fishing mortalities

a1=3; %1st fishing age for simple selectivities

% a1<0 => data selectivities

q1=1E7; %Costs: fixed

q2=5E6; % proportional

h=1.45; %Average price [1995, Norges Sildesalgslag, rsmeldinger)

% BIOLOGICAL PARAMETERS

m=ones(amax-amin+1,1)*0.15; %Natural mortality

%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)
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arec=0; %Recruitment age

if SR==0 & AC==0 %SR parameters:

a=32.459;

b=3044867E3;

sigma=1.763; % variance of the SR fitting

g=0; % no autocorrelation

elseif SR==0 & AC==1

a=31.637;

b=3284060E3;

sigma=1.666;

g=-0.2553; % 1st order autocorrelation in SR

elseif SR==1 & AC==0

a=26.753;

b=1.2105E-10;

sigma=1.802;

g=0;

elseif SR==1 & AC==1

a=25.760;

b=1.094E-10;

sigma=1.694;

g=-0.2655;

end

% DATA LOADING & INITIAL CONDITION

if a1<0 %Data selectivities

load('s.dat');

S = s(2:amax+2-amin,IC-1950+2);

if length(IC)>1

S=mean(S')';

end

else %Simple selectivities:

S=ones(amax+1-amin,1); % 1 for the stock

S(1:a1-amin)=zeros(a1-amin,1); % 0 before recruitment

end

load mo.dat;load sw.dat; %Data loading:

load cw.dat;load n.dat;

MO=mo(2:amax+2-amin,IC-1950+2); % maturity ogives

SW=sw(2:amax+2-amin,IC-1950+2); % stock weights-at-age

CW=cw(2:amax+2-amin,IC-1950+2); % catch weights-at-age

N0= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)

if length(IC)>1

MO=mean(MO')';SW=mean(SW')'; %Mean data over IC:

CW=mean(CW')';N0=mean(N0')';

end

N=zeros(amax-amin+1,length(y1:y2)); %Initializations

B=zeros(size(N));

Y=zeros(size(N));

RB=zeros(length(F),2+SIM); T1B=zeros(size(RB)); TNB=zeros(size(RB));

RS=zeros(size(RB)); T1S=zeros(size(RB)); TNS=zeros(size(RB));

RY=zeros(size(RB)); T1Y=zeros(size(RB)); TNY=zeros(size(RB));
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RP=zeros(size(RB)); T1P=zeros(size(RB)); TNP=zeros(size(RB));

MB=zeros(length(F),length(y1:y2)); DB=zeros(size(MB));

MS=zeros(size(MB)); DS=zeros(size(MB));

MY=zeros(size(MB)); DY=zeros(size(MB));

MP=zeros(size(MB)); DP=zeros(size(MB));

SSB=zeros(size(y1:y2));

N(:,1)=N0*1E6; %Initial abundances in units

B(:,1)=SW.*N0*1E6; % biomasses

SSB(1)=MO'*B(:,1); % spawning stock biomass

E1=sqrt(sigma)*randn*RD; %SR autocorrelation initialization

fis=1;

% POPULATION DYNAMICS SIMULATIONS

for f=F %F fishing mortalities

z=m+f*S; %Total mortality for f

Y(:,1)=CW.*(1-exp(-z)).*(f*S./z).*N(:,1); %Initial yield at age (9)

for j=1:SIM %SIM simulations

for t=2:y2-y1+1

E=sqrt(sigma)*randn*RD; %SR error generation

for i=arec+2-amin:amax+1-amin

N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f*S(i-1));%Population ageing (1)

end

SSB(t)=MO'*(SW.*N(:,t)); %SSB (6)

if SR==0 %SR: Beverton-Holt (7)

N(arec+1-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(g*E1+E);

else %SR: Ricker (8)

N(arec+1-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp(g*E1+E);

end

B(:,t)=SW.*N(:,t); %Biomasses at age (4)

Y(:,t)=CW.*(1-exp(-z)).*(f*S./z).*N(:,t); %Yield at age (9)

E1=E; %SR error autocorrelation

end

P=h*sum(Y)-(q1+q2*f); %Profit (10)

% MEAN VALUES (fishing mort. & year)

MB(fis,:)=MB(fis,:)+sum(B)/SIM; %Mean biomass

MS(fis,:)=MS(fis,:)+SSB/SIM; % SSB

MY(fis,:)=MY(fis,:)+sum(Y)/SIM; % yield

MP(fis,:)=MP(fis,:)+P/SIM; % profit

% RISK (fishing mort. & simulation)

if min(sum(B))<Bcrit

RB(fis,j)=1; %BIOMASS risk

ind=find(sum(B)<Bcrit);

T1B(fis,j)=min(ind)+y1-1; %First year < Bcrit

TNB(fis,j)=length(ind); %Number of years < Bcrit

end

if min(SSB)<SSBcrit

RS(fis,j)=1; %SSB risk

ind=find(SSB<SSBcrit);

T1S(fis,j)=min(ind)+y1-1; %First year < SSBcrit

TNS(fis,j)=length(ind); %Nb of years < SSBcrit
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end

if min(sum(Y))<Ycrit

RY(fis,j)=1 ; %YIELD risk

ind=find(sum(Y)<Ycrit);

T1Y(fis,j)=min(ind)+y1-1; %First year < Ycrit

TNY(fis,j)=length(ind); %Number of years < Ycrit

end

if min(P)<Pcrit

RP(fis,j)=1; %PROFIT risk

ind=find(P<Pcrit);

T1P(fis,j)=min(ind)+y1-1; %First year < Pcrit

TNP(fis,j)=length(ind); %Number of years < Pcrit

end

end

fis=fis+1;

end

% RISK ANALYSIS (fishing mort.)

