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ABSTRACT

In this paper we extend the choice of optimal portfolio and consumption to include also the selection of an
optimal home currency for single agents in a segmented real international economy. We also derive an equilibrium
that emerges if representative agents behave according to the optimization model. In this situation the market prices
of risk do not reflect the risk attitudes of the investors in the particular currency, but are simply determined by the
interplay of all investors in the international economy. This yields the curved international equilibrium.
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1. INTRODUCTION

International asset markets are said to be integrated, if assets of equal risk yield equal expected returns in every
currency. If the markets are segmented then, e.g., the cost of capital for an investment will depend on the currency
in which it is to be raised. Also, if the markets are segmented, an individual investor has an optimal home currency,
i.e., the currency in which the agent consumes.

In this paper we extend the framework on optimal portfolio and consumption choice to include also the selection
of an optimal home currency for single traders in a real international economy. Under stochastic real foreign
exchange rates, we show that market prices of risks differ between currencies and derive the explicit relationship
linking the market price of risk vectors in different currencies. Using this dependence, we solve the optimal
consumption problem for a single agent who is able to freely choose his home currency, i.e., we allow investors to
take advantage of the diverging valuation of risks and real interest rates between currencies. Also, assuming the
prescribed optimizing behavior on the part of investors, we show that the stochastic fluctuations of the exchange
rates between the respective countries are entirely due to the differences in real interest rates between currencies.

Many other papers have studied the portfolio selection problem. The basic optimal portfolio selection by using the
mean-variance analysis can be found, for instance, in Markowitz (1959) and Merton (1972). The optimal
consumption and portfolio choice problem and its solution using the Hamilton-Jacobi-Bellman equation in finite
and infinite horizon settings are found in Merton (1969, 1971). This method usually yields a nonlinear partial
differential equation that is hard to solve and for which numerical methods must be applied. Especially, when there
are constraints on portfolio and consumption this method becomes even more difficult. The martingale method to
solve the optimal consumption and portfolio choice is developed in Cox and Huang (1989) and Karatzas, Lehoczky,
and Shreve (1987). This approach leads to a linear partial differential equation, unlike the nonlinear partial
differential equation appearing in dynamic programming. In this paper we use the martingale method, that utilizes
the market’s state-price deflators and gives explicit solution only to the optimal consumption problem. We are not
interested in the form of the optimal trading strategy, because we only derive the optimal consumption process and
prove that there exists a trading strategy that finances the consumption and a state-price deflator such that the
deflated trading strategy is a martingale. However, an optimal trading strategy can be derived by using Malliavin
calculus [see Ocone and Karatzas (1991)]. The basic framework for deriving market equilibrium in continuous-time
setting can be found e.g. in Duffie (1992). Duffie and Zame (1989) have proved the existence of an Arrow-Debreu
equilibrium in the case of smooth-additive utility function that is also used in this paper. Huang (1987) has derived
an equilibrium model with a smooth-additive utility function. The consumption-based capital asset pricing model is
derived in Breeden (1979). We utilize the Breeden’s framework, because the models of this paper are in real terms.
Market equilibrium in an international setting is studied e.g. in Uppal (1993). This model shows that if purchasing
power parity does not hold, risk averse agents prefer foreign assets. Our model is similar to the framework of Uppal.
However, we add to the analysis the selection of optimal home currency. The necessary conditions for an arbitrage-
free international economy have been studied in Amin and Jarrow (1991).

The rest of the paper is organized as follows: Section 2 defines the framework used in the paper, Section 3 derives
the relationship between different currencies’ market prices of risk, Section 4 calculates the optimal consumption
and home currency of a single agent as a function of her utility function, Section 5 derives an equilibrium in which
representative agents are assumed to behave according to the optimization model, and Section 6 concludes.

2. MODEL

We explore an economy where instruments are traded continuously within a time horizon [0,τ]. The economy
consists of I + 1 currencies each indexed by i ∈  {0, … , I} where currency number 0 is the current domestic
currency. In each currency a set of assets is marketed. These sets are denoted by iH , where i ∈  {0, … , I}, and the
set of all assets in the international economy, respectively, 

{ } iIi
HH

...,,0∈
∪= . In each currency there is also a set of

agents iM , and the set of all agents is denoted by M. An agent m ∈  M is defined by a nonzero consumption
endowment process me  and a strictly increasing utility function mU . We assume that agent m can consume only in
one currency at a time. In each currency i there exists a consumption commodity whose price at time t ∈  [0,τ] is
denoted by )(tiδ . It is assumed that )(tiδ  is positive for all i ∈  {0, … , I} and t ∈  [0,τ].
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In describing the probabilistic structure of the economy, we refer to an underlying probability space (Ω , F, P).
Here Ω  is a set, F is a σ-algebra of subsets of Ω , and P is a probability measure on F. We denote by D the space of

processes with ∞<










∫
T

dttxE
0

2)( , where x is a stochastic variable and [ ]τ,0∈T , and by L the adapted processes in

D.

