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ABSTRACT

In this paper we study the conditions for the absence of arbitrage, single agent’s optimality, and equilibrium in a
market under frictions and with more sources of uncertainty than tradable assets. In other words, we analyze a state-
price deflator, i.e., a deflator with the property that the deflated prices of tradable assets are martingales, in the
presence of frictions and incompleteness. A unique state-price deflator may exist only on projected markets. It is
shown that if the market conditions hold for the projected markets, they hold also for the initial market.

KEYWORDS: Arbitrage, equilibrium, incomplete markets, optimization, transaction costs

1. INTRODUCTION

Markets are incomplete, if there exist more than one state-price deflator, i.e., a deflator with the property that the
deflated price of a tradable asset is a martingale. If the markets are incomplete, the price of a contingent claim may
depend on the state-price deflator with respect to which it is priced. In this paper we extend the framework of
absence of arbitrage, optimal portfolio and consumption choice, and security markets equilibrium in complete
markets to cover markets with frictions and without dynamic spanning.

                                                       
* The author is grateful to Tomas Björk, Esa Jokivuolle, Samu Peura, Sampsa Samila, Esko Valkeila, and Tuomo Vuolteenaho
for helpful suggestions and comments.
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The general framework for arbitrage free condition in complete markets is derived in Harrison and Kreps (1979),
Harrison and Pliska (1981), Kreps (1981), and Cox and Huang (1986). Merton (1969, 1971), Cox and Huang
(1989), and Karatzas, Lehoczky, and Shreve (1987) have solved optimal portfolio and consumption choice problem
in complete markets. Security markets equilibrium in complete markets is studied, e.g., in Breeden (1979), Duffie
and Zame (1989), and Huang (1987). Jouini and Kallal (1995) derive the arbitrage free condition under transaction
costs. They show that, in the presence of transaction costs, the absence of arbitrage condition is equivalent to the
existence of an equivalent probability measure that transforms some process between the bid and ask price processes
into a martingale. Hedging and portfolio optimization under transaction costs are analyzed in Cvitanic and Karatzas
(1996). Cvitanic and Karatzas (1993) consider hedging in the presence of general closed, convex constraint sets of
portfolio processes, and their methodologies can also be applied to the case of different interest rates for borrowing
and lending. The single agent’s optimality in an incomplete market is studied, e.g., in Cvitanic and Karatzas
(1992), Duffie and Sun (1990), and Leland (1985). Grossman and Shiller (1982) and Back (1991) derive market
equilibrium without dynamic spanning condition. These models start the analysis from the state-price deflators
implicitly given by single agents, and then derive the excess expected rates of return on all securities from the
covariance of returns with aggregate consumption increments and the ‘market-risk-aversion’ constant.

In this paper we consider the same kind of problems that are studied in Jouini and Kallal (1995) and Cvitanic and
Karatzas (1992, 1993, 1996), and we utilize their framework. In contrast to Jouni and Kallal, we consider also
markets without dynamic spanning, and we derive the market conditions by using the quotient space of prices of
tradable assets. The initial stochastic variables are projected into a new space, on which markets are complete and
frictionless, and we can employ the framework of complete markets. These projected markets are the same kind of
fictitious markets that are used in Cvitanic and Karatzas (1992, 1993, 1996). In addition to Cvitanic and Karatzas,
we let the volatility processes of tradable assets differ between various fictitious markets, and we also consider
general market frictions, for instance frictions in getting information and time-varying transaction costs. We show
that the market conditions hold in the initial economy if they hold in the projected markets.

The rest of the paper is organized as follows: Section 2 defines the framework used in the paper, and Section 3
derives the projected market. Section 4 derives the market equilibrium conditions, and Section 5 concludes.

2. MODEL

We explore an economy where instruments are traded continuously within a time horizon [ ]τ,0 . There is a finite

set of tradable assets, H, where kH = , and a set of agents, denoted by M. An agent m ∈  M is defined by a nonzero

consumption endowment process me  and a strictly increasing utility function mU .

In describing the probabilistic structure of the economy corresponding to an agent m ∈  M, we refer to an
underlying probability space ),,( )(

m
n PF mΩ , along with the standard filtration [ ]{ }∞<∈ m

n
t ntF m ,,0:)( τ . Here Ω  is a

set, )( mnF  is a σ -algebra of subsets of Ω  generated by an mn -dimensional Brownian motion ),,( 1 mn
mm BB K , and mP

is a probability measure on )( mnF . The probability spaces may differ between various agents, e.g., because there

may be frictions in getting market information and because the portfolios of different agents may partly depend on
various sources of uncertainty. We denote by mn

sL  the class of functions [ ] sf R→Ω×τ,0:  in a Hilbert space such
that

i)  ),(),( ωω tft a  is B × )( mnF  -measurable, where B denotes the Borel σ -algebra on [0, τ]

ii)  ),( ωtf  is )( mn
tF -adapted.

iii)  each coordinate if  of f in sR  satisfies ∞<










∫
T

im dttfE
0

2),( ω  for all [ ]τ,0∈T , where mE  denotes the

expectation with respect to mP . Hereafter the index of E is omitted.

The following assumptions characterize more our economy.
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ASSUMPTION A1: The possible tradable asset prices that are discounted by risk-free interest rate for an agent
m ∈  M are given by the closed space n

km LX ⊂ . The prices are such that the bid prices are always lower or equal
to the corresponding ask prices.

