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ABSTRACT

In this paper we study the conditions for the absence of arbitrage, single agent’s optimality, and equilibrium in a
market under frictions and with more sources of uncertainty than tradable assets. In other words, we analyze a state-
price deflator, i.e., a deflator with the property that the deflated prices of tradable assets are martingales, in the
presence of frictions and incompleteness. A unique state-price deflator may exist only on projected markets. It is
shown that if the market conditions hold for the projected markets, they hold also for the initial market.

KEYWORDS: Arbitrage, equilibrium, incomplete markets, optimization, transaction costs

1. INTRODUCTION

Markets are incomplete, if there exist more than one state-price deflator, i.e., a deflator with the property that the
deflated price of a tradable asset is a martingale. If the markets are incomplete, the price of a contingent claim may
depend on the state-price deflator with respect to which it is priced. In this paper we extend the framework of
absence of arbitrage, optimal portfolio and consumption choice, and security markets equilibrium in complete
markets to cover markets with frictions and without dynamic spanning.

" The author is grateful to Tomas Bjork, Esa Jokivuolle, Samu Peura, Sampsa Samila, Esko Vakeila, and Tuomo Vuolteenaho
for helpful suggestions and comments.



The general framework for arbitrage free condition in complete markets is derived in Harrison and Kreps (1979),
Harrison and Pliska (1981), Kreps (1981), and Cox and Huang (1986). Merton (1969, 1971), Cox and Huang
(1989), and Karatzas, Lehoczky, and Shreve (1987) have solved optimal portfolio and consumption choice problem
in complete markets. Security markets equilibrium in complete markets is studied, e.g., in Breeden (1979), Duffie
and Zame (1989), and Huang (1987). Jouini and Kallal (1995) derive the arbitrage free condition under transaction
costs. They show that, in the presence of transaction costs, the absence of arbitrage condition is equivalent to the
existence of an equivalent probability measure that transforms some process between the bid and ask price processes
into a martingale. Hedging and portfolio optimization under transaction costs are analyzed in Cvitanic and Karatzas
(1996). Cvitanic and Karatzas (1993) consider hedging in the presence of general closed, convex constraint sets of
portfolio processes, and their methodol ogies can also be applied to the case of different interest rates for borrowing
and lending. The single agent’s optimality in an incomplete market is studied, e.g., in Cvitanic and Karatzas
(1992), Duffie and Sun (1990), and Leland (1985). Grossman and Shiller (1982) and Back (1991) derive market
equilibrium without dynamic spanning condition. These models start the analysis from the state-price deflators
implicitly given by single agents, and then derive the excess expected rates of return on all securities from the
covariance of returns with aggregate consumption increments and the * market-risk-aversion’ constant.

In this paper we consider the same kind of problems that are studied in Jouini and Kallal (1995) and Cvitanic and
Karatzas (1992, 1993, 1996), and we utilize their framework. In contrast to Jouni and Kallal, we consider also
markets without dynamic spanning, and we derive the market conditions by using the quotient space of prices of
tradable assets. The initial stochastic variables are projected into a new space, on which markets are complete and
frictionless, and we can employ the framework of complete markets. These projected markets are the same kind of
fictitious markets that are used in Cvitanic and Karatzas (1992, 1993, 1996). In addition to Cvitanic and Karatzas,
we let the volatility processes of tradable assets differ between various fictitious markets, and we also consider
general market frictions, for instance frictions in getting information and time-varying transaction costs. We show
that the market conditions hold in theinitial economy if they hold in the projected markets.

The rest of the paper is organized as follows: Section 2 defines the framework used in the paper, and Section 3
derives the projected market. Section 4 derives the market equilibrium conditions, and Section 5 concludes.

2. MODEL

We explore an economy where instruments are traded continuously within a time horizon [O,t ] . Thereis afinite
set of tradable assets, H, where |H| = k , and a set of agents, denoted by M. An agent m1 M is defined by a nonzero
consumption endowment process e, and a strictly increasing utility function U .

