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Abstract: This dissertation presents (i) a framework for selecting and managing a 

portfolio of risky multi-period projects, called Contingent Portfolio 
Programming (CPP), and (ii) an inverse optimization procedure that uses 
this framework to compute the value of a single project. The dissertation 
specifically examines a setting where the investor can invest both in private 
projects and securities in financial markets, but where the replication of 
project cash flows with securities is not necessarily possible. This setting is 
called a mixed asset portfolio selection (MAPS) setting. The valuation 
procedure is based on the concepts of breakeven selling and buying prices, 
which are obtained by first solving an optimization problem and then an 
inverse optimization problem. 

 
In the theoretical part of the dissertation, it is shown that breakeven prices 
are consistent valuation measures, exhibiting sequential consistency, 
consistency with contingent claims analysis (CCA), and sequential 
additivity. Due to consistency with CCA, the present approach can be 
regarded as a generalization of CCA to incomplete markets. It is also 
shown that, in some special cases, it is possible to derive simple calculation 
formulas for breakeven prices which do not require the use of inverse 
optimization. Further, it is proven that breakeven prices for a mean-variance 
investor converge towards the prices given by the Capital Asset Pricing 
Model (CAPM) as the investor’s risk tolerance goes to infinity. The 
numerical experiments show that CPP is computationally feasible for 
relatively large portfolios both in terms of projects and states, and illustrate 
the basic phenomena that can be observed in a MAPS setting. 
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1 INTRODUCTION 
1.1 Context and Background 
The evaluation and selection of risky projects, such as research and development 

(R&D) projects, has attracted substantial interest among both academicians and 

practitioners (see, e.g., Martino 1995, and Henriksen and Treynor 1999). Especially 

in high-technology firms, the selection of the R&D portfolio can be a major 

determinant of the future performance of the company. 

 

The task of selecting risky projects has been widely studied within several scientific 

disciplines, most prominently in corporate finance, operations research, and 

management science (see, e.g., Brealey and Myers 2000, Ghasemzadeh et al. 1999, 

Heidenberger 1996, Smith and Nau 1995, Gear and Lockett 1973). Many of the 

developed approaches aim at placing a value on the project; if this value is positive 

the project is started; otherwise it is not. For example, in the literature on corporate 

finance, the value of a risky project, like that of any other risky investment, is 

calculated as the net present value (NPV) of its cash flows, discounted at a discount 

rate that reflects the riskiness of the project (Brealey and Myers 2000). It is typically 

suggested that this rate should be the expected rate of return of a security that is 

“equal in risk” to the project. Under the Capital Asset Pricing Model (CAPM; Sharpe 

1964, Lintner 1965), two assets are regarded equally risky if they have the same 

beta, and therefore the finance literature suggests that one should use the beta of the 

project, or equivalently, the covariance between the project and the financial market 

portfolio, to determine the discount rate for the project (Brealey and Myers 2000). 

However, the use of the CAPM in project valuation relies on the assumption that the 

firm is a public company maximizing its share price; yet, many companies make 

decisions about accepting and rejecting projects before their initial public offering. 

 

Several methods have been proposed to value projects of a private firm. These 

include decision analysis (French 1986, Clemen 1996) and options pricing analysis, 

which is also referred to as contingent claims analysis (CCA; Merton 1973b, Hull 

1999, Dixit and Pindyck 1994, Trigeorgis 1996). Still, conventional methods based on 

decision analysis, such as decision trees, may lead to biased estimates of project 

value, because they do not take into account the opportunity costs imposed by 

alternative investment opportunities. Options pricing analysis accounts for the effect 

that financial instruments have on project value, but its applicability is limited, 
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because in practice it may be difficult to replicate project cash flows using financial 

instruments. 

 

When used to select a project portfolio, most single-project valuation methods are 

problematic in that they neglect the effect of project interactions, such as synergies 

and diversification, on the overall performance of the portfolio. Also, these methods 

do not take into account the firm’s resource constraints, which may strongly limit the 

projects that can simultaneously be included into the portfolio. Therefore, such 

methods may lead to a suboptimal project portfolio both in terms of expected cash 

flows and the risk of the portfolio. For this reason, it is advisable to employ a project 

portfolio selection method instead. Such a method can potentially determine the most 

valuable portfolio where project synergies and the effect of diversification on the risk 

of the portfolio are taken into account, although it may not directly put a value on any 

single project. Still, as shown in this dissertation, these methods can also be applied 

to value single assets in the firm’s portfolio through a specific inverse optimization 

procedure. 

 

Earlier project portfolio methods have, however, suffered from various shortcomings 

that have hindered the use of the methods in practice. For example, many of the 

currently available methods, such as the method by Gear and Lockett (1973) and 

Heidenberger (1996), make restrictive assumptions about the nature of the investor’s 

risk aversion, failing to imply diversification, for instance. Further, some methods do 

not consider uncertainty, while others fail to properly account for the multi-period 

nature of projects. 

1.2 Aims and Practical Relevance 
This dissertation has two primary aims. First, it aims at developing a framework for 

selecting a portfolio of risky multi-period projects which is (i) well-founded in the 

theories of finance, management science, and operations research, and also (ii) 

practically applicable in the sense that it (a) captures most of the phenomena that are 

relevant to R&D portfolio selection and (b) is computationally feasible for portfolio 

selection problems of realistic size. Second, the dissertation aims at developing a 

procedure for project valuation in a setting where the firm can invest both in private 

projects and publicly-traded securities, but where replication of project cash flows 

with securities is not necessarily possible. This setting is called the mixed asset 

portfolio selection (MAPS) setting. 
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While a framework for selecting a portfolio of risky projects enjoys general interest of 

practitioners of corporate finance, also MAPS-based project valuation is important in 

practice. On the one hand, MAPS-based project valuation is, in principle, called for 

when a corporation or an individual makes investments both in securities and 

projects, or other lumpy investment opportunities. For example, many investment 

banks invest in a portfolio of publicly traded securities and undertake uncertain one-

time endeavors, such as venture capital investments. On the other hand, a 

fundamental problem in the literature on corporate finance is the valuation of a single 

project while taking into account the opportunity costs imposed by securities (see, 

e.g., Brealey and Myers 2000). This is a MAPS setting that includes one project and 

several securities. 

1.3 Structure of Dissertation 
The dissertation includes five papers. Papers [I] and [II] form the core of the 

dissertation. Paper [I] presents a modeling framework, called Contingent Portfolio 

Programming (CPP), for selecting and managing a portfolio of risky multi-period 

projects. The framework is taken into use and extended in Paper [II], which examines 

the valuation of risky projects in a MAPS setting. The valuation procedure is based 

on the concepts of breakeven selling and buying prices (Luenberger 1998, Smith and 

Nau 1995, Raiffa 1968), which rely on the comparison of MAPS problems with and 

without the project being valued. Paper [II] shows that breakeven buying and selling 

prices exhibit several important properties and that they are therefore consistent 

valuation measures. Paper [I] constitutes the primary modeling contribution of the 

dissertation, whereas Paper [II] contains the dissertation’s main methodological and 

theoretical contribution. 