Assumption A1 means that there does not have to be a unique price vector representing the tradable assets. This
is due to frictions in the market and/or bid-ask spread for interest rates. In our model the bid price is the selling
price after transaction costs and other frictions, and the ask price is the buying price after the market frictions. The
price processes depend on agents, because market frictions may differ between various agents. For instance, due to
the frictions in the distribution of information various agents may have different process estimates. The price
processes are also functions of the portfolio processes, because transaction costs usually depend on the portfolio
increments. The prices may depend also on the agent’s actions. This happens when the investor is a significant
player in the market. The processes in mX  are the price processes of our fictitious markets corresponding to the
agent m ∈  M. The following assumption is used in the calculation of optimal consumption and trading strategies.

ASSUMPTION A2: For all m ∈  M there exists a price process in mX  such that given the price process the
agent m is not willing to trade in the market.

Assumption A2 implies that all the agents have an option to trade in the market and they can stop the trading for
a time if they want.

ASSUMPTION A3: The stochastic variables of tradable assets that are discounted by risk-free interest rate
corresponding to an agent m ∈  M follow an Itô stochastic differential equation

(1) [ ]τσα ,0,)0(allfor )()()()()()( 0,,, ∈∈×× tXxtdBttdt + xtt = xtdx mmmmxmmxmm

where mm Xx ∈ , )0(mx  is a random variable which is independent of )( mnF∞  and [ ] ∞<2)0(mxE , mn
kmx L∈,α ,

m

m

n
nkmx L ×∈,σ , m

m

n
nm LB ∈  is an mn -dimensional Brownian motion on the probability space ),,( )(

m
n PF mΩ , knm ≥ ,

and 0,mX  is the range of processes in mX  at time 0 corresponding to the agent m. The operator × is defined as
follows

[ ]
















=×

=×

)()()()(

)()()()(

)()(

)()()()()()(

,
,

1,
,

,1
,

11,1
,

1

,

'
,

1
,

1
,

ttxttx

ttxttx

ttx

ttxttxttx

nk
mx

k
m

k
mx

k
m

n
mxmmxm

mxm

k
mx

k
mmxmmxm

σσ

σσ
σ

ααα

K

MOM

K

K

and 'x  is the transpose of x.

We will refer xα  and xσ  as the drift and volatility processes of x. Assumption A3 means that there may exist
more sources of uncertainty than there are tradable assets. The coordinates of )(tx  can be dependent, as they
usually are. Combining assumptions A1 and A3 we see that each process in mX  is given by equation (1). For
instance, equation (1) holds for the process that first equals the bid price of the tradable asset and then the ask price.
This assumption is made in order to simplify our analysis. Comparing A1 and A3 with Cvitanic and Karatzas
(1992, 1993) we see that in our model the volatility processes of different fictitious markets may differ and various
agents may have distinct process estimates. This is, e.g., due to frictions in getting information, uncertainty in
transaction costs, agent specific risks, and uncertainty in illiquid assets.

ASSUMPTION A4: For each agent m ∈  M there exists a mapping mm

m

n
k

n
nk LL →×:ψ  such that

(2) [ ] ..,,,0allfor ),(),(),,,)(( ,, saXxtttmxt mmmxmx ∈∈= τωϑωσωσψ

where m

m

n
nmx L∈,ϑ , knk

mx
mt RR →×:),(, ωϑ  is onto but not necessary one to one, mx,ϑ  satisfies Novikov’s condition

(3) [ ]τωϑ ,0allfor ),(
2
1exp

0

2
, ∈∞<


















∫ TdttE
T

mx
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and ),(),,,)(( , ωαωσψ tmxt mxx =  for all [ ]τ,0∈t  almost surely.

The situation of Assumption A4 emerges because m

m

n
nkmx L ×∈,σ  may be singular. We will refer to mx,ϑ  as the

market price of risk. A4 is a central assumption of the paper, because, as we will see, the market conditions hold if
it is true. If )(, tmxσ  is singular for some [ ]τ,0∈t , the agent m ∈  M chooses one market price of risk process for

each process in mX  according to his or her tastes about risks among the processes in the market that satisfy A4. If
)(, tmxσ  is invertible for all [ ]τ,0∈t , markets are complete and mx,ϑ  is unique.

ASSUMPTION A5: The utility functions of investors are smooth-additive.

A5 means that the utility function U: R+ →  R of the agent m ∈  M is defined by

(4) ( ) [ ]τ,0allfor ,)(
0

∈










= ∫ TdttcuEcU

T

mm

where c is an adapted non-negative consumption in mnL1 , mu : R+ × (0,T) →  R is smooth on R+ × (0,T), and for each

t ∈  [0,T], mu (⋅,t):  R+ →  R is increasing, strictly concave, with an unbounded partial derivative 
c

tum

∂
∂ ),(⋅

 on R+

satisfying the Inada conditions: 0
),(

inf =
c

tcum

∂
∂

 and ∞=
c

tcum

∂
∂ ),(

sup  for all t ∈  [0,T].

3. QUOTIENT SPACES

In this section we derive the quotient spaces of m

m

n
nkL ×  and mn

kL  [for the discussion of quotient spaces see e.g.

Kelley (1955)].