In describing the probabilistic structure of the economy corresponding to an agent m T M, we refer to an
underlying probability space (W, F ™ P ), along with the standard filtration {Ft(”m’ tT [ot]n, <¥}. Here Wisa

set, F™ isas-algebra of subsets of W generated by an n,,-dimensional Brownian motion (B},...,B™), and P,

is a probability measure on F ™ . The probability spaces may differ between various agents, e.g., because there

may be frictions in getting market information and because the portfolios of different agents may partly depend on
various sources of uncertainty. We denote by L the class of functions f :[O,t ] W® R*® in a Hilbert space such
that

i) (tw) f(tw) isB” F™ -measurable, where B denotesthe Borel s-algebraon [0, t]

i) f(tw) is F™ -adapted.

AT

€ u R
iii) each coordinate f, of f in R® satisfies E, a0, (t,w)?dtg<¥ for al T1 [0t], where E, denotes the
& 8]

expectation with respect to P, . Heresfter the index of E is omitted.

The following assumptions characterize more our economy.



ASSUMPTION Al: The possible tradable asset prices that are discounted by risk-free interest rate for an agent
mT M are given by the closed space X, 1 L} . The prices are such that the bid prices are always lower or equal
to the corresponding ask prices.

Assumption A1 means that there does not have to be a unique price vector representing the tradable assets. This
is due to frictions in the market and/or bid-ask spread for interest rates. In our model the bid price is the selling
price after transaction costs and other frictions, and the ask price is the buying price after the market frictions. The
price processes depend on agents, because market frictions may differ between various agents. For instance, due to
the frictions in the distribution of information various agents may have different process estimates. The price
processes are also functions of the portfolio processes, because transaction costs usually depend on the portfolio
increments. The prices may depend also on the agent’s actions. This happens when the investor is a significant
player in the market. The processes in X, are the price processes of our fictitious markets corresponding to the

agent m1 M. The following assumption is used in the calculation of optimal consumption and trading strategies.

ASSUMPTION A2: For all mT M there exists a price process in X, such that given the price process the
agent mis not willing to trade in the market.

Assumption A2 implies that all the agents have an option to trade in the market and they can stop the trading for
atimeif they want.

ASSUMPTION A3: The stochastic variables of tradable assets that are discounted by risk-free interest rate
corresponding to an agent m1 M follow an 1t stochastic differential equation

1) X (1) = X (1) @y ()t + X, (8) S  m(D)dBL (1) foral x,(0)T X, ti[0t]
where x. T X, x,(0) is a random variable which is independent of F™ and Ehxm(0)|2]<¥, a,ml Ly,
S ml L s B, 1 Ly isan n,-dimensional Brownian motion on the probability space (W, F™ Py, n, 3k,

and X,,, istherange of processesin X, attime O corresponding to the agent m. The operator ~ is defined as
follows

X () = [}EMaLLO) ... x5 Ma k0]

& (t)s ;) ... xn(t)s pm(tu
e. . . u
Xn()"S om(t) = & 3 G
R (9 ot (3 BURDYG (9 B (9

and x' isthe transpose of x.

We will refer a, and s, as the drift and volatility processes of x. Assumption A3 means that there may exist
more sources of uncertainty than there are tradable assets. The coordinates of x(t) can be dependent, as they
usually are. Combining assumptions Al and A3 we see that each process in X, is given by equation (1). For

instance, equation (1) holds for the process that first equals the bid price of the tradable asset and then the ask price.
This assumption is made in order to simplify our analysis. Comparing A1 and A3 with Cvitanic and Karatzas
(1992, 1993) we see that in our model the volatility processes of different fictitious markets may differ and various
agents may have distinct process estimates. This is, e.g., due to frictions in getting information, uncertainty in
transaction costs, agent specific risks, and uncertainty in illiquid assets.

ASSUMPTION A4: For each agent m1 M there existsa mapping y : Ly, ® Ly suchthat
) y )t x,mw) =s . (tw)d, . (tw) foral ti[ot], x,T X, as

where J, T Lim, J, . (t,w):R¥™ ® R* isonto but not necessary oneto one, J, ,, satisfies Novikov's condition

€ o7 ol .
©) E@expg—c‘)lxvm(t,w)zdt:g<¥ forall TT [0t]
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andy (s ,)(t,x,mw) =a,,(t,w) forall t7 [0,t] almost surely.