ind=find(MB<Bcrit); %BIOMASS:

DB(ind)=ones(size(ind)); %Risk distribution (year)

RB(:,SIM+1)=mean(RB(:,1:SIM)')'; %Risk probability

RB(:,SIM+2)=std(RB(:,1:SIM)')'; % standard deviation

f1b=find(RB(:,SIM+1));

for i=[f1b]'

si=find(T1B(i,1:SIM));

T1B(i,SIM+1)=mean(T1B(i,si)); %Mean first year < Bcrit

T1B(i,SIM+2)=std(T1B(i,si)); % standard deviation

end

TNB(:,SIM+1)=mean(TNB(:,1:SIM)')'; %Mean nb of years < Bcrit

TNB(:,SIM+2)=std(TNB(:,1:SIM)')'; % standard deviation

%

ind=find(MS<SSBcrit); %SSB:

DS(ind)=ones(size(ind)); %Risk distribution (year)

RS(:,SIM+1)=mean(RS(:,1:SIM)')'; %Risk probability

RS(:,SIM+2)=std(RS(:,1:SIM)')'; % standard deviation

f1s=find(RS(:,SIM+1));

for i=[f1s]'

si=find(T1S(i,1:SIM));

T1S(i,SIM+1)=mean(T1S(i,si)); %Mean first year < SSBcrit

T1S(i,SIM+2)=std(T1S(i,si)); % standard deviation

end

TNS(:,SIM+1)=mean(TNS(:,1:SIM)')'; %Mean nb of years < SSBcrit

TNS(:,SIM+2)=std(TNS(:,1:SIM)')'; % standard deviation

%

ind=find(MY<Ycrit); %YIELD:

DY(ind)=ones(size(ind)); %Risk distribution (year)

RY(:,SIM+1)=mean(RY(:,1:SIM)')'; %Risk probability

RY(:,SIM+2)=std(RY(:,1:SIM)')'; % standard deviation

f1y=find(RY(:,SIM+1));

for i=[f1y]'
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si=find(T1Y(i,1:SIM));

T1Y(i,SIM+1)=mean(T1Y(i,si)); %Mean first year < Ycrit

T1Y(i,SIM+2)=std(T1Y(i,si)); % standard deviation

end

TNY(:,SIM+1)=mean(TNY(:,1:SIM)')'; %Mean nb of years < Ycrit

TNY(:,SIM+2)=std(TNY(:,1:SIM)')'; % standard deviation

%

ind=find(MP<Pcrit); %PROFIT:

DP(ind)=ones(size(ind)); %Risk distribution (year)

RP(:,SIM+1)=mean(RP(:,1:SIM)')'; %Risk probability

RP(:,SIM+2)=std(RP(:,1:SIM)')'; % standard deviation

f1p=find(RP(:,SIM+1));

for i=[f1p]'

si=find(T1P(i,1:SIM));

T1P(i,SIM+1)=mean(T1P(i,si)); %Mean first year < Pcrit

T1P(i,SIM+2)=std(T1P(i,si)); % standard deviation

end

TNP(:,SIM+1)=mean(TNP(:,1:SIM)')'; %Mean nb of years < Pcrit

TNP(:,SIM+2)=std(TNP(:,1:SIM)')'; % standard deviation

% RISK PLOTS

if PLO==1

%

figure %TOTAL BIOMASS:

clf reset

subplot(3,1,1)

plot(F,RB(:,SIM+1),'mo:') %Risk probability / F

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

end

xlabel('Fishing mortality');

ylabel('Risk probability for biomass');

subplot(3,1,2)

plot(F(f1b),T1B(f1b,SIM+1),'mo:') %First year < Bcrit / F

xlabel('Fishing mortality');

ylabel('First year beyond Bcrit');

subplot(3,1,3)

plot(F,TNB(:,SIM+1),'mo:') %Number of years < Bcrit / F

xlabel('Fishing mortality');

ylabel('Number of years beyond Bcrit');
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%

figure %Biomass risk distribution

clf reset

subplot(2,1,1)

mesh(y1:y2,F,MB);

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

end

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Mean total biomass');

subplot(2,1,2)

mesh(y1:y2,F,DB);

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Biomass risk distribution');

figure %SPAWNING STOCK BIOMASS:

clf reset

subplot(3,1,1)

plot(F,RS(:,SIM+1),'mo:') %Risk probability / F

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

end

xlabel('Fishing mortality');

ylabel('Risk probability for SSB');

subplot(3,1,2)

plot(F(f1s),T1S(f1s,SIM+1),'mo:') %First year < SSBcrit / F

xlabel('Fishing mortality');

ylabel('First year beyond SSBcrit');
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subplot(3,1,3)

plot(F,TNS(:,SIM+1),'mo:') %Number of years < SSBcrit / F

xlabel('Fishing mortality');

ylabel('Number of years beyond SSBcrit');

%

figure %SSB risk distribution

clf reset

subplot(2,1,1)

mesh(y1:y2,F,MS);

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

end

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Mean SSB');

subplot(2,1,2)

mesh(y1:y2,F,DS);

xlabel('Year');

ylabel('Fishing mortality');

zlabel('SSB risk distribution');

figure %YIELD:

clf reset

subplot(3,1,1)

plot(F,RY(:,SIM+1),'mo:') %Risk probability / F

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

end

xlabel('Fishing mortality');

ylabel('Risk probability for yield');
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subplot(3,1,2)

plot(F(f1y),T1Y(f1y,SIM+1),'mo:') %First year < Ycrit / F

xlabel('Fishing mortality');

ylabel('First year beyond Ycrit');

subplot(3,1,3)

plot(F,TNY(:,SIM+1),'mo:') %Number of years < Ycrit / F

xlabel('Fishing mortality');

ylabel('Number of years beyond Ycrit');