The model is formulated in real terms, i.e., the real price of a tradable asset jh  in terms of currency i is

(1) { } { } [ ]τ
δ

,0,,...,,0,...,,0allfor 
)(

)(ˆ
)(

,
, ∈∈∈∈= tHhIjIi

t

tp
tp jj

i

hi
hi

j

j

where )(, tp
jhi  is the real price of jh  in terms of currency i and )(ˆ , tp

jhi  is the nominal price of jh  in terms of

currency i.

After the normalization of (1) the consumption price is a state-price deflator [for the definition of state-price
deflator or the equivalent martingale measure given by the state-price deflator see e.g. Duffie (1992), Harrison and
Kreps (1979), and Harrison and Pliska (1981)]. Using the nominal state-price deflator )(tiπ  we get

(2)
[ ]

{ } { } [ ] [ ]τ

π

,0,,0,,...,,0,...,,0allfor 

)(ˆ)(0 ,

∈∈∈∈∈










= ∫
TTtHhIjIi

spsdE

jj

T

t
hiit j

where tE  is the conditional expectation operator with respect to P. Equations (1) and (2) yield

(3) [ ]










= ∫
T

t
hiit spsdE

j
)()(0 ,

πδ ,

where )()()( ,, spssp
jj hiihi ππ = .

This means that after the normalization to real prices iδ is a state price deflator in the sense of (3). Hereafter we

assume that 1)( =tiπ  for all i ∈  {0, … , I} and t ∈  [0,τ], i.e., )()( ,, tptp
jj hihi =π .

The following assumptions characterize more our economy.

ASSUMPTION A1: The stochastic variables of the economy follow an Itô stochastic differential equation

(4) [ ]τµ ,0allfor )()(),()( ∈ttdx,tdt + tx = tdx ze

where µ: R × [0, τ] →  R and e: R × [0, τ] →  nR  are given functions that satisfy Lipschitz and linear growth
conditions on x and z(t) is an n-dimensional Brownian motion on the probability space (Ω , F, P), along with the
standard filtration { tF : t ∈  [0, τ]}.

Assumption A1 guarantees the existence and uniqueness of the solution to (4).

We write the real process of a tradable asset in terms of currency i as follows

(5)
[ ]

{ } { } [ ]τ
α

,0,,...,,0,...,,0allfor 

)()()()()()()( ,,,,,

∈∈∈∈
++=

tHhIjIi

tdttpdtttrtptdp

jj

hihihiihihi jjjjj
ze

where ir  is the real instantaneous (risk-free) interest rate in currency i, 
jhiir ,α+  is the expected return, and 

jhi,e  is

the volatility of jh  in terms of currency i. The volatility coefficients describe the sensitivity of a particular stochastic
variable to each Brownian motion.

ASSUMPTION A2: In each currency the markets are complete and there is no arbitrage.

A2 implies that for some Hhh n ∈...,,1  the following n × n dimensional matrix [see e.g. Heath, Jarrow, and
Morton (1992)]
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(6) { }Ii
t

t

t

nhi

hi

i ...,,0allfor 
)(

)(

)(

,

, 1

∈















=

e

e

E M

is non singular P × λ - a.s. (λ is the Lebesgue measure) on the interval [0,τ].

Now there exists P × λ - almost unique solution vector )(tin  to

(7) )()()( ttt iii nEa = ,

where 















=

)(

)(

)(

,

, 1

t

t

t

nhi

hi

i

α

α
Ma , and, therefore, also a unique equivalent martingale measure exists in each currency i. We

will refer to )(tin  as the market price of risk vector in the i'th currency at time t.