 

The three other papers provide additional contributions. Papers [III] examines a 

single-period MAPS setting where the investor is either unable to give probability 

estimates or where the estimates are ambiguous. In particular, we concentrate in this 

paper on the Choquet-Expected Utility (CEU) model, which is able to capture 

ambiguity, and develop two models to solve MAPS models when the investor is a 

CEU maximizer. Paper [IV] discusses multi-period project valuation, compares the 

present approach to other multi-period approaches in the literature, and produces 

further computational results. Paper [V] describes a decision support system based 

on an interval value tree method called Preference Ratios In Multi-attribute 

Evaluation (PRIME; Salo and Hämäläinen 2001), and presents a case study where it 

is used to develop scenarios for the market share of Sonera SmartTrust, a Finnish 
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high-technology company. A similar approach can be used for scenario generation in 

project portfolio selection. 

2 EARLIER APPROACHES 

2.1 R&D Project Selection Models 
Several methods for the selection of R&D projects have been developed over the 

past few decades (see, e.g., Martino 1995, and Henriksen and Traynor 1999). Many 

of these methods are based on mathematical optimization. Such methods are 

typically focused on capturing some specific characteristics of R&D portfolio selection 

such as synergies or follow-up projects, as described in Table 1. An ideal project 

selection framework would implement all of the characteristics in Table 1 in a 

theoretically rigorous way. However, few methods aim at capturing all of these 

features, and many of those that do resort to theoretically questionable approaches 

in modeling some of the features. 

 

Optimization-based R&D project selection methods, such as the ones in Table 1, can 

be viewed as extensions of standard capital budgeting models (see, e.g., Luenberger 

1998). These models capture rather complex problems with project 

interdependencies and resources constraints, but they do not usually address 

uncertainties associated with the projects’ outcomes, which makes it impossible to 

Table 1. Overview of Approaches to R&D Project Selection. 

 Features 
Model RN FP VA CO PV RC RD SY 
  Ghasemzadeh et al. 1999  X   X X   
  Heidenberger 1996 X X   X X   
  Santhanam & Kyparisis 1996  X    X  X 
  Czajkowski & Jones 1986  X    C   
  Fox et al. 1984      X  X 
  Mehrez & Sinuary-Stern 1983      X   
  Aaker & Tyebjee 1978    X  X  X 
  Gear & Lockett 1973 X X   X X   
  Gear et al. 1971         
     Bell et al. 1967     X X   
     Watters 1967   X   C   
     Brandenburg & Stedry 1966      X X  

Key: CO = correlation or other probabilistic interaction between project outcomes, FP = follow-up 
projects, PV = project versions, RC = resource constraints, RD = resource dynamics, RN = reaction 
to new information, SY = synergies (cross terms for project outcomes), VA = variability aversion,  X= 
feature present in basic model, C = chance-constrained model 

4



 

 5

attach risk measures to project portfolios. Also, these models do not usually offer 

possibilities for reacting to new information. In Table 1, the scarcity of X’s in columns 

“VA”, “CO”, and “RN” highlights these shortcomings. 

 

Even though some methods do deal with project uncertainties and the investor’s risk 

aversion, they often do so by resorting to unrealistically restrictive assumptions or 

theoretically unfounded approaches. For example, the method by Mehrez and 

Sinuany-Stern (1983) relies on restrictive assumptions about the investor’s utility 

function while Czajkowski and Jones (1986) employ chance-constraints that may 

lead to preference models that are inconsistent with expected utility theory and other 

well-founded preference frameworks. Also, the models of Gear and Lockett (1973) 

and Heidenberger (1996) do not account for the variability of portfolio returns, even 

though they allow the investor to react to new information. 

 

Another limitation in some optimization models (e.g., Gear and Lockett 1973, 

Czajkowski and Jones 1986, and Ghasemzadeh et al. 1999) is that project inputs are 

separated from outputs, wherefore projects cannot produce inputs for other projects, 

for instance. These models typically also assume that there exists a predefined, 

static supply of resources in each time period (see, e.g., Ghasemzadeh et al. 1999 

and Gear and Lockett 1973) which makes it impossible to invest profits for later or 

immediate use. There is consequently a need for dynamic modeling of resources; 

early attempts into this direction have been presented by Brandenburg and Stedry 

(see Gear et al. 1971).  

 

In summary, there appears to be need for an optimization method that rigorously 

captures (i) project uncertainties, (ii) the investor’s risk preferences, and (iii) dynamic 

production and consumption of resources. 

2.2 Stochastic Programming 

Stochastic programming models analogous to R&D portfolio selection models have 

appeared in investment planning as well as in asset-liability management (e.g., 

Bradley and Crane 1972, Kusy and Ziemba 1986, Mulvey and Vladimirou 1989, Birge 

and Louveaux 1997, Mulvey et al. 2000). These two problem contexts share 

similarities with the selection of R&D projects in that (i) the investor seeks to 

maximize the value of a portfolio of risky assets in a multi-periodic setting and (ii) 
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there are several asset categories which parallel the multiple resource types 

consumed and produced by R&D projects.  

 

A key difference between R&D portfolio selection models and the financial stochastic 

programming models is that in financial optimization, the (dis)investment decisions 

are unconstrained quantities that do not restrict the investor’s future decision 

opportunities (e.g., security trading). In contrast, R&D project selection involves 

“go/no go”-style decisions (Cooper 1993) where the “go”-decision leads to later 

project management decisions while the “no go”-decision terminates the project 

without offering further decision opportunities. Table 2 contrasts the key 

characteristics of selected financial models of stochastic programming to CPP, which 

is developed in Paper [I]. Among these, CPP has close parallels with the dynamic 

model of Bradley and Crane (1972), as well as the models of Birge and Louveaux 

(1997) and Mulvey et al. (2000) which employ state (scenario) trees. 

2.3 Project Valuation Methods 
The literature on corporate finance contains a large number of apparently rivaling 

methods for the valuation of risky projects. The most popular approaches include (i) 

decision trees (Hespos and Strassman 1965, Raiffa 1968), (ii) expected utility theory 

(von Neumann and Morgenstern 1947, Raiffa 1968), (iii) the risk-adjusted NPV 

Table 2. Comparison of Some Stochastic Programming Approaches to Portfolio Selection 

 
Bradley and 
Crane (1972) 

Kusy and 
Ziemba (1986) 

Mulvey and 
Vladimirou 
(1989) 

Birge and 
Louveaux 
(1997, §1.2) CPP (Paper [I]) 

Model type Linear Linear 
Quadratic or 
non-linear, 
network 

Linear Linear, mixed 
integer 

Multiple time periods Yes Yes but only 
two stages 

Yes but only 
two stages Yes Yes 

Model of uncertainty State (event) 
tree 

States for  
second stage; 
for external 
cash flows only 

States for 
second stage State tree State tree 

Objective 
Expected 
value of 
terminal wealth  

Expected 
discounted  net 
revenues 

Mean-variance 
model or 
Expected utility 
of terminal 
wealth 

Expected utility 
of terminal 
wealth 

Utility of 
terminal wealth; 
mean-risk 
model 

Model of risk 
aversion / risk 
measure 

Loss 
constraints 

Penalty from 
constraint 
violations 

Variance or 
power utility 
function 

Piecewise 
linear utility 
function 

LSAD or EDR 

Type of decisions Quantitative 
(asset trading) 

Quantitative 
(asset trading) 

Quantitative 
(asset trading) 

Quantitative 
(asset trading) 

Choices 
between 
actions 

Decisions influence 
future decision 
possibilities 

No No No No Yes 
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method (see, e.g., Brealey and Myers 2000), (iv) real options (Dixit and Pindyck 

1994, Trigeorgis 1996), (v) Robichek and Myers’ (1966) certainty equivalent method 

(see also Brealey and Myers 2000, Chapter 9), (vi) Hillier’s (1963) method, and (vii) 

Smith and Nau’s (1995) method. These methods are summarized in Table 3. The 

three columns under the heading “Purpose” indicate the purpose to which the 

method is intended. As Table 3 describes, decision trees and expected utility theory 

are complementary techniques to the other methods, which aim at calculating the 

present value of an investment. In a complete project valuation framework, there is a 

specific method addressing each of the three purposes. 