Let us define the equivalence relation )(, tR mx  by setting 2,1 )( σσ tR mx , where m

m

n
nkL ×∈21 ,σσ , if

),(),(),(),( ,2,1 ωϑωσωϑωσ tttt mxmx =  almost surely, where mx,ϑ  is given by Assumption A4, [ ]τ,0∈t , mXx ∈ ,

and Mm ∈ . The range of processes in m

m

n
nkL ×  can be divided into equivalence classes

{ }σσσσρ )(;),( ,11, tRLt mx
n

nkmx
m

m×∈=  for all [ ]τ,0∈t , and the set of equivalence classes is denoted by

{ }n

n

m

m

n
nkmxmx

n
nk LRL ×× ∈⋅=⋅ σσρ ),()( ,,  and is called the quotient space of m

m

n
nkL ×  with respect to )(, ⋅mxR . The

quotient space is a partition of m

m

n
nkL × . That is, every element of m

m

n
nkL ×  belongs to one and only one class in

)(, ⋅× mx
n

nk RL m

m
. The continuous mapping )(:),(

,, tRLLt
mx

n
nk

n
nkmx

m

m

m

m ×× →⋅ρ  is called projection, and the image of σ  is

the equivalence class into which σ  belongs. The mapping ),(, ⋅tmxρ  is a linear surjection which coinduces a σ -

algebra on )(
,

tRL
mx

n
nk

m

m× . Now we can state the following lemma.

LEMMA 1: ψ  defined in Assumption A4 induces a continuous linear bijective mapping
∗→⋅×

∗ mm

m

n
kmx

n
nk LRL )(: ,ψ , such that

(5)
( )

[ ] ..,,,,0allfor 

),(),(,),(),( ,,,,,

saMmXxt

ttttt

m

mxmxmxmxmx

∈∈∈
= ∗

τ
ωϑωσρωϑωσ

where 
∗

∗∈∗ m

m

n
nmx L,ϑ , knk

mx
mt RR →∗×∗ :),(, ωϑ  is a bijection that satisfies the Novikov’s condition and

)(),( ,,, ⋅∈⋅ × mx
n

nkmxmx RL m

m
σρ  for all m

m

n
nkmx L ×∈,σ , and knm ≤∗ . That is, ( ) )(),( ,,, mxmxmx t σψσρψ =∗  and the

canonical factorization of ψ  is mx,ρψψ o∗= . Figure 1 illustrates the situation.

m

m

n
nkL ×

∗
mn

kL

ψ
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mx,ρ

Figure 1. The canonical factorization of ψ

PROOF: First we note that ∗ψ  is well defined. That is,

),,,)((),,,)((),(),( 212,1, ωσψωσψσρσρ mxtmxttt mxmx =↔=  almost surely, where m

m

n
nkL ×∈21 ,σσ , [ ]τ,0∈t ,

mXx ∈ , and Mm ∈ . Because mm

m

n
k

n
nk LL →×:ψ  is a continuous linear surjection, and ),(, ⋅tmxρ  is a continuous

linear projection, which coinduces the σ -algebra of )(
,

tRL
mx

n
nk

m

m× , ∗ψ  is continuous and linear. It is also a

bijection, since ∗ψ  is injection by the definition of )(, tR mx , and therefore knm ≤∗ . This means that there could be

no other 
∗

∗∈∗ m

m

n
n

Lϑ  that satisfies ( ) ),(),(,),( ,,,, ωϑωσρωα tttt mxmxmxmx
∗=  almost surely. Because m

m

n
nmx L∈,ϑ  satisfies

the Novikov’s condition and ),(, ⋅tmxρ  is bounded, also ∗
mx,ϑ  satisfies the condition. Now 

∗

∗∈∗ m

m

n
nm LB  is a process in

∗
mnR  on a probability space ( )∗∗

Ω m
n PF m ,, )( , where )()( mm nn FF ⊂

∗

 is the σ -algebra generated by ∗
mB  and

[ ]1,0: )( →
∗∗ mn

m FP  is a probability measure on the measure space ( ))(,
∗

Ω mnF . )(tBm
∗  is obtained from )(tBm  by

eliminating for all [ ]τ,0∈t  the same elements that were eliminated from ψ  in order to get ∗ψ . Q.E.D.

Lemma 1 means that we shrink the dimension of the Brownian motion in order to get the bijection ∗
mx,ϑ . That is,

although we are not able to find a unique market price of risk function in m

m

n
nL  we can find it in 

∗

∗
m

m

n
n

L .

ASSUMPTION A6: ( )σρ ,, ⋅mx  is piecewise constant.

Assumption A6 ensures that we can integrate with respect to )(tBm
∗ , since on the piecewise intervals )(tBm

∗  is an
∗
mn -dimensional Brownian motion.

We denote by m
n
k XL m

∗
 the quotient space of 

∗
mn

kL . The classes of m
n
k XL m

∗
 are mX  and {y}, where y belongs to

the complement of mX , i.e., y ∈  
∗
mn

kL  \ mX . m
n
k XL m

∗
 is obtained from 

∗
mn

kL  by projecting mX  into one point,

m
n
k

n
kmx XLLt mm

∗∗ →⋅ :),(~
,ρ . That is, mx,

~ρ  selects one process into which all the processes in mX  are projected. This

projection is a surjection, which coinduces the σ -algebra of m
n
k XL m

∗
.