%

figure %Yield risk distribution

clf reset

subplot(2,1,1)

mesh(y1:y2,F,MY);

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

end

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Mean yield');

subplot(2,1,2)

mesh(y1:y2,F,DY);

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Yield risk distribution');

figure %PROFIT:

clf reset

subplot(3,1,1)

plot(F,RP(:,SIM+1),'mo:') %Risk probability / F

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',nXSum2str(Pcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SxsIM),' simulations (',...
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int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit/1e10),'E10 kg']);

end

xlabel('Fishing mortality');

ylabel('Risk probability for profit');

subplot(3,1,2)

plot(F(f1p),T1P(f1p,SIM+1),'mo:') %First year < Pcrit / F

xlabel('Fishing mortality');

ylabel('First year beyond Pcrit');

subplot(3,1,3)

plot(F,TNP(:,SIM+1),'mo:') %Number of years < Pcrit / F

xlabel('Fishing mortality');

ylabel('Number of years beyond Pcrit');

%

figure %Profit risk distribution

clf reset

subplot(2,1,1)

mesh(y1:y2,F,MP);

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit),' kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit),' kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit),' kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit),' kg']);

end

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Mean profit');

subplot(2,1,2)

mesh(y1:y2,F,DP);

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Profit risk distribution');

end

if PRI==1

file=['hdi',int2str(SR),int2str(AC),int2str(y2-y1+1)];

save(file,'AC','Bcrit','CW','Ycrit','DB','DY','DS','MB','MY','MS',...

'F','IC','MO','N0','RB','RY','RD','RS','SIM','SR','SSBcrit',...

'SW','T1B','TNB','T1Y','TNY','T1S','TNS','a1','amax','amin',...

'arec','b','g','f1b','f1y','f1s','m','S','sigma','y1','y2',...

'DP','Pcrit','MP','RP','T1P','TNP','f1p')

end
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%*****************************************

% NSS HERRING POPULATION DYNAMICS (HER2.M)

%*****************************************

%

% DENSITY-DEPENDENT BIOECONOMIC MODEL

%

%Age-structured model, discrete time, one year time step.

%Stock-recruitement: Beverton-Holt (SR=0) or Ricker (SR=1)

% determinitic (RD=0) or + noise (RD=1)

% with (AC=1) or without (AC=0) autocorrelation.

%Natural mortality: constant (along time) and age-dependent.

%Fishing mortality: constant or fluctuating and age-independent.

%Selectivity: constant and age-dependent.

%Economic yield: constant price/kg, fixed and proportionnal harvesting costs.

%Density-dependent maturity ogive (MO), stock/catch weight at age (SW/CW)

%functions.

%Selectivities (S) and initial abundances (N0) are estimated as the mean

%values of the data corresponding to the initial condition years (IC).

%DATA = *.dat : 1st row=years, 1st year=1950

% 1st column=age classes, 1st class=0

%-> OUTPUT: N = abundance (age and year)

% B = biomass (age and year)

% Y = yield, i.e. catch in weight (age and year)

% SSB = spawning stock biomass (year)

% Q = costs (year)

% P = profit (year)

%NB: column->year, row->age class (1st class = 0)

% Weights at age in kg/unit

% Numbers in units

% Biomasses in kg

% Prices, Costs in Norwegian kroner(/kg)

%

%References (number) correspond to equation numbers in the report.

% SIMULATION PARAMETERS

y1=1997; y2=2100; %Simulation period [y1 y2]

IC=[1993:1996]; %Initial condition years (vector)

SR=0; %Stock-recruitment (SR): 0=B-H, 1=Ricker

RD=1; % 1=stochastic error, 0=none

AC=0; % 1=autocorrelation, 0=none

amin=0; %Ages: minimum

amax=16; % maximum

% ECONOMIC PARAMETERS

f=ones(1,y2-y1+1)*0.35; %Fishing mortality: constant

%f=abs(.2*randn(1,y2-y1+1)+.5); %Fishing mortality: fluctuating

a1=3; %1st fishing age for simple selectivities

% a1<0 => data selectivities

q1=1E7; %Costs: fixed

q2=5E6; % proportional
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h=1.45; %Average price [1995, Norges Sildesalgslag, rsmeldinger]

% BIOLOGICAL PARAMETERS

m=ones(amax-amin+1,1)*0.15; %Natural mortality

%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)

c=[0.006759;1.356;2.686;3.977]; %Maturity parameters

d=-0.2744;

alpha=-0.299; %Stock weights at age parameters

Bmax=16218E6;

w0=0.203;

k0=0.703;

winf=0.447;

alpha1=-0.368; %Catch weights at age parameters

w01=0.217;

k01=0.650;

winf1=0.430;

arec=0; %Recruitment age

if SR==0 & AC==0 %SR parameters:

a=32.459;

b=3044867E3;

sigma=1.763; % variance of the SR fitting

g=0; % no autocorrelation

elseif SR==0 & AC==1

a=31.637;

b=3284060E3;

sigma=1.666;

g=-0.2553; % 1st order autocorrelation in SR

elseif SR==1 & AC==0

a=26.753;

b=1.2105E-10;

sigma=1.802;

g=0;

elseif SR==1 & AC==1

a=25.760;

b=1.094E-10;

sigma=1.694;

g=-0.2655;

end

% DATA LOADING & INITIAL CONDITION

if a1<0 %Data selectivities

load('s.dat');