 

Table 3. Methods for the valuation of risky multi-period investments. 

 Purpose  
Method CE PV ST Formula / explanation 

Risk-adjusted NPV  X  
[ ]

1 (1 )

T
t

t
t adj

E c
NPV I

r=

= − +
+∑  

Decision tree   X A chart with decision and chance nodes 

Expected utility theory X   [ ] [ ]( )1 ( )CE X u E u X−=  

Contingent claims analysis  X  
0

n

i i
i

NPV I S x ∗

=

= − + ∑  

Robichek and Myers  (1966)  X  
[ ]

1 (1 )

T
t

t
t f

CE c
NPV I

r=

= − +
+∑  

Hillier (1963)  X  
1 (1 )

T
t

t
t f

cNPV I CE
r=

⎡ ⎤
= − + ⎢ ⎥

+⎢ ⎥⎣ ⎦
∑  

Smith and Nau (1995)  X  

NPV = breakeven selling or buying price 
  Preference model for cash flow streams: 
  ( ) ( )1 2 1 2[ , ,..., ] , ,...,T TU c c c E u c c c∗= ⎡ ⎤⎣ ⎦  

MAPS (Paper [II])  X  
NPV = breakeven selling or buying price 
  Preference model for terminal wealth levels 

Key: CE = Certainty equivalent for a risky alternative, PV = Present value of a risky cash flow 
stream, ST = Structuring of decision opportunities and uncertainties, I = investment cost, ct = 
risky cash flow at time t, radj = risk-adjusted discount rate, u = utility function, Si = price of 
security i, ix ∗  = amount of security i in the replicating portfolio, rf = risk-free interest rate, u* = 
intertemporal (multi-attribute) utility function. 
 

The MAPS valuation approach developed in Paper [II] is most closely related to the 

method by Smith and Nau (1995), the main difference being in the employed 

preference model. It is also consistent with contingent claims analysis, and in some 

special cases, with Hillier’s (1963) method, as discussed in Papers [II] and [IV]. On 

the other hand, the CPP framework, which is developed in Paper [I] and 
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consequently used in Papers [II] and [IV], implements a decision-uncertainty 

structure similar to decision trees, and also allows the use of a wide range of 

preference models, including the expected utility model. Paper [III] employs a 

Choquet-expected utility model, which is an alternative to expected utility theory. 

 

In the following, the methods in Table 3 and their limitations and possible uses are 

discussed in more detail. 

2.3.1 Decision Trees and Related Approaches 
A decision tree describes the points at which decisions can be made and the way in 

which these points are related to unfolding uncertainties. Conventionally, decision 

trees have been utilized together with expected utility theory (EUT; von Neumann 

and Morgenstern 1947) so that each end node of the decision tree is associated with 

the utility implied by the earlier actions and the uncertainties that have resolved 

earlier. This decision tree formulation does not explicitly include the time axis or 

provide guidelines for accounting for the time value of money. 

 
In corporate finance, decision trees are used to describe how project management 

decisions influence the cash flows of the project (see, e.g., Brealey and Myers 2000, 

Chapter 10). Here, decision trees are typically applied together with the risk-adjusted 

NPV method, whereby an explicitly defined time axis is also constructed. However, 

the selection of an appropriate discount rate for NPV is often problematic, mainly 

because the rate is influenced by three confounding factors, (i) the risk of the project, 

which depends on the project’s correlation with other investments, (ii) the opportunity 

costs imposed by alternative investment opportunities, and (iii) the investor’s risk 

preferences.  

 

Several methods for determining the discount rate have been proposed in the 

literature. However, most of them have problematic limitations. For example, the 

weighted average cost of capital (WACC) is appropriate only for average-risk 

investments in a firm, whereas discount rates based on expected utility theory do not 

account for the opportunity costs imposed by securities in financial markets. The real 

options literature suggests the use of contingent claims analysis (CCA) to derive the 

appropriate discount rate by constructing replicating portfolios using market-traded 

securities. Still, it may be difficult to construct replicating portfolios for private projects 

in practice. Last, the use of a CAPM discount rate is appropriate only for public 

companies whose all shares are traded in markets that satisfy the CAPM 
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assumptions. Even when these assumptions are satisfied, a CAPM discount rate is 

applicable for single projects only when there are no synergies between projects. 

2.3.2 Robichek and Myers’ and Hillier’s Methods 
Robichek and Myers’ (1966) and Hillier’s (1963) methods are two alternative ways of 

determining a risk-adjustment to a discount rate in a multi-period setting. These 

methods have been widely discussed in the literature on corporate finance (see, e.g., 

Keeley and Westerfield 1972, Chen and Moore 1982, Ariel 1998, and Brealey and 

Myers 2000). They both employ expected utility theory or a similar preference model 

to derive a certainty equivalent (CE) for a risky prospect. 

 

In Robichek and Myers’ method, the investor first determines a CE for the cash flow 

of each period, and then discounts it back to its present value at the risk-free interest 

rate. Yet, because CEs are taken separately for each cash flow, the method does not 

account for the effect of cash flows’ temporal correlation on the cash flow stream’s 

aggregate risk; hence, it may lead to an unnecessarily large risk-adjustment. In 

contrast, in Hillier’s (1963) method, we first determine the cash flow streams that can 

be acquired with the project in different scenarios and then calculate the NPVs of 

these streams using the risk-free interest rate. The result is a probability distribution 

for risk-free-discounted NPV, for which a CE is then determined. However, the use of 

the risk-free interest rate essentially means that any money received before the end 

of the planning horizon is invested in the risk-free asset. Yet, it might be more 

advantageous to invest the funds in risky securities instead. Therefore, Hillier’s 

method is, strictly speaking, applicable only in settings, where the investor cannot 

invest in risky securities. 

2.3.3 Smith and Nau’s Method 
The idea behind Smith and Nau’s (1995) method, which Smith and Nau call “full 

decision tree analysis,” is to explicitly account for security trading in each decision 

node of a decision tree. The main advantage of the approach is that it appropriately 

accounts for the effect that the possibility to invest in securities has on the discount 

rate of a risky project. Incorporating decision trees, a preference model, and security 

trading, Smith and Nau’s method is one of the most complete project valuation 

methods to date. However, it does not consider alternative projects, which impose an 

opportunity cost on the project being valued, wherefore it is applicable only in a 

setting where the investor can invest in a single project and several securities. In a 

multi-project setting, the method is subject to the usual shortcomings of single-project 
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valuation methods; in particular, it fails to account for the effect of diversification and 

project synergies. 