Now we can define the process of m
n
km XLx m

∗∈∗  by

(6)
( ) ( )( )

[ ]τ
σρραρ

,0allfor )0(

);()(,)(,~)()(,~)( ,,,,,

∈∈
××

∗

∗∗

tx

tdBtttxtdt +ttxt = tdx
k

m

mmxmxmmxmxmmxm

R

where Mm ∈ , )0(∗
mx  satisfies the condition of A3, 

∗∈ mn
kmx L,α , and ( ) ∗

∗×∈⋅ m

m

n
nkmxmx L,, ,σρ , and the well-defined state-

price deflator 
∗∈∗ mn

m L1π  by

(7) [ ]τωϑωϑπ ,0allfor ),(
2
1)()',(exp)(

0

2
,

0
,

∈










−− ∫∫ ∗∗∗∗
∗∗ tdsssdBs =t

t

mx

t

mmxm

)(
,

⋅× mx

n
nk RL m

m

∗ψ
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Equation (6) implies that there exists a unique price vector and process for tradable assets in the quotient space

m
n
k XL m

∗
, and equation (7) means that there exists a unique state-price deflator on ( )∗∗

Ω m
n PF m ,, )(  for )(txm

∗ . )(txm
∗  is

the price process of a fictitious market and ∗
mπ  is the state-price deflator of the market.

We illustrate our framework with an example. Let the process of )(txm  be defined as follows

(8)
[ ] [ ]

[ ]τ,1allfor )()()()(

1,0allfor 
)(

)(
11)()(

2

2

1

∈+

∈











+

ttdBtxdtt =xtdx

t
tdB

tdB
dtt =xtdx

mmmm

m

m
mm

where )(1 tBm  and )(2 tBm  are independent Brownian motion processes, τ  > 1, and Mm ∈ . The market price of risk
vector is defined as

(9)

[ ]

[ ]τϑ

ϑ

,1allfor 
1
0

)(

1,0allfor 
0
1

)(

∈





=

∈





=

tt

tt

m

m

In this case the process of )(txm
∗  is

(10)
[ ]
[ ]τ,1allfor )()()()(

1,0allfor )()()()(
2

1

∈+
∈+

∗∗∗

∗∗∗

ttdBtxdtt =xtdx

ttdBtxdtt =xtdx

mmmm

mmmm

4. ARBITRAGE, OPTIMALITY, AND EQUILIBRIUM

In this section we consider the absence of arbitrage condition, single agent’s optimality, and security market’s
equilibrium. From the previous section we get the following lemma.

LEMMA 2: There exists mm Xx ∈  and mn
m L1∈π  such that ),( ωtxm  is a martingale on ),,( )(

m
n QF mΩ , where mQ

is an equivalent martingale measure with Radon-Nikodym derivative

(11) )(on)( mn
tm

m

m Ft
dP
dQ π= ,

Mm ∈ , and 










−− ∫∫
t

mx

t

mmxm dsssdBs =t
0

2
,

0
, ),(

2
1)(),(exp)( ωϑωϑπ , if and only if ),( ωtxm

∗  is a martingale on

),,( )( ∗∗

Ω m
n QF m , where ∗

mQ  is an equivalent martingale measure with Radon-Nikodym derivative

(12) )(on)(
∗∗

∗

∗

= mn
tm

m

m Ft
dP
dQ π

and  tm )(∗π  is given by equation (7).

PROOF: If ),(),( ωωπ txt mm , which process is

(13)
( ) [ ]

[ ] )()'()()()()(

)()()()()()()(

,,

,,,

tdBttxttxt

dtttttxttxtd

mmxmmxmm

mxmxmxmmmm

ϑσπ
ϑσαππ

−×
+−×=

is a martingale, then also ),())(( ωωπ txt mm
∗∗ , which process is

(14)
( ) ( ) ( )( )[ ]

( )( )[ ] )()'()()(,,~)()(

)()(,,~)(,~)()()()(

,,,,

,,,,,,

tdBttxttttxt

dttttttttxttxtd

mmxmmxmxmxmm

mxmxmxmxmxmxmmmm

∗∗∗∗∗

∗∗∗∗∗

∗

∗

−×

+−×=

ϑσρρπ

ϑσρραρππ
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is a martingale. This is because

(15) ( ) [ ] ..,,0allfor )(),(,)(),( ,,,,, satttttt mxmxmxmxmx τϑωσρϑωσ ∈= ∗
∗

and mx,
~ρ  projects all the processes in mX  into mx . That is

(16)
( ) ( )( )

[ ] ..,,0allfor 

)()()()()(,,~)(,~
,,,,,,,,,

sat

ttttttttt mxmxmxmxmxmxmxmxmx

τ
ϑσαϑσρραρ

∈
−=− ∗

∗

Conversely, if ),(),( ωωπ txt mm
∗∗  is a martingale then there exists mm Xx ∈  and n

m L1∈π  such that (16) holds and
according to Assumption A4

(17) [ ] ..,,0allfor ),(),(),( ,,, satttt mxmxmx τωϑωσωα ∈=

This gives ),(),( ωωπ txt mm  is also a martingale and [ ] [ ])()( txEtxE mm QQ ∗∗= , where mQE  means the expectation

with respect to mQ , for all [ ]τ,0∈t . Q.E.D.

Lemma 2 means that if there exists mm Xx ∈  and mQ  such that ),( ωtxm  is a martingale on ),,( )(
m

n QF mΩ  then

also ),( ωtxm
∗  is a martingale on ( )∗∗

Ω m
n QF m ,, )(  and vice versa. This yields the fact that the sufficient condition for

the absence of arbitrage on ),,( )(
m

n PF mΩ  is that there exists a unique state-price deflator on ( )∗∗

Ω m
n PF m ,, )(  that is

given by (7) for all Mm ∈ . Given Assumption A4 each process of mX  is a martingale with respect to its own

martingale measure. Therefore in our analysis Lemma 2 only fixes the martingale measure ∗
mQ . The arbitrage-free

condition is proved in Theorem 1.