Given the market price of risk vector it follows that the real state-price deflator is

(8)

{ } [ ]τ

δ

,0,,,0allfor 

)()(')()'(
2
1)(exp)(

0 0

∈∈










−



 +−= ∫ ∫

TIi

tdtdttttrT
T T

iiiii

K

znnn

where n´ denotes the transpose of n.

ASSUMPTION A3: The utility functions of investors are smooth-additive.

A3 means that utility function U: R+ →  R is defined by

(9) ( ) [ ]τ,0allfor ,)(
0

∈










= ∫ TdttcuEcU

T

where c is a non-negative consumption in L, u: R+ × (0,T) →  R is smooth on R+ × (0,T), and for each t ∈  [0,T],

u(⋅,t): R+ →  R is increasing, strictly concave, with an unbounded partial derivative 
c

tu
∂

∂ ),(⋅
 on R+ satisfying Inada

conditions: 0),(inf =
∈ c

tcu
Lc ∂
∂  and ∞=

∈ c
tcu

Lc ∂
∂ ),(sup  for all t.

ASSUMPTION A4: There exist frictions in trading consumption commodities between different currencies and
future frictions are uncertain.

The uncertainty about the future frictions can be due to an uncertainty about the availability of transporting
capacity, the development of technology, and/or the wastage of consumption commodities during the transportation.
A4 means that the relationship )()(ˆ)(0 ttSt ii δδ = , where )(ˆ tS i  is the nominal price of the i’th currency in terms of
the domestic currency, does not always hold. This gives a situation in which there can be stochastic real foreign
exchange rates, since )(,0 tp

jh  does not always equal )(, tp
jhi . The real exchange rate can be understood as a

measure of the difference between )(0 tδ  and )()(ˆ ttS ii δ , since from equation (1) we get 
)(

)(ˆ
)(

)(

)(ˆ

0

,0,

t

tp
tS

t

tp
jj h

i
i

hi

δδ
=

which gives 
)(

)()(ˆ
)(

0 t
ttS

tS ii
i δ

δ= . That is, we assume that purchasing power parity does not hold because of the

frictions. This does not lead to arbitrage opportunities, because of the frictions and the fact that agents can consume
only in one currency at a time.

We write the real foreign exchange rates as follows

(10) { } [ ]τµ ,0,,,1allfor )()()()()()( ∈∈+= tIitdttSdtttStdS
ii SiSii Kze



6

where )(tS i  is the real price of the i’th currency in terms of the domestic currency. 
iSe  and )(t

iSµ  can be viewed

as results of the frictions given in A4. A reasonable candidate for )(t
iSµ  is )(1 tS i− . In this case the foreign

exchange process follows same kind of mean reverting process as in the Cox-Ingersoll-Ross (1985) model of the
term structure and we get from (10) [see e.g. Duffie (1992)]

(11) [ ] [ ] ( )[ ]tTtStSTSE iiit −−−+= )(exp1)(1)(

Thus [ ] 1)( →TSE it  exponentially as ∞→T . This is consistent with Dumas (1992).

ASSUMPTION A5: A risk-free real asset is marketed in each currency.

3. MARKET PRICE OF RISK

In this section we derive the relationship between domestic and foreign market price of risk vectors.

Now we can state the following theorem.

THEOREM 1: The foreign and domestic market price of risk vectors are related to each other by the equation

(12) { } [ ]τ,0,,,1allfor )'()()(0 ∈∈+= tIittt
iSi Kenn

PROOF: From (8) we get the process of real state-price deflator

(13) )()'()()()()( tdttdttrttd iiiii znδδδ −−=

Since )()( , tpt
jhiiδ  is martingale and )()()( ,0, tptptS

jj hhii =  we get that 
)(
)(

tS
t

i

iδ
 is a state-price deflator in currency

0, since )(
)(
)(

)()( ,0, tp
tS
t

tpt
jj h

i

i
hii

δδ = . Using Itô’s lemma and 
)(
)(

)(0 tS
t

t
i

iδδ =  we get

(14)
[ ]{ }

[ ] )()'()()(

)'()()()()()()(

0

00

tdttt

dttttttrttd

iS

SiSSi

i

iii

zne

ene

+
−+−+−=

δ
µδδ

With (13) this gives (12). We also get )()()()()( 00 ttttrtr
ii SSi ne−=− µ . Q.E.D.