The situation of Assumption A4 emerges because s ,,, T Lﬂ,mnm may be singular. We will refer to J, . as the

market price of risk. A4 is a central assumption of the paper, because, as we will see, the market conditions hold if
itistrue. If s (t) issingular for some t1 [O,t ] the agent mT M chooses one market price of risk process for

each processin X, according to hisor her tastes about risks among the processes in the market that satisfy A4. If
S .m(t) isinvertiblefor al t1 [0t ], markets are complete and J,, is unique.

ASSUMPTION AS5: The utility functions of investors are smooth-additive.

A5 means that the utility function U: R, ® R of theagent mT M is defined by

. \
@) U,.(0) = Eaiy(c.t)dtg foral TT [ot]
& 0

where c is an adapted non-negative consumptionin L, u_: R.” (0,T) ® Rissmoothon R, " (0,T), and for each

t1 [0,T], u,(xt): R« ® R isincreasing, strictly concave, with an unbounded partial derivative ﬂu’%—(xt) on R.
o

satisfying the Inada conditions: infﬂumﬂ—(c’t) =0 and supﬂumﬂ—(c't) =¥ foraltl [O,T].
o o

3. QUOTIENT SPACES

In this section we derive the quotient spaces of L,», and L, [for the discussion of quotient spaces see eg.
Kelley (1955)]. )

Let us define the equivalence relation R, (t) by setting s,R..(t)s,, where s s,I Lﬂ.mnm, if
S (W), (W) =5, (L,W)J . (t,w) almost surely, where J,,, is given by Assumption A4, tT [0t], xI X,
and ml M. The range of processes in Lﬂ.mnm can be divided into equivaence classes
Fan®S) =5, 1 L, is,R (s} for @l ti[ot], and the set of equivalence dlasses is denoted by
Ly /Ran O ={r ym(s8) |s T L2, } and is called the quotient space of L, with respect to R, (3. The
guotient space is a partition of Lﬂ.mnm. That is, every element of Lﬂ.mnm belongs to one and only one class in
Lﬂ.mnm/RX'm (¥ - The continuous mapping 1, . (t, ¥.L, ® Lﬂ,mnm/Rxm(t) is called projection, and theimage of s is
the equivalence class into which s belongs. The mapping r X‘m(t,'>) is a linear surjection which coinduces a s-

algebraon Lﬂ,mnm/RXm (t) . Now we can state the following lemma.

LEMMA 1. y defined in Assumption A4 induces a continuous linear bijective mapping
y Ly, /Ra(3® L, suchthat

S e (W) nEW) = 1 (S o (W) W)

© forall t1[ot] xT X

mi M, as

m?
where J, .1 L:m Jin(tw):R¥™ ® R* is a bijection that satisfies the Novikov's condition and
F om0 )1 L2, /R (3 for all s, T L, and n, £k. That is, ¥ ' (f yu(tS o))=Y 6 ,m) and the

canonical factorization of y isy =y "or «m- Figure 1 illustrates the situation.

v
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X,m

L, /RO

Figure 1. The canonical factorization of y

PROOF: First we note that y’ is well defined. That is,
Fem(S1) =1, a(ts,) « Y )Exmw) =y (s,)txmw) amost surely, where s ;s ,1 L, , t1[0t],
xI X, and ml M. Because y :Lﬂ.mnm ® Ly is a continuous linear surjection, and r, . (t,¥ is a continuous
linear projection, which coinduces the s-algebra of Lﬂ,mnm/RX'm (t), y ~ is continuous and linear. It is aso a
bijection, since y ~ isinjection by the definition of R (), and therefore n. £k . This means that there could be
noother J°T LY that satisfies @, (W) = 1, (.5 ,n (W)}, (tw) aimost surely. Because J,, 1 LY satisfies
the Novikov's condition and r ,.(t, ¥ isbounded, also J,, satisfies the condition. Now B}, 1 L:: isaprocessin
R™ on a probability space (V\/,F(”'m),Pn:), where F™) ] F™ s the s-algebra generated by B and
P, :F™ ® [0]] is a probability measure on the measure space (V\/,F(”'m)). B. (t) is obtained from B_(t) by
diminating for all t1 [0t ] the same elementsthat were eliminated fromy in order togety *. Q.E.D.