THEOREM 1: There is no arbitrage in the initial market if and only if there is a state-price deflator on

( )∗∗

Ω m
n PF m ,, )(  for all Mm ∈ .

PROOF:  There is no arbitrage on ( )∗∗

Ω m
n PF m ,, )(  if and only if there exists an equivalent martingale measure with

Radon-Nikodym derivative ∗
mπ  [see Harrison and Kreps (1979), Harrison and Pliska (1981), Kreps (1981), and

Clark (1993)]. We can write the deflated process of a dynamic portfolio )()( txt mθ , where mn
kL∈'θ  is a trading

strategy process on ( )m
n PF m ,, )(Ω , as follows

(18) [ ] ( )[ ] [ ]τπθπθ ρρ ,0allfor )()()()()()()()(
0

~

0

∈++∫∫ ∗ tsxsxsxsds =sxsds
t

mmmm

t

mm

where Mm ∈ , )())(,(~)( 1
,

~
txtxttx mmmxm

∗∗− −∈ ρρ , )())(,()( 1
, txtxttx mmmxm

∗∗− −∈ ρρ , and











−− ∫∫
t

mx

t

mmxm dsssdBs =t
0

2
,

0
,

),(
2
1)(),(exp)( 11 ωϑωϑπ , ( ) )()(,~ 1

, txtxt mmmx =ρ  for all mm Xx ∈ , and mm Xx ∈1 .

Because )(tmπ  is the state price deflator of 1
mx , we get from Assumption A1 the following condition

(19) [ ] [ ] mm

t

mm XxtsxsdsE ∈∈≤










∫ ,,0allfor 0)()()(
0

~ τπθ ρ

That is, if 0)(
~ ≤txm
ρ  then 0)( ≥tθ , and if 0)(

~ ≥txm
ρ  then 0)( ≤tθ . This is due to transaction costs. Combining

(18) and (19) we see that )()()( txtt mmπθ  is a supermartingale. If this holds for all Mm ∈ , then there is no
arbitrage in the initial market.

Conversely, if we assume that there is no arbitrage in the initial market then there exist mm Xx ∈  such that

)()( txt mmπ  is a martingale for all Mm ∈ . Equations (18) and (19) ensure that this implies the absence of arbitrage

condition. Projecting all the processes in mX  into mx , we see that there is no arbitrage on ( )∗∗

Ω m
n PF m ,, )( , because
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)()( txt mm
∗∗π  is a martingale for all Mm ∈ .

Q.E.D.

Theorem 1 implies the same that is also proved in Jouini and Kallal (1995). That is, the absence of arbitrage
condition is equivalent to the existence of an equivalent probability measure that transforms some process between
the bid and ask price processes into a martingale. In our analysis all the processes of the initial economy are
martingales with respect to their own martingale measures. However, in the proof of Theorem 1 we only need to
assume that for all Mm ∈  there exists one process in mX  such that it is a martingale under the equivalent
martingale measure.

The problem in finding the optimal hedging, consumption, and portfolio processes under transaction costs and
other frictions is the fact that trading can be seen as zero-utility consumption. As mentioned earlier, the process

mm Xx ∈  is a function of the trading strategy, and therefore also the martingale measure of mx  is a function of the
trading strategy. We write explicitly )()( , txtx mm θ=  and )()( , tt mm θππ = .

We define the T -maturity upper- and lower- hedging prices of a contingent claim C in our initial economy as

(20) { }




 ≥=

∈∈
..),()()()()(infinf)( 1,, saxTCTxTtxttC mm

LMm

up
n
k

θθθ
θθ

and

(21) { }






 ≤−=

∈∈
..),()()()()(supsup)( 1,, saxTCTxTtxttC mm

LMm

low

n
k

θθ
θ

θθ

where the portfolios are self-financing, x1 is the underlying price process, and ∞≤≤≤ )()(0 tCtC uplow . Because it
is possible that the market is incomplete, there may be uncontrollable risks in the agents’ portfolio processes. The
upper hedging price is finite if it is independent of the uncontrollable risks and the asset prices are independent of
the agents’ actions. Using the framework of Cvitanic and Karatzas (1993) we get the following proposition.

PROPOSITION 1: If the upper hedging price is finite, we get

(22) [ ]{ }{ })(
1 ),(supinf)(

∗∗

∈
= mm n

t
Q

Mm

up FxTCEtC

and

(23) [ ]{ }{ })(
1 ),(infsup)(

∗∗

∈
= mm n

t
Q

Mm

low FxTCEtC

where [ ]Tt ,0∈  and [ ]τ,0∈T .

PROOF: If Q is the martingale measure of x1, then [ ]t
Q FxTCExtC ),(),( 11 =  is the price in a complete

frictionless market. The price on ( )∗∗

Ω m
n PF m ,, )(  is now given by

(24) [ ])(
1 ),()(

∗∗=∗ mm n
t

Q
m FxTCEtC

Taking supremum over all martingale measures we get

(25) [ ]{ })(
1 ),(sup)(

∗∗≤ mm n
t

Qup
m FxTCEtC

where up
mC  is the upper price corresponding to agent m. In the same way we get for the lower price

[ ]{ })(
1 ),(inf)(

∗∗≥ mm n
t

Qlower
m FxTCEtC .