Theorem 1 indicates that the real domestic and foreign market price of risk vectors are never equal in the
presence of stochastic real foreign exchange rates. In this situation, international real asset markets are segmented.
Hypothesizing that the market price of risk in any individual currency is entirely determined by the interplay of all
investors in the international economy, the market price of risk in any other currency are simultaneously determined
by the volatility process of the foreign exchange rates.

Theorem 1 also states that the real international asset markets are incomplete although every national market is
complete according to A2. This is because there exist I + 1 different equivalent martingale measures in the
international markets and in each currency the martingale measure is unique. Further, nominal foreign exchange
rates are nonstochastic in our economy, because Theorem 1 also holds with nominal market price of risk vectors
and foreign exchange rates and because we have earlier assumed that 1)( =tiπ  for all i ∈  {0, … , I} and t ∈  [0,τ],
i.e., nominal market price of risk vectors are zero vectors.

We illustrate Theorem 1 with an example. Let us assume that there exist two currencies and one tradable asset, h,
in our international economy. The process of the asset in terms of currency 1 is the following

(15) 1)0();()()()()( ,1,11,1,1 =+= hhhh ptdztpdttrtptdp

where z is a standard Brownian motion and the process of real foreign exchange rate is given as follows

(16) 1)0();()()( 111 == StdztStdS

Using equation (7) and Theorem 1 we get the following solutions for the market prices of risk
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(17)
0
1

1

0

=
=

n
n

4. CURRENCY SELECTION

In this section we consider the optimal consumption and home currency selection problem of a single agent in the
international economy. The optimal home currency selection is equivalent to the finding of the most appropriate
state-price deflator in the international economy. First we make the following assumption.

ASSUMPTION A6: There is free investor mobility.

The assumption A6 implies that all investors are allowed to freely choose their location of residence in any of the
available currencies. However, we assume that investors change their home currency only once during the
optimization interval.

Given the consumption endowment process me  in L there exists a dynamic portfolio 'ii gp=φ , where

[ ]ihihi kpp ,,1 K=p , i ∈{0,… , I}, Hh y ∈  for all y ∈{1,… , k}, and [ ]kθθ K1=g  is a trading strategy

process in L, financing a consumption process c in L if

(18) [ ] [ ] [ ]∫∫ ∈+−=
t

ii

t

miii Ttssdsdsscsestt
00

,0allfor )'()()()()()()()( pg δδφδ

and 0)()( =TT ii φδ , i.e., the terminal consumption is zero, where [ ]τ,0∈T .

Now we can state the following lemma.

LEMMA 1: Given the endowment process me  in L and any c in L, there exists a process [ ]kθθ K1=g  in L
financing c if and only if

(19) [ ] 0)()()(
0

=










−∫
T

mi dttetctE δ

where [ ]τ,0∈T .

PROOF: Since )(siδ  is a real state-price deflator in currency i, [ ] 0)'()()(
0

=









∫
T

ii ssdsE pg δ . Equation (18) gives

(19).

Conversely, if (19) holds, then by martingale representation property of the Brownian filtration [see e.g. Øksendal

(1995)] [ ] [ ]∫∫ −=










−
t

ect

T

mi sdsFdssescsE
mi

00

)()()()()( zeδδ  for all [ ]Tt ,0∈ , because )(tiδ , )(tc , and )(tem  follow

Itô processes. Because the markets are complete in each currency and )(siδ  is a real state-price deflator, there

exists [ ]kθθ K1=g  such that [ ] [ ] )()()'()()( tdtttdt
mecii zepg

i −= δδ  for all [ ]Tt ,0∈ . Using (18) we see that g

finances c.

Q.E.D.

Given Lemma 1 single agent m ∈  M faces the following problem

(20) ( )cU m
ic Λ∈),(

sup

subject to

(21) [ ] 0)()()(
0

=










−∫
T

mi dttetctE δ
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where { }{ }IiLcic ,,0,:),( K∈∈=Λ .

THEOREM 2: The optimal consumption and home currency choice for agent m ∈  M on a time period [ ]T,0 ,
where [ ]τ,0∈T , is given by

(22) [ ] [ ]TtttItc
mm iimm ,0allfor ),()( ∈= ∗∗

∗ δγ

and

(23) [ ]( ) [ ]( ) { }IidttttIuEdttttIuE
T

iimm

T

iimm
mm

,,0allfor ,),(,),(
00

K∈










≥










∫∫ ∗∗ δγδγ

where ),( tIm ⋅  inverts 
c

tum

∂
∂ ),(⋅

, meaning that xt
c

txu
I m

m =



 ,

),(
∂

∂
 for all x and t, 0>iγ  is a Lagrange multiplier

in currency { }Ii ,,0 K∈  satisfying [ ]{ } 0)(),()(
0

=





−∫

T

miimi dttettItE δγδ , { }Iim ,,0 K∈∗  is the optimal home

currency, and Lcm ∈∗  is the optimal consumption process.