Lemma 1 means that we shrink the dimension of the Brownian motion in order to get the bijection J, . That is,

although we are not able to find a unique market price of risk function in Lﬂ: we can find itin L:im .
ASSUMPTION AB6: r ,,.(xs ) ispiecewise constant.

Assumption A6 ensures that we can integrate with respect to B; (t) , since on the piecewise intervals B (t) isan

n_ -dimensional Brownian motion.

We denote by LI /X the quotient space of LI". Theclassesof LI" /X are X_ and {y}, where y belongs to

the complement of X _, i.e, y 1 L \ X_. L™/X_ is obtained from L} by projecting X,, into one point,

Mm@y Lﬂym ® LE’m/Xm . Thatis, ', selectsone process into which all the processesin X, are projected. This

projection is a surjection, which coinduces the s-algebra of Lﬂ'm /Xm .
Now we can definethe process of .1 L™ /X _ by

D) = Tt X (0 @ @)+ a6 X0 @) T (5 o (0))B (1)

(6) R -
x0T R* foral tT[ot]

where mi M, x;,(0) satisfiesthe condition of A3, a,,,1 L, and r,,(xs ,,)J1 L™ ., and the well-defined state-
price deflator p; 1 L™ by
t t

©) p;(t)zexp}- & (sw)dB;(s) - %@;.m(s,w)zdsg forall t1[ot]
! . .

0 0



Equation (6) implies that there exists a unique price vector and process for tradable assets in the quotient space
Lo /X -, and equation (7) means that there exists a unique state-price deflator on (V\/, F ) Pn:) for X (t). x,(t) is

the price process of afictitious market and p , isthe state-price deflator of the market.

Weillustrate our framework with an example. Let the process of x,(t) be defined as follows

dx.,(t) =x,, (t)dt +[1 1]218;‘“)3 forall t1 [0/]
(8) &dBy (g

dx,, (t) =, (t)dt + x,(t)dB2(t) foral ti [Lt]

where B’ (t) and B?(t) areindependent Brownian motion processes, t > 1, and ml M . The market price of risk
vector isdefined as

Jm(t)=§§ forall t1 [04]
©) i
Jm(t)=§§ forall t1 [Lt]

In this case the process of x_ (t) is

dx, (t) =X, (t)dt + ., (t)dBL(t) forall tT [07]

(10) . . . -
dx’, (t) =X, (t)dt + X, ()dB2(t) foral ti [Lt]

4. ARBITRAGE, OPTIMALITY, AND EQUILIBRIUM

In this section we consider the absence of arbitrage condition, single agent’s optimality, and security market’s
equilibrium. From the previous section we get the following lemma.

LEMMA 2: Thereexists x, 1 X, and p,, T L} suchthat x_(t,w) isamartingaleon (W,F ™ Q. ), where Q,
is an equivalent martingale measure with Radon-Nikodym derivative

dQ,
dp,

m

(11) =p,t on F™,

3 t t ‘)
mi M, and p,(t) :exp}- & om(sW)dB, (9) - %(‘jx‘m(s,w)zds%, if and only if x (t,w) is a martingale on
T o 0

(W, F () ,Q.) , where Q;, isan equivalent martingale measure with Radon-Nikodym derivative

(12) B _pr@) on F

dP:

m

and p (t) isgiven by equation (7).
PROOF: If p , (t,w)x,, (t,w) , which processis

AP 0% ®) =P X ®) [ xm®) - S (DI (®)]clt +

(13) ,
B ®Xn®) S m(®) - X (O o () ]0B 1)

isamartingale, then also p , (t)(w)x;, (t,w) , which processis

dp X)) =P X0 [Femltam®)- Fonlt mlts n®)P 5 O+

(14 A - s \
pm(t)[xm(t)' ot o6 o ()= X () X.'m(t)']dBm(t)



isamartingale. Thisis because
(15) S WX ) =1, (5 EWP . @® foral tT[ot] as

and r,,, projectsall the processesin X, intox,,. That is

P a8 ®) Tt S @)V O =800 - § 0 O 1

(16) N
foral tl [O,t], as

Conversdy, if p. (t,w)x’ (t,w) isamartingale then there exists x, T X, and p, T L] such that (16) holds and
according to Assumption A4

(17) a,mtW) =s (W), (tw) foral tT[ot] as

This gives p,,(t,w)x,,(t,w) is also a martingale and E%[x(t)] = E%" [x* (t)], where E® means the expectation
with respect to Q,,, for all t1 [0t . QE.D.