S = s(2:amax+2-amin,IC-1950+2);

if length(IC)>1

S=mean(S')';

end

else %Simple selectivities:

S=ones(amax+1-amin,1); % 1 for the stock

S(1:a1-amin)=zeros(a1-amin,1); % 0 before recruitment

end
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load('n.dat'); %Data loading:

N0= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)

if length(IC)>1

N0=mean(N0')'; %Mean data over IC

end

N=zeros(amax+1-amin,length(y1:y2));

B=zeros(size(N));

Y=zeros(size(N));

SW=zeros(size(N));

CW=zeros(size(N));

MO=zeros(size(N));

MO(8-amin:amax+1-amin,:)=ones(size(MO(8:amax+1,:))); %Fully mature ages

SSB=zeros(size(y1:y2));

N(:,1)=N0*1E6; %Initial abundances (in units)

SW(:,1)=ones(size(SW(:,1)))*w0; % stock weights at age (2)

CW(:,1)=ones(size(CW(:,1)))*w01; % catch weights at age (3)

B(:,1) =SW(:,1).*N0*1E6; % biomasses

B4=sum(B(5-amin:amax+1-amin,1))*1E-3; % stock biomass (in tonnes)

MO(4-amin:7-amin,1)=1./(1+exp(-c)*B4^(-d));% maturity ogives (5)

SSB(1) =MO(:,1)'*B(:,1); % spawning stock biomass

E1=sqrt(sigma)*randn*RD; %SR autocorrelation initialization

% POPULATION DYNAMICS SIMULATION

for t=2:y2-y1+1

E=sqrt(sigma)*randn*RD; %SR error generation

for i=arec+2-amin:amax+1-amin

N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f(t-1)*S(i-1)); %Population ageing (1)

k=k0*exp(-alpha*sum(B(:,t-1))/Bmax); %Stock weights at age (2)

SW(i,t)=abs((1-k)*winf^(1/3)+k*SW(i-1,t-1)^(1/3))^3;

k1=k01*exp(-alpha1*sum(B(:,t-1))/Bmax); %Catch weights at age (3)

CW(i,t)=abs((1-k1)*winf1^(1/3)+k1*CW(i-1,t-1)^(1/3))^3;

end

B4=SW(5-amin:amax+1-amin,t)'*N(5-amin:amax+1-amin,t); %Maturity ogives:

MO(4-amin:7-amin,t)=1./abs(1+exp(-c)*B4^(-d)); %partially mature ages (5)

SSB(t)=SW(:,t)'*(MO(:,t).*N(:,t)); %SSB (6)

if SR==0 %SR: Beverton-Holt (7)

N(arec+1-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(g*E1+E);

else %SR: Ricker (8)

N(arec+1-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp(g*E1+E);

end

B(:,t)=SW(:,t).*N(:,t); %Biomasses at age (4)

E1=E; %SR error autocorrelation

end

% YIELD

for t=1:y2-y1+1

z=m+f(t)*S; %Total mortality at time t

Y(:,t)=CW(:,t).*(1-exp(-z)).*(f(t)*S./z).*N(:,t);%Yield at age

end

TY=sum(Y); %Total yield (9)
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Q=q1+q2.*f; %Costs

P=h.*TY-Q; %Profit (10)

% PLOTS

figure

plot(y1:y2,sum(B(arec+1-amin:amax+1-amin,:))) %Stock biomass along time

xlabel('Time (year)');

ylabel('Stock biomass (kg)');

title('Population dynamics');

figure

plot(y1:y2,TY) %Yield along time

xlabel('Time (year)');

ylabel('Yield (kg)');

title('Harvest');

figure

clf reset

plot(SSB,N(1,:),'o') %SR

xlabel('SSB (kg)');

ylabel('Number of recruits (age class 0)');

title('Stock-recruitment');

figure

plot(y1:y2,P) %Profit along time

xlabel('Time (year)');

ylabel('Profit (kroner)');

title('Economic yield');

figure

plot(TY,Q,'o') %Cost function

xlabel('Yield (kg)');

ylabel('Costs (kroner)');

title('Cost function');

%*******************************************

% NSS HERRING POPULATION DYNAMICS (HER2EQ.M)

%*******************************************

%

% DENSITY-DEPENDENT BIOECONOMIC MODEL:

% EQUILIBRIUM STUDY

%

%Cf HER2, but constant fishing mortality along time.

%-> OUTPUT: L = total biomass (fishing mortality and year)

% Z = total yield (fishing mortality and year)

%NB: column->year, row->fishing mortality (among F)

% SIMULATION PARAMETERS

y1=1997; y2=2057; %Simulation period [y1 y2]
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IC=[1993:1996]; %Initial condition years (vector)

SR=0; %Stock-recruitment (SR): 0=B-H, 1=Ricker

PLO=1; %1=plot equilibrium curves, 2=all

amin=0; %Ages: minimum

amax=16; % maximum

% HARVESTING PARAMETERS

F=[0:.05:1]; %Fishing mortalities

a1=3; %1st fishing age for simple selectivities

% a1<0 => data selectivities

% BIOLOGICAL PARAMETERS

m=ones(amax-amin+1,1)*0.15; %Natural mortality

%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)

c=[0.006759;1.356;2.686;3.977]; %Maturity parameters

d=-0.2744;

alpha=-0.299; %Stock weights at age parameters

Bmax=16218E6;

w0=0.203;

k0=0.703;

winf=0.447;

alpha1=-0.368; %Catch weights at age parameters

w01=0.217;

k01=0.650;

winf1=0.430;

arec=0; %Recruitment age

if SR==0 %SR parameters:

a=32.459;

b=3044867E3;

sigma=1.763; % bias of the SR fitting

elseif SR==1

a=26.753;

b=1.2105E-10;

sigma=1.802;

end

% DATA LOADING & INITIAL CONDITION

if a1<0 %Data selectivities

load('s.dat');