PROOF: From (9), (20), and (21) we get the following optimal consumption choice problem for agent Mm ∈  for
all { }Ii ,,0 K∈

(24) [ ]{ } 





−−∫

T

mmiiimim dttetcttcuE
0

,, )()()(),(sup δγ

where mic ,  denotes the consumption of agent m in currency i.

The first order condition for optimality of 0, >∗
mic  is

(25) [ ]Ttt
c

tcu
ii

mi

mim ,0allfor 0)(
),(

,

, ∈=−
∗

δγ
∂

∂

where ∗
mic ,  denotes the optimal consumption of agent m in currency i.

Solving (25) gives

(26) [ ] [ ]TtttItc iimmi ,0allfor ),()(, ∈=∗ δγ .

Under Assumption A3, the Dominated Converge Theorem [see e.g. Rudin (1987)] implies that

[ ]










= ∫
T

iimi dtttIEJ
0

),()( δγγ  is continuos, and )( iJ γ  is decreasing because [ ]ttI iim ),(δγ  is for all [ ]Tt ,0∈  and

{ }Ii ,,0 K∈ . Because ++ → RR:J  is a bijective mapping, there exists a unique +∈ Riγ  such that







= ∫

T

mi dtteEJ
0

)()(γ . Now we have a set of suboptimal consumption processes for the agent m,

{ }{ }IiMmLcc mimi ,,0,,: ,, K∈∈∈=Φ ∗∗ . Given A6 the optimal consumption strategies and home currencies are the

ones that satisfy the equation (23) implying the optimality of ( )∗∗
mm ic , .

Q.E.D.

Among other things the proof of Theorem 2 shows that the optimal consumption and home currency choice do
not have to be unique. In each currency, an agent has a unique optimal consumption strategy, because his utility
function is given by (9) and the national markets are complete. However, international markets are incomplete and
in different currencies different consumption strategies can give equal utility for the agent.
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5. INTERNATIONAL EQUILIBRIUM

In this section we derive an equilibrium that emerges if the representative agents of all currencies optimize
continuously their consumption and home currency according to the optimization model presented in the previous
section. That is, we analyze the equilibrium relationships between the foreign exchange rate volatility processes,
market price of risk vectors, and real interest rates.

The international equilibrium is a collection

(27) ( ) { } { }{ }IiMmIiic mimmi m
,,0,,,,0,,; KK ∈∈∈δ ,

such that, given the state-price deflators iδ for all { }Ii ,,0 K∈ , for each agent m, mc  and mi  solves (20), and

markets clear [ ] 0)()( =−∑
=Mm

mm tcte  for all [ ]τ,0∈t . The market clearing condition ensures that the commodity

market clears. Using equation (18) we see that also asset market clears.

From equation (7) we have the following relationship for a portfolio process

(28) { } [ ]τα φφ ,0,,,0allfor )()()( ∈∈= tIittt ii
Kne

i

where [ ] )()()()()()()( tdttdtttrttd
ii iiii zeφφ φαφφ ++= .

We define the supremum of the expected returns with given standard deviation as follows

(29) ( ) [ ] { } [ ]τσβ φ ,0,,,0allfor )()()(sup, ∈∈+= tIitttrt iii i
Kne

where the supremum is taken over all portfolio processes such that )'()( tt
ii φφσ ee= .

We call ),( ti ⋅β  the efficient line in currency i at time t. ),( ti ⋅β  is linear because of A5 [see e.g. Copeland and
Weston (1992)]. Now we can prove the following lemma that defines the international efficient contour.

LEMMA 2: The function ( )
{ }

( )tt iIi
,max,

,0
⋅=⋅

∈
ββ

K
 is a convex function on [ )∞,0  for all [ ]τ,0∈t .

PROOF: Because ),( ti ⋅β  is linear, it is a convex function. This gives β(⋅,t) is a convex function on [ )∞,0  for all
[ ]τ,0∈t . Q.E.D.