 

Also, the practically appealing form of the method, the integrated rollback procedure, 

relies on several restrictive assumptions: (i) additive independence (Keeney and 

Raiffa 1976), (ii) constant absolute risk aversion (CARA), and (iii) partial 

completeness of markets. Yet, as pointed out by Keeney and Raiffa (1976), additive 

independence entails possibly unrealistic preferential restrictions. The CARA 

assumption may also be questionable, because it leads to an exponential utility 

function with utility bounded from above. This is known to result in an unrealistic 

degree of risk aversion at high levels of outcomes (see, e.g., Rabin 2000). In 

practice, it may also be difficult to create a replicating portfolio for market-related 

cash flows of a project, as it is assumed in partially complete markets. 

 

In view of the limitations of Smith and Nau’s (1995) method, it appears that there is a 

need for project selection framework that (i) considers all projects in the portfolio, 

implements (ii) decision trees and (iii) security trading, and allows for (iv) a realistic 

array of risk preferences without resorting to overly restrictive assumptions. 

3 PROJECT PORTFOLIO SELECTION MODEL 
The Contingent Portfolio Programming (CPP) framework presented in Paper [I] is the 

underlying modeling framework that is used throughout this dissertation, except in 

Paper [V]. CPP allows risks to be managed both through diversification (Markowitz 

1952, 1959) and staged decision making (Cooper 1993), and accounts for the firm’s 

resource constraints. The framework has also the advantage that, when the firm’s 

risk measure satisfies a linearity property, it leads to linear programming models, 

which can readily solved for portfolio selection models of realistic size. 

3.1 Framework 
In CPP, projects are regarded as risky investment opportunities that consume and 

produce several resources over multiple time periods. Analogously to Gear and 

Lockett (1973) and the Stage-Gate process of Cooper (1993), the staged nature of 

R&D projects is captured through project-specific decision trees, which support 

managerial flexibility by allowing the investor to take stepwise decisions on each 

project in view of most recent information (Dixit and Pindyck 1994, Trigeorgis 1996, 

Brandao and Dyer 2004, Brandao, Dyer, and Hahn 2004). Uncertainties are modeled 

using a state tree, representing the structure of future states of nature, as shown in 
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the leftmost chart in Figure 1. In general, the state tree is a multinomial tree that can 

have different probability distributions in its branches.  
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Figure 1. A state tree, a decision sequence, and a decision tree for a project. 

Projects are modeled using decision trees that span over the state tree. The two 

rightmost charts in Figure 1 describe how project decisions, when combined with the 

state tree, lead to project-specific decision trees. The specific feature of these 

decision trees is that the chance nodes are shared by all projects, since they are 

generated using the common state tree. This allows for taking into account the 

correlations between projects. 

 

Also securities can be straightforwardly incorporated into the CPP framework in order 

to develop a MAPS setting. While Paper [I] briefly mentions this possibility, a proper 

development of the resulting CPP MAPS model is given in Papers [II] and [IV]. In 

such a model, security trading is implemented through state-specific trading 

variables, which are similar to the ones used in financial models of stochastic 

programming (e.g. Mulvey et al. 2000) and in Smith and Nau’s (1995) method. In 

addition to introducing security trading, Paper [II] presents a risk-constrained mean-

risk version of the CPP model, which is not discussed in Paper [I]. Paper [III] employs 

a one-period version of this model, formerly called “general deviation-based mean-

risk model” in a previous version of Paper [II], which appears in my Licentiate Thesis 

(Gustafsson 2004). 

 

Four types of constraints are imposed on a CPP model: (i) resource (budget) 

constraints, (ii) decision consistency constraints, (iii) risk constraints, which apply to 

risk-constrained models only, and (iv) deviation constraints. Resource constraints 
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ensure that there is a nonnegative amount of cash in each state. Decision 

consistency constraints implement the projects’ decision trees. These constraints 

require that (i) at each decision point reached, only one action is selected, and that 

(ii) at each decision point that is not reached, no action is taken. Deviation constraints 

are needed in the formulation of many deviation-based risk measures. 

3.2 Objective Function 
The preference models in CPP can be further classified into two classes: (1) 

preference functional models, such as the expected utility model, and (2) bi-criteria 

optimization models. In general, we can refer by a “mean-risk model” either to a 

preference functional model (like in Paper [I]) or to a bi-criteria optimization model 

that uses optimization constraints (like in Papers [II] – [IV]). I adopt here the latter 

terminology. 

 

In a preference functional model, the investor seeks to maximize the utility of the 

terminal resource position  

max [ ]U X , 

where U is the investor’s preference functional and X is the random value of the 

resource position in period T. Under expected utility theory, the preference functional 

is given by [ ] [ ]( )=U X E u X , where u is the investor’s von Neumann-Morgenstern 

utility function. A risk-constrained mean-risk model can be formulated as follows: 

          max [ ]E X , 

subject to 

          [ ]X Rρ ≤ , 

where ρ  denotes the risk constraint and R the investor’s risk tolerance. 

 

One of the main differences between Papers [I]–[IV] is the objective function used 

within the CPP framework. Paper [I] concentrates on linear preference functionals, 

mean-lower semi-absolute deviation (mean-LSAD) model and mean-expected 

downside risk (mean-EDR) model, which lead to linear CPP models. Such models 

can typically be solved when there is a reasonably large number of states and 

projects (e.g., 100 projects and 200 states), as shown by the numerical experiments 

in Paper [I]. Lower semi-absolute deviation (LSAD; Ogryczak and Ruszczynski 1999, 

Konno and Yamazaki 1991) and expected downside risk (EDR; Eppen et al. 1989) 

are defined as 
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LSAD:  ( ) ( ) ( )
X X

X X X X Xx dF x x dF x
µ µ

δ µ µ
−∞ −∞

= − = −∫ ∫  and 

EDR:  ( ) ( ) ( )X X XEDR x dF x x dF x
τ τ

τ τ
−∞ −∞

= − = −∫ ∫ , 

where Xµ  is the mean of random variable X, τ is some constant target value, and FX 

is the cumulative density function of X. The mean-LSAD model exhibits linear pricing 

and consistency with stochastic dominance (Levy 1992, Ogryczak and Ruszczynski 

1999), whereas the mean-EDR model is consistent with expected utility theory (von 

Neumann and Morgenstern 1947, Fishburn 1977) and hence also dynamically 

consistent (Machina 1989). Also, as long as the preference model and the underlying 

random variables satisfy the assumptions of Dyer and Jia’s (1997) relative risk-value 

models, in particular the relative risk independence condition and non-negativity of 

outcomes, the preference model exhibits also the properties observed with relative 

risk-value models, such as the decomposition to the relative risk-value form. 

 
In contrast, Paper [II] focuses on the risk-constrained mean-variance model, because 

hereby it is possible to contrast the results with the CAPM, which is based on the 

Markowitz (1952) mean-variance model. Similarly, Paper [IV] employs the risk-

constrained mean-variance model in its numerical experiments, although it is not 

otherwise limited to this model. The numerical experiments in Paper [IV] involve also 

expected utility maximizers exhibiting constant absolute risk aversion (CARA; 

Keeney and Raiffa 1976). 