S = s(2:amax+2-amin,IC-1950+2);

if length(IC)>1

S=mean(S')';

end

else %Simple selectivities:

S=ones(amax+1-amin,1); % 1 for the stock

S(1:a1-amin)=zeros(a1-amin,1); % 0 before recruitment

end

load('n.dat'); %Data loading:

N0= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)

if length(IC)>1
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N0=mean(N0')'; %Mean data over IC

end

N=zeros(amax+1,length(y1:y2)); %Initializations

B=zeros(size(N));

Y=zeros(size(N));

SW=zeros(size(N));

CW=zeros(size(N));

MO=zeros(size(N));

MO(8-amin:amax+1-amin,:)=ones(size(MO(8:amax+1,:))); %Fully mature ages

Z=zeros(length(F),length(y1:y2));

L=zeros(length(F),length(y1:y2));

SSB=zeros(size(y1:y2));

N(:,1)=N0*1E6; %Initial abundances (in units)

SW(:,1)=ones(size(SW(:,1)))*w0; % stock weights at age (2)

CW(:,1)=ones(size(CW(:,1)))*w01; % catch weights at age (3)

B(:,1)=SW(:,1).*N0*1E6; % biomasses

B4=sum(B(5-amin:amax+1-amin,1))*1E-3; % stock biomass (in tonnes)

MO(4-amin:7-amin,1)=1./(1+exp(-c)*B4^(-d));% maturity ogives (5)

SSB(1) =MO(:,1)'*B(:,1); % spawning stock biomass

% POPULATION DYNAMICS SIMULATION

j=1;

for f=F

z=m+f*S; %Total mortality for f

Y(:,1)=CW(:,1).*(1-exp(-z)).*(f*S./z).*N(:,1); %Initial yield at age

for t=2:y2-y1+1

for i=arec+2-amin:amax+1-amin

N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f*S(i-1)); %Population ageing (1)

k=k0*exp(-alpha*sum(B(:,t-1))/Bmax); %Stock weights at age (2)

SW(i,t)=abs((1-k)*winf^(1/3)+k*SW(i-1,t-1)^(1/3))^3;

k1=k01*exp(-alpha1*sum(B(:,t-1))/Bmax); %Catch weights at age (3)

CW(i,t)=abs((1-k1)*winf1^(1/3)+k1*CW(i-1,t-1)^(1/3))^3;

end

B4=SW(5-amin:amax+1-amin,t)'*N(5-amin:amax+1-amin,t);

MO(4-amin:7-amin,t)=1./abs(1+exp(-c)*B4^(-d)); %Maturity ogives (5)

SSB(t)=MO(:,t)'*(SW(:,t).*N(:,t)); %SSB (6)

if SR==0 %SR: Beverton-Holt (7)

N(arec+1-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(sigma/2);

else %SR: Ricker (8)

N(arec+1-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp(sigma/2);

end

B(:,t)=SW(:,t).*N(:,t); %Biomasses at age (4)

Y(:,t)=CW(:,t).*(1-exp(-z)).*(f*S./z).*N(:,t); %Yield at age (9)

end

L(j,:)=sum(B); %Biomasses at f

Z(j,:)=sum(Y); %Yields at f

j=j+1;

end

% PLOTS
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if PLO==1 | PLO==2

figure %Equilibrium biomass & yield

clf reset

plot(F,Z(:,y2-y1+1),F,L(:,y2-y1+1)/10,'--')

xlabel('Fishing mortality');

ylabel('Biomass/10 (dashed) and Yield (kg)');

if SR==0

title('Equilibrium (DD - Beverton-Holt recruitment)');

elseif SR==1

title('Equilibrium (DD - Ricker recruitment)');

end

if PLO==2

figure %Biomasses along time for small f

clf reset

plot(y1:y2,L(1:5,:))

xlabel('Time (year)');

ylabel('Biomass (kg)');

if SR==0

title(['Fishing mortality=',mat2str(F(1:5)),' (Beverton-Holt)']);

elseif SR==1

title(['Fishing mortality=',mat2str(F(1:5)),' (Ricker)']);

end

figure %Biomasses along time for large f

clf reset

plot(y1:y2,L(length(F)-4:length(F),:))

xlabel('Time (year)');

ylabel('Biomass (kg)');

if SR==0

title(['Fishing mortality=',mat2str(F(length(F)-4:length(F))),...

' (Beverton-Holt)']);

elseif SR==1

title(['Fishing mortality=',mat2str(F(length(F)-4:length(F))),...

' (Ricker)']);

end

end

end

%*******************************************

% NSS HERRING POPULATION DYNAMICS (HER2DI.M)

%*******************************************

%

% DENSITY-DEPENDENT BIOECONOMIC MODEL:

% RISK ANALYSIS & RISK DISTRIBUTION

%

%Cf HER2, but constant fishing mortality along time..