Given equation (9) the indifference utility curves for all representative agents are convex on { }σαφ ,
iir +  [see e.g.

Copeland and Weston (1992)]. This leads to the following theorem.

THEOREM 3: There exists [ )∞∈ ,0iσ  such that

(30) ( ) ( ) { } [ ]τσβσβ ,0,,0allfor ,, ∈∈= tIitt iii K .

PROOF: If (30) does not hold for some currency { }Ii K,0∈  then the currency i can not be optimal to any agent
in our international economy. Q.E.D.

Theorem 3 states that for all currencies the national efficient line must equal the international efficient contour at
least at one point. Because the international efficient contour is convex, our international equilibrium is curved.
Figure 1 illustrates Theorem 3. The thick contour is the international efficient contour. The optimal point for a
representative agent is the point where β touches the indifference curve. The line 3β  under β contradicts Theorem
3 and this cannot exist.
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Expected
return

∇u

Standard deviation

Figure 1: Curved international equilibrium (∇u is the utility gradient of the agent, the thick contour is the
international efficient set, βi is the efficient line in currency i, and i = 1, 2, 3)

An interesting paradox emerges from the results above. From Figure 1 it can be seen that in equilibrium, the
currency with the highest riskless real rate will be populated by the most risk averse investors, because the
indifference curve is highly convex. According to Theorem 3, however, the currency with the highest real rate will
have the lowest excess return for any given value of the volatility parameter. Otherwise purely dominated currencies
would exist. The paradox is due to the fact that the market prices of risk do not reflect the risk attitudes of the
investors in any particular home currency, but are simply determined by Theorem 1. That is, stochastic real foreign
exchange rates force the market price of risk vectors to differ from each other and, in equilibrium, the real interest
rates must be such that each state-price deflator is optimal at least to one agent. This paradox can be proved as
follows.

COROLLARY 1: The following relationship holds

(31) { } [ ]τφφ ,0,,,1allfor )()()()()()( 00 0
∈∈>< tIittttifftrtr ii i

Knene

where ( )∞∈= ,0)'()()'()(
00

tttt
ii φφφφ eeee ,φ0 is an efficient portfolio in currency 0, and iφ  is an efficient

portfolio in currency i.

PROOF: Since ),( ti ⋅β  is linear for all i ∈  {0,… ,I} and Theorem 3 holds we get

(32) )(),()(),()()( 000 trttrtifftrtr iii −>−< σβσβ

where ( )∞∈ ,0σ . Because the portfolios are efficient, we have )()()(),( 000 tttrt
o

neφσβ =−  and

)()()(),( tttrt iii i
neφσβ =− , where σφφφφ == )'()()'()(

00
tttt

ii
eeee , by the definition of the market price of

risk. Q.E.D.

This corollary means that the difference between market price of risk between different currencies can be seen as
a consequence of the difference between domestic and foreign instantaneous real (risk-free) interest rates. Given
Theorem 1 this also gives stochastic real foreign exchange rates. Corollary 1 also sets restrictions to the diffusion
processes of foreign exchange rates, since using Theorem 1 we get from equation (31)

(33) { } [ ]τφ ,0,,1allfor 0)'()()()(
00 ∈∈>< tIittifftrtr

iSi Kee

where ( )∞∈ ,0)'()(
00

tt φφ ee .

Equation (33) implies that if the domestic real risk-free interest rate is lower than the corresponding foreign rate
then an efficient portfolio must have positive correlation with the foreign exchange rate.

β1

β2

β3
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Let us continue our example [equations (15) – (17)] and set 0)(0 =tr . By assuming that the volatility of an
efficient portfolio is strictly positive in currency 0, we get )(0 1 tr<  from Corollary 1.

6. SUMMARY

In this paper we have shown that given stochastic real foreign exchange rates, international markets are
segmented. The stochastic real foreign exchange rates force the market price of risk vectors in different currencies
to differ from each other. By using the relationship between the market prices of risk, we have derived the single
investor’s optimal consumption and home currency and a curved equilibrium in which representative agents behave
according to the optimization model. In equilibrium, the real interest rates must be such that each currency is
optimal at least to one agent.

If there is free investors mobility and the investors maximize only the utility from their consumption, the currency
with the highest riskless real rate will be populated by the most risk averse investors. Also in this situation the
market prices of risk do not reflect the risk attitudes of the investors in the particular home currency, but are simply
determined by the interplay of all investors in the international economy.
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