Lemma 2 means that if there exists x,, T X, and Q, such that x_ (t,w) isamartingaleon (W,F ™ Q,) then
dso X (t,w) isamartingale on (V\/, F(”’m),Q;) and vice versa. This yields the fact that the sufficient condition for
the absence of arbitrage on (W, F ™), P, ) is that there exists a unique state-price deflator on (V\/, F ) Pn:) that is

given by (7) for all mi M . Given Assumption A4 each process of X, is a martingale with respect to its own

martingale measure. Therefore in our analysis Lemma 2 only fixes the martingale measure Q.. The arbitrage-free
condition is proved in Theorem 1.

THEOREM 1: There is no arbitrage in the initial market if and only if there is a state-price deflator on
(W, F B ) for all mi M.

PROOF. Thereis no arbitrage on (V\/, F ) Pn:) if and only if there exists an equivalent martingale measure with
Radon-Nikodym derivative p , [see Harrison and Kreps (1979), Harrison and Pliska (1981), Kreps (1981), and
Clark (1993)]. We can write the deflated process of a dynamic portfolio q(t)x,,(t), where g'T L}~ is a trading
strategy process on (V\/, ) Pm), asfollows

(18) FOP w(9%(9)] =3O m(<(9) + X7 (9 + x(9)] foral T [ot]
where mi M, Xn (OT F b (X, (0)) - X (), X (T 15t X, 1) - X, (1), and

S].:'l,
b

Because p , (t) isthe state price deflator of x,, we get from Assumption A1 the following condition

F ot X () = X5 () foral x, T X,,,and x5 T X

m*

il 1%
P = - 3 ¢ (SWBL(S) - Z F ¢, (Sw)?d
0 0

m

(19) Egc‘g(s)d[pm(s)x;(s)]3£o forall t1[ot] x,T X
& i

That is, if x'(t)£0 then q(t)3 0, and if x" (t)3 0 then q(t) £0. Thisis due to transaction costs. Combining

(18) and (19) we see that q(t)p,(t)x,(t) is a supermartingale. If this holds for all mi M, then there is no
arbitragein the initial market.

Conversdly, if we assume that there is no arbitrage in the initial market then there exist x,1 X, such that
p . (0)x,(t) isamartingalefor all mi M . Equations (18) and (19) ensure that this implies the absence of arbitrage

condition. Projecting all the processesin X, into X, we see that there is no arbitrage on (V\/, F(”’m),Pn:), because



p. ()X (t) isamartingalefor all mi M .
Q.E.D.
Theorem 1 implies the same that is also proved in Jouini and Kallal (1995). That is, the absence of arbitrage
condition is equivalent to the existence of an equivalent probability measure that transforms some process between
the bid and ask price processes into a martingale. In our analysis all the processes of the initial economy are
martingales with respect to their own martingale measures. However, in the proof of Theorem 1 we only need to
assume that for all mi M there exists one process in X, such that it is a martingale under the equivalent

martingale measure.

The problem in finding the optimal hedging, consumption, and portfolio processes under transaction costs and
other frictions is the fact that trading can be seen as zero-utility consumption. As mentioned earlier, the process
x, 1 X, isafunction of the trading strategy, and therefore also the martingale measure of x, is a function of the

trading strategy. We write explicitly x,(t) = X, (t) and p,,(t) =p,,, () -

We define the T -maturity upper- and lower- hedging prices of a contingent claim C in our initial economy as

N

(20) C(t) = inf hinf {00 %g O [a(T)X0g (T) 2 CT,%) a.s.}g
m Mgl LD ’ ’
and
low i U
(21) C'™ (t) = Sup{ SUP{- A(1)X,yg (1) |01 (T) % (T) £ C(T,%,) a.s.}g
n M7 ql L2

where the portfolios are salf-financing, x; is the underlying price process, and 0 £ C'™(t) £ C*(t) £ ¥ . Because it

is possible that the market is incomplete, there may be uncontrollable risks in the agents portfolio processes. The
upper hedging price isfinite if it is independent of the uncontrollable risks and the asset prices are independent of
the agents' actions. Using the framework of Cvitanic and Karatzas (1993) we get the following proposition.