%-> OUTPUT: R* = Risk (F fishing mortalities and SIM simulations)

% T1* = First year beyond the critical level (F and SIM)
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% TN* = Number of years beyond the critical level (F and SIM)

% column SIM+1 : mean value (probability for R)

% column SIM+2 : standard deviation

% M* = Mean value (F and year)

% D* = Risk distribution (F and year)

% *=B : for the total biomass

% *=S : for the spawning stock biomass

% *=Y : for the yield (catch in weight)

% *=P : for the profit

% Results file: hdd"SR""AC""period".mat

%NB: row->fishing mortality (among F)

% column->simulation (SIM)

% SIMULATION PARAMETERS

SIM=100; %Simulations number

Bcrit=0.5E10; %Critical biomass

SSBcrit=0.25E10; % SSB

Ycrit=0.10E10; % yield

Pcrit=0; % profit

y1=1997; y2=2097; %Simulation period [y1 y2]

IC=[1993:1996]; %Initial condition years (vector)

SR=0; %Stock-recruitment (SR): 0=B-H, 1=Ricker

RD=1; % 1=stochastic error, 0=none

AC=0; % 1=autocorrelation, 0=none

PLO=1; %1=plot the curves

PRI=0; %1=save results in mat-file

amin=0; %Ages: minimum

amax=16; % maximum

% ECONOMIC PARAMETERS

F=[0:.05:.8,.9:.1:2]; %Fishing mortalities

a1=3; %1st fishing age for simple selectivities

% a1<0 => data selectivities

q1=1E7; %Costs: fixed

q2=5E6; % proportional

h=1.45; %Average price [1995, Norges Sildesalgslag, rsmeldinger)

% BIOLOGICAL PARAMETERS

m=ones(amax-amin+1,1)*0.15; %Natural mortality

%m(1:3)=ones(3,1)*0.9; %(high juvenile mortality)

c=[0.006759;1.356;2.686;3.977]; %Maturity parameters

d=-0.2744;

alpha=-0.299; %Stock weights at age parameters

Bmax=16218E6;

w0=0.203;

k0=0.703;

winf=0.447;

alpha1=-0.368; %Catch weights at age parameters

w01=0.217;

k01=0.650;
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winf1=0.430;

arec=0; %Recruitment age

if SR==0 & AC==0 %SR parameters:

a=32.459;

b=3044867E3;

sigma=1.763; % variance of the SR fitting

g=0; % no autocorrelation

elseif SR==0 & AC==1

a=31.637;

b=3284060E3;

sigma=1.666;

g=-0.2553; % 1st order autocorrelation in SR

elseif SR==1 & AC==0

a=26.753;

b=1.2105E-10;

sigma=1.802;

g=0;

elseif SR==1 & AC==1

a=25.760;

b=1.094E-10;

sigma=1.694;

g=-0.2655;

end

% DATA LOADING & INITIAL CONDITION

if a1<0 %Data selectivities

load('s.dat');

S = s(2:amax+2-amin,IC-1950+2);

if length(IC)>1

S=mean(S')';

end

else %Simple selectivities:

S=ones(amax+1-amin,1); % 1 for the stock

S(1:a1-amin)=zeros(a1-amin,1); % 0 before recruitment

end

load('n.dat'); %Data loading:

N0= n(2:amax+2-amin,IC-1950+2); % initial abundances (in millions)

if length(IC)>1

N0=mean(N0')'; %Mean data over IC

end

N=zeros(amax-amin+1,length(y1:y2)); %Initializations

B=zeros(size(N));

Y=zeros(size(N));

RB=zeros(length(F),2+SIM); T1B=zeros(size(RB)); TNB=zeros(size(RB));

RS=zeros(size(RB)); T1S=zeros(size(RB)); TNS=zeros(size(RB));

RY=zeros(size(RB)); T1Y=zeros(size(RB)); TNY=zeros(size(RB));

RP=zeros(size(RB)); T1P=zeros(size(RB)); TNP=zeros(size(RB));

MB=zeros(length(F),length(y1:y2)); DB=zeros(size(MB));

MS=zeros(size(MB)); DS=zeros(size(MB));

MY=zeros(size(MB)); DY=zeros(size(MB));
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MP=zeros(size(MB)); DP=zeros(size(MB));

SW=zeros(size(N));

CW=zeros(size(N));

MO=zeros(size(N));

MO(8-amin:amax+1-amin,:)=ones(size(MO(8:amax+1,:))); %Fully mature ages

SSB=zeros(size(y1:y2));

N(:,1)=N0*1E6; %Initial abundances in units

SW(:,1)=ones(size(SW(:,1)))*w0; % stock weight at age (2)

CW(:,1)=ones(size(CW(:,1)))*w01; % catch weight at age (3)

B(:,1)=SW(:,1).*N0*1E6; % biomasses

B4=sum(B(5-amin:amax+1-amin,1))*1E-3; % stock biomass in tonnes

MO(4-amin:7-amin,1)=1./(1+exp(-c)*B4^(-d));% maturity ogives (5)

SSB(1)=MO(:,1)'*B(:,1); % spawning stock biomass

E1=sqrt(sigma)*randn*RD; %SR autocorrelation initialization

fis=1;

% POPULATION DYNAMICS SIMULATIONS

for f=F %F fishing mortalities

z=m+f*S; %Total mortality for f

Y(:,1)=CW(:,1).*(1-exp(-z)).*(f*S./z).*N(:,1); %Initial yield at age (9)

for j=1:SIM %SIM simulations

for t=2:y2-y1+1

E=sqrt(sigma)*randn*RD; %SR error generation

for i=arec+2-amin:amax+1-amin

N(i,t)=N(i-1,t-1)*exp(-m(i-1)-f*S(i-1));%Population ageing (1)

k=k0*exp(-alpha*sum(B(:,t-1))/Bmax); %Stock weights at age (2)

SW(i,t)=abs((1-k)*winf^(1/3)+k*SW(i-1,t-1)^(1/3))^3;

k1=k01*exp(-alpha1*sum(B(:,t-1))/Bmax); %Catch weights at age (3)