Now we take any self-financing portfolio process that satisfies ),()()( 1, xTCTxT m ≥θθ . Because

[ ] [ ])) (
1

(
, ),()()(

∗∗∗∗ ≥ mmmm n
t

Qn
tm

Q FxTCEFTxTE θθ  for all the projected martingale measures ∗
mQ , we get from (19)

(26) [ ]{ })(
1 ),(sup)(

∗∗≥ mm n
t

Qup
m FxTCEtC
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Similarly, with the lower hedging price we get [ ]{ })(
1 ),(inf)(

∗∗≤ mm n
t

Qlower
m FxTCEtC  by constructing any self-

financing portfolio that satisfies ),()()( 1, xTCTxT m ≤θθ .

Taking the infimum over all the upper prices we get the market upper price, and taking the supremum over all the
lower prices we get the market lower price.

Q.E.D.

Proposition 1 implies that if the frictions are zero, i.e., the bid and ask prices are equal, for all the agents in M,
then the upper- and lower hedging prices are equal if the upper prices are finite.

Now we start to consider the optimal consumption and portfolio processes. Given the adapted consumption
endowment process 

∗∈∗ mn
m Le 1  on ( )∗∗

Ω m
n PF m ,, )(  there exists a dynamic portfolio )()( , txt m

∗∗
∗θθ , where 

∗∈∗ mn
kL'θ  is a

trading strategy process, which finances an adapted consumption process 
∗

∈∗ mn
m Lc 1  on ( )∗∗

Ω m
n PF m ,, )(  if

(27)
[ ] [ ]

[ ]Tt

sxsdsdsscsestxtt
t

mm

t

mmmmm

,0allfor 

)()()()()()()()()(
0

,,
*

0
,,

∈

+−= ∫∫ ∗∗∗∗∗∗∗∗
∗∗∗∗ θθθθ πθπθπ

and 0)()()( ,, =∗∗∗
∗∗ TxTT mm θθ θπ , i.e., terminal consumption is zero, where Mm ∈  and [ ]τ,0∈T . mn

mm Lce 1, ∈  are

the corresponding processes of ∗
me  and ∗

mc  on ),,( )(
m

n PF mΩ .

Equation (27) gives the following lemma.

LEMMA 3: Given the endowment process mn
m Le 1∈  and any adapted mn

m Lc 1∈  there exists a process mn
kL∈'θ

financing c if and only if

(28) [ ] 0)()()(
0

,
=











−∫ ∗∗∗
∗

T

mmm
dttetctE θπ

and

(29) [ ]∫∫∫ +=
T

mm

T

mm

T

mm sxsdsdssesdsscs
0

,,
*

0
,

0
, )()()()()()()( ρ

θ
ρ

θ
ρρ

θ
ρρ

θ πθππ

where )())(,()( ,,
1
,, txtxttx mmmxm

∗∗−
∗∗ −∈ θθ

ρ
θ ρ , )())(,()( 1

, tctcttc mmmxm
∗∗− −∈ ρρ , )())(,()( 1

, tetette mmmxm
∗∗− −∈ ρρ ,

)()()( ,,, ttt mmm
∗

∗−= θθ
ρ

θ πππ , [ ]τ,0∈T , and ∗= θθ  almost surely.

PROOF: See e.g. Cox and Huang (1989) for the proof that Lemma 3 holds for ∗
me  and ∗

mc on ( )∗∗

Ω m
n PF m ,, )( . Now

mx,
~ρ  projects all the processes in mX  into θ,mx  and we get by using (18) and (27) the following financing condition

(30)

[ ] [ ]

[ ] [ ]
[ ]Tt

sxssxsdsdsscses

dsscsestxttxtt

t

mmmm

t

mmm

t

mmmmmmm

,0allfor 

)()()()()()()()(

)()()()()()()()(

0
,,,,

0
,

0
,,,,,

∈

++−

+−=+

∫∫

∫
∗∗

∗∗∗∗∗

∗∗

∗∗∗

ρ
θ

ρ
θθθ

ρρρ
θ

θ
ρ

θ
ρ

θθθ

ππθπ

πππθ

and [ ] 0)()()()()( ,,,, =+∗∗
∗∗ TxTTxTT mmmm

ρ
θ

ρ
θθθ ππθ , where ∗= θθ . Because ∗θ  finances ∗

mc  we get from (30)

equation (28) and

(31)
[ ] [ ] [ ]

[ ]Tt

sxsdsdsscsestxtt
t

mm

t

mmmmm

,0allfor 

)()()()()()()()()(
0

,,
*

0
,,,

∈

+−= ∫∫∗ ρ
θ

ρ
θ

ρρρ
θ

ρ
θ

ρ
θ πθππθ

Taking into account the terminal consumption condition we get (29).



11

Conversely, if θ  finances c, then (30) holds. Because ρ
θ,mx  and ∗

∗θ,mx  are independent processes, we get equations

(27) and (31) from (30). Using again the terminal consumption condition and the framework of Cox and Huang
(1989) we get (28) and (29).

Q.E.D.

Lemma 3 implies that in an incomplete market there can be uncontrollable risks in the agents’ endowment and
portfolio processes.

Given Lemma 3 a single agent m ∈  M faces the following problem on ( )∗∗

Ω m
n PF m ,, )(

(32) ( )∗

∈
∗∗

cU m
Lc mn

m 1

sup

subject to

(33) [ ] 0)()()(
0

,
=











−∫ ∗∗∗
∗

T

mmm
dttetctE θπ

Now we can state the following theorem.