PROPOSITION 1. If the upper hedging price is finite, we get

(22) C(t) = inf {sup{EQ‘m [Cﬁ,xl) | FJ”‘m’]}}
and
(23) Cc'(t) = syp{i nf{EQ'm lC(T'Xﬂ | ,:t(n'm>]}}

where t1 [0,T] and TT [0t ].
PROOF: If Q is the martingale measure of x;, then C(t,x,) = EQ[C(I',xl) |Ft] is the price in a complete
frictionless market. The price on (V\/,F(”'m),Pn:) is now given by
(24) Cot) =E%[o(T %) [ R
Taking supremum over all martingale measures we get
(25) co (1) £ suplE® (T, %) | F |
where C.¥ is the upper price corresponding to agent m. In the same way we get for the lower price
clo* (1) 2 in{E® o(T, %) | F ]
Now we take any sdf-financing portfolio process that satisfies q(T)x,,(T)2® C(T,x%). Because

EQ h (T)Xng (T) | Ft(”3]3 EC |_C(I', x,) | Ft(”QJ for all the projected martingale measures Q;,, we get from (19)

(26) cr® 2 suplE® |orm,x) | R |



Similarly, with the lower hedging price we get CI* (t) £inf{E®|C(T,x) | F™ |} by constructing any saif-
financing portfolio that satisfies q(T)x,,, (T) £ C(T,x,) .

Taking the infimum over all the upper prices we get the market upper price, and taking the supremum over all the
lower prices we get the market lower price.

QE.D.

Proposition 1 implies that if the frictions are zero, i.e., the bid and ask prices are equal, for all the agentsin M,
then the upper- and lower hedging prices are equal if the upper prices are finite.

Now we start to consider the optimal consumption and portfolio processes. Given the adapted consumption
endowment process e, T L™ on (V\/, F ) Pn:) there exists a dynamic portfolio " (t)x,, . (t) , where g1 L™ isa

trading strategy process, which finances an adapted consumption process ¢ T L™ on (V\/, F ) Pn:) if

o (A’ (0, () = cp G[e, (9 cp@hs+ cﬂ S,y (9%, 9)
forall t1 [0,T]
and p, . (T)a" (T)x, - (T) =0, i.e., terminal consumption is zero, where mi M and TT [0t ]. e,,c,T L are
the corresponding processes of e, and c,, on (W,F™ P ).
Equation (27) gives the following lemma.

LEMMA 3: Given the endowment process e, 1 L} and any adapted c,1 L there exists a process g L}
financing c if and only if

(28) E%Ey Ol o-€, (t)]dtg =0

and

(29) :CP mq (S)C (S)ds = :CP mq (S)€n (S)ds + :(‘ﬂ ' (s)d[p mg (8)Xmg (S)]

where g, (0T 10 (X (©) - X @), Cn®T 1 5m(tcn(®) - i), en®T 1t e, ) - e, ),

Pig () =P g ®-p., (), TT[0t], and g =q" almost surely.
PROOF: See e.g. Cox and Huang (1989) for the proof that Lemma 3 holds for €, and ¢ on (V\/, F(”’m),Pn:). Now
I .m Projectsall the processesin X, into Xmq and we get by using (18) and (27) the following financing condition

GO K, 0 +ph X O] = &7 (e ) - o (s

(30) P ia Olen(9)- c@bs+ AP, (9%, (9 +P i (90 (9)]
forall ti [0,T]

and q(T)[p;m, (I')x;m,(T)+pnrm(l')xn2'q (T)J:O, where q =q". Because q° finances c, we get from (30)
equation (28) and

a 0" O o X0, ©]= @ e (9ler (9~ chi@s+ 31" (S 1y (9% (9)]
foral ti [0,T]

Taking into account the terminal consumption condition we get (29).

10



Conversdly, if g finances c, then (30) holds. Because X, and x;m, are independent processes, we get equations

(27) and (31) from (30). Using again the terminal consumption condition and the framework of Cox and Huang
(1989) we get (28) and (29).