CW(i,t)=abs((1-k1)*winf1^(1/3)+k1*CW(i-1,t-1)^(1/3))^3;

end

B4=SW(5-amin:amax+1-amin,t)'*N(5-amin:amax+1-amin,t);

MO(4-amin:7-amin,t)=1./abs(1+exp(-c)*B4^(-d)); %Maturity ogives (5)

SSB(t)=SW(:,t)'*(MO(:,t).*N(:,t)); %SSB (6)

if SR==0 %SR: Beverton-Holt (7)

N(arec+1-amin,t)=a*SSB(t)/(1+SSB(t)/b)*exp(g*E1+E);

else %SR: Ricker (8)

N(arec+1-amin,t)=a*SSB(t)*exp(-b*SSB(t))*exp(g*E1+E);

end

B(:,t)=SW(:,t).*N(:,t); %Biomasses at age (4)

Y(:,t)=CW(:,t).*(1-exp(-z)).*(f*S./z).*N(:,t); %Yield at age (9)

E1=E; %SR error autocorrelation

end

P=h*sum(Y)-(q1+q2*f); %Profit (10)

% MEAN VALUES (fishing mort. & year)

MB(fis,:)=MB(fis,:)+sum(B)/SIM; %Mean biomass

MS(fis,:)=MS(fis,:)+SSB/SIM; % SSB

MY(fis,:)=MY(fis,:)+sum(Y)/SIM; % yield

MP(fis,:)=MP(fis,:)+P/SIM; % profit

% RISK (fishing mort. & simulation)

if min(sum(B))<Bcrit
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RB(fis,j)=1; %BIOMASS risk

ind=find(sum(B)<Bcrit);

T1B(fis,j)=min(ind)+y1-1; %First year < Bcrit

TNB(fis,j)=length(ind); %Number of years < Bcrit

end

if min(SSB)<SSBcrit

RS(fis,j)=1; %SSB risk

ind=find(SSB<SSBcrit);

T1S(fis,j)=min(ind)+y1-1; %First year < SSBcrit

TNS(fis,j)=length(ind); %Nb of years < SSBcrit

end

if min(sum(Y))<Ycrit

RY(fis,j)=1 ; %YIELD risk

ind=find(sum(Y)<Ycrit);

T1Y(fis,j)=min(ind)+y1-1; %First year < Ycrit

TNY(fis,j)=length(ind); %Number of years < Ycrit

end

if min(P)<Pcrit

RP(fis,j)=1; %PROFIT risk

ind=find(P<Pcrit);

T1P(fis,j)=min(ind)+y1-1; %First year < Pcrit

TNP(fis,j)=length(ind); %Nb of years < Pcrit

end

end

fis=fis+1;

end

%RISK ANALYSIS (fishing mort.)

ind=find(MB<Bcrit); %BIOMASS:

DB(ind)=ones(size(ind)); %Risk distribution (year)

RB(:,SIM+1)=mean(RB(:,1:SIM)')'; %Risk probability

RB(:,SIM+2)=std(RB(:,1:SIM)')'; % standard deviation

f1b=find(RB(:,SIM+1));

f1b=find(RB(:,SIM+1));

for i=[f1b]'

si=find(T1B(i,1:SIM));

T1B(i,SIM+1)=mean(T1B(i,si)); %Mean first year < Bcrit

T1B(i,SIM+2)=std(T1B(i,si)); % standard deviation

end

TNB(:,SIM+1)=mean(TNB(:,1:SIM)')'; %Mean nb of years < Bcrit

TNB(:,SIM+2)=std(TNB(:,1:SIM)')'; % standard deviation

%

ind=find(MS<SSBcrit); %SSB:

DS(ind)=ones(size(ind)); %Risk distribution (year)

RS(:,SIM+1)=mean(RS(:,1:SIM)')'; %Risk probability

RS(:,SIM+2)=std(RS(:,1:SIM)')'; % standard deviation

f1s=find(RS(:,SIM+1));

for i=[f1s]'

si=find(T1S(i,1:SIM));

T1S(i,SIM+1)=mean(T1S(i,si)); %Mean first year < SSBcrit
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T1S(i,SIM+2)=std(T1S(i,si)); % standard deviation

end

TNS(:,SIM+1)=mean(TNS(:,1:SIM)')'; %Mean nb of years < SSBcrit

TNS(:,SIM+2)=std(TNS(:,1:SIM)')'; % standard deviation

%

ind=find(MY<Ycrit); %YIELD:

DY(ind)=ones(size(ind)); %Risk distribution (year)

RY(:,SIM+1)=mean(RY(:,1:SIM)')'; %Risk probability

RY(:,SIM+2)=std(RY(:,1:SIM)')'; % standard deviation

f1y=find(RY(:,SIM+1));

for i=[f1y]'

si=find(T1Y(i,1:SIM));

T1Y(i,SIM+1)=mean(T1Y(i,si)); %Mean first year < Ycrit

T1Y(i,SIM+2)=std(T1Y(i,si)); % standard deviation

end

TNY(:,SIM+1)=mean(TNY(:,1:SIM)')'; %Mean nb of years < Ycrit

TNY(:,SIM+2)=std(TNY(:,1:SIM)')'; % standard deviation

%

ind=find(MP<Pcrit); %PROFIT:

DP(ind)=ones(size(ind)); %Risk distribution (year)

RP(:,SIM+1)=mean(RP(:,1:SIM)')'; %Risk probability

RP(:,SIM+2)=std(RP(:,1:SIM)')'; % standard deviation

f1p=find(RP(:,SIM+1));

for i=[f1p]'

si=find(T1P(i,1:SIM));