THEOREM 2: There exists an optimal consumption and trading strategy on ( )m
n PF m ,, )(Ω  for agent m ∈  M if

and only if there exist an optimal consumption and trading strategy on ( )∗∗

Ω m
n PF m ,, )( . The optimal consumption

choice 
∗∈∗ mn

m Lc 1ˆ  on ( )∗∗

Ω m
n PF m ,, )(  for agent m∈  M on time period [ ]T,0  is

(34) [ ] [ ]TtttItc
mmmm

,0allfor ),()(ˆ ˆ,ˆ,ˆ,
∈= ∗∗∗

∗∗∗ θθθ πγ

where [ ]tIm ,⋅  inverts 
c

tum

∂
∂ ),(⋅

, meaning that xt
c

txu
I m

m =



 ,

),(
∂

∂
 for all x and t, and 0ˆ,

>∗
∗θγ

m
 is a Lagrange

multiplier satisfying [ ]{ } 0)(),()(
0

ˆ,ˆ,ˆ,
=





−∫ ∗∗∗∗

∗∗∗

T

mmmmm
dttettItE θθθ πγπ .

The optimal portfolio ∗θ̂  solves

(35)
( )( )[ ]

[ ] ..,,0allfor 

)'()()(,,~)()'(
)(

1)(ˆ 1

,ˆ,,,,ˆ,ˆ,
ˆ,

ˆ

saTt

ttxttttxt
t

t
mxmmxmxmxmm

m

∈

−×= −∗∗∗∗
∗

∗
∗∗∗∗

∗

ϑσρρϕ
π

θ θθθ
θ

θ

where [ ]{ } )()'()(),()(
0

ˆ,
)(

,
0

ˆ,ˆ,ˆ,
sdBsFdssessIsE m

t

m
n
mt

T

mmmm
∗∗∗∗∗∗ ∫∫ ∗

∗

∗∗∗ =









− θθθθ ϕπγπ . Further, the optimal consumption and

portfolio processes satisfy

(36) [ ]( ) [ ]( )










≥










∫∫ ∗∗∗∗
∗∗∗∗

T

mmmm

T

mmmm dttttIuEdttttIuE
0

,,
0

ˆ,ˆ,
,),(,),( θθθθ πγπγ

for all ∗θ  and [ ]ttItc mmmm ),()( ,,,
∗∗∗

∗∗∗ = θθθ πγ  that satisfy equations (34) and (35). We also must have

(37) ( ) ∞<∗
∗θ̂,m̂m cU

PROOF: By the saddle point theorem [see e.g. Luenberger (1969)] and strict monotonicity of mU , the optimal

consumption process )(tcm
∗  solves the unconstrained problem

(38) ( ) [ ]










−− ∫ ∗∗∗∗∗

∈
∗∗

∗∗

T

mmmmm
Lc

dttetctEcU
n

m 0
,,

)()()(sup
1

θθ πγ
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From Assumption A5 and (38) we get

(39) [ ] [ ]TtttItc mmmm ,0allfor ),()( ,,, ∈= ∗∗∗
∗∗∗ θθθ πγ

There exist Lagrange multipliers such that [ ]{ } 0)(),()(
0

,,,
=





−∫ ∗∗∗∗

∗∗∗

T

mmmm
dssessIsE θθθ πγπ  holds since [ ]tIm ,⋅  is

continuous and strictly decreasing, and maps ),0( ∞  into itself with [ ] ∞=+ tIm ,0  and [ ] 0, =∞ tIm .

From (14), (27), Lemma 3, and [ ]{ } ∗∗∗∗∗∗ ∫∫ ∗

∗

∗∗∗ =









− s

t

m
n
mt

T

mmmm
dBsFdssessIsE

0
,

)(
,

0
,,,

)'()(),()( θθθθ ϕπγπ  we get

(40) ( )[ ] 1

,,,,,
,

)'()())(,(,)()'(
)(

1
)(

−∗∗∗∗
∗

∗
∗∗∗∗∗∗

∗

−×= ttxttttxt
t

t mxmmxxmm
m

θθ
ϑσρρϕ

π
θ θθθ

θ

The optimal processes have to also satisfy equations (36) and (37), and the solution does not have to be unique.

The optimal consumption and portfolio processes on ( )m
n PF m ,, )(Ω  are ρ

θθ ∗∗ +∗
ˆ,ˆ,

ˆ
mm

cc  and ∗θ̂ , where ρ
θ ∗̂,m

c  solves

equation (29). These are optimal processes, because the drift process of ρ
θ ∗̂,m

c  is equal to zero and the volatility

processes of ρ
θθ ∗∗ +∗
ˆ,ˆ,

ˆ
mm

cc  and ∗
∗θ̂,m̂

c  belongs to the same equivalence class with respect to the agent’s market price of

risk. That is, the agent Mm ∈  is risk neutral with respect to ρ
θ ∗̂,m

c .

Correspondingly, if there exist optimal strategies on ( )m
n PF m ,, )(Ω , then the optimal consumption has the

hollowing representation ρ
θθ ∗∗ +∗
,, mm cc , where ∗

∗θ,mc  is a consumption strategy on ( )∗∗Ω m
n

m PF ,, )(  and ρ
θ ∗,m

c  solves

equation (29). If ∗∗
∗∗ ≠ θθ ˆ,, m̂m cc  for all ∗

∗θ̂,m̂
c  that solve (34) - (37), then there exists a consumption strategy that gives

more utility or there does not exist an optimal consumption strategy and a trading strategy that finances the
consumption process. This is a contradiction, since ρ

θθ ∗∗ +∗
,, mm cc  is an optimal consumption process, and we get that

there exist optimal consumption and portfolio processes on ( )∗∗

Ω m
n PF m ,, )( .