 
Paper [III] uses the Choquet-Expected Utility (CEU) model (Choquet 1953, Gilboa 

1987, Schmeidler 1989, Wakker 1990, Camerer and Weber 1992), which under 

stochastic dominance reduces to the Rank Dependent Expected Utility (RDEU; 

Quiggin 1982, 1993) model. This model is given by 

[ ] [ ] [ ] ϕ
∞

−∞

′= = = −∫( ) ( ) (1 ( )) ( )c X XU X CEU X E u X u x F x dF x , 

where  ϕ  is the transformation function describing the investor’s ambiguity aversion. 

Paper [III] focuses on two special cases of the transformation function, quadratic and 

exponential functions, and presents two alternative formulations of a CEU MAPS 

model, the binary variable model and the rank-constrained model. Also, Paper [III] 

presents a MAPS model using Wald’s maximin criterion (Wald 1950), which is a 

limiting special case of the CEU model. 
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4 PROJECT VALUATION 
While Paper [I] provides a framework for determining the value of a project portfolio, 

the methodology for calculating the value of a single project within a portfolio is 

developed in Paper [II]. With a single exception in Section 5.2 of Paper [II], examined 

project valuation settings in Papers [II] – [IV] are MAPS settings with at least the risk-

free asset available. That is, the investor is able to invest in both (i) securities, which 

can be bought and sold in any quantities, and (ii) projects, which are lumpy all-or-

nothing type investments. 

4.1 Breakeven Buying and Selling Prices 
Since a project is a non-tradable investment opportunity, the value of a project is 

defined as the amount of money at present that is equally desirable to the project, 

which corresponds to the conceptual definition of NPV in the literature on corporate 

finance. Still, the procedure obtained in Paper [II] is quite different from the 

conventional NPV formula found in course books on corporate finance (e.g., Brealey 

and Myers 2000). Nevertheless, as shown in Paper [IV], the approach coincides with 

many of the conventional project valuation approaches when the investor can invest 

only in a single project and the risk-free asset. 

 

In a portfolio context, the above definition for project value can be interpreted so that 

the investor is indifferent between the following two portfolios: (A1) a portfolio with the 

project and (B1) a portfolio without the project and cash equal to the value of the 

project. We may alternatively define the value of a project as the indifference 

between the following two portfolios: (A2) a portfolio without the project and (B2) a 

portfolio with the project and a debt equal to the value of the project. The project 

values obtained in these two ways will not, in general, be the same. The first type of 

value is called the “breakeven selling price” (BSP), as the portfolio comparison can 

be understood as a selling process, and the second type of value the “breakeven 

buying price” (BBP).  

 

As discussed in Paper [II], finding a BSP and BBP is an inverse optimization problem 

(see, e.g., Ahuja and Orlin 2001): one has to find a change in the budget so that the 

optimal value of the second portfolio optimization problem matches the optimal value 

of the first problem. Such problems can be classified into two groups: (i) finding an 

optimal value for the objective function, and (ii) finding a solution vector. The problem 

of finding a BSP or BBP falls within the first class; inverse optimization problems of 

this class can be solved by finding a root to a strictly increasing function. To solve 
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such root-finding problems, we can use usual root-finding algorithms, such as the 

bisection method and the secant method. 

4.2 Theoretical Results 
4.2.1 Consistency of Breakeven Prices 
As shown in Paper [II], breakeven prices exhibit sequential consistency, consistency 

with CCA, and sequential additivity. Due to sequential consistency, the investor will 

behave rationally in sequential decision problems. Technically, this means that when 

an investor first buys a project and then sells it, or vice versa, his/her (sequential) 

buying and selling prices will be equal to each other. 

 

Consistency with CCA refers to the property of the breakeven prices that, whenever 

CCA is applicable, i.e. whenever there exists a replicating portfolio for the project, the 

breakeven buying and selling prices are equal to each other and yield the same 

result as CCA (see also Smith and Nau 1995). Due to this property, the breakeven 

prices can be regarded as a generalization of CCA.  

 

Finally, sequential additivity states that the (sequential) BSPs / BBPs of two or more 

projects will always add up to the BSP / BBP of the portfolio composed of the same 

projects. This is a result of the fact that BSPs and BBPs are added values; if valued 

non-sequentially, projects’ breakeven prices are non-additive in general. 

4.2.2 Equality of Prices and Valuation Formulas 
Paper [II] also shows that breakeven prices exhibit two important properties for a 

broad class of risk-constrained mean-risk investors: (i) the breakeven prices are 

equal to each other, and (ii) they can be solved through a pair of optimization 

problems without resorting to possibly laborious inverse optimization.  

 

Papers [III] and [IV] produce analogous valuation formulas for other settings. Each of 

these formulas implies that, under the specified circumstances, the breakeven prices 

will be equal to each other and that they can be solved through a pair of optimization 

problems without using inverse optimization. Paper [III] develops the formula for 

expected utility maximizers exhibiting CARA and investors using Wald’s maximin 

criterion. Both of these preference models have been widely used in the literature. 

On the other hand, Paper [IV] develops a formula for BSP when the investor can 

invest only in a single project and in the risk-free asset. A similar formula holds for 

both BSP and BBP when the investor exhibits CARA; further, it is now possible to 
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use the certainty equivalent operator directly on the project’s future value distribution. 

The paper also shows that when the investor exhibits linear pricing the breakeven 

prices coincide with the Hillier’s (1963) method. In contrast, the prices will almost 

never give the same result as Robichek and Myers’ (1966) method, because this 

method typically overestimates the risk of the project. 

4.2.3 Relationship to Capital Asset Pricing Model 
Paper [II] also derives analytical formulas for BSP and BBP in the case where (a) the 

investor is a mean-variance optimizer, (b) the optimal mixed asset portfolio at present 

is known, and (c) projects are uncorrelated with securities. Using first these formulas 

and then generalizing the result, the paper proves that the breakeven prices of a 

mean-variance investor will converge, as risk tolerance goes to infinity, towards the 

price that the CAPM would place on the project. This result is valid regardless of the 

correlation of the project with market securities or other projects, as long as the 

optimal project portfolio in the limit is the same with and without the project. If the 

portfolios differ, the value of the project will converge towards the CAPM price of the 

difference of portfolios with and without the project. 

4.3 Valuation of Real Options 
An interesting extension to the breakeven price methodology is the valuation of 

opportunities, especially that of real options. The term “real option” originates from 

the fact that management’s flexibility to adapt later decisions to unexpected future 

developments shares similarities with financial options (Dixit and Pindyck 1994, 

Trigeorgis 1996, Copeland and Antikarov 2001, Black and Scholes 1973, Merton 

1973, Hull 1999). For example, possibilities to expand production when the markets 

are up, to abandon a project under bad market conditions, and to switch operations 

to alternative production facilities can be seen as options embedded in a project. 