T1P(i,SIM+1)=mean(T1P(i,si)); %Mean first year < Pcrit

T1P(i,SIM+2)=std(T1P(i,si)); % standard deviation

end

TNP(:,SIM+1)=mean(TNP(:,1:SIM)')'; %Mean nb of years < Pcrit

TNP(:,SIM+2)=std(TNP(:,1:SIM)')'; % standard deviation

% RISK PLOTS

if PLO==1

%

figure %TOTAL BIOMASS:

clf reset

subplot(3,1,1)

plot(F,RB(:,SIM+1),'mo:') %Risk probability / F

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);
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end

xlabel('Fishing mortality');

ylabel('Risk probability for biomass');

subplot(3,1,2)

plot(F(f1b),T1B(f1b,SIM+1),'mo:') %First year < Bcrit / F

xlabel('Fishing mortality');

ylabel('First year beyond Bcrit');

subplot(3,1,3)

plot(F,TNB(:,SIM+1),'mo:') %Number of years < Bcrit / F

xlabel('Fishing mortality');

ylabel('Number of years beyond Bcrit');

%

figure %Biomass risk distribution

clf reset

subplot(2,1,1)

mesh(y1:y2,F,MB);

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Bcrit=',num2str(Bcrit/1e10),'E10 kg']);

end

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Mean total biomass');

subplot(2,1,2)

mesh(y1:y2,F,DB);

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Biomass risk distribution');

figure %SPAWNING STOCK BIOMASS:

clf reset

subplot(3,1,1)

plot(F,RS(:,SIM+1),'mo:') %Risk probability / F

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...
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int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

end

xlabel('Fishing mortality');

ylabel('Risk probability for SSB');

subplot(3,1,2)

plot(F(f1s),T1S(f1s,SIM+1),'mo:') %First year < SSBcrit / F

xlabel('Fishing mortality');

ylabel('First year beyond SSBcrit');

subplot(3,1,3)

plot(F,TNS(:,SIM+1),'mo:') %Number of years < SSBcrit / F

xlabel('Fishing mortality');

ylabel('Number of years beyond SSBcrit');

%

figure %SSB risk distribution

clf reset

subplot(2,1,1)

mesh(y1:y2,F,MS);

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), SSBcrit=',num2str(SSBcrit/1e10),'E10 kg']);

end

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Mean SSB');

subplot(2,1,2)

mesh(y1:y2,F,DS);

xlabel('Year');

ylabel('Fishing mortality');

zlabel('SSB risk distribution');

figure %YIELD:

clf reset

subplot(3,1,1)

plot(F,RY(:,SIM+1),'mo:') %Risk probability / F

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==0 & AC==1
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title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

end

xlabel('Fishing mortality');

ylabel('Risk probability for yield');

subplot(3,1,2)

plot(F(f1y),T1Y(f1y,SIM+1),'mo:') %First year < Ycrit / F

xlabel('Fishing mortality');

ylabel('First year beyond Ycrit');

subplot(3,1,3)

plot(F,TNY(:,SIM+1),'mo:') %Number of years < Ycrit / F

xlabel('Fishing mortality');

ylabel('Number of years beyond Ycrit');

%

figure %Yield risk distribution

clf reset

subplot(2,1,1)

mesh(y1:y2,F,MY);

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Ycrit=',num2str(Ycrit/1e10),'E10 kg']);

end

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Mean yield');

subplot(2,1,2)

mesh(y1:y2,F,DY);

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Yield risk distribution');

figure %PROFIT:

clf reset

subplot(3,1,1)

plot(F,RP(:,SIM+1),'mo:') %Risk probability / F
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if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit/1e10),'E10 kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit/1e10),'E10 kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',nXSum2str(Pcrit/1e10),'E10 kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SxsIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit/1e10),'E10 kg']);

end

xlabel('Fishing mortality');

ylabel('Risk probability for profit');

subplot(3,1,2)

plot(F(f1p),T1P(f1p,SIM+1),'mo:') %First year < Pcrit / F

xlabel('Fishing mortality');

ylabel('First year beyond Pcrit');

subplot(3,1,3)

plot(F,TNP(:,SIM+1),'mo:') %Number of years < Pcrit / F

xlabel('Fishing mortality');

ylabel('Number of years beyond Pcrit');

%

figure %Profit risk distribution

clf reset

subplot(2,1,1)

mesh(y1:y2,F,MP);

if SR==0 & AC==0

title(['Beverton-Holt - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit),' kg']);

elseif SR==0 & AC==1

title(['Beverton-Holt AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit),' kg']);

elseif SR==1 & AC==0

title(['Ricker - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit),' kg']);

elseif SR==1 & AC==1

title(['Ricker AC - ',int2str(SIM),' simulations (',...

int2str(y2-y1+1),' years), Pcrit=',num2str(Pcrit),' kg']);

end

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Mean profit');

subplot(2,1,2)

mesh(y1:y2,F,DP);

xlabel('Year');

ylabel('Fishing mortality');

zlabel('Profit risk distribution');

end
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if PRI==1

file=['hdd',int2str(SR),int2str(AC),int2str(y2-y1+1)];

save(file,'AC','Bcrit','CW','Ycrit','DB','DY','DS','MB','MY','MS',...

'F','IC','MO','N0','RB','RY','RD','RS','SIM','SR','SSBcrit',...

'SW','T1B','TNB','T1Y','TNY','T1S','TNS','a1','amax','amin',...

'arec','b','g','f1b','f1y','f1s','m','s','sigma','y1','y2',...

'DP','Pcrit','MP','RP','T1P','TNP','f1p'))

end
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