Q.E.D.

Theorem 2 implies that the form of the optimal consumption trading strategy is the same as the corresponding
strategies in complete frictionless market. This complete economy is defined by the state-price deflator implicitly
given by equations (34) and (35). Different agents may have distinct state-price deflators, because their frictions,
utility functions, and endowment processes may differ. The difficulty in solving equations (34) – (36) is that we
require that the corresponding state-price deflator is used with an optimal strategy. That is, we can not just fix the
state-price deflator and solve the optimal solution, because usually this leads to strategies that try to take advantage
from frictions. If an agent tries to take advantage from the frictions then Assumption A2 is applied and we set the
asset price equal to a price between the bid and ask prices such that the optimal portfolio increment is zero. Using
Assumption A2, Theorem 2, and the framework of Cvitanic and Karatzas (1996) we get the following proposition.

PROPOSITION 2: If the optimal consumption and trading strategies of an agent m ∈  M exist then they satisfy

(42) ( ) [ ]( )






















= ∫ ∗∗∗

∗ dttttIuEcU
T

mmmmmm
0

ˆ,
,),(infˆ πγθ

where the infimum is taken over all state-price deflators, [ ]τ,0∈T , ∗θ̂  is the optimal trading strategy,
ρ

θθ ∗∗ +∗
ˆ,ˆ,

ˆ
mm

cc  is the optimal consumption process, ρ
θ ∗̂,m

c  solves equation (29), and ∗
mγ  solves

[ ]{ } 0)(),()(
0

=





−∫ ∗∗∗∗

T

mmmm dssessIsE πγπ .
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PROOF: From Theorem 2 we get ( ) [ ]( )






















≥ ∫ ∗∗∗

∗ dttttIuEcU
T

mmmmmm
0

ˆ,
,),(infˆ πγθ . Now we relax the condition that

the corresponding state-price deflator and price process are used with a trading strategy. Let us fix the process ∗
mx

and derive the optimal consumption and trading strategies. Then the deflated wealth process is given by

(43) [ ]τθ ,0allfor )()()(~

0

∈∫ ∗∗
∗ tsdxs =tW

t

mxm

where ∗θ  is the trading strategy which finance the optimal consumption in the fictitious market. The wealth
process that takes into account the frictions is given by

(44) [ ] [ ]τθ ρ ,0allfor )()()()(
0

~ ∈+∫ ∗∗
∗ tsxsxds =tW

t

mmxm

From (19) and (23) we get 0)(~)( =≤ ∗∗ TWTW
mm xx . This gives [ ] [ ]{ })()( )(

~
inf)(

∗

∗

∗∗

∗

∗

≤ m

m

mm

m

m n
t

Qn
t

Q FTWEFTWE ππ , where

the infimum is taken over all martingale measures. Taking into account Theorem 2 we get

(45) ( ) [ ]( )






















≤ ∫ ∗∗∗

∗ dttttIuEcU
T

mmmmmm
0

ˆ,
,),(infˆ πγθ

Q.E.D.

Proposition 2 implies that if there exists a consumption process that gives more utility than the optimal
consumption process then there does not exist a portfolio process that finance the consumption. Assuming
Assumption A2 we get that the trading is zero if the agent is trying to take advantage from the transaction costs,
i.e., if he or she is trying to sell at the ask price or buying at bid price.

Security spot-market equilibrium is a collection

(46) { }MmXxcx mmmmmm ∈∈ ,),,,( θπ ,

such that, given the security-price processes in mX  and the state-price processes, for each agent m, ),( mmc θ solves

(32) and (33), and markets clear 0)( =∑
∈ Mm

m tθ  and ∑
∈

=−
Mm

mm tetc 0)()(  for all [ ]Tt ,0∈ . Using Theorem 2 we get

the following theorem.

THEOREM 3: The equilibrium conditions lead to the following a.s. equality

(47) [ ] [ ]TtttIte
Mm

mmm
Mm

m m
,0allfor ),()( , ∈= ∑∑

∈∈
θπγ

where ),( tIm ⋅  inverts 
c

tum

∂
∂ ),(⋅

, 
mm θπ ,  is the state-price deflator of agent m ∈  M, and mθ  is the optimal portfolio

process of m.

PROOF: From (47) we see directly that commodity market clear and each agent has optimal consumption and
trading strategy. Theorem 2 gives 0)( =∑

∈ Mm
m tθ , i.e., asset markets clear, because ∑

∈
=

Mm
m t

m
0)(,θϕ . Q.E.D.

From Theorem 2 and Theorem 3 we see that the sufficient condition for the existence of an equilibrium on the
incomplete market with frictions is that there exist optimal strategies for each agent on his or her complete
frictionless market that is inside the initial market. If the initial market is complete and frictionless then mx,ρ  and

mx,
~ρ  are identity mappings. That is, the results of this paper can be seen as an extension to the corresponding

theorems in complete markets.
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5. SUMMARY

This paper studies the state-price deflator in the presence of frictions and without dynamic spanning. A unique
state-price deflator may only exist on projected markets. The existence of the deflator is equivalent to the existence
of a surjection that maps the volatility functions onto the drift functions. There is no arbitrage, if there exists a
unique state-price deflator on a projected market. If there exists an optimal consumption process and a portfolio that
finance the consumption on a projected market then there exists an optimal strategies also on the initial market.
Given the optimal consumption process and trading strategy for single agents, there exists an equilibrium for
tradable assets.
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