 
Typically, the real options literature employs CCA to value real options, which 

requires that project cash flows can be replicated using financial securities. When 

replication is possible for all assets, markets are said to be complete. However, it can 

be difficult to construct replicating portfolios for private projects in practice, especially 

when the projects are developing innovative new products that do not resemble 

existing market-traded assets. Therefore, it is relevant to examine how real options 

could be priced in incomplete markets. Since real options of a project have 

conventionally been valued in the presence of securities, which is a MAPS setting, it 

is natural to consider the application of the breakeven price methodology to real 

option valuation. 
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Because a real option gives the investor an opportunity but not the obligation to take 

an action, we need for the valuation of real options concepts that rely on comparing 

the situations where the investor can and cannot take an action instead of does and 

does not, as breakeven prices do. Such prices are called opportunity selling and 

buying prices. Opportunity prices are always non-negative, because an opportunity 

cannot lower the value of the investor’s portfolio. It is also straightforward to show 

that the opportunity prices can be obtained by taking a maximum of zero and the 

respective breakeven price. Since breakeven prices are consistent with CCA, also 

opportunity prices have this property, and hence they can be regarded as a 

generalization of the standard CCA real option valuation procedure to incomplete 

markets. 

5 RESULTS FROM NUMERICAL EXPERIMENTS 
Numerical experiments are conducted in all of the papers. Paper [I] carries out an 

extensive numerical study on the computational performance of CPP models. These 

experiments indicate that CPP models of realistic size can be solved in a reasonable 

time. When solved as linear programming models, where integer variables are left 

continuous, CPP models of about a hundred five-staged projects and several 

hundreds of states can be solved in a reasonable time. Mixed integer programming 

models with a couple of tens of three-staged projects and less than a hundred states 

have usually an acceptable solution time. A similar computational experiment is 

conducted in Paper [V], indicating that PRIME models can be solved in a relatively 

short time using the PRIME Decisions software. 

 

Also Papers [II] – [IV] conduct numerical experiments. These aim at demonstrating 

the properties of breakeven prices in different contexts. Because it is not immediately 

obvious how generalizable the results are, the conclusions are necessarily limited to 

a rather general level. Overall, two main points can be highlighted. 

5.1 Effect of Alternative Investment Opportunities 
The results from the numerical experiments indicate that alternative investment 

opportunities, both projects and securities, do have a major impact on the value of a 

project. Beginning from the setting where it is possible to invest only in the project 

being valued, the experiments in Paper [II] show that introduction of new projects to 

the set of available investment opportunities typically lowers project values. This is 

understandable in view of the definition of breakeven prices: the value of the optimal 
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portfolio without the project will increase, which lowers the value of the project. Only 

in the case where the value of the optimal portfolio with the project increases more 

than the portfolio without the project will the value of the project grow. This might be 

the case when the project is negatively correlated with other projects. 

 

Similarly, securities can also lower project values by increasing opportunity costs (i.e. 

by increasing the value of the portfolio without the project), and they can also raise 

them by providing better diversification of risk (i.e. by raising the value of the portfolio 

with the project). The total effect depends on the relative magnitude of these two 

phenomena. We also see in the numerical experiments that, as predicted by the 

related proposition in Paper [II], when a project has a replicating portfolio, its value is 

consistent with the project’s CCA value at all risk levels. 

5.2 Pricing Behavior as a Function of Risk Tolerance 
Another set of insights from numerical experiments is related to the behavior of 

breakeven prices when the investor’s risk tolerance increases. First, the experiments 

show that, when securities are not available, project values can rise non-

monotonically as the risk tolerance is increased. This is because, without securities, 

opportunity costs are imposed in a lumpy manner, and the price of a project is 

determined by the projects that fit into the portfolio (limited by the risk constraint) with 

and without the project. This may result in a lumpy up and down movement in 

breakeven prices. 

 

In contrast, when securities are available, project values change monotonically by 

risk tolerance, because securities can be bought in a continuous manner. However, 

the project values can either rise or decrease by risk tolerance, depending on the 

correlation of the project with the rest of the mixed asset portfolio. Indeed, it is the 

correlation with the rest of the mixed asset portfolio that determines the limit 

behavior, not that with the security portfolio only. Therefore, one cannot use the 

project’s beta to make estimates about the sign of change in the project value when 

the investor’s risk tolerance increases. 

 

The limit behavior of the breakeven prices is also examined in the numerical 

experiments. As predicted by the related propositions in Paper [II], it is observed that 

the breakeven prices for a mean-variance investor converge towards the CAPM price 

of the project as the investor’s risk tolerance goes to infinity. Similarly, we see in 

Paper [III] that when an expected utility maximizer becomes less risk averse, project 
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values approach values that are close to the projects’ CAPM prices. Indeed, in 

neither case do the prices converge towards the values given by a risk-neutral 

investor. Finally, it is also observed, as expected, that when the investor becomes 

increasingly averse to risk or ambiguity, project values approach the values given by 

a maximin investor, the investor using Wald’s (1950) maximin criterion. 

6 IMPLICATIONS AND FUTURE RESEARCH DIRECTIONS 
The methodology developed in this dissertation provides a way to calculate 

theoretically justifiable values for risky projects and portfolios of risky projects so that 

the investor’s risk preferences, the opportunity costs of alternative investment 

opportunities, and project interactions are properly accounted for. In particular, it is 

now possible to determine the theoretically appropriate discount rate for a risky 

project, even when the project is owned by a private company or when there are 

synergies between projects. In addition, the methodology makes it possible to solve 

project portfolio selection problems where risks are managed using both 

diversification and staged decision making. Uncertainties can also be modeled with 

relative accuracy, because the models can be formulated using linear programming, 

which permits the use of a large number of states. 

 

This dissertation opens up avenues for further work both in practical and theoretical 

areas. On the practical side, applications of the methodology are called for. For 

example, the analysis of oil field investments appears to be a promising area for the 

present methodology, because many oil companies possess portfolios of oil fields 

and the associated uncertainties are mostly related to external sources. Another 

interesting application area is the valuation of collateralized debt obligations (CDOs), 

which are portfolios of assets with a possibly complex tranche structure. In addition, 

in order to ease the use of the methodology in practice, the development of a 

dedicated software application to solve CPP models is called for. 

 

On the theoretical side, several extensions of the methodology can be made. It is, for 

example, possible to include transactions costs and capital gains tax into a CPP 

MAPS model by using several resource types, each indicating the number of specific 

assets held, and state-specific decision trees that implement the trading decisions for 

each asset bought in the associated state. Further work is also needed in the 

modeling of synergies and follow-up project structure of R&D projects. For example, 

some synergies can be modeled by describing each project as a sequence of tasks, 
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each modeled as an individual project in CPP’s sense, that are interconnected so 

that a task cannot be started before the task preceding it is finished. The synergy 

then arises from that a single task is used in the task sequence of several projects. 

 

In general terms, the dissertation provides several new research topics for the related 

academic disciples. In corporate finance, where the limitations of CAPM discount 

rates have hopefully become more apparent than what they were previously, we 

need more research to develop procedures to value projects of public companies 

when all shareholders are not CAPM investors. This is relevant, for instance, with 

partly state-owned companies, because in order to maintain the necessary voting 

power the state has to possess a large amount of shares in the company, and 

therefore it cannot efficiently diversify its investment portfolio, as the CAPM requires. 

A similar situation may arise also in other cases where the investor is interested both 

in the financial return and the voting right provided by the share. For researchers of 

operations research and management science, the present work shows that decision 

trees, real options, and project portfolio selection models can be profitably combined 

together into a unified framework, where project values can be determined using 

inverse optimization. I am confident that these three project selection methodologies 

and inverse optimization have much to offer to each other and in terms of future 

research possibilities. 