QE.D.

Lemma 3 implies that in an incomplete market there can be uncontrollable risks in the agents endowment and
portfolio processes.

Given Lenma3 asingleagent m1 M faces the following problem on (V\/, F(”'m),Pn:)

(32) sup U, (c)
G U
subject to
(33) E% Tcp 00 €, (t)]dtg =

Now we can state the following theorem.
THEOREM 2: There exists an optimal consumption and trading strategy on ( F) p ) for agent m1 M if
and only if there exist an optimal consumption and trading strategy on (V\/, F(”m),Pm). The optimal consumption

choice €, T L on (V\/,F(”ym),Pn:) for agent mi M on time period [0,T] is

(34) & =1, @] foral ti[0T]
where | [xt] inverts 'ﬂuﬂ(xt) meaning that | 9ﬂuﬂ_(Xt) ﬂ_ x for all xand t, and g’ .. >0 is a Lagrange
c e c u

. & . . 0
multiplier satisfying Egep e (t){l m[gm‘qA.pm‘qA. (t),t]- em(t)}dt:: 0.
0 %]

The optimal portfolio q” solves

- Q*(t)=p;‘; o s Obs O Tuliralis (a0 007 0T

forall t1[0,T] as

where EE%J mq (s){l [g:nq - (9), s] e (s)}ds

F ) :: @ " .. (s)dB (s) . Further, the optimal consumption and
@ O
portfolio processes satisfy

) e onlolipi 0] o € ool SR
for all q* and c;m, t)= Im[g ;Lq,p mq (t),tJ that satisfy equations (34) and (35). We also must have
(37) Une )<¥

PROOF: By the saddle point theorem [see e.g. Luenberger (1969)] and strict monotonicity of U ,, the optimal
consumption process ¢, (t) solves the unconstrained problem

(38) sup U, (c)- gr. E%Ep 0l €, (t)]dtg

el L]

11



From Assumption A5 and (38) we get

(39) ¢ ®=1,0..p5, ® foral ti[oT]

& . - . 0 : :
There exist Lagrange multipliers such that Egep ' (s){l [gm‘q.pm‘q. (s),s]- em(s)}ds g: 0 holds since Im[>,<t] is
0 %]

continuous and strictly decreasing, and maps (0,¥) into itself with Im[0+,t]=¥ and Im[¥,t]=0.

.0t
FO 7= 0 g (908, weget

From (14), (27), Lenma 3, and Eg@ mq (s){l [g;m.p mq (s),s]- e;(s)}ds
0 g o

(40) JORES : o) e oo s Xq.,m(t»)- X 0 ]

The optimal processes have to also satisfy equations (36) and (37), and the solution does not have to be unique.

The optimal consumption and portfolio processes on (VV, F(”m’,Pm) are & .. + Cri

and q°, where C, o Solves
equation (29). These are optimal processes, because the drift process of cn:q., is equal to zero and the volatility

r

processes of Cog FCo and Con’ bel ongs to the same equivalence class with respect to the agent’s market price of

risk. That is, the agent mi M isrisk neutral with respect to cn:q., .

Correspondingly, if there exist optimal strategies on (V\/,F(”m’,Pm), then the optimal consumption has the
hollowing representation c;m, +C;1q~ , Where c;m, is a consumption strategy on (V\/, Fnﬂ”",Pn;) and cn:q, solves

equation (29). If ¢, . 1 é;q., for all é;q-, that solve (34) - (37), then there exists a consumption strategy that gives

more utility or there does not exist an optimal consumption strategy and a trading strategy that finances the

consumption process. Thisis acontradiction, since ¢ . +¢’ . isan optimal consumption process, and we get that
mgq mq

there exist optimal consumption and portfolio processes on (V\/, F ) Pn:).
Q.E.D.