REFERENCES 
Aaker, D. A., T. T. Tyebjee. 1978. A Model for the Selection of Interdependent R&D 

Projects. IEEE Transactions on Engineering Management EM25(2) 30–36. 

Ahuja, R. K., J. B. Orlin. 2001. Inverse optimization. Operations Research 49 771–

783. 

Ariel, R. 1998. Risk adjusted discount rates and the present value of risky costs. The 

Financial Review 33 17–30. 

Birge, J. R., F. Louveaux. 1997. Introduction to Stochastic Programming. Springer, 

New York, NY. 

Black, F., M. S. Scholes. 1973. The pricing of options and corporate liabilities. 

Journal of Political Economy 81 637-654. 

Bradley, S. P., D. B. Crane. 1972. A Dynamic Model for Bond Portfolio Management. 

Management Science 19(2) 139–151. 

20



 

 21

Brandao, L. and Dyer, J. 2004. Decision Analysis and Real Options: A Discrete Time 

Approach to Real Option Valuation. Forthcoming in Annals of Operations 

Research. 

Brandao, L., Dyer, J., and Hahn, W. 2004. Using Decision Analysis to Solve Real 

Option Valuation Problems – Part 1: Building a Generalized Approach. Working 

Paper. The University of Texas at Austin. 

Brealey, R., S. Myers. 2000. Principles of Corporate Finance. McGraw-Hill, New 

York, NY. 

Camerer, C., M. Weber. 1992. Recent Developments in Modeling Preferences: 

Uncertainty and Ambiguity. Journal of Risk and Uncertainty 5 325–370. 

Chen, S–N, W. T. Moore. 1982. Investment Decisions under Uncertainty: Application 

of Estimation Risk in the Hillier Approach. Journal of Financial and Quantitative 

Analysis 17(3) 425–440. 

Choquet, G. 1953. Theory of Capacities. Annales de l’Institut Fourier 5 131–295. 

Clemen, R. T. 1996. Making Hard Decisions – An Introduction to Decision Analysis. 

Duxbury Press, Pacific Grove. 

Cooper, R. G. 1993. Winning at New Products: Accelerating the Process from Idea to 

Launch. Addison-Wesley, Reading, Mass. 

Copeland, T., V. Antikarov. 2001. Real Options: A Practitioner’s Guide. Texere, New 

York. 

Czajkowski, A. F., S. Jones. 1986. Selecting Interrelated R&D Projects in Space 

Technology Planning. IEEE Transactions on Engineering Management EM33(1) 

17–24. 

Dixit, A. K., R. S. Pindyck. 1994. Investment Under Uncertainty. Princeton University 

Press, Princeton. 

Dyer, J. S., J. Jia. 1997. Relative risk-value models. European Journal of Operational 

Research 103 170–185. 

Eppen G. D., Martin R. K., Schrage L. 1989. A Scenario Based Approach to Capacity 

Planning. Operations Research 37 517-527. 

Fishburn, P. C. 1977. Mean-Risk Analysis with Risk Associated with Below-Target 

Returns. Amererican Economic Review 67(2) 116–126. 

21



 

 22

Fox, G. E., N. R. Baker, J. L. Bryant. 1984. Economic Models for R and D Project 

Selection in the Presence of Project Interactions. Management Science 30(7) 

890–902. 

French, S. 1986. Decision Theory – An Introduction to the Mathematics of 

Rationality. Ellis Horwood Limited, Chichester. 

Gear, A. E., A. G. Lockett, A. W. Pearson. 1971. Analysis of Some Portfolio Selection 

Models for R&D. IEEE Transactions on Engineering Management EM18(2) 66–

76. 

Gear, A. E., A. G. Lockett. 1973. A Dynamic Model of Some Multistage Aspects of 

Research and Development Portfolios. IEEE Transactions on Engineering 

Management EM20(1) 22–29. 

Ghasemzadeh, F., N. Archer, P. Iyogun. 1999. A zero-one model for project portfolio 

selection and scheduling. Journal of Operational Research Society 50(7) 745–

755. 

Gilboa, I. 1987. Expected Utility without Purely Subjective Non-Additive Probabilities. 

Journal of Mathematical Economics 16 65–88. 

Gustafsson, J. 2004. Valuation of Projects and Real Options in Incomplete Markets. 

Licentiate Thesis. Helsinki University of Technology. 

Heidenberger, K. 1996. Dynamic project selection and funding under risk: A decision 

tree based MILP approach. European Journal Operational Research 95(2) 284–

298. 

Henriksen, A., A. Traynor. 1999. A Practical R&D Project-Selection Scoring Tool. 

IEEE Transactions on Engineering Management 46(2) 158–170. 

Hespos, R. F., P. A. Strassmann. 1965. Stochastic Decision Trees for the Analysis of 

Investment Decision. Management Science 11(10) 244–259. 

Hillier, F. S. 1963. The Deviation of Probabilistic Information for the Evaluation of 

Risky Investments. Management Science 9(3) 443–457. 

Hull, J. C. 1999. Options, Futures, and Other Derivatives. Prentice Hall, New York, 

NY. 

Keeley, R. H., R. Westerfield. 1972. A Problem in Probability Distribution Techniques 

for Capital Budgeting. Journal of Finance 27(3) 703–709. 

Keeney, R. L., H. Raiffa. 1976. Decisions with Multiple Objectives: Preferences and 

Value Tradeoffs. John Wiley & Sons, New York, NY. 

22



 

 23

Konno, H., H. Yamazaki. 1991. Mean-Absolute Deviation Portfolio Optimization and 

Its Applications to the Tokyo Stock Market. Management Science 37(5) 519–531. 

Kusy, M. I., W. T. Ziemba. 1986. A Bank Asset and Liability Management Model. 

Operations Research 34(3) 356–376. 

Levy, H. 1992. Stochastic Dominance and Expected Utility: Survey and Analysis. 

Management Science 38(4) 555–593. 

Lintner, J. 1965. The Valuation of Risk Assets and the Selection of Risky Investments 

in Stock Portfolios and Capital Budgets. Review of Economics and Statistics 

47(1) 13–37. 

Luenberger, D. G. 1998. Investment Science. Oxford University Press, New York, 

NY. 

Machina, M. 1989. Dynamic Consistency and Non-Expected Utility Models of Choice 

Under Risk. Journal of Economic Literature 27(4) 1622–1668. 

Markowitz, H. M. 1952. Portfolio Selection. Journal of Finance 7(1) 77–91. 

–––––. 1959. Portfolio Selection: Efficient Diversification of Investments. Cowles 

Foundation, Yale. 

Martino, J. P. 1995. Research and Development Project Selection. John Wiley & 

Sons, New York, NY. 

Mehrez, A., Z. Sinuany-Stern. 1983. Resource Allocation to Interrelated Risky 

Projects Using a Multiattribute Utility Function. Management Science 29(4) 430–

439. 

Merton, R. C. 1973. Theory of rational option pricing. Bell Journal of Economics and 

Management Science 4(1) 141-183. 

Mulvey, J. M., H. Vladimirou. 1989. Stochastic Network Optimization Models for 

Investment Planning. Annals of Operations Research 20 187–217. 