Theorem 2 implies that the form of the optimal consumption trading strategy is the same as the corresponding
strategies in complete frictionless market. This complete economy is defined by the state-price deflator implicitly
given by eguations (34) and (35). Different agents may have distinct state-price deflators, because their frictions,
utility functions, and endowment processes may differ. The difficulty in solving equations (34) — (36) is that we
require that the corresponding state-price deflator is used with an optimal strategy. That is, we can not just fix the
state-price deflator and solve the optimal solution, because usually this leads to strategies that try to take advantage
from frictions. If an agent tries to take advantage from the frictions then Assumption A2 is applied and we set the

asset price equal to a price between the bid and ask prices such that the optimal portfolio increment is zero. Using
Assumption A2, Theorem 2, and the framework of Cvitanic and Karatzas (1996) we get the following proposition.

PROPOSITION 2: If the optimal consumption and trading strategies of an agent mT M exist then they satisfy
(42) U m(cm'qn )— inf{ EQOJm(l m[g e m(t),t],t)dtuy
1 B tp

where the infimum is taken over all state-price deflators, T1 [O,t], (i is the optimal trading strategy,
¢ . +c;1q., is the optimal consumption process, cn:q., solves equation (29), and g, solves

mg

& - . 0
ELO “fioipi(e).9- € (9)ds -o.
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. . - . ol -
PROOF: From Theorem 2 we get Um(é -~ )3 |nf’|[ Eéc‘ym(l m[gmpm(t),t],t}it@. Now we relax the condition that
mg T X 2

the corresponding state-price deflator and price process are used with a trading strategy. Let us fix the process X,
and derive the optimal consumption and trading strategies. Then the deflated wealth processis given by

(43) V\~/X;(t)=tc‘§4*(s)dx;(s) forall ti[ot]

where g~ is the trading strategy which finance the optimal consumption in the fictitious market. The wealth
process that takes into account the frictionsis given by

(44) wx;(t)=64*(s)d[x;(s)+x;(s)] forall t1 [0t]

From (19) and (23) we get W, (T) W, (T) = 0. Thisgives E% .. (T) | R | £ inf{g® W . (1) | K™ |, where
theinfimum is taken over all martingale measures. Taking into account Theorem 2 we get
o oo €L . Gl
(45) U m(cm'qn )£ inf | E@ojm(l m[gmp m(t),t],t}itgy
1 & th

QE.D.

Proposition 2 implies that if there exists a consumption process that gives more utility than the optimal
consumption process then there does not exist a portfolio process that finance the consumption. Assuming
Assumption A2 we get that the trading is zero if the agent is trying to take advantage from the transaction costs,
i.e, if heor sheistrying to sell at the ask price or buying at bid price.

Security spot-market equilibrium is a collection
(46) {CsP s Csln) | X T Xl M,
such that, given the security-price processesin X,, and the state-price processes, for each agent m, (c,,.q,,) solves
(32) and (33), and markets clear § d,(1) =0 and § ¢, (t) - €,(t) =0 for all t1 [0,T]. Using Theorem 2 we get
the following theorem. " "

THEOREM 3: The equilibrium conditions lead to the following a.s. equality

(47) & €0 =& 10|90 g, O] foral tT [0T]

where | (xt) inverts ﬂu’“—(xt)
Tc

, Pmg, 1S the state-price deflator of agent mi M, and q,, isthe optimal portfolio
process of m.

PROOF: From (47) we see directly that commodity market clear and each agent has optimal consumption and
trading strategy. Theorem 2 gives 3§ d,,(t) =0, i.e., asset markets clear, because g, (1) =0. Q.E.D.
m M

m M

From Theorem 2 and Theorem 3 we see that the sufficient condition for the existence of an equilibrium on the
incomplete market with frictions is that there exist optimal strategies for each agent on his or her complete
frictionless market that is inside the initial market. If the initial market is complete and frictionlessthen r,  and

r.m ae identity mappings. That is, the results of this paper can be seen as an extension to the corresponding
theoremsin complete markets.

13



5. SUMMARY

This paper studies the state-price deflator in the presence of frictions and without dynamic spanning. A unique
state-price deflator may only exist on projected markets. The existence of the deflator is equivalent to the existence
of a surjection that maps the volatility functions onto the drift functions. There is no arbitrage, if there exists a
unique state-price deflator on a projected market. If there exists an optimal consumption process and a portfolio that
finance the consumption on a projected market then there exists an optimal strategies also on the initial market.
Given the optimal consumption process and trading strategy for single agents, there exists an equilibrium for
tradable assets.
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