Mulvey, J. M., G. Gould, C. Morgan. 2000. An Asset and Liability Management Model 

for Towers Perrin-Tillinghast. Interfaces 30(1) 96–114. 

Ogryczak, W., A. Ruszczynski. 1999. From stochastic dominance to mean-risk 

models: Semideviations as risk measures. European Journal of Operational 

Research 116(1) 33–50. 

Quiggin, J. 1982. A Theory of Anticipated Utility. Journal of Economic Behavior and 

Organization 3 323–343. 

23



 

 24

––––––. 1993. Generalized Expected Utility Theory: The Rank-Dependent Model. 

Kluwer Academic Publishers, Dordrecht, Holland. 

Rabin, M. 2000. Risk Aversion and Expected-Utility Theorem: A Calibration Theorem. 

Econometrica 68(5) 1281–1292. 

Raiffa, H. 1968. Decision Analysis – Introductory Lectures on Choices under 

Uncertainty. Addison-Wesley Publishing Company, Reading, MA. 

Robichek, A. A., S. C. Myers. 1966. Conceptual Problems in the Use of Risk-

Adjusted Discount Rates. Journal of Finance 21(4) 727–730. 

Salo, A, R.P. Hämäläinen. 2001. Preference Ratios in Multiattribute Evaluation 

(PRIME) - Elicitation and Decision Procedures under Incomplete Information. 

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and 

Humans 31(6) 533-–545. 

Santhanam, R., G. J. Kyparisis. 1996. A decision model for interdependent 

information system project selection. European J. Oper. Res. 89(2) 380–399. 

Schmeidler, D. 1989. Subjective Probability and Expected Utility without Additivity. 

Econometrica 57 571–587. 

Sharpe, W. F. 1964. Capital Asset Prices: A Theory of Market Equilibrium under 

Conditions of Risk. Journal of Finance 19(3) 425–442. 

–––––. 1970. Portfolio Theory and Capital Markets. McGraw-Hill, New York, NY. 

Smith, J. E., R. F. Nau. 1995. Valuing Risky Projects: Option Pricing Theory and 

Decision Analysis. Management Science 41(5) 795–816. 

Souder, W. E., T. Mandakovic. 1986. R&D project selection models. Res. 

Management 29(4) 36–42. 

Triantis, A., A. Borison. 2001. Real Options: State of the Practice. Journal of Applied 

Corporate Finance 14(2) 8–24. 

Trigeorgis, L. 1996. Real Options: Managerial Flexibility and Strategy in Resource 

Allocation. MIT Press, Massachussets. 

von Neumann, J., O. Morgenstern. 1947. Theory of Games and Economic Behavior, 

Second edition. Princeton University Press, Princeton. 

Wakker P. 1990. Under Stochastic Dominance Choquet-Expected Utility and 

Anticipated Utility Are Identical. Theory and Decision 29 119–132. 

Wald, A. 1950. Statistical Decision Functions. John Wiley & Sons, New York. 

24



 

 25

Yu, P.-L. 1985. Multiple-Criteria Decision Making: Concepts, Techniques, and 

Extensions. Plenum Press, New York, NY. 

 

25



 

26



Systems Analysis Laboratory 
Research Reports, Series A 
 
A91     Electricity Derivative Markets: Investment Valuation, Production 
May 2005    Planning and Hedging 
      Erkka Näsäkkälä 
 
A90     Optimal pilot decisions and flight trajectories in air combat 
March 2005    Kai Virtanen 
 
A89     On foresight processes and performance of innovation networks 
November 2004   Jukka-Pekka Salmenkaita 
 
A88     Systems Intelligence - Discovering a hidden competence in human  
October 2004    action and organizational life 
      Raimo P. Hämäläinen and Esa Saarinen, eds. 
 
A87     Modelling studies on soil-mediated response to acid deposition and  
October 2003    climate variability 
      Maria Holmberg 
 
A86     Life cycle impact assessment based on decision analysis 
June 2003    Jyri Seppälä 
 
A85     Modelling and implementation issues in circuit and network planning 
May 2003    tools 
      Jukka K. Nurminen 
 
A84     On investment, uncertainty, and strategic interaction with  
April 2003    applications in energy markets. 
      Pauli Murto 
 
A83     Modeling of microscale variations in methane fluxes 
November 2002   Anu Kettunen 
 
 
A82     Modelling of water circulation and the dynamics of phytoplankton 
October 2001    for the analysis of eutrophication 
      Arto Inkala 
 
Systems Analysis Laboratory  
Research Reports, Series B  
 
B25   Systeemiäly 2005 
May 2005  Raimo P. Hämäläinen ja Esa Saarinen, toim. 
 
B24   Systeemiäly - Näkökulmia vuorovaikutukseen ja kokonaisuuksien 
June 2004  hallintaan 
    Raimo P. Hämäläinen ja Esa Saarinen, toim. 
 
B23   Systeemiäly! 
April 2003  Tom Bäckström, Ville Brummer, Terhi Kling ja Paula Siitonen, toim. 
 
B22   Loruja - Esseitä uoman ulkopuolelta 
April 2002  Tommi Gustafsson, Timo Kiviniemi ja Riikka Mäki-Ontto, toim. 

 

169



Systems Analysis Laboratory  
Research Reports, Series E  
Electronic Reports: www.e-reports.sal.hut.fi 
 
E18   Valuing Risky Projects with Contingent Portfolio Programming 
June 2005   Janne Gustafsson and Ahti Salo    
 
E17   Project Valuation under Ambiguity 
June 2005   Janne Gustafsson and Ahti Salo    
 
E16   Project Valuation in Mixed Asset Portfolio Selection 
June 2005   Janne Gustafsson, Bert De Reyck, Zeger Degraeve and Ahti Salo 
 
E15   Hydropower production planning and hedging under inflow and 
May 2005   forward uncertainty 
   Erkka Näsäkkälä and Jussi Keppo 
 
E14   Models and algorithms for network planning tools - practical  
May 2003   experiences 
   Jukka K. Nurminen    
 
E13   Decision structuring dialogue 
April 2003   Sebastian Slotte and Raimo P. Hämäläinen 
 
E12   The threat of weighting biases in environmental decision analysis 
April 2003   Raimo P. Hämäläinen and Susanna Alaja 
 
E11   Timing of investment under technological and revenue related                   
March 2003  uncertainties 
   Pauli Murto 
 
E10   Connecting methane fluxes to vegetation cover and water table 
November 2002   fluctuations at microsite level: A modeling study 
   Anu Kettunen 
 
E9   Comparison of Hydrodynamical Models of the Gulf of Finland in 1995 
September 2001  - A Case Study 
   Arto Inkala and Kai Myrberg 
 
E8    Rationales for Government Intervention in the Commercialization of        
September 2001  New Technologies 
   Jukka-Pekka Salmenkaita and Ahti A. Salo 
 
E7   Effects of dispersal patterns on population dynamics and synchrony 
April 2000   Janica Ylikarjula, Susanna Alaja, Jouni Laakso and David Tesar 
 
Series A and E reports are downloadable at www.sal.hut.fi/Publications/ 
 
Orders for  Helsinki University of Technology 
paper copies: Systems Analysis Laboratory 
   P.O. Box 1100, FIN-02015 HUT, Finland 
   systems.analysis@hut.fi